CINXE.COM
Search results for: L shaped ground
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: L shaped ground</title> <meta name="description" content="Search results for: L shaped ground"> <meta name="keywords" content="L shaped ground"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="L shaped ground" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="L shaped ground"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2762</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: L shaped ground</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2762</span> A Parasitic Resonator-Based Diamond Shape Microstrip Antenna for Ultra-Wide-Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Zulfiker%20Mahmud">M. Zulfiker Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimur%20Rahman"> M. Naimur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20%20Bin%20Ashraf"> Farhad Bin Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbahiah%20Misran"> Norbahiah Misran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tariqul%20Islam"> Mohammad Tariqul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a diamond-shaped microstrip patch antenna for ultra-wideband applications. The antenna is made up of a diamond shape radiating patch, partial ground plane, and three asterisk-shaped parasitic elements. The parasitic elements are positioned above the ground plane to enhance the bandwidth and gain. The proposed antenna has a compact dimension of 30 x 25 x 1.6 mm3 and achieves an overall bandwidth (S11<-10dB) is 5.8 GHz from 2.7 GHz to 8.5 GHz. The antenna attains more than 4 dBi realized the gain and 80% efficiency over the bandwidth with omnidirectional radiation pattern. The design and simulation of the proposed antenna are performed in Computer Simulation Technology (CST) Microwave Studio. The observation during the analysis of the simulated data reveals that the proposed antenna is suitable for Ultra wide-band (UWB) applications where high gain is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diamond-shaped%20antenna" title="diamond-shaped antenna">diamond-shaped antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=parasitic%20resonator" title=" parasitic resonator"> parasitic resonator</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB%20applications" title=" UWB applications"> UWB applications</a> </p> <a href="https://publications.waset.org/abstracts/91476/a-parasitic-resonator-based-diamond-shape-microstrip-antenna-for-ultra-wide-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2761</span> Compact Ultra-Wideband Printed Monopole Antenna with Inverted L-Shaped Slots for Data Communication and RF Energy Harvesting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Adel%20Sennouni">Mohamed Adel Sennouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Zbitou"> Jamal Zbitou</a>, <a href="https://publications.waset.org/abstracts/search?q=Benaissa%20Abboud"> Benaissa Abboud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelwahed%20Tribak"> Abdelwahed Tribak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bennis"> Hamid Bennis</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Latrach"> Mohamed Latrach </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A compact UWB planar antenna fed with a microstrip-line is proposed. The new design is composed of a rectangular patch with symmetric L-shaped slots and fed by 50 Ω microstrip transmission line and a reduced ground-plane which have a periodic slots with an overall size of 47 mm x 20 mm. It is intended to be used in wireless applications that cover the ultra-wideband (UWB) frequency band. A wider impedance bandwidth of around 116.5% (1.875 <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB%20planar%20antenna" title="UWB planar antenna">UWB planar antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=L-shaped%20slots" title=" L-shaped slots"> L-shaped slots</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20applications" title=" wireless applications"> wireless applications</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20band-width" title=" impedance band-width"> impedance band-width</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20pattern" title=" radiation pattern"> radiation pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=CST" title=" CST"> CST</a> </p> <a href="https://publications.waset.org/abstracts/16119/compact-ultra-wideband-printed-monopole-antenna-with-inverted-l-shaped-slots-for-data-communication-and-rf-energy-harvesting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">487</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2760</span> Studies on the Solubility of Oxygen in Water Using a Hose to fill the Air with Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wichan%20Lertlop">Wichan Lertlop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is to study the solubility of oxygen in water taking the form of aeration pipes that have different shaped objectives of the research to compare the amount of oxygen dissolved in the water, whice take the form of aeration pipes. Shaped differently When aeration 5 minutes on air for 10 minutes, and when air fills 30 minutes, as well as compare the durability of the oxygen is dissolved in the water of the inlet air refueling shaped differently when you fill the air 30 minutes and when. aeration and 60 minutes populations used in this study, the population of pond water from Rajabhat University in February 2014 used in this study consists of 1. Aerator 2. Hose using a hose to fill the air with 3 different shape, different shapes pyramid whose base is on the water tank. Shaped rectangular water tank onto the ground. And shapes in a vertical pipe. 3 meter, dissolved oxygen, dissolved in water to get the calibration standard. 4. The clock for timer 5. Three water tanks which are 39 cm wide, 51 cm long and 32 cm high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeration" title="aeration">aeration</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolve%20oxygen" title=" dissolve oxygen"> dissolve oxygen</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20shapes" title=" different shapes"> different shapes</a> </p> <a href="https://publications.waset.org/abstracts/10005/studies-on-the-solubility-of-oxygen-in-water-using-a-hose-to-fill-the-air-with-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2759</span> Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Florides">G. A. Florides</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Theofanous"> E. Theofanous</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Iosif-Stylianou"> I. Iosif-Stylianou</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Christodoulides"> P. Christodoulides</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kalogirou"> S. Kalogirou</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Messarites"> V. Messarites</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Zomeni"> Z. Zomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Tsiolakis"> E. Tsiolakis</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20D.%20Pouloupatis"> P. D. Pouloupatis</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20P.%20Panayiotou"> G. P. Panayiotou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20heat%20exchangers" title="ground heat exchangers">ground heat exchangers</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20thermal%20conductivity" title=" ground thermal conductivity"> ground thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20thermal%20diffusivity" title=" ground thermal diffusivity"> ground thermal diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20thermal%20properties" title=" ground thermal properties"> ground thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/2459/thermal-properties-of-the-ground-in-cyprus-and-their-correlations-and-effect-on-the-efficiency-of-ground-heat-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2758</span> A Case Study of the Ground Collapse Due to Excavation Using Non-Destructive Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ki-Cheong%20Yoo">Ki-Cheong Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yushik%20Han"> Yushik Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Heejeung%20Sohn"> Heejeung Sohn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoo%20Kim"> Jinwoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ground collapse can be caused by natural and artificial factors. Ground collapses that have occurred frequently in Korea were observed and classified into different types by the main contributing factor. In this study, ground collapse induced by groundwater level disturbance in an excavation site was analyzed. Also, ground loosening region around the excavation site was detected and analyzed using non-destructive testing, such as GPR (Ground Penetrating Radar) survey and Electrical Resistivity. The result of the surveys showed that the ground was loosened widely over the surrounding area of the excavation due to groundwater discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title="electrical resistivity">electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20collapse" title=" ground collapse"> ground collapse</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20level" title=" groundwater level"> groundwater level</a>, <a href="https://publications.waset.org/abstracts/search?q=GPR%20%28ground%20penetrating%20radar%29" title=" GPR (ground penetrating radar)"> GPR (ground penetrating radar)</a> </p> <a href="https://publications.waset.org/abstracts/79051/a-case-study-of-the-ground-collapse-due-to-excavation-using-non-destructive-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2757</span> Seismic Performance of Highway Bridges with Partially Self-Centering Isolation Bearings against Near-Fault Ground Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shengxin%20Yu">Shengxin Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Earthquakes can cause varying degrees of damage to building and bridge structures. Traditional laminated natural rubber bearings (NRB) exhibit inadequate energy dissipation and restraint, particularly under near-fault ground motions, resulting in excessive displacements in the superstructure. This paper presents a composite natural rubber bearing (NFUD-NRB) incorporating two types of shape memory alloy (SMA) U-shaped dampers (UD). The bearing exhibits adjustable features, predominantly characterized by partial self-centering and multi-level energy dissipation, facilitated by nickel-titanium-based SMA (NiTi-SMA) and iron-based SMA (Fe-SMA) UDs. The hysteresis characteristics of NFUD-NRB can be tailored by manipulating the configuration of NiTi-SMA and Fe-SMA UDs. Firstly, the proposed bearing's geometric configuration and working principle are introduced. The rationality of the modeling strategy for the bearing is validated through existing experimental results. Parameterized numerical simulations are subsequently performed to investigate the partially self-centering behavior of NFUD-NRB. The findings indicate that NFUD-NRB can attain the anticipated nonlinear behavior and deliver adequate energy dissipation. Finally, the impact of NFUD-NRB on improving the seismic resilience of highway bridges is examined using the OpenSees software, with particular emphasis on the seismic performance of NFUD-NRB under near-fault ground motions. System-level analysis reveals that bridge systems equipped with NFUD-NRBs exhibit satisfactory residual deformations and higher energy dissipation than those equipped with traditional NRBs. Moreover, NFUD-NRB markedly mitigates the detrimental impacts of near-fault ground motions on the main structure of bridges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=partially%20self-centering%20behavior" title="partially self-centering behavior">partially self-centering behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber%20bearing" title=" natural rubber bearing"> natural rubber bearing</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=U-shaped%20damper" title=" U-shaped damper"> U-shaped damper</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20investigation" title=" numerical investigation"> numerical investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motion" title=" near-fault ground motion"> near-fault ground motion</a> </p> <a href="https://publications.waset.org/abstracts/184070/seismic-performance-of-highway-bridges-with-partially-self-centering-isolation-bearings-against-near-fault-ground-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">58</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2756</span> Numerical Simulation of External Flow Around D-Shaped Cylinders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouldouz%20Nourani%20Zonouz">Ouldouz Nourani Zonouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Salmanpour"> Mehdi Salmanpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation and analysis of flow behavior around different shapes bluff bodies is one of the reputed topics for several years. The importance of these researches is about the unwanted phenomena called flow separation. The location of separation and the size of the wake region should be considered in different industrial designs. In this research a bluff body with D-shaped cross section has been analyzed. In circular cylinder flow separation point changes with Reynolds number but in D-Shaped cylinder there is fix flow separation point. So there is more wake steadiness in D-Shaped cylinder as compared to Circular cylinder and drag reduction because of wake steadiness. In the present work CFD simulation is carried out for flow past a D-Shaped cylinder to see the wake behavior. The Reynolds number regime currently studied corresponds to low Reynolds number and nominally two-dimensional wake. Also the effect of D-Shaped cylinders on the rate of heat transfer has been considered. Various results such as velocity, pressure and temperature contours and also some dimensionless numbers like drag coefficient, pressure coefficient and Nusselt number calculated for different cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D-shaped" title="D-shaped">D-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow" title=" external flow"> external flow</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20Reynolds%20number" title=" low Reynolds number"> low Reynolds number</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20cylinder" title=" square cylinder"> square cylinder</a> </p> <a href="https://publications.waset.org/abstracts/20748/numerical-simulation-of-external-flow-around-d-shaped-cylinders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2755</span> A Compact Ultra-Wide Band Antenna with C-Shaped Slot for WLAN Notching</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Rasool">Maryam Rasool</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhan%20Munir"> Farhan Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahad%20Nawaz"> Fahad Nawaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Saad%20Ahmad"> Saad Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A patch antenna operating in the Ultra-Wide Band of frequency (3.1 GHz – 10.6 GHz) is designed with enhanced security from interference from other applications by incorporating the notching technique. Patch antennas in the Ultra-Wide Band are becoming widely famous due to their low power, light weight and high data rate capability. Micro strip patch antenna’s patch can be altered to increase its bandwidth and introduce UWB character in it. The designed antenna is a patch antenna consisting of a conductive sheet of metal mounted over a large sheet of metal called the ground plane with a substrate separating the two. Notched bands are public safety WLAN, WLAN and FSS. Different techniques used to implement the UWB antenna were individually implemented and there results were examined. V shaped patch was then chosen and modified to an arrow shaped patch to give the optimized results operating on the entire UWB region with considerable return loss. The frequency notch prevents the operation of the antenna at a particular range of frequency, hence minimizing interference from other systems. There are countless techniques for introducing the notch but we have used inverted C-shaped slots in the UWB patch to get the notch characteristics as output and also wavelength resonators to introduce notch in UWB band. The designed antenna is simulated in High Frequency Structural Simulator (HFSS) 13.0 by Ansoft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HFSS" title="HFSS">HFSS</a>, <a href="https://publications.waset.org/abstracts/search?q=Notch" title=" Notch"> Notch</a>, <a href="https://publications.waset.org/abstracts/search?q=UWB" title=" UWB"> UWB</a>, <a href="https://publications.waset.org/abstracts/search?q=WLAN" title=" WLAN"> WLAN</a> </p> <a href="https://publications.waset.org/abstracts/66385/a-compact-ultra-wide-band-antenna-with-c-shaped-slot-for-wlan-notching" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2754</span> Civil Engineering Tool Kit for Making Perfect Ellipses of Desired Dimensions on Very Large Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karam%20Chand%20Gupta">Karam Chand Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> If an ellipse is to be drawn of given dimensions on a large ground, there is no formula, method or set of calculations & procedure available which will help in drawing an ellipse of given length and width on ground. Whenever a field engineer is to start the work of an ellipse-shaped structure like elliptical conference hall, screening chamber and pump chamber in disposal work etc., it is cumbersome for him to give demarcation of the structure on the big surface of the ground. No procedure is available, even in Google. A set of formulas with calculations has been made which helps the field engineer to draw an true and perfect ellipse of given length and width on the large ground very easily so as to start the construction work of elliptical structure. Based on these formulas a civil Engineering tool kit has been made with the help of which we can make perfect ellipse of desired dimensions on very large surface. The Patent of the tool kit has been filed in Intellectual Property India with Patent Filing Number: 201611026153 and Patent Application Filing Date: 30.07.2016. An App named ‘KC’s Mesh Formula’ has also been made to ease the calculation work. This can be downloaded from Play Store. After adopting these formulas and tool kit, a field engineer will not face difficulty in drawing ellipse on the ground to start the work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ellipse" title="ellipse">ellipse</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptical%20structure" title=" elliptical structure"> elliptical structure</a>, <a href="https://publications.waset.org/abstracts/search?q=foci" title=" foci"> foci</a>, <a href="https://publications.waset.org/abstracts/search?q=string" title=" string"> string</a>, <a href="https://publications.waset.org/abstracts/search?q=wooden%20peg" title=" wooden peg"> wooden peg</a> </p> <a href="https://publications.waset.org/abstracts/76542/civil-engineering-tool-kit-for-making-perfect-ellipses-of-desired-dimensions-on-very-large-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2753</span> Effects of Near-Fault Ground Motions on Earthquake-Induced Pounding Response of RC Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Akk%C3%B6se">Mehmet Akköse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In ground motions recorded in recent major earthquakes such as 1994 Northridge earthquake in US, 1995 Kobe earthquake in Japan, 1999 Chi-Chi earthquake in Taiwan, and 1999 Kocaeli earthquake in Turkey, it is noticed that they have large velocity pulses. The ground motions with the velocity pulses recorded in the vicinity of an earthquake fault are quite different from the usual far-fault earthquake ground motions. The velocity pulse duration in the near-fault ground motions is larger than 1.0 sec. In addition, the ratio of the peak ground velocity (PGV) to the peak ground acceleration (PGA) of the near-fault ground motions is larger than 0.1 sec. The ground motions having these characteristics expose the structure to high input energy in the beginning of the earthquake and cause large structural responses. Therefore, structural response to near-fault ground motions has received much attention in recent years. Interactions between neighboring, inadequately separated buildings have been repeatedly observed during earthquakes. This phenomenon often referred to as earthquake-induced structural pounding, may result in substantial damage or even total destruction of colliding structures during strong ground motions. This study focuses on effects of near-fault ground motions on earthquake-induced pounding response of RC buildings. The program SAP2000 is employed in the response calculations. The results obtained from the pounding analyses for near-fault and far-fault ground motions are compared with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=near-fault%20ground%20motion" title="near-fault ground motion">near-fault ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=pounding%20analysis" title=" pounding analysis"> pounding analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20buildings" title=" RC buildings"> RC buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=SAP2000" title=" SAP2000"> SAP2000</a> </p> <a href="https://publications.waset.org/abstracts/37307/effects-of-near-fault-ground-motions-on-earthquake-induced-pounding-response-of-rc-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2752</span> Effective Width of Reinforced Concrete U-Shaped Walls Due to Shear Lag Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20D.%20Hoult">Ryan D. Hoult</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inherent assumption in the elementary theory of bending that plane sections remain plane is commonly used in the design of reinforced concrete members. However, in reality, a shear flow would develop in non-rectangular sections, where the longitudinal strains in between the web and flanges of the element would lag behind those at the boundary ends. This phenomenon, known as shear lag, can significantly reduce the expected moment capacity of non-rectangular reinforced concrete walls. This study focuses on shear lag effects in reinforced concrete U-shaped walls, which are commonly used as lateral load resisting elements in reinforced concrete buildings. An extensive number of finite element modelling analyses are conducted to estimate the vertical strain distributions across the web and flanges of a U-shaped wall with different axial load ratios and longitudinal reinforcement detailing. The results show that shear lag effects are prominent and sometimes significant in U-shaped walls, particularly for the wall sections perpendicular to the direction of loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shear%20lag" title="shear lag">shear lag</a>, <a href="https://publications.waset.org/abstracts/search?q=walls" title=" walls"> walls</a>, <a href="https://publications.waset.org/abstracts/search?q=U-shaped" title=" U-shaped"> U-shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=moment-curvature" title=" moment-curvature"> moment-curvature</a> </p> <a href="https://publications.waset.org/abstracts/92183/effective-width-of-reinforced-concrete-u-shaped-walls-due-to-shear-lag-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2751</span> The Tadpole-Shaped Polypeptides with Two Regulable (Alkyl Chain) Tails</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hua%20Jin">Hua Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Kim"> Il Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The biocompatible tadpole-shaped polypeptides with one cyclic polypeptides ring and two alkyl chain tails were synthesized by N-heterocyclic carbine (NHC)-mediated ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs). First, the NHC precursor, denoted as [NHC(H)][HCO₃], with two alkyl chains at the nitrogen was prepared by a simple anion metathesis of imidazole(in)ium chlorides with KHCO₃. Then NHC releasing from the [NHC(H)][HCO₃] directly initiated the ROP of NCA to produce the cyclic polypeptides. Finally, the tadpole-shaped polypeptides with two regulable tails were obtained. The target polypeptides were characterized by nuclear magnetic resonance spectrum (1H NMR), Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization-time of flight mass spectra (MALDI-TOF MS). This pioneering approach simplifies the synthesis procedures of tadpole-shaped polypeptides compared to other methods, which usually requires specific intramolecular ring-closure reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20polypeptides" title="cyclic polypeptides">cyclic polypeptides</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-amino%20acid%20N-carboxyanhydrides" title=" α-amino acid N-carboxyanhydrides"> α-amino acid N-carboxyanhydrides</a>, <a href="https://publications.waset.org/abstracts/search?q=N-heterocyclic%20carbene" title=" N-heterocyclic carbene"> N-heterocyclic carbene</a>, <a href="https://publications.waset.org/abstracts/search?q=ring-opening%20polymerization" title=" ring-opening polymerization"> ring-opening polymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=tadpole-shaped" title=" tadpole-shaped"> tadpole-shaped</a> </p> <a href="https://publications.waset.org/abstracts/75743/the-tadpole-shaped-polypeptides-with-two-regulable-alkyl-chain-tails" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2750</span> Chaos in a Stadium-Shaped 2-D Quantum Dot</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roger%20Yu">Roger Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical scheme has been developed to solve wave equations for chaotic systems such as stadium-shaped cavity. The same numerical method can also be used for finding wave properties of rectangle cavities with randomly placed obstacles. About 30k eigenvalues have been obtained accurately on a normal circumstance. For comparison, we also initiated an experimental study which determines both eigenfrequencies and eigenfunctions of a stadium-shaped cavity using pulse and normal mode analyzing techniques. The acoustic cavity was made adjustable so that the transition from nonchaotic (circle) to chaotic (stadium) waves can be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot" title="quantum dot">quantum dot</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a> </p> <a href="https://publications.waset.org/abstracts/148129/chaos-in-a-stadium-shaped-2-d-quantum-dot" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2749</span> Study on the Seismic Response of Slope under Pulse-Like Ground Motion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Antwi%20Buah">Peter Antwi Buah</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingbin%20Zhang"> Yingbin Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianxian%20He"> Jianxian He</a>, <a href="https://publications.waset.org/abstracts/search?q=Chenlin%20Xiang"> Chenlin Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Delali%20Atsu%20Y.%20Bakah"> Delali Atsu Y. Bakah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Near-fault ground motions with velocity pulses are considered to cause significant damage to structures or slopes compared to ordinary ground motions without velocity pulses. The double pulsed pulse-like ground motion is as well known to be stronger than the single pulse. This study has numerically justified this perspective by studying the dynamic response of a homogeneous rock slope subjected to four pulse-like and two non-pulse-like ground motions using the Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D) software. Two of the pulse-like ground motions just have a single pulse. The results show that near-fault ground motions with velocity pulses can cause a higher dynamic response than regular ground motions. The amplification of the peak ground acceleration (PGA) in horizontal direction increases with the increase of the slope elevation. The seismic response of the slope under double pulse ground motion is stronger than that of the single pulse ground motion. The PGV amplification factor under the effect of the non-pulse-like records is also smaller than those under the pulse-like records. The velocity pulse strengthens the earthquake damage to the slope, which results in producing a more strong dynamic response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=velocity%20pulses" title="velocity pulses">velocity pulses</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title=" dynamic response"> dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=PGV%20magnification%20effect" title=" PGV magnification effect"> PGV magnification effect</a>, <a href="https://publications.waset.org/abstracts/search?q=elevation%20effect" title=" elevation effect"> elevation effect</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20pulse" title=" double pulse"> double pulse</a> </p> <a href="https://publications.waset.org/abstracts/144882/study-on-the-seismic-response-of-slope-under-pulse-like-ground-motion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144882.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2748</span> Numerical Simulation of Turbulent Flow around Two Cam Shaped Cylinders in Tandem Arrangement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Mir%20Abdolah%20Lavasani">Arash Mir Abdolah Lavasani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ebrahimisabet"> M. Ebrahimisabet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the 2-D unsteady viscous flow around two cam shaped cylinders in tandem arrangement is numerically simulated in order to study the characteristics of the flow in turbulent regimes. The investigation covers the effects of high subcritical and supercritical Reynolds numbers and L/D ratio on total drag coefficient. The equivalent diameter of cylinders is 27.6 mm The space between center to center of two cam shaped cylinders is define as longitudinal pitch ratio and it varies in range of 1.5 < L/D < 6. Reynolds number base on equivalent circular cylinder varies in range of 27×103 < Re < 166×103 Results show that drag coefficient of both cylinders depends on pitch ratio. However drag coefficient of downstream cylinder is more dependent on the pitch ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cam%20shaped" title="cam shaped">cam shaped</a>, <a href="https://publications.waset.org/abstracts/search?q=tandem" title=" tandem"> tandem</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficient" title=" drag coefficient"> drag coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent" title=" turbulent"> turbulent</a> </p> <a href="https://publications.waset.org/abstracts/36258/numerical-simulation-of-turbulent-flow-around-two-cam-shaped-cylinders-in-tandem-arrangement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2747</span> Monitoring and Analysis of Bridge Crossing Ground Fissures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhiqing%20Zhang">Zhiqing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiangong%20Zhou"> Xiangong Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihan%20Zhou"> Zihan Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ground fissures can be seen in some cities all over the world. As a special urban geological disaster, ground fissures in Xi'an have caused great harm to infrastructure. Chang'an Road Interchange in Xi'an City is a bridge across ground fissures. The damage to Chang'an Road interchange is the most serious and typical. To study the influence of ground fissures on the bridge, we established a bridge monitoring system. The main monitoring items include elevation monitoring, structural displacement monitoring, etc. The monitoring results show that the typical failure is mainly reflected in the bridge deck damage caused by horizontal tension and vertical dislocation. For the construction of urban interchange spanning ground fissures, the interchange should be divided reasonably, a simple support structure with less restriction should be adopted, and the monitoring of supports should be strengthened to prevent the occurrence of beam falling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20monitoring" title="bridge monitoring">bridge monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20fissures" title=" ground fissures"> ground fissures</a>, <a href="https://publications.waset.org/abstracts/search?q=typical%20disease" title=" typical disease"> typical disease</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20displacement" title=" structural displacement"> structural displacement</a> </p> <a href="https://publications.waset.org/abstracts/150133/monitoring-and-analysis-of-bridge-crossing-ground-fissures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2746</span> Optimization of a Hand-Fan Shaped Microstrip Patch Antenna by Means of Orthogonal Design Method of Design of Experiments for L-Band and S-Band Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaswinder%20Kaur">Jaswinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitika"> Nitika</a>, <a href="https://publications.waset.org/abstracts/search?q=Navneet%20Kaur"> Navneet Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Khanna"> Rajesh Khanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A hand-fan shaped microstrip patch antenna (MPA) for L-band and S-band applications is designed, and its characteristics have been reconnoitered. The proposed microstrip patch antenna with double U-slot defected ground structure (DGS) is fabricated on an FR4 substrate which is a very readily available and inexpensive material. The suggested antenna is optimized using Orthogonal Design Method (ODM) of Design of Experiments (DOE) to cover the frequency range from 0.91-2.82 GHz for L-band and S-band applications. The L-band covers the frequency range of 1-2 GHz, which is allocated to telemetry, aeronautical, and military systems for passive satellite sensors, weather radars, radio astronomy, and mobile communication. The S-band covers the frequency range of 2-3 GHz, which is used by weather radars, surface ship radars and communication satellites and is also reserved for various wireless applications such as Worldwide Interoperability for Microwave Access (Wi-MAX), super high frequency radio frequency identification (SHF RFID), industrial, scientific and medical bands (ISM), Bluetooth, wireless broadband (Wi-Bro) and wireless local area network (WLAN). The proposed method of optimization is very time efficient and accurate as compared to the conventional evolutionary algorithms due to its statistical strategy. Moreover, the antenna is tested, followed by the comparison of simulated and measured results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title="design of experiments">design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20fan%20shaped%20MPA" title=" hand fan shaped MPA"> hand fan shaped MPA</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Band" title=" L-Band"> L-Band</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20design%20method" title=" orthogonal design method"> orthogonal design method</a>, <a href="https://publications.waset.org/abstracts/search?q=S-Band" title=" S-Band"> S-Band</a> </p> <a href="https://publications.waset.org/abstracts/109582/optimization-of-a-hand-fan-shaped-microstrip-patch-antenna-by-means-of-orthogonal-design-method-of-design-of-experiments-for-l-band-and-s-band-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2745</span> Complex Shaped Prepreg Part Drapability Using Vacuum Bagging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saran%20Toure">Saran Toure</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Complex shaped parts manufactured using out of autoclave prepreg vacuum bagging has a high quality finish. This is not only due to in the control of resin to fibre ratio in prepregs, but also to a reduction in fibre misalignment, slippage and stresses occurring within plies during compaction. In a bid to further reduce deformation modes and control failure modes, we carried experiments where, we introduced wetted fabrics within a prepreg plybook during compaction. Here are presented the results obtained from the vacuum bagging of a complex shaped part. The shape is that of a turbine fan blade with smooth curves all throughout ending with sharp edged angles. The quality of the final part made from this blade is compared to that of the same blade made from standard vacuum bagging process of prepregs, without introducing wetted fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20shaped%20part" title="complex shaped part">complex shaped part</a>, <a href="https://publications.waset.org/abstracts/search?q=prepregs" title=" prepregs"> prepregs</a>, <a href="https://publications.waset.org/abstracts/search?q=drapability" title=" drapability"> drapability</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20bagging" title=" vacuum bagging"> vacuum bagging</a> </p> <a href="https://publications.waset.org/abstracts/17132/complex-shaped-prepreg-part-drapability-using-vacuum-bagging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2744</span> Studies on Race Car Aerodynamics at Wing in Ground Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dharni%20Vasudhevan%20Venkatesan">Dharni Vasudhevan Venkatesan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20E.%20Shanjay"> K. E. Shanjay</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Sujith%20Kumar"> H. Sujith Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Abhilash"> N. A. Abhilash</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aswin%20Ram"> D. Aswin Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20Sanal%20Kumar"> V. R. Sanal Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical studies on race car aerodynamics at wing in ground effect have been carried out using a steady 3d, double precision, pressure-based, and standard k-epsilon turbulence model. Through various parametric analytical studies we have observed that at a particular speed and ground clearance of the wings a favorable negative lift was found high at a particular angle of attack for all the physical models considered in this paper. The fact is that if the ground clearance height to chord length (h/c) is too small, the developing boundary layers from either side (the ground and the lower surface of the wing) can interact, leading to an altered variation of the aerodynamic characteristics at wing in ground effect. Therefore a suitable ground clearance must be predicted throughout the racing for a better performance of the race car, which obviously depends upon the coupled effects of the topography, wing orientation with respect to the ground, the incoming flow features and/or the race car speed. We have concluded that for the design of high performance and high speed race cars the adjustable wings capable to alter the ground clearance and the angles of attack is the best design option for any race car for racing safely with variable speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=external%20aerodynamics" title="external aerodynamics">external aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20flow%20choking" title=" external flow choking"> external flow choking</a>, <a href="https://publications.waset.org/abstracts/search?q=race%20car%20aerodynamics" title=" race car aerodynamics"> race car aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=wing%20in%20ground%20effect" title=" wing in ground effect"> wing in ground effect</a> </p> <a href="https://publications.waset.org/abstracts/12103/studies-on-race-car-aerodynamics-at-wing-in-ground-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2743</span> The Relevance of the U-Shaped Learning Model to the Acquisition of the Difference between C'est and Il Est in the English Learners of French Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Booluck">Pooja Booluck</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A U-shaped learning curve entails a three-step process: a good performance followed by a bad performance followed by a good performance again. U-shaped curves have been observed not only in language acquisition but also in various fields such as temperature face recognition object permanence to name a few. Building on previous studies of the curve child language acquisition and Second Language Acquisition this empirical study seeks to investigate the relevance of the U-shaped learning model to the acquisition of the difference between cest and il est in the English Learners of French context. The present study was developed to assess whether older learners of French in the ELF context follow the same acquisition pattern. The empirical study was conducted on 15 English learners of French which lasted six weeks. Compositions and questionnaires were collected from each subject at three time intervals (after one week after three weeks after six weeks) after which students work were graded as being either correct or incorrect. The data indicates that there is evidence of a U-shaped learning curve in the acquisition of cest and il est and students did follow the same acquisition pattern as children in regards to rote-learned terms and subject clitics. This paper also discusses the need to introduce modules on U-shaped learning curve in teaching curriculum as many teachers are unaware of the trajectory learners undertake while acquiring core components in grammar. In addition this study also addresses the need to conduct more research on the acquisition of rote-learned terms and subject clitics in SLA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=child%20language%20acquisition" title="child language acquisition">child language acquisition</a>, <a href="https://publications.waset.org/abstracts/search?q=rote-learning" title=" rote-learning"> rote-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=subject%20clitics" title=" subject clitics"> subject clitics</a>, <a href="https://publications.waset.org/abstracts/search?q=u-shaped%20learning%20model" title=" u-shaped learning model"> u-shaped learning model</a> </p> <a href="https://publications.waset.org/abstracts/51329/the-relevance-of-the-u-shaped-learning-model-to-the-acquisition-of-the-difference-between-cest-and-il-est-in-the-english-learners-of-french-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51329.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2742</span> Depiction of a Circulated Double Psi-Shaped Microstrip Antenna for Ku-Band Satellite Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naimur%20Rahman">M. Naimur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Tariqul%20Islam"> Mohammad Tariqul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mandeep%20Singh%20Jit%20Singh"> Mandeep Singh Jit Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Norbahiah%20Misran"> Norbahiah Misran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the architecture and exploration of a compact, circulated double Psi-shaped microstrip patch antenna for Ku-band satellite applications. The antenna is composed of the double Psi-shaped patch in opposite focus which is circulated with a ring. The antenna size is 24 mm × 18 mm and the prototype is imprinted on Rogers RT/duroid 5880 materials with the depth of 1.57 mm. The substrate has a relative permittivity of 2.2 and the dielectric constant of 0.0009. The excitation is supplied through a 50Ω microstrip line. The performance of the presented antenna has been simulated and verified with the High-Frequency Structural Simulator (HFSS). The results depict that the antenna covers the frequency spectrum 14.6 - 17.4 GHz (Ku-band) with 10 dB return loss. The antenna has a 4.40 dBi maximum gain with stable radiation patterns throughout the operating band which makes the proposed antenna compatible for the satellite application in Ku-band. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ku-band%20antenna" title="Ku-band antenna">Ku-band antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20antenna" title=" microstrip antenna"> microstrip antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=psi-shaped%20antenna" title=" psi-shaped antenna"> psi-shaped antenna</a>, <a href="https://publications.waset.org/abstracts/search?q=satellite%20applications" title=" satellite applications"> satellite applications</a> </p> <a href="https://publications.waset.org/abstracts/91475/depiction-of-a-circulated-double-psi-shaped-microstrip-antenna-for-ku-band-satellite-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91475.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2741</span> Miniaturized and Compact Monopole Corner Antenna with a Periodic Slot Truncated and T-Inverted Stub-Tuning for Ultra Wideband Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Dakir">R. Dakir</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Zbitou"> J. Zbitou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Mouhsen"> Ahmed Mouhsen</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Errkik"> A. Errkik</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tajmouati"> A. Tajmouati</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Latrach"> M. Latrach</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design and analysis of a new compact and miniaturized monopole antenna structure for ultra wideband (UWB) wireless applications are presented and suggested in this paper. The proposed antenna structure is based on corner radiator patch with T-shaped slot and fed by mictostrip feed line with a partial ground plane combined a periodic rectangular slot and inverted T-stub tuning to increase the bandwidth. The design parameters and the performance of the suggested antenna are investigated by using 'CST Microwave Studio' and Advanced Design System. The final prototype of the proposed antenna operates from 3GHZ to 25GHz, corresponding to wide input impedance bandwidth around (157.14%) with a size of 16*24mm2 and can be easily integrated with radio-frequency or microwave circuits with low cost manufacturing. Details of the UWB antenna design and both simulated and measured results are described and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=UWB" title="UWB">UWB</a>, <a href="https://publications.waset.org/abstracts/search?q=T-shaped%20slots" title=" T-shaped slots"> T-shaped slots</a>, <a href="https://publications.waset.org/abstracts/search?q=improvement" title=" improvement"> improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=bandwidth" title=" bandwidth"> bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=stub%20tuning" title=" stub tuning"> stub tuning</a> </p> <a href="https://publications.waset.org/abstracts/69269/miniaturized-and-compact-monopole-corner-antenna-with-a-periodic-slot-truncated-and-t-inverted-stub-tuning-for-ultra-wideband-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2740</span> Translational and Rotational Effect of Earthquake Ground Motion on a Bridge Substructure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tauhidur%20Rahman">Tauhidur Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Gitartha%20Kalita"> Gitartha Kalita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study a four span box girder bridge is considered and effect of the rotational and translational earthquake ground motion have been thoroughly investigated. This study is motivated by the fact that in many countries the translational and rotational components of earthquake ground motion, especially rocking, is not adequately considered in analysing the overall response of the structures subjected to earthquake ground excitations. Much consideration is given to only the horizontal components of the earthquake ground motion during the response analysis of structures. In the present research work, P waves, SV waves and Rayleigh wave excitations are considered for different angle of incidence. In the present paper, the four span bridge is model considering the effects of vertical and rocking components of P, SV and Rayleigh wave excitations. Ground responses namely displacement, velocity and acceleration of the substructures of the bridge have been considered for rotational and translational effects in addition to the horizontal ground motion due to earthquake and wind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title="ground motion">ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=response" title=" response"> response</a>, <a href="https://publications.waset.org/abstracts/search?q=rotational%20effects" title=" rotational effects"> rotational effects</a>, <a href="https://publications.waset.org/abstracts/search?q=translational%20effects" title=" translational effects"> translational effects</a> </p> <a href="https://publications.waset.org/abstracts/26464/translational-and-rotational-effect-of-earthquake-ground-motion-on-a-bridge-substructure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">447</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2739</span> Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Xiong">Chen Xiong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tong%20Xin"> Tong Xin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Hao"> Li Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Jin-Sheng"> Xu Jin-Sheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20pressurization%20test" title="cold pressurization test">cold pressurization test</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%9Farametric%20modeling" title=" ğarametric modeling"> ğarametric modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=propellant%20grain" title=" propellant grain"> propellant grain</a>, <a href="https://publications.waset.org/abstracts/search?q=SRM" title=" SRM"> SRM</a> </p> <a href="https://publications.waset.org/abstracts/71197/optimal-design-of-propellant-grain-shape-based-on-structural-strength-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2738</span> Ground State Phases in Two-Mode Quantum Rabi Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suren%20Chilingaryan">Suren Chilingaryan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal setup. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20optics" title="quantum optics">quantum optics</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20phase%20transition" title=" quantum phase transition"> quantum phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity%20QED" title=" cavity QED"> cavity QED</a>, <a href="https://publications.waset.org/abstracts/search?q=circuit%20QED" title=" circuit QED"> circuit QED</a> </p> <a href="https://publications.waset.org/abstracts/53277/ground-state-phases-in-two-mode-quantum-rabi-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53277.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2737</span> Design and Synthesis of Two Tunable Bandpass Filters Based on Varactors and Defected Ground Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M%27Hamed%20Boulakroune">M'Hamed Boulakroune</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouloud%20Challal"> Mouloud Challal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassiba%20Louazene"> Hassiba Louazene</a>, <a href="https://publications.waset.org/abstracts/search?q=Saida%20Fentiz"> Saida Fentiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a new ultra wideband (UWB) microstrip bandpass filter (BPF) at microwave frequencies. The first one is based on multiple-mode resonator (MMR) and rectangular-shaped defected ground structure (DGS). This filter, which is compact size of 25.2 x 3.8 mm2, provides in the pass band an insertion loss of 0.57 dB and a return loss greater than 12 dB. The second structure is a tunable bandpass filters using planar patch resonators based on diode varactor. This filter is formed by a triple mode circular patch resonator with two pairs of slots, in which the varactors are connected. Indeed, this filter is initially centered at 2.4 GHz, the center frequency of the tunable patch filter could be tuned up to 1.8 GHz simultaneously with the bandwidth, reaching high tuning ranges. Lossless simulations were compared to those considering the substrate dielectric, conductor losses, and the equivalent electrical circuit model of the tuning element in order to assess their effects. Within these variations, simulation results showed insertion loss better than 2 dB and return loss better than 10 dB over the passband. The proposed filters presents good performances and the simulation results are in satisfactory agreement with the experimentation ones reported elsewhere. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=defected%20ground%20structure" title="defected ground structure">defected ground structure</a>, <a href="https://publications.waset.org/abstracts/search?q=diode%20varactor" title=" diode varactor"> diode varactor</a>, <a href="https://publications.waset.org/abstracts/search?q=microstrip%20bandpass%20filter" title=" microstrip bandpass filter"> microstrip bandpass filter</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple-mode%20resonator" title=" multiple-mode resonator"> multiple-mode resonator</a> </p> <a href="https://publications.waset.org/abstracts/23038/design-and-synthesis-of-two-tunable-bandpass-filters-based-on-varactors-and-defected-ground-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23038.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2736</span> Domestic and Foreign Terrorism: Evaluation of the Breeding Ground</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20K.%20Hung">T. K. Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Terrorism acts have occurred across both developed and developing states, with well-identified motivation and causes. For many years, terrorism eradication has become a major topic yet only passive actions were taken in response to acts. The linkage between the location of terrorism occurrence and breeding ground is not well-documented, resulting in the passive approach used in counter-terrorism nowadays. The evaluation investigates all post-9/11 terrorism affairs considering their state capacity, safety, ease of border access control, religion diversity, and technology access, to measure the level of breeding ground of the states. Those "weak" states with poor border access control, resources capacity and domestic safety are the best breeding ground for terrorists. Although many attacks were caused by religious motivation, religion diversity does not predict the breeding ground. States with censored technology access, particular computer-mediated communication, predict on the terrorism breeding ground, moderated by the level of breeding ground of neighboring states. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counter-terrorism" title="counter-terrorism">counter-terrorism</a>, <a href="https://publications.waset.org/abstracts/search?q=lethality" title=" lethality"> lethality</a>, <a href="https://publications.waset.org/abstracts/search?q=security" title=" security"> security</a>, <a href="https://publications.waset.org/abstracts/search?q=terrorism" title=" terrorism"> terrorism</a> </p> <a href="https://publications.waset.org/abstracts/61656/domestic-and-foreign-terrorism-evaluation-of-the-breeding-ground" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2735</span> Comparison on Electrode and Ground Arrangements Effect on Heat Transfer under Electric Force in a Channel and a Cavity Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwimon%20Saneewong%20Na%20Ayuttaya">Suwimon Saneewong Na Ayuttaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Chainarong%20Chaktranond"> Chainarong Chaktranond</a>, <a href="https://publications.waset.org/abstracts/search?q=Phadungsak%20Rattanadecho"> Phadungsak Rattanadecho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study numerically investigates the effects of Electrohydrodynamic on flow patterns and heat transfer enhancement within a cavity which is on the lower wall of channel. In this simulation, effects of using ground wire and ground plate on the flow patterns are compared. Moreover, the positions of electrode wire respecting with ground are tested in the range of angles θ = 0 - 180°. High electrical voltage exposes to air is 20 kV. Bulk mean velocity and temperature of inlet air are controlled at 0.1 m/s and 60°C, respectively. The result shows when electric field is applied, swirling flow is appeared in the channel. In addition, swirling flow patterns in the main flow of using ground plate are widely spreader than that of using ground wire. Moreover, direction of swirling flow also affects the flow pattern and heat transfer in a cavity. These cause the using ground wire to give the maximum temperature and heat transfer higher than using ground plate. Furthermore, when the angle is at θ = 60°, high shear flow effect is obtained. This results show high strength of swirling flow and effective heat transfer enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title="swirling flow">swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamic" title=" electrohydrodynamic"> electrohydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/9317/comparison-on-electrode-and-ground-arrangements-effect-on-heat-transfer-under-electric-force-in-a-channel-and-a-cavity-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2734</span> Carbon Stock Estimation of Urban Forests in Selected Public Parks in Addis Ababa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meseret%20Habtamu">Meseret Habtamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mekuria%20Argaw"> Mekuria Argaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban forests can help to improve the microclimate and air quality. Urban forests in Addis Ababa are important sinks for GHGs as the number of vehicles and the traffic constrain is steadily increasing. The objective of this study was to characterize the vegetation types in selected public parks and to estimate the carbon stock potential of urban forests by assessing carbon in the above, below ground biomass, in the litter and soil. Species which vegetation samples were taken using a systematic transect sampling within value DBH ≥ 5cm were recorded to measure the above, the below ground biomass and the amount of C stored. Allometric models (Y= 34.4703 - 8.0671(DBH) + 0.6589(DBH2) were used to calculate the above ground and Below ground biomass (BGB) = AGB × 0.2 and sampling of soil and litter was based on quadrates. There were 5038 trees recorded from the selected study sites with DBH ≥ 5cm. Most of the Parks had large number of indigenous species, but the numbers of exotic trees are much larger than the indigenous trees. The mean above ground and below ground biomass is 305.7 ± 168.3 and 61.1± 33.7 respectively and the mean carbon in the above ground and below ground biomass is 143.3±74.2 and 28.1 ± 14.4 respectively. The mean CO2 in the above ground and below ground biomass is 525.9 ± 272.2 and 103.1 ± 52.9 respectively. The mean carbon in dead litter and soil carbon were 10.5 ± 2.4 and 69.2t ha-1 respectively. Urban trees reduce atmospheric carbon dioxide (CO2) through sequestration which is important for climate change mitigation, they are also important for recreational, medicinal value and aesthetic and biodiversity conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title="biodiversity">biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20sequestration" title=" carbon sequestration"> carbon sequestration</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20forests" title=" urban forests"> urban forests</a> </p> <a href="https://publications.waset.org/abstracts/81454/carbon-stock-estimation-of-urban-forests-in-selected-public-parks-in-addis-ababa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2733</span> Numerical Simulation of the Flow around Wing-In-Ground Effect (WIG) Craft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Elbatran">A. Elbatran</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Ahmed"> Y. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Radwan"> A. Radwan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ishak"> M. Ishak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of WIG craft is representing an ambitious technology that will support in reducing time, effort, and money of the conventional marine transportation in the future. This paper investigates the aerodynamic characteristic of compound wing-in-ground effect (WIG) craft model. Drag coefficient, lift coefficient and Lift and drag ratio were studied numerically with respect to the ground clearance and the wing angle of attack. The modifications of the wing has been done in order to investigate the most suitable wing configuration that can increase the wing lift-to-drag ratio at low ground clearance. A numerical investigation was carried out in this research work using finite volume Reynolds-Averaged Navier-Stokes Equations (RANSE) code ANSYS CFX, Validation was carried out by using experiments. The experimental and the numerical results concluded that the lift to drag ratio decreased with the increasing of the ground clearance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drag%20Coefficient" title="drag Coefficient">drag Coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20clearance" title=" ground clearance"> ground clearance</a>, <a href="https://publications.waset.org/abstracts/search?q=navier-stokes" title=" navier-stokes"> navier-stokes</a>, <a href="https://publications.waset.org/abstracts/search?q=WIG" title=" WIG"> WIG</a> </p> <a href="https://publications.waset.org/abstracts/62997/numerical-simulation-of-the-flow-around-wing-in-ground-effect-wig-craft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=92">92</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=93">93</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=L%20shaped%20ground&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>