CINXE.COM
(PDF) Theories of initial segments of standard models of arithmetics and their complete extensions | Jerzy Tomasik and Konrad Zdanowski - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="YwdlpdaQF2AM6xx47QItwZR7SNstfmEw59LX7+yWt1R0ark96OPGMet6jT/d25xcVNOgnG34ioP1zzY8F8De2w==" /> <meta name="citation_title" content="Theories of initial segments of standard models of arithmetics and their complete extensions" /> <meta name="citation_publication_date" content="2011" /> <meta name="citation_journal_title" content="Theoretical Computer Science" /> <meta name="citation_author" content="Krynicki, Michał" /> <meta name="citation_author" content="Tomasik, Jerzy" /> <meta name="citation_author" content="Zdanowski, Konrad" /> <meta name="citation_volume" content="412" /> <meta name="citation_issue" content="31" /> <meta name="citation_firstpage" content="3975" /> <meta name="citation_lastpage" content="3991" /> <meta name="citation_issn" content="0304-3975" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions" /> <meta name="twitter:title" content="Theories of initial segments of standard models of arithmetics and their complete extensions" /> <meta name="twitter:description" content="We investigate families of finite initial segments of standard models for various arithmetics. We give an axiomatization of the theory of sentences true in almost all finite models with addition. We also characterize its complete extensions and" /> <meta name="twitter:image" content="https://0.academia-photos.com/40854177/11112696/12401480/s200_jerzy.tomasik.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions" /> <meta property="og:title" content="Theories of initial segments of standard models of arithmetics and their complete extensions" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="We investigate families of finite initial segments of standard models for various arithmetics. We give an axiomatization of the theory of sentences true in almost all finite models with addition. We also characterize its complete extensions and" /> <meta property="article:author" content="https://u-clermont1.academia.edu/JerzyTomasik" /> <meta property="article:author" content="https://independent.academia.edu/KonradZdanowski" /> <meta name="description" content="We investigate families of finite initial segments of standard models for various arithmetics. We give an axiomatization of the theory of sentences true in almost all finite models with addition. We also characterize its complete extensions and" /> <title>(PDF) Theories of initial segments of standard models of arithmetics and their complete extensions | Jerzy Tomasik and Konrad Zdanowski - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '48654d67e5106e06fb1e5c9a356c302510d6cfee'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734530374000); window.Aedu.timeDifference = new Date().getTime() - 1734530374000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","author":[{"@context":"https://schema.org","@type":"Person","name":"Jerzy Tomasik"},{"@context":"https://schema.org","@type":"Person","name":"Konrad Zdanowski"}],"contributor":[{"@context":"https://schema.org","@type":"Person","name":"Konrad Zdanowski"}],"dateCreated":"2016-01-02","dateModified":"2024-11-12","datePublished":"2011-01-01","headline":"Theories of initial segments of standard models of arithmetics and their complete extensions","image":"https://attachments.academia-assets.com/41270357/thumbnails/1.jpg","inLanguage":"en","keywords":["Theoretical Computer Science","Mathematical Sciences","Standard Model"],"publication":"Theoretical Computer Science","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"u-clermont1"},{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/41270357/thumbnails/1.jpg","url":"https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "2f023750fa0fb6e78e1084afc1fbe79b8f8d5accd80f433269ab490448ca234c", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="WzQHMivxgDMh+3BphMs9N+qqki2IVt6PTEwrLt0Qpt5MWduqFYJRYsZq4S60EoyqKgJ6asjQNTxeUcr9JkbPUQ==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="Os9jC7PXqEcV9qPO/TZRVbshh1/9zC41MUxgJHe+O7stor+TjaR5FvJnMonN7+DIe4lvGL1KxYYjUYH3jOhSNA==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-3f6c8d93606e71610593edcc4a66814b5eb01028a2b32194979a5b0c3df849c2.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 40854177; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F19973951%2FTheories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F19973951%2FTheories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":41270357,"identifier":"Attachment_41270357","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":19973951,"created_at":"2016-01-02T23:18:38.608-08:00","from_world_paper_id":146027164,"updated_at":"2024-11-12T05:42:58.067-08:00","_data":{"grobid_abstract":"We investigate families of finite initial segments of standard models for various arithmetics. We give an axiomatization of the theory of sentences true in almost all finite models with addition. We also characterize its complete extensions and relate its infinite models to models of Presburger arithmetic.","publication_date":"2011,,","publication_name":"Theoretical Computer Science","grobid_abstract_attachment_id":"41270357"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Theories of initial segments of standard models of arithmetics and their complete extensions","broadcastable":true,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [41138865,40854177]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "full_page_mobile_sutd_modal"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":41270357,"attachmentType":"pdf"}"><img alt="First page of “Theories of initial segments of standard models of arithmetics and their complete extensions”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/41270357/mini_magick20190219-19329-bfh8us.png?1550617473" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Theories of initial segments of standard models of arithmetics and their complete extensions</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="41138865" href="https://independent.academia.edu/KonradZdanowski"><img alt="Profile image of Konrad Zdanowski" class="ds-work-card--author-avatar" src="//a.academia-assets.com/images/s65_no_pic.png" />Konrad Zdanowski</a><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="40854177" href="https://u-clermont1.academia.edu/JerzyTomasik"><img alt="Profile image of Jerzy Tomasik" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/40854177/11112696/12401480/s65_jerzy.tomasik.jpg" />Jerzy Tomasik</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2011, Theoretical Computer Science</p><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">17 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 19973951; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=19973951"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">We investigate families of finite initial segments of standard models for various arithmetics. We give an axiomatization of the theory of sentences true in almost all finite models with addition. We also characterize its complete extensions and relate its infinite models to models of Presburger arithmetic.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":41270357,"attachmentType":"pdf","workUrl":"https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":41270357,"attachmentType":"pdf","workUrl":"https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="41270357" data-landing_url="https://www.academia.edu/19973951/Theories_of_initial_segments_of_standard_models_of_arithmetics_and_their_complete_extensions" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="20105212" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20105212/Theories_of_arithmetics_in_finite_models">Theories of arithmetics in finite models</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41138865" href="https://independent.academia.edu/KonradZdanowski">Konrad Zdanowski</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Journal of Symbolic Logic, 2005</p><p class="ds-related-work--abstract ds2-5-body-sm">We investigate theories of initial segments of the standard models for arithmetics. It is easy to see that if the ordering relation is definable in the standard model then the decidability results can be transferred from the infinite model into the finite models. On the contrary we show that the Σ2-theory of multiplication is undecidable in finite models. We show that this result is optimal by proving that the Σ1-theory of multiplication and order is decidable in finite models as well as in the standard model. We show also that the exponentiation function is definable in finite models by a formula of arithmetic with multiplication and that one can define in finite models the arithmetic of addition and multiplication with the concatenation operation.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Theories of arithmetics in finite models","attachmentId":41164160,"attachmentType":"pdf","work_url":"https://www.academia.edu/20105212/Theories_of_arithmetics_in_finite_models","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/20105212/Theories_of_arithmetics_in_finite_models"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="48462646" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48462646/Completeness_theorems_incompleteness_theorems_and_models_of_arithmetic">Completeness theorems, incompleteness theorems and models of arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="100282984" href="https://independent.academia.edu/KenMcAloon">Ken McAloon</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Transactions of the American Mathematical Society, 1978</p><p class="ds-related-work--abstract ds2-5-body-sm">Let & be a consistent extension of Peano arithmetic and let 6EJJ denote the set of TL°" consequences of &. Employing incompleteness theorems to generate independent formulas and completeness theorems to construct models, we build nonstandard models of SP"+2 m which the standard integers are A°+1-definable. We thus pinpoint induction axioms which are not provable in éE¡¡+2; in particular, we show that (parameter free) A?-induction is not provable in Primitive Recursive Arithmetic. Also, we give a solution of a problem of Gaifman on the existence of roots of diophantine equations in end extensions and answer questions about existentially complete models of 3^. Furthermore, it is shown that the proof of the Gödel Completeness Theorem cannot be formalized in 6E § and that the MacDowell-Specker Theorem fails for all truncated theories (£¡¡.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Completeness theorems, incompleteness theorems and models of arithmetic","attachmentId":67061152,"attachmentType":"pdf","work_url":"https://www.academia.edu/48462646/Completeness_theorems_incompleteness_theorems_and_models_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/48462646/Completeness_theorems_incompleteness_theorems_and_models_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="102800636" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/102800636/On_Certain_Extentions_of_the_Arithmetic_of_Addition_of_Natural_Numbers">On Certain Extentions of the Arithmetic of Addition of Natural Numbers</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="62823989" href="https://moscowstate.academia.edu/AlexeySemenov">Alexey Semenov</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Mathematics of the USSR – Izvestia. 15:2, 1980</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper the problems of expressibility and decidability are studied for elementary theories obtained by extending the arithmetic of order and the arithmetic of addition of natural numbers. Results are obtained on the decidability and undecidability of elementary theories of concrete structures of the form ⟨N;+,P⟩, where P is a fixed monadic predicate, as well as results on the class of sets definable in the theory T⟨N;+,λx,∃y(x=dy)⟩.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Certain Extentions of the Arithmetic of Addition of Natural Numbers","attachmentId":102974238,"attachmentType":"pdf","work_url":"https://www.academia.edu/102800636/On_Certain_Extentions_of_the_Arithmetic_of_Addition_of_Natural_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/102800636/On_Certain_Extentions_of_the_Arithmetic_of_Addition_of_Natural_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="106012637" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/106012637/Models_and_types_of_Peanos_arithmetic">Models and types of Peano's arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6964329" href="https://columbia.academia.edu/HGaifman">Haim Gaifman</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Mathematical Logic, 1976</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Models and types of Peano's arithmetic","attachmentId":105322539,"attachmentType":"pdf","work_url":"https://www.academia.edu/106012637/Models_and_types_of_Peanos_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/106012637/Models_and_types_of_Peanos_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="115036275" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/115036275/Existentially_Closed_Models_in_the_Framework_of_Arithmetic">Existentially Closed Models in the Framework of Arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="61300629" href="https://impan.academia.edu/ZofiaAdamowicz">Zofia Adamowicz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Symbolic Logic, 2016</p><p class="ds-related-work--abstract ds2-5-body-sm">We prove that the standard cut is definable in each existentially closed model of I Δ 0 +exp by a (parameter free) Π 1-formula. This definition is optimal with respect to quantifier complexity and allows us to improve some previously known results on existentially closed models of fragments of arithmetic. 1. Introduction. This work was initially motivated by a gap in the proof of Corollary 1.3 of [2] providing a parameter free Π 1-definition of the standard cut, N, in each existentially closed (e.c.) model of I Δ 0 + exp. Our aim is to provide a correct proof of the above result and, use it to obtain an updated view of the theory of e.c. models of I Δ 0 +exp. Existentially closed models of arithmetic were investigated in the 1970's as a part of the efforts to get a full understanding of the model theory of existentially closed structures (existence of model completions and companion theories, finite and infinite forcing, etc.). The results obtained in the early 1970's by A. Robinson, J. Hirschfeld, D. C. Goldrei, A. Macintyre, and H. Simmons pointed out the most important property of e.c. models of sufficiently strong arithmetic theories: there exist formulas defining N in each such model. These results were not stated in their full generality. In the 1970's a systematic study of fragments of Peano arithmetic PA was still to come and the authors focused essentially on e.c. models of Π 2 (N) (thesetoftrueΠ 2-sentences) or of Π 2 (PA)(thesetofΠ 2 consequences of PA), and more generally on e.c. models of Π 2 (T B), where T B is any extension of Π 2 (PA). Regarding Π 2 (N), Robinson (see [14]) proved N to be Σ 3-definable in every e.c. model of Π 2 (N) and Hirschfeld (see [7]) improved Robinson's result obtaining a Σ 2-definition of N,or even aΠ 1-definition, if parameters are allowed. Hirschfeld also showed that these definitions are optimal (in terms of quantifier complexity) for e.c. models of Π 2 (N). As to Π 2 (T B), in [11] Macintyre and Simmons (see also [5]) extended Hirschfeld's Σ 2-definition of N to all e.c. models of Π 2 (T B) and showed that the parametric Π 1definition can be extended to those e.c. models of Π 2 (T B)inwhichtheΣ 1-definable elements are not cofinal. However, these definitions are not best possible, since there is no general result ruling out the possibility of a parameter free Π 1-definition of N valid in all e.c. models. As a matter of fact, such an optimal definition was Key words and phrases. fragments of Peano arithmetic, existentially closed models, turing degrees of arithmetic theories.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Existentially Closed Models in the Framework of Arithmetic","attachmentId":111561987,"attachmentType":"pdf","work_url":"https://www.academia.edu/115036275/Existentially_Closed_Models_in_the_Framework_of_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/115036275/Existentially_Closed_Models_in_the_Framework_of_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="20105216" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/20105216/Finite_Arithmetics">Finite Arithmetics</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41138865" href="https://independent.academia.edu/KonradZdanowski">Konrad Zdanowski</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41271059" href="https://independent.academia.edu/MarcinMostowski">Marcin Mostowski</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Fundamenta Informaticae</p><p class="ds-related-work--abstract ds2-5-body-sm">The paper presents the current state of knowledge in the field of logical investigations of finite arithmetics. This is an attempt to summarize the ideas and results in this area. Some new results are presented - these are mainly generalizations of the earlier results related to properties of sl-theories and some nontrivial cases of FM-representability theorem.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Finite Arithmetics","attachmentId":41990674,"attachmentType":"pdf","work_url":"https://www.academia.edu/20105216/Finite_Arithmetics","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/20105216/Finite_Arithmetics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="79913768" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/79913768/Substructure_lattices_of_models_of_arithmetic">Substructure lattices of models of arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="216453850" href="https://independent.academia.edu/GeorgeMills23">George Mills</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Mathematical Logic, 1979</p><p class="ds-related-work--abstract ds2-5-body-sm">We completely characterize those distributive lattices which can be obtained as elementary substructure lattices of models of Peano arithmetic. Stated concisely: every plausible distributive Mice occurs abundantly. Our proof employs the notion of a strongly definable type in many variables. With slight modifications the method also yields a characterization of those distributive lattices which can be obtained uniformly hy Gaifman's methods oi definable and end extensional l-types. As :J special case this gives another proof of two conjectures involving finite distributive lattices and models of arithmetic posed by Gaifman and initially proved by Schmurl. We also show that every minimal type (in the sense of Gaifman) satisfies a strong partitton property which we will call being "uniformly Ramsey". (2) VMbPA 3N> M Lt (N/M)= D. (3) D is complete, compactly generated, and eacf~ compact element of D hots C X,, compact predecessors.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Substructure lattices of models of arithmetic","attachmentId":86469413,"attachmentType":"pdf","work_url":"https://www.academia.edu/79913768/Substructure_lattices_of_models_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/79913768/Substructure_lattices_of_models_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="58396494" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58396494/On_end_extensions_of_models_of_subsystems_of_peano_arithmetic">On end extensions of models of subsystems of peano arithmetic</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30022870" href="https://independent.academia.edu/CostasDimitrakopoulos">Costas Dimitrakopoulos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Theoretical Computer Science, 2001</p><p class="ds-related-work--abstract ds2-5-body-sm">We survey results and problems concerning subsystems of Peano Arithmetic. In particular, we deal with end extensions of models of such theories. First, we discuss the results of Paris</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On end extensions of models of subsystems of peano arithmetic","attachmentId":72828053,"attachmentType":"pdf","work_url":"https://www.academia.edu/58396494/On_end_extensions_of_models_of_subsystems_of_peano_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/58396494/On_end_extensions_of_models_of_subsystems_of_peano_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="81438523" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/81438523/Models_of_Bounded_Arithmetic_Theories_and_Some_Related_Complexity_Questions">Models of Bounded Arithmetic Theories and Some Related Complexity Questions</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12461242" href="https://sbu-ir.academia.edu/MortezaMoniri">Morteza Moniri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Bulletin of the Section of Logic</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, we study bounded versions of some model-theoretic notions and results. We apply these results to the context of models of bounded arithmetic theories as well as some related complexity questions. As an example, we show that if the theory \(\rm S_2 ^1(PV)\) has bounded model companion then \(\rm NP=coNP\). We also study bounded versions of some other related notions such as Stone topology.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Models of Bounded Arithmetic Theories and Some Related Complexity Questions","attachmentId":87481717,"attachmentType":"pdf","work_url":"https://www.academia.edu/81438523/Models_of_Bounded_Arithmetic_Theories_and_Some_Related_Complexity_Questions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/81438523/Models_of_Bounded_Arithmetic_Theories_and_Some_Related_Complexity_Questions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="27771727" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27771727/Internal_End_Extensions_of_Peano_Arithmetic_and_a_Problem_of_Gaifman">Internal End-Extensions of Peano Arithmetic and a Problem of Gaifman</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34940590" href="https://anekdoty.academia.edu/LarryManevitz">Larry Manevitz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of the London Mathematical Society, 1976</p><p class="ds-related-work--abstract ds2-5-body-sm">A well known result of M. Rabin states that the only existentially complete model of full arithmetic is the standard one. H. Gaifman [1], raised the parallel question for end-extensions of full arithmetic, i.e. does every non-standard model of full arithmetic have an end-extension in which a diophantine equation unsolvable in the original model has a solution. A. Wilkie provided a partial answer [4] when he proved that every countable model of P, Peano Arithmetic, has such an end-extension (which is in fact isomorphic to the original model).</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Internal End-Extensions of Peano Arithmetic and a Problem of Gaifman","attachmentId":48049579,"attachmentType":"pdf","work_url":"https://www.academia.edu/27771727/Internal_End_Extensions_of_Peano_Arithmetic_and_a_Problem_of_Gaifman","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/27771727/Internal_End_Extensions_of_Peano_Arithmetic_and_a_Problem_of_Gaifman"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":41270357,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":41270357,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_41270357" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="5031801" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5031801/Automorphisms_of_models_of_arithmetic_A_unified_view">Automorphisms of models of arithmetic: A unified view</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6695169" href="https://gu-se.academia.edu/AliEnayat">Ali Enayat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Pure and Applied Logic, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Automorphisms of models of arithmetic: A unified view","attachmentId":49478108,"attachmentType":"pdf","work_url":"https://www.academia.edu/5031801/Automorphisms_of_models_of_arithmetic_A_unified_view","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5031801/Automorphisms_of_models_of_arithmetic_A_unified_view"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="17065648" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/17065648/Fragments_of_arithmetic">Fragments of arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="196571" href="https://cmu.academia.edu/WilfriedSieg">Wilfried Sieg</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Pure and Applied Logic, 1985</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fragments of arithmetic","attachmentId":42334579,"attachmentType":"pdf","work_url":"https://www.academia.edu/17065648/Fragments_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/17065648/Fragments_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="58396482" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58396482/Overspill_and_fragments_of_arithmetic">Overspill and fragments of arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="30022870" href="https://independent.academia.edu/CostasDimitrakopoulos">Costas Dimitrakopoulos</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Archive for Mathematical Logic, 1989</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Overspill and fragments of arithmetic","attachmentId":72828028,"attachmentType":"pdf","work_url":"https://www.academia.edu/58396482/Overspill_and_fragments_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/58396482/Overspill_and_fragments_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="5031807" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5031807/A_standard_model_of_Peano_arithmetic_with_no_conservative_elementary_extension">A standard model of Peano arithmetic with no conservative elementary extension</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6695169" href="https://gu-se.academia.edu/AliEnayat">Ali Enayat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Pure and Applied Logic, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A standard model of Peano arithmetic with no conservative elementary extension","attachmentId":49478113,"attachmentType":"pdf","work_url":"https://www.academia.edu/5031807/A_standard_model_of_Peano_arithmetic_with_no_conservative_elementary_extension","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5031807/A_standard_model_of_Peano_arithmetic_with_no_conservative_elementary_extension"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="48566837" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/48566837/The_Arithmetics_of_a_Theory">The Arithmetics of a Theory</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="80365520" href="https://uu.academia.edu/albertvisser">albert visser</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Arithmetics of a Theory","attachmentId":67111771,"attachmentType":"pdf","work_url":"https://www.academia.edu/48566837/The_Arithmetics_of_a_Theory","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/48566837/The_Arithmetics_of_a_Theory"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="60450514" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/60450514/Submodels_and_definable_points_in_models_of_Peano_arithmetic">Submodels and definable points in models of Peano arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="14376132" href="https://independent.academia.edu/ZarkoMijajlovic">Zarko Mijajlovic</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic, 1983</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Submodels and definable points in models of Peano arithmetic","attachmentId":73891899,"attachmentType":"pdf","work_url":"https://www.academia.edu/60450514/Submodels_and_definable_points_in_models_of_Peano_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/60450514/Submodels_and_definable_points_in_models_of_Peano_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="21480115" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic">First-Order Proof Theory of Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="5937540" href="https://ucsd.academia.edu/SamBuss">Sam Buss</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Studies in Logic and the Foundations of Mathematics, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"First-Order Proof Theory of Arithmetic","attachmentId":41904055,"attachmentType":"pdf","work_url":"https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="38810333" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/38810333/Inconsistent_Models_and_Infinite_Models_for_Arithmetics_with_Constructible_Falsity">Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="9896443" href="https://rpi.academia.edu/ThomasFerguson">Thomas M Ferguson</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Logic and Logical Philosophy, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Inconsistent Models (and Infinite Models) for Arithmetics with Constructible Falsity","attachmentId":58902018,"attachmentType":"pdf","work_url":"https://www.academia.edu/38810333/Inconsistent_Models_and_Infinite_Models_for_Arithmetics_with_Constructible_Falsity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/38810333/Inconsistent_Models_and_Infinite_Models_for_Arithmetics_with_Constructible_Falsity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="117691149" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/117691149/Existentially_Closed_Models_and_Conservation_Results_in_Bounded_Arithmetic">Existentially Closed Models and Conservation Results in Bounded Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="300834999" href="https://independent.academia.edu/Andr%C3%A9sCoveloFranco">Andrés Covelo Franco</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Logic and Computation, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Existentially Closed Models and Conservation Results in Bounded Arithmetic","attachmentId":113483805,"attachmentType":"pdf","work_url":"https://www.academia.edu/117691149/Existentially_Closed_Models_and_Conservation_Results_in_Bounded_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/117691149/Existentially_Closed_Models_and_Conservation_Results_in_Bounded_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="54616520" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54616520/Model_theory_of_bounded_arithmetic_with_applications_to_independence_results">Model theory of bounded arithmetic with applications to independence results</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="12461242" href="https://sbu-ir.academia.edu/MortezaMoniri">Morteza Moniri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Logic in Tehran, 2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Model theory of bounded arithmetic with applications to independence results","attachmentId":70896145,"attachmentType":"pdf","work_url":"https://www.academia.edu/54616520/Model_theory_of_bounded_arithmetic_with_applications_to_independence_results","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54616520/Model_theory_of_bounded_arithmetic_with_applications_to_independence_results"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="19942197" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/19942197/Possible_m_diagrams_of_models_of_arithmetic">Possible m-diagrams of models of arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6013213" href="https://univ-lorraine.academia.edu/AndrewArana">Andrew Arana</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Reverse Mathematics 2001, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Possible m-diagrams of models of arithmetic","attachmentId":40926101,"attachmentType":"pdf","work_url":"https://www.academia.edu/19942197/Possible_m_diagrams_of_models_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/19942197/Possible_m_diagrams_of_models_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="25478847" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/25478847/Subclasses_of_presburger_arithmetic_and_the_polynomial_time_hierarchy">Subclasses of presburger arithmetic and the polynomial-time hierarchy</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48906363" href="https://rwth-aachen.academia.edu/ErichGr%C3%A4del">Erich Grädel</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Theoretical Computer Science, 1988</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Subclasses of presburger arithmetic and the polynomial-time hierarchy","attachmentId":45796982,"attachmentType":"pdf","work_url":"https://www.academia.edu/25478847/Subclasses_of_presburger_arithmetic_and_the_polynomial_time_hierarchy","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/25478847/Subclasses_of_presburger_arithmetic_and_the_polynomial_time_hierarchy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="59600636" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59600636/An_induction_principle_for_consequence_in_arithmetic_universes">An induction principle for consequence in arithmetic universes</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34113344" href="https://independent.academia.edu/MariaMaietti">Maria Maietti</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Pure and Applied Algebra, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An induction principle for consequence in arithmetic universes","attachmentId":73440696,"attachmentType":"pdf","work_url":"https://www.academia.edu/59600636/An_induction_principle_for_consequence_in_arithmetic_universes","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/59600636/An_induction_principle_for_consequence_in_arithmetic_universes"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="27862073" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/27862073/A_Characterisation_of_the_Relations_Definable_in_Presburger_Arithmetic">A Characterisation of the Relations Definable in Presburger Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15998172" href="https://ahus.academia.edu/MathiasBarra">Mathias Barra</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Characterisation of the Relations Definable in Presburger Arithmetic","attachmentId":48146572,"attachmentType":"pdf","work_url":"https://www.academia.edu/27862073/A_Characterisation_of_the_Relations_Definable_in_Presburger_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/27862073/A_Characterisation_of_the_Relations_Definable_in_Presburger_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="101406073" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/101406073/On_some_formalized_conservation_results_in_arithmetic">On some formalized conservation results in arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33264119" href="https://bc.academia.edu/PeterClote">Peter Clote</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Archive for Mathematical Logic, 1990</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On some formalized conservation results in arithmetic","attachmentId":101956619,"attachmentType":"pdf","work_url":"https://www.academia.edu/101406073/On_some_formalized_conservation_results_in_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/101406073/On_some_formalized_conservation_results_in_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="19973955" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/19973955/Finite_structures_of_arithmetics_and_reduced_products">Finite structures of arithmetics and reduced products</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="40854177" href="https://u-clermont1.academia.edu/JerzyTomasik">Jerzy Tomasik</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2000</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Finite structures of arithmetics and reduced products","attachmentId":41270374,"attachmentType":"pdf","work_url":"https://www.academia.edu/19973955/Finite_structures_of_arithmetics_and_reduced_products","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/19973955/Finite_structures_of_arithmetics_and_reduced_products"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="448790" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/448790/Classical_and_Intuitionistic_Models_of_Arithmetic">Classical and Intuitionistic Models of Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="337209" href="https://uci.academia.edu/KaiWehmeier">Kai Wehmeier</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic 37, 1996, 452–461, 1996</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Classical and Intuitionistic Models of Arithmetic","attachmentId":2007411,"attachmentType":"pdf","work_url":"https://www.academia.edu/448790/Classical_and_Intuitionistic_Models_of_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/448790/Classical_and_Intuitionistic_Models_of_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="160314" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/160314/Predicative_foundations_of_arithmetic">Predicative foundations of arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13693" href="https://stanford.academia.edu/SolomonFeferman">Solomon Feferman</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Predicative foundations of\n arithmetic","attachmentId":68370,"attachmentType":"pdf","work_url":"https://www.academia.edu/160314/Predicative_foundations_of_arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/160314/Predicative_foundations_of_arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="113731321" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113731321/Predicative_Logic_and_Formal_Arithmetic">Predicative Logic and Formal Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="117828974" href="https://independent.academia.edu/JohnBurgess31">John Burgess</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Notre Dame Journal of Formal Logic, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Predicative Logic and Formal Arithmetic","attachmentId":110619161,"attachmentType":"pdf","work_url":"https://www.academia.edu/113731321/Predicative_Logic_and_Formal_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/113731321/Predicative_Logic_and_Formal_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="2405531" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/2405531/A_Small_Reflection_Principle_for_Bounded_Arithmetic">A Small Reflection Principle for Bounded Arithmetic</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="41333" href="https://rug.academia.edu/RinekeVerbrugge">Rineke Verbrugge</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Symbolic Logic, 1994</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Small Reflection Principle for Bounded Arithmetic","attachmentId":50643666,"attachmentType":"pdf","work_url":"https://www.academia.edu/2405531/A_Small_Reflection_Principle_for_Bounded_Arithmetic","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/2405531/A_Small_Reflection_Principle_for_Bounded_Arithmetic"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="112843929" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112843929/The_Arithmetical_Hierarchy">The Arithmetical Hierarchy</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36769883" href="https://independent.academia.edu/BorutRobic">Borut Robic</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Springer eBooks, 2015</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Arithmetical Hierarchy","attachmentId":109950760,"attachmentType":"pdf","work_url":"https://www.academia.edu/112843929/The_Arithmetical_Hierarchy","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112843929/The_Arithmetical_Hierarchy"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="53141370" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/53141370/On_Certain_Axiomatizations_of_Arithmetic_of_Natural_and_Integer_Numbers">On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="48364096" href="https://uksw.academia.edu/UrszulaWS">Urszula Wybraniec-Skardowska</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Axioms</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Certain Axiomatizations of Arithmetic of Natural and Integer Numbers","attachmentId":70067695,"attachmentType":"pdf","work_url":"https://www.academia.edu/53141370/On_Certain_Axiomatizations_of_Arithmetic_of_Natural_and_Integer_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/53141370/On_Certain_Axiomatizations_of_Arithmetic_of_Natural_and_Integer_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="3846286" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/3846286/Model_Theory_of_Ultrafinitism_I_Fuzzy_Initial_Segments_of_Arithmetics">Model Theory of Ultrafinitism I: Fuzzy Initial Segments of Arithmetics</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="71000" href="https://gmu.academia.edu/RoseCherubin">Rose Cherubin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Model Theory of Ultrafinitism I: Fuzzy Initial Segments of Arithmetics","attachmentId":50116818,"attachmentType":"pdf","work_url":"https://www.academia.edu/3846286/Model_Theory_of_Ultrafinitism_I_Fuzzy_Initial_Segments_of_Arithmetics","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/3846286/Model_Theory_of_Ultrafinitism_I_Fuzzy_Initial_Segments_of_Arithmetics"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="23" data-entity-id="5149149" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/5149149/Arithmetical_definability_and_computational_complexity">Arithmetical definability and computational complexity</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="6951880" href="https://esti.academia.edu/HachaichiYassine">Hachaichi Yassine</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Theoretical Computer Science, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Arithmetical definability and computational complexity","attachmentId":49428968,"attachmentType":"pdf","work_url":"https://www.academia.edu/5149149/Arithmetical_definability_and_computational_complexity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/5149149/Arithmetical_definability_and_computational_complexity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="24" data-entity-id="97982632" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97982632/A_Substitutional_Framework_for_Arithmetical_Validity">A Substitutional Framework for Arithmetical Validity</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="11326288" href="https://lisboa.academia.edu/FernandoFerreira">Fernando Ferreira</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Grazer Philosophische Studien, 1998</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Substitutional Framework for Arithmetical Validity","attachmentId":99457912,"attachmentType":"pdf","work_url":"https://www.academia.edu/97982632/A_Substitutional_Framework_for_Arithmetical_Validity","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97982632/A_Substitutional_Framework_for_Arithmetical_Validity"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="17100" href="https://www.academia.edu/Documents/in/Theoretical_Computer_Science">Theoretical Computer Science</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="80414" href="https://www.academia.edu/Documents/in/Mathematical_Sciences">Mathematical Sciences</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="130616" href="https://www.academia.edu/Documents/in/Standard_Model">Standard Model</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>