CINXE.COM
Sam Buss | University of California, San Diego - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Sam Buss | University of California, San Diego - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="nFnrgNzJvBTv6WAnUJBFUmAxJOC33Z4exh0kU6pgg36rtq3es8uV2zfbbouCKQGnOlzlTfLhwg23mm41iN7Ttg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="sam buss" /> <meta name="description" content="Sam Buss, University of California, San Diego: 78 Followers, 1 Following, 126 Research papers. Research interests: Mathematics, Computer Science, and Music." /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '48654d67e5106e06fb1e5c9a356c302510d6cfee'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15279,"monthly_visitors":"125 million","monthly_visitor_count":125874410,"monthly_visitor_count_in_millions":125,"user_count":279025252,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734541458000); window.Aedu.timeDifference = new Date().getTime() - 1734541458000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-772ddef14990ef25ff745ff7a68e1f5d083987771af2b9046e5dd4ece84c9e02.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-8ced32df41cb1a30061eaa13a8fe865a252f94d76a6a6a05ea0ba77c04f53a96.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://ucsd.academia.edu/SamBuss" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-77c1bbdf640d3ab9a9b87cd905f5a36d6e6aeca610cba7e42bc42af726770bbb.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss","photo":"https://0.academia-photos.com/5937540/124686197/114045079/s65_sam.buss.jpeg","has_photo":true,"department":{"id":100230,"name":"Mathematics","url":"https://ucsd.academia.edu/Departments/Mathematics/Documents","university":{"id":103,"name":"University of California, San Diego","url":"https://ucsd.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":300,"name":"Mathematics","url":"https://www.academia.edu/Documents/in/Mathematics"},{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":671,"name":"Music","url":"https://www.academia.edu/Documents/in/Music"},{"id":892,"name":"Statistics","url":"https://www.academia.edu/Documents/in/Statistics"},{"id":2731,"name":"Mathematics Education","url":"https://www.academia.edu/Documents/in/Mathematics_Education"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":431395,"link":"http://math.ucsd.edu/~sbuss","name":"Homepage","link_domain":"math.ucsd.edu","icon":"//www.google.com/s2/u/0/favicons?domain=math.ucsd.edu"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ucsd.academia.edu/SamBuss","location":"/SamBuss","scheme":"https","host":"ucsd.academia.edu","port":null,"pathname":"/SamBuss","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-71d35f58-e3de-4c64-a800-0d4423d61ed8"></div> <div id="ProfileCheckPaperUpdate-react-component-71d35f58-e3de-4c64-a800-0d4423d61ed8"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Sam Buss" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/5937540/124686197/114045079/s200_sam.buss.jpeg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Sam Buss</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://ucsd.academia.edu/">University of California, San Diego</a>, <a class="u-tcGrayDarker" href="https://ucsd.academia.edu/Departments/Mathematics/Documents">Mathematics</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Sam" data-follow-user-id="5937540" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="5937540"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">78</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">1</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address: </b>La Jolla, California, United States<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5937540" href="https://www.academia.edu/Documents/in/Mathematics"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://ucsd.academia.edu/SamBuss","location":"/SamBuss","scheme":"https","host":"ucsd.academia.edu","port":null,"pathname":"/SamBuss","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematics"]}" data-trace="false" data-dom-id="Pill-react-component-482ab391-ae21-40ce-ad29-9b39edf9ecc2"></div> <div id="Pill-react-component-482ab391-ae21-40ce-ad29-9b39edf9ecc2"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5937540" href="https://www.academia.edu/Documents/in/Computer_Science"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computer Science"]}" data-trace="false" data-dom-id="Pill-react-component-8b8a1fc3-95fa-4125-bdfa-8076692ac1c0"></div> <div id="Pill-react-component-8b8a1fc3-95fa-4125-bdfa-8076692ac1c0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5937540" href="https://www.academia.edu/Documents/in/Music"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Music"]}" data-trace="false" data-dom-id="Pill-react-component-32f68b33-6a4d-4e6c-956f-31d994bc68cf"></div> <div id="Pill-react-component-32f68b33-6a4d-4e6c-956f-31d994bc68cf"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5937540" href="https://www.academia.edu/Documents/in/Statistics"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Statistics"]}" data-trace="false" data-dom-id="Pill-react-component-dbb4da0c-351e-4a2a-81c9-f9382dac67e3"></div> <div id="Pill-react-component-dbb4da0c-351e-4a2a-81c9-f9382dac67e3"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="5937540" href="https://www.academia.edu/Documents/in/Mathematics_Education"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Mathematics Education"]}" data-trace="false" data-dom-id="Pill-react-component-8b21484d-f7bd-4e50-80ee-bd54060e0ca0"></div> <div id="Pill-react-component-8b21484d-f7bd-4e50-80ee-bd54060e0ca0"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Sam Buss</h3></div><div class="js-work-strip profile--work_container" data-work-id="21480120"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480120/Cobham_recursive_set_functions"><img alt="Research paper thumbnail of Cobham recursive set functions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480120/Cobham_recursive_set_functions">Cobham recursive set functions</a></div><div class="wp-workCard_item"><span>Annals of Pure and Applied Logic</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480120"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480120"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480120; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480120]").text(description); $(".js-view-count[data-work-id=21480120]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480120; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480120']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480120, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480120]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480120,"title":"Cobham recursive set functions","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Annals of Pure and Applied Logic"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480120/Cobham_recursive_set_functions","translated_internal_url":"","created_at":"2016-02-02T14:51:46.916-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cobham_recursive_set_functions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480119"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480119/Cut_Elimination_In_Situ"><img alt="Research paper thumbnail of Cut Elimination In Situ" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480119/Cut_Elimination_In_Situ">Cut Elimination In Situ</a></div><div class="wp-workCard_item"><span>Gentzen's Centenary</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style pro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480119"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480119"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480119; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480119]").text(description); $(".js-view-count[data-work-id=21480119]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480119; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480119']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480119, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480119]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480119,"title":"Cut Elimination In Situ","translated_title":"","metadata":{"abstract":"ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Gentzen's Centenary"},"translated_abstract":"ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.","internal_url":"https://www.academia.edu/21480119/Cut_Elimination_In_Situ","translated_internal_url":"","created_at":"2016-02-02T14:51:46.601-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cut_Elimination_In_Situ","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480118"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480118/Some_remarks_on_lengths_of_propositional_proofs"><img alt="Research paper thumbnail of Some remarks on lengths of propositional proofs" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480118/Some_remarks_on_lengths_of_propositional_proofs">Some remarks on lengths of propositional proofs</a></div><div class="wp-workCard_item"><span>Archive for Mathematical Logic</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480118"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480118"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480118; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480118]").text(description); $(".js-view-count[data-work-id=21480118]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480118; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480118']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480118, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480118]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480118,"title":"Some remarks on lengths of propositional proofs","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Archive for Mathematical Logic"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480118/Some_remarks_on_lengths_of_propositional_proofs","translated_internal_url":"","created_at":"2016-02-02T14:51:46.411-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Some_remarks_on_lengths_of_propositional_proofs","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":349057,"name":"Sequent Calculus","url":"https://www.academia.edu/Documents/in/Sequent_Calculus"},{"id":571143,"name":"Lower Bound","url":"https://www.academia.edu/Documents/in/Lower_Bound"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480117"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480117/Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization"><img alt="Research paper thumbnail of Alogtime algorithms for tree isomorphism, comparison, and canonization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480117/Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization">Alogtime algorithms for tree isomorphism, comparison, and canonization</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480117"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480117"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480117; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480117]").text(description); $(".js-view-count[data-work-id=21480117]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480117; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480117']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480117, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480117]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480117,"title":"Alogtime algorithms for tree isomorphism, comparison, and canonization","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480117/Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization","translated_internal_url":"","created_at":"2016-02-02T14:51:46.169-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480116"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480116/The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic"><img alt="Research paper thumbnail of The polynomial hierarchy and intuitionistic Bounded Arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/41904058/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480116/The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic">The polynomial hierarchy and intuitionistic Bounded Arithmetic</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bff228b6fcf217bc140bb172bfcba6e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904058,"asset_id":21480116,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904058/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480116"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480116"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480116; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480116]").text(description); $(".js-view-count[data-work-id=21480116]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480116; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480116']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480116, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bff228b6fcf217bc140bb172bfcba6e8" } } $('.js-work-strip[data-work-id=21480116]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480116,"title":"The polynomial hierarchy and intuitionistic Bounded Arithmetic","translated_title":"","metadata":{"grobid_abstract":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":41904058},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480116/The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:45.904-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904058/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs.pdf","download_url":"https://www.academia.edu/attachments/41904058/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polynomial_hierarchy_and_intuitionis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904058/The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs-libre.pdf?1454453903=\u0026response-content-disposition=attachment%3B+filename%3DThe_polynomial_hierarchy_and_intuitionis.pdf\u0026Expires=1734545058\u0026Signature=QtyKfirD3CDHVpPziSoG9e759QmXpHEq4-zmNOnZzbh5EqOybHELc~mhBtM6Ya4oSGSQ3ezonj3P-LWA5ytA639KRYZTcS5bx2~USoJWqVUdTOc2uZf0mQEhoqR7S~YaS0I1VXAkZc497knjKO3XyDxvjLEASdCPuwBG8lGSok0gu8ilxX1b7WoEaQx9IyL6MaSqr4v4ktxoFDe2Gb4rW-59nE3x2fZzbj7Lu6Lbory4lY8OIQvxuwGvTqU3makglsFRBpvJcqyvVuKJfUQuGQOM0XV5gY4M~Q4xhn9AW1O~38yW2DEM6qoGCC~liYro5C9B61BbZBvKPVhFLqU-UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904058/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs.pdf","download_url":"https://www.academia.edu/attachments/41904058/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polynomial_hierarchy_and_intuitionis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904058/The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs-libre.pdf?1454453903=\u0026response-content-disposition=attachment%3B+filename%3DThe_polynomial_hierarchy_and_intuitionis.pdf\u0026Expires=1734545058\u0026Signature=QtyKfirD3CDHVpPziSoG9e759QmXpHEq4-zmNOnZzbh5EqOybHELc~mhBtM6Ya4oSGSQ3ezonj3P-LWA5ytA639KRYZTcS5bx2~USoJWqVUdTOc2uZf0mQEhoqR7S~YaS0I1VXAkZc497knjKO3XyDxvjLEASdCPuwBG8lGSok0gu8ilxX1b7WoEaQx9IyL6MaSqr4v4ktxoFDe2Gb4rW-59nE3x2fZzbj7Lu6Lbory4lY8OIQvxuwGvTqU3makglsFRBpvJcqyvVuKJfUQuGQOM0XV5gY4M~Q4xhn9AW1O~38yW2DEM6qoGCC~liYro5C9B61BbZBvKPVhFLqU-UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":165652,"name":"Bounded Arithmetic","url":"https://www.academia.edu/Documents/in/Bounded_Arithmetic"}],"urls":[{"id":6318287,"url":"https://www.researchgate.net/profile/Samuel_Buss/publication/221580481_The_Polynomial_Hierarchy_and_Intuitionistic_Bounded_Arithmetic/links/09e4150cc04ef10888000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic"><img alt="Research paper thumbnail of First-Order Proof Theory of Arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/41904055/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic">First-Order Proof Theory of Arithmetic</a></div><div class="wp-workCard_item"><span>Studies in Logic and the Foundations of Mathematics</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07e296bd0a4c15405fdf11196d29f45f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904055,"asset_id":21480115,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904055/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480115]").text(description); $(".js-view-count[data-work-id=21480115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480115, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07e296bd0a4c15405fdf11196d29f45f" } } $('.js-work-strip[data-work-id=21480115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480115,"title":"First-Order Proof Theory of Arithmetic","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Studies in Logic and the Foundations of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:45.616-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904055,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904055/thumbnails/1.jpg","file_name":"ChapterII.pdf","download_url":"https://www.academia.edu/attachments/41904055/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"First_Order_Proof_Theory_of_Arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904055/ChapterII-libre.pdf?1454453909=\u0026response-content-disposition=attachment%3B+filename%3DFirst_Order_Proof_Theory_of_Arithmetic.pdf\u0026Expires=1734545058\u0026Signature=Ir2h5qFItyVivaB98KWST7WHFAfWeRAmdroXvSYxbnJhwyo4Up64Z4OFm6PsmT691bsR6Dhh55~KMDjSiWM4I2skFFYMuDWUAmv8EJnubtCpinPb5NCjbUmT3cKrGylBEq252XPeEM-SYdEoWnY~f2JwHlXA5iiEUe4SRc~qxknEajCj7wNDPD3PSuoS0SBMnsajMpH8WCxsB2pA89IX11gumxgcAlUCmcXLRgj8y3Kf4~J6s0ChCnzsJX~7XgJwzqoAgTNtP7TmaX07F0oYi2LA6rE0sisGVLQ2cxtBgJSZ4B7X7FoSxg9z8lYp67kvoYN9CbcVbTFNCQV8m3rerA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"First_Order_Proof_Theory_of_Arithmetic","translated_slug":"","page_count":70,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904055,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904055/thumbnails/1.jpg","file_name":"ChapterII.pdf","download_url":"https://www.academia.edu/attachments/41904055/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"First_Order_Proof_Theory_of_Arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904055/ChapterII-libre.pdf?1454453909=\u0026response-content-disposition=attachment%3B+filename%3DFirst_Order_Proof_Theory_of_Arithmetic.pdf\u0026Expires=1734545058\u0026Signature=Ir2h5qFItyVivaB98KWST7WHFAfWeRAmdroXvSYxbnJhwyo4Up64Z4OFm6PsmT691bsR6Dhh55~KMDjSiWM4I2skFFYMuDWUAmv8EJnubtCpinPb5NCjbUmT3cKrGylBEq252XPeEM-SYdEoWnY~f2JwHlXA5iiEUe4SRc~qxknEajCj7wNDPD3PSuoS0SBMnsajMpH8WCxsB2pA89IX11gumxgcAlUCmcXLRgj8y3Kf4~J6s0ChCnzsJX~7XgJwzqoAgTNtP7TmaX07F0oYi2LA6rE0sisGVLQ2cxtBgJSZ4B7X7FoSxg9z8lYp67kvoYN9CbcVbTFNCQV8m3rerA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2392,"name":"Proof Theory","url":"https://www.academia.edu/Documents/in/Proof_Theory"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480114"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480114/Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic"><img alt="Research paper thumbnail of Axiomatizations and conservation results for fragments of bounded arithmetic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480114/Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic">Axiomatizations and conservation results for fragments of bounded arithmetic</a></div><div class="wp-workCard_item"><span>Contemporary Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480114"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480114"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480114; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480114]").text(description); $(".js-view-count[data-work-id=21480114]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480114; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480114']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480114, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480114]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480114,"title":"Axiomatizations and conservation results for fragments of bounded arithmetic","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Contemporary Mathematics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480114/Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:45.369-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":165652,"name":"Bounded Arithmetic","url":"https://www.academia.edu/Documents/in/Bounded_Arithmetic"},{"id":1688083,"name":"Contemporary Mathematics","url":"https://www.academia.edu/Documents/in/Contemporary_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480113/The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint"><img alt="Research paper thumbnail of The Computational Power of Bounded Arithmetic from the Predicative Viewpoint" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480113/The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint">The Computational Power of Bounded Arithmetic from the Predicative Viewpoint</a></div><div class="wp-workCard_item"><span>New Computational Paradigms</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480113]").text(description); $(".js-view-count[data-work-id=21480113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480113, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480113,"title":"The Computational Power of Bounded Arithmetic from the Predicative Viewpoint","translated_title":"","metadata":{"abstract":"ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"New Computational Paradigms"},"translated_abstract":"ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.","internal_url":"https://www.academia.edu/21480113/The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint","translated_internal_url":"","created_at":"2016-02-02T14:51:45.108-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480112/On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results"><img alt="Research paper thumbnail of On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480112/On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results">On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results</a></div><div class="wp-workCard_item"><span>Feasible Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... It is open whether the theory CPV= S\(PV) can prove NPB ... Mi^ M} if and only if i i&lt; j. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... It is open whether the theory CPV= S\(PV) can prove NPB ... Mi^ M} if and only if i i&lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing&quot; y&gt; x ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480112]").text(description); $(".js-view-count[data-work-id=21480112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480112,"title":"On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results","translated_title":"","metadata":{"abstract":"... It is open whether the theory CPV= S\\(PV) can prove NPB ... Mi^ M} if and only if i i\u0026lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing\u0026quot; y\u0026gt; x ...","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Feasible Mathematics"},"translated_abstract":"... It is open whether the theory CPV= S\\(PV) can prove NPB ... Mi^ M} if and only if i i\u0026lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing\u0026quot; y\u0026gt; x ...","internal_url":"https://www.academia.edu/21480112/On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results","translated_internal_url":"","created_at":"2016-02-02T14:51:44.913-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... It is open whether the theory CPV= S\\(PV) can prove NPB ... Mi^ M} if and only if i i\u0026lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing\u0026quot; y\u0026gt; x ...","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480111/SAFE_RECURSIVE_SET_FUNCTIONS"><img alt="Research paper thumbnail of SAFE RECURSIVE SET FUNCTIONS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480111/SAFE_RECURSIVE_SET_FUNCTIONS">SAFE RECURSIVE SET FUNCTIONS</a></div><div class="wp-workCard_item"><span>The Journal of Symbolic Logic</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480111]").text(description); $(".js-view-count[data-work-id=21480111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480111, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480111,"title":"SAFE RECURSIVE SET FUNCTIONS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"The Journal of Symbolic Logic"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480111/SAFE_RECURSIVE_SET_FUNCTIONS","translated_internal_url":"","created_at":"2016-02-02T14:51:44.671-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"SAFE_RECURSIVE_SET_FUNCTIONS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480110/A_note_on_bootstrapping_intuitionistic_bounded_arithmetic"><img alt="Research paper thumbnail of A note on bootstrapping intuitionistic bounded arithmetic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480110/A_note_on_bootstrapping_intuitionistic_bounded_arithmetic">A note on bootstrapping intuitionistic bounded arithmetic</a></div><div class="wp-workCard_item"><span>A selection of papers from the Leeds Proof Theory Programme 1990</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480110]").text(description); $(".js-view-count[data-work-id=21480110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480110,"title":"A note on bootstrapping intuitionistic bounded arithmetic","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"A selection of papers from the Leeds Proof Theory Programme 1990"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480110/A_note_on_bootstrapping_intuitionistic_bounded_arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:44.461-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_note_on_bootstrapping_intuitionistic_bounded_arithmetic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":924,"name":"Logic","url":"https://www.academia.edu/Documents/in/Logic"},{"id":2392,"name":"Proof Theory","url":"https://www.academia.edu/Documents/in/Proof_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480109"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480109/FRAGMENTS_OF_APPROXIMATE_COUNTING"><img alt="Research paper thumbnail of FRAGMENTS OF APPROXIMATE COUNTING" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480109/FRAGMENTS_OF_APPROXIMATE_COUNTING">FRAGMENTS OF APPROXIMATE COUNTING</a></div><div class="wp-workCard_item"><span>The Journal of Symbolic Logic</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek&amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480109"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480109"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480109; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480109]").text(description); $(".js-view-count[data-work-id=21480109]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480109; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480109']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480109, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480109]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480109,"title":"FRAGMENTS OF APPROXIMATE COUNTING","translated_title":"","metadata":{"abstract":"ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek\u0026amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"The Journal of Symbolic Logic"},"translated_abstract":"ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek\u0026amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.","internal_url":"https://www.academia.edu/21480109/FRAGMENTS_OF_APPROXIMATE_COUNTING","translated_internal_url":"","created_at":"2016-02-02T14:51:44.256-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"FRAGMENTS_OF_APPROXIMATE_COUNTING","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek\u0026amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":179292,"name":"Symbolic Logic","url":"https://www.academia.edu/Documents/in/Symbolic_Logic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480108/Short_Proofs_of_the_Kneser_Lov%C3%A1sz_Coloring_Principle"><img alt="Research paper thumbnail of Short Proofs of the Kneser-Lovász Coloring Principle" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480108/Short_Proofs_of_the_Kneser_Lov%C3%A1sz_Coloring_Principle">Short Proofs of the Kneser-Lovász Coloring Principle</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We prove that the propositional translations of the Kneser-Lov\&amp;#39;asz theorem have...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We prove that the propositional translations of the Kneser-Lov\&amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\&amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480108]").text(description); $(".js-view-count[data-work-id=21480108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480108,"title":"Short Proofs of the Kneser-Lovász Coloring Principle","translated_title":"","metadata":{"abstract":"ABSTRACT We prove that the propositional translations of the Kneser-Lov\\\u0026amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\\\u0026amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"ABSTRACT We prove that the propositional translations of the Kneser-Lov\\\u0026amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\\\u0026amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.","internal_url":"https://www.academia.edu/21480108/Short_Proofs_of_the_Kneser_Lov%C3%A1sz_Coloring_Principle","translated_internal_url":"","created_at":"2016-02-02T14:51:44.048-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Short_Proofs_of_the_Kneser_Lovász_Coloring_Principle","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We prove that the propositional translations of the Kneser-Lov\\\u0026amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\\\u0026amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480107/Sub_computable_Boundedness_Randomness"><img alt="Research paper thumbnail of Sub-computable Boundedness Randomness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480107/Sub_computable_Boundedness_Randomness">Sub-computable Boundedness Randomness</a></div><div class="wp-workCard_item"><span>Logical Methods in Computer Science</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\&amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen&amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480107]").text(description); $(".js-view-count[data-work-id=21480107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480107,"title":"Sub-computable Boundedness Randomness","translated_title":"","metadata":{"abstract":"ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\\\u0026amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen\u0026amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Logical Methods in Computer Science"},"translated_abstract":"ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\\\u0026amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen\u0026amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.","internal_url":"https://www.academia.edu/21480107/Sub_computable_Boundedness_Randomness","translated_internal_url":"","created_at":"2016-02-02T14:51:43.803-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sub_computable_Boundedness_Randomness","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\\\u0026amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen\u0026amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":64561,"name":"Computer Software","url":"https://www.academia.edu/Documents/in/Computer_Software"},{"id":132545,"name":"Logical Methods in Computer Science","url":"https://www.academia.edu/Documents/in/Logical_Methods_in_Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480106"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480106/Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs"><img alt="Research paper thumbnail of Collapsing modular counting in bounded arithmetic and constant depth propositional proofs" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480106/Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs">Collapsing modular counting in bounded arithmetic and constant depth propositional proofs</a></div><div class="wp-workCard_item"><span>Transactions of the American Mathematical Society</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480106"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480106]").text(description); $(".js-view-count[data-work-id=21480106]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480106']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480106, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480106]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480106,"title":"Collapsing modular counting in bounded arithmetic and constant depth propositional proofs","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Transactions of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480106/Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs","translated_internal_url":"","created_at":"2016-02-02T14:51:43.343-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480105"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480105/Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination"><img alt="Research paper thumbnail of Book Review: Matthias Baaz and Alexander Leitsch, Methods of Cut-Elimination" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480105/Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination">Book Review: Matthias Baaz and Alexander Leitsch, Methods of Cut-Elimination</a></div><div class="wp-workCard_item"><span>Studia Logica</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480105"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480105"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480105; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480105]").text(description); $(".js-view-count[data-work-id=21480105]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480105; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480105']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480105, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480105]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480105,"title":"Book Review: Matthias Baaz and Alexander Leitsch, Methods of Cut-Elimination","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Studia Logica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480105/Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination","translated_internal_url":"","created_at":"2016-02-02T14:51:43.097-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":75000,"name":"Philosophy and Religious Studies","url":"https://www.academia.edu/Documents/in/Philosophy_and_Religious_Studies"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480104/Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds"><img alt="Research paper thumbnail of Limits on Alternation-Trading Proofs for Time-Space Lower Bounds" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480104/Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds">Limits on Alternation-Trading Proofs for Time-Space Lower Bounds</a></div><div class="wp-workCard_item"><span>2012 IEEE 27th Conference on Computational Complexity</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480104]").text(description); $(".js-view-count[data-work-id=21480104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480104,"title":"Limits on Alternation-Trading Proofs for Time-Space Lower Bounds","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"2012 IEEE 27th Conference on Computational Complexity"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480104/Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds","translated_internal_url":"","created_at":"2016-02-02T14:51:42.818-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity"},{"id":571143,"name":"Lower Bound","url":"https://www.academia.edu/Documents/in/Lower_Bound"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480103"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480103/Resolution_and_the_weak_pigeonhole_principle"><img alt="Research paper thumbnail of Resolution and the weak pigeonhole principle" class="work-thumbnail" src="https://attachments.academia-assets.com/41904054/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480103/Resolution_and_the_weak_pigeonhole_principle">Resolution and the weak pigeonhole principle</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give low...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. n ; in other words,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fa1e798472a78ba49884cd06bc983b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904054,"asset_id":21480103,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904054/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480103"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480103]").text(description); $(".js-view-count[data-work-id=21480103]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480103']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480103, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fa1e798472a78ba49884cd06bc983b5" } } $('.js-work-strip[data-work-id=21480103]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480103,"title":"Resolution and the weak pigeonhole principle","translated_title":"","metadata":{"grobid_abstract":"We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. n ; in other words,","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":41904054},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480103/Resolution_and_the_weak_pigeonhole_principle","translated_internal_url":"","created_at":"2016-02-02T14:51:42.537-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904054,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904054/thumbnails/1.jpg","file_name":"paper.pdf","download_url":"https://www.academia.edu/attachments/41904054/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Resolution_and_the_weak_pigeonhole_princ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904054/paper-libre.pdf?1454453897=\u0026response-content-disposition=attachment%3B+filename%3DResolution_and_the_weak_pigeonhole_princ.pdf\u0026Expires=1734545058\u0026Signature=A-2RcaZe6RrnyaEqJOnWppGbVKw09CRdZq94qZtmDMvJVdtLbkV9P9ytC3n82h2SvmdEW2ehOyC-UNG~Lv3kA8y-rfuuuOMEnQmSZw-Q99F9XfldrvBOWlBAYzFv8bxqXDqgCGQfl1F7e7e1L6dev7ly57RrK44x8Hg7hau-PB3bpu1T1KcsFrstGvvZbe6MrclgacRqAn0~KMR8DyZLJ9gR8MfiWzSYjtZlSw1Ls9QtlMaKb60DBkgGKoeAwnBLN88PWyeCwD0StJIy-gjtif6CIF~AAo8EPlbAHT2vAkRVF7TuHPn2t~m7eYbDfGBCpB0420iuAO8F1VqoUjm54g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Resolution_and_the_weak_pigeonhole_principle","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. n ; in other words,","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904054,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904054/thumbnails/1.jpg","file_name":"paper.pdf","download_url":"https://www.academia.edu/attachments/41904054/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Resolution_and_the_weak_pigeonhole_princ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904054/paper-libre.pdf?1454453897=\u0026response-content-disposition=attachment%3B+filename%3DResolution_and_the_weak_pigeonhole_princ.pdf\u0026Expires=1734545058\u0026Signature=A-2RcaZe6RrnyaEqJOnWppGbVKw09CRdZq94qZtmDMvJVdtLbkV9P9ytC3n82h2SvmdEW2ehOyC-UNG~Lv3kA8y-rfuuuOMEnQmSZw-Q99F9XfldrvBOWlBAYzFv8bxqXDqgCGQfl1F7e7e1L6dev7ly57RrK44x8Hg7hau-PB3bpu1T1KcsFrstGvvZbe6MrclgacRqAn0~KMR8DyZLJ9gR8MfiWzSYjtZlSw1Ls9QtlMaKb60DBkgGKoeAwnBLN88PWyeCwD0StJIy-gjtif6CIF~AAo8EPlbAHT2vAkRVF7TuHPn2t~m7eYbDfGBCpB0420iuAO8F1VqoUjm54g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":571143,"name":"Lower Bound","url":"https://www.academia.edu/Documents/in/Lower_Bound"},{"id":575846,"name":"Upper Bound","url":"https://www.academia.edu/Documents/in/Upper_Bound"},{"id":2132350,"name":"Normal Form","url":"https://www.academia.edu/Documents/in/Normal_Form"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480102/THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC"><img alt="Research paper thumbnail of THE POLYNOMIAL HIERARCHY AND INTUITIONISTIC BOUNDED ARITHMETIC" class="work-thumbnail" src="https://attachments.academia-assets.com/41904057/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480102/THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC">THE POLYNOMIAL HIERARCHY AND INTUITIONISTIC BOUNDED ARITHMETIC</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c80a4a8736875be8e1f9f6d18234e1a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904057,"asset_id":21480102,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904057/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480102]").text(description); $(".js-view-count[data-work-id=21480102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c80a4a8736875be8e1f9f6d18234e1a1" } } $('.js-work-strip[data-work-id=21480102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480102,"title":"THE POLYNOMIAL HIERARCHY AND INTUITIONISTIC BOUNDED ARITHMETIC","translated_title":"","metadata":{"grobid_abstract":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","grobid_abstract_attachment_id":41904057},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480102/THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC","translated_internal_url":"","created_at":"2016-02-02T14:51:42.309-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904057,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904057/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8.pdf","download_url":"https://www.academia.edu/attachments/41904057/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904057/The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8-libre.pdf?1454453902=\u0026response-content-disposition=attachment%3B+filename%3DTHE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf\u0026Expires=1734545058\u0026Signature=Zm9rGa3YrCkQO86np2vkDVOgR2tRAadX~zCA7tV7ZNHuHIIRb2IkZ2sUPoqfgB-wXwVXHltpYwH~J3tnbqiy2p1fVqDagfmjUgYYsEff4fuPAp~HRAzMeL5ScMojNJx5wp2ZP9vxB44cNvIYUWQMl9S8rsN63NyH~0ptPl0BRBhTJdXA5NBCNq1cbVRQ1RP~ytciYdGbRlQxTde39l~TuL7sekKJ5Uw5yUCiWbBLhtuz~M6BgU-6ENTNX7pRlMaFu1VxCGA4OjHMxZMizn-cenXfwF6eRc95s2Vl09nypm1O7EiDlVbi6dJ25zNAa5icPm9JyAgEi3FPTbNxOI0psQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904057,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904057/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8.pdf","download_url":"https://www.academia.edu/attachments/41904057/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904057/The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8-libre.pdf?1454453902=\u0026response-content-disposition=attachment%3B+filename%3DTHE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf\u0026Expires=1734545058\u0026Signature=Zm9rGa3YrCkQO86np2vkDVOgR2tRAadX~zCA7tV7ZNHuHIIRb2IkZ2sUPoqfgB-wXwVXHltpYwH~J3tnbqiy2p1fVqDagfmjUgYYsEff4fuPAp~HRAzMeL5ScMojNJx5wp2ZP9vxB44cNvIYUWQMl9S8rsN63NyH~0ptPl0BRBhTJdXA5NBCNq1cbVRQ1RP~ytciYdGbRlQxTde39l~TuL7sekKJ5Uw5yUCiWbBLhtuz~M6BgU-6ENTNX7pRlMaFu1VxCGA4OjHMxZMizn-cenXfwF6eRc95s2Vl09nypm1O7EiDlVbi6dJ25zNAa5icPm9JyAgEi3FPTbNxOI0psQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":165652,"name":"Bounded Arithmetic","url":"https://www.academia.edu/Documents/in/Bounded_Arithmetic"}],"urls":[{"id":6318286,"url":"https://www.researchgate.net/profile/Samuel_Buss/publication/221580481_The_Polynomial_Hierarchy_and_Intuitionistic_Bounded_Arithmetic/links/09e4150cc04ef10888000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480101"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480101/Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_"><img alt="Research paper thumbnail of Immerman Neil. Upper and lower bounds for first order expressibility. Journal of computer and system sciences, vol. 25 (1982), pp. 76–98. Immerman Neil. Relational queries computable in polynomial time. Information and control, vol. 68 (1986), pp. 86–104. Immerman Neil. Languages that capture com..." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480101/Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_">Immerman Neil. Upper and lower bounds for first order expressibility. Journal of computer and system sciences, vol. 25 (1982), pp. 76–98. Immerman Neil. Relational queries computable in polynomial time. Information and control, vol. 68 (1986), pp. 86–104. Immerman Neil. Languages that capture com...</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480101"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480101"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480101; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480101]").text(description); $(".js-view-count[data-work-id=21480101]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480101; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480101']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480101, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480101]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480101,"title":"Immerman Neil. Upper and lower bounds for first order expressibility. Journal of computer and system sciences, vol. 25 (1982), pp. 76–98. Immerman Neil. Relational queries computable in polynomial time. Information and control, vol. 68 (1986), pp. 86–104. Immerman Neil. Languages that capture com...","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480101/Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_","translated_internal_url":"","created_at":"2016-02-02T14:51:42.038-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="789275" id="papers"><div class="js-work-strip profile--work_container" data-work-id="21480120"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480120/Cobham_recursive_set_functions"><img alt="Research paper thumbnail of Cobham recursive set functions" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480120/Cobham_recursive_set_functions">Cobham recursive set functions</a></div><div class="wp-workCard_item"><span>Annals of Pure and Applied Logic</span><span>, 2016</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480120"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480120"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480120; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480120]").text(description); $(".js-view-count[data-work-id=21480120]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480120; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480120']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480120, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480120]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480120,"title":"Cobham recursive set functions","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2016,"errors":{}},"publication_name":"Annals of Pure and Applied Logic"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480120/Cobham_recursive_set_functions","translated_internal_url":"","created_at":"2016-02-02T14:51:46.916-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cobham_recursive_set_functions","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480119"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480119/Cut_Elimination_In_Situ"><img alt="Research paper thumbnail of Cut Elimination In Situ" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480119/Cut_Elimination_In_Situ">Cut Elimination In Situ</a></div><div class="wp-workCard_item"><span>Gentzen's Centenary</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style pro...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480119"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480119"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480119; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480119]").text(description); $(".js-view-count[data-work-id=21480119]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480119; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480119']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480119, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480119]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480119,"title":"Cut Elimination In Situ","translated_title":"","metadata":{"abstract":"ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Gentzen's Centenary"},"translated_abstract":"ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.","internal_url":"https://www.academia.edu/21480119/Cut_Elimination_In_Situ","translated_internal_url":"","created_at":"2016-02-02T14:51:46.601-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Cut_Elimination_In_Situ","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We present methods for removing top-level cuts from a sequent calculus or Tait-style proof without significantly increasing the space used for storing the proof. For propositional logic, this requires con-verting a proof from tree-like to dag-like form, but it most doubles the number of lines in the proof. For first-order logic, the proof size can grow exponentially, but the proof has a succinct description and is polynomial-time uniform. We use direct, global constructions that give polynomial time methods for removing all top-level cuts from proofs. By exploiting prenex representations, this extends to removing all cuts, with final proof size bounded superexponentially in the alternation of quantifiers in cut formulas.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480118"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480118/Some_remarks_on_lengths_of_propositional_proofs"><img alt="Research paper thumbnail of Some remarks on lengths of propositional proofs" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480118/Some_remarks_on_lengths_of_propositional_proofs">Some remarks on lengths of propositional proofs</a></div><div class="wp-workCard_item"><span>Archive for Mathematical Logic</span><span>, 1995</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480118"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480118"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480118; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480118]").text(description); $(".js-view-count[data-work-id=21480118]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480118; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480118']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480118, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480118]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480118,"title":"Some remarks on lengths of propositional proofs","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1995,"errors":{}},"publication_name":"Archive for Mathematical Logic"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480118/Some_remarks_on_lengths_of_propositional_proofs","translated_internal_url":"","created_at":"2016-02-02T14:51:46.411-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Some_remarks_on_lengths_of_propositional_proofs","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":349057,"name":"Sequent Calculus","url":"https://www.academia.edu/Documents/in/Sequent_Calculus"},{"id":571143,"name":"Lower Bound","url":"https://www.academia.edu/Documents/in/Lower_Bound"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480117"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480117/Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization"><img alt="Research paper thumbnail of Alogtime algorithms for tree isomorphism, comparison, and canonization" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480117/Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization">Alogtime algorithms for tree isomorphism, comparison, and canonization</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1997</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480117"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480117"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480117; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480117]").text(description); $(".js-view-count[data-work-id=21480117]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480117; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480117']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480117, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480117]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480117,"title":"Alogtime algorithms for tree isomorphism, comparison, and canonization","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1997,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480117/Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization","translated_internal_url":"","created_at":"2016-02-02T14:51:46.169-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Alogtime_algorithms_for_tree_isomorphism_comparison_and_canonization","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480116"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480116/The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic"><img alt="Research paper thumbnail of The polynomial hierarchy and intuitionistic Bounded Arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/41904058/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480116/The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic">The polynomial hierarchy and intuitionistic Bounded Arithmetic</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1986</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bff228b6fcf217bc140bb172bfcba6e8" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904058,"asset_id":21480116,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904058/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480116"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480116"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480116; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480116]").text(description); $(".js-view-count[data-work-id=21480116]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480116; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480116']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480116, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bff228b6fcf217bc140bb172bfcba6e8" } } $('.js-work-strip[data-work-id=21480116]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480116,"title":"The polynomial hierarchy and intuitionistic Bounded Arithmetic","translated_title":"","metadata":{"grobid_abstract":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","publication_date":{"day":null,"month":null,"year":1986,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":41904058},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480116/The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:45.904-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904058/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs.pdf","download_url":"https://www.academia.edu/attachments/41904058/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polynomial_hierarchy_and_intuitionis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904058/The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs-libre.pdf?1454453903=\u0026response-content-disposition=attachment%3B+filename%3DThe_polynomial_hierarchy_and_intuitionis.pdf\u0026Expires=1734545058\u0026Signature=QtyKfirD3CDHVpPziSoG9e759QmXpHEq4-zmNOnZzbh5EqOybHELc~mhBtM6Ya4oSGSQ3ezonj3P-LWA5ytA639KRYZTcS5bx2~USoJWqVUdTOc2uZf0mQEhoqR7S~YaS0I1VXAkZc497knjKO3XyDxvjLEASdCPuwBG8lGSok0gu8ilxX1b7WoEaQx9IyL6MaSqr4v4ktxoFDe2Gb4rW-59nE3x2fZzbj7Lu6Lbory4lY8OIQvxuwGvTqU3makglsFRBpvJcqyvVuKJfUQuGQOM0XV5gY4M~Q4xhn9AW1O~38yW2DEM6qoGCC~liYro5C9B61BbZBvKPVhFLqU-UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_polynomial_hierarchy_and_intuitionistic_Bounded_Arithmetic","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904058,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904058/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs.pdf","download_url":"https://www.academia.edu/attachments/41904058/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_polynomial_hierarchy_and_intuitionis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904058/The_Polynomial_Hierarchy_and_Intuitionis20160202-2479-usoqqs-libre.pdf?1454453903=\u0026response-content-disposition=attachment%3B+filename%3DThe_polynomial_hierarchy_and_intuitionis.pdf\u0026Expires=1734545058\u0026Signature=QtyKfirD3CDHVpPziSoG9e759QmXpHEq4-zmNOnZzbh5EqOybHELc~mhBtM6Ya4oSGSQ3ezonj3P-LWA5ytA639KRYZTcS5bx2~USoJWqVUdTOc2uZf0mQEhoqR7S~YaS0I1VXAkZc497knjKO3XyDxvjLEASdCPuwBG8lGSok0gu8ilxX1b7WoEaQx9IyL6MaSqr4v4ktxoFDe2Gb4rW-59nE3x2fZzbj7Lu6Lbory4lY8OIQvxuwGvTqU3makglsFRBpvJcqyvVuKJfUQuGQOM0XV5gY4M~Q4xhn9AW1O~38yW2DEM6qoGCC~liYro5C9B61BbZBvKPVhFLqU-UA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":165652,"name":"Bounded Arithmetic","url":"https://www.academia.edu/Documents/in/Bounded_Arithmetic"}],"urls":[{"id":6318287,"url":"https://www.researchgate.net/profile/Samuel_Buss/publication/221580481_The_Polynomial_Hierarchy_and_Intuitionistic_Bounded_Arithmetic/links/09e4150cc04ef10888000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480115"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic"><img alt="Research paper thumbnail of First-Order Proof Theory of Arithmetic" class="work-thumbnail" src="https://attachments.academia-assets.com/41904055/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic">First-Order Proof Theory of Arithmetic</a></div><div class="wp-workCard_item"><span>Studies in Logic and the Foundations of Mathematics</span><span>, 1998</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="07e296bd0a4c15405fdf11196d29f45f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904055,"asset_id":21480115,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904055/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480115"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480115"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480115; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480115]").text(description); $(".js-view-count[data-work-id=21480115]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480115; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480115']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480115, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "07e296bd0a4c15405fdf11196d29f45f" } } $('.js-work-strip[data-work-id=21480115]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480115,"title":"First-Order Proof Theory of Arithmetic","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Studies in Logic and the Foundations of Mathematics"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480115/First_Order_Proof_Theory_of_Arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:45.616-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904055,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904055/thumbnails/1.jpg","file_name":"ChapterII.pdf","download_url":"https://www.academia.edu/attachments/41904055/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"First_Order_Proof_Theory_of_Arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904055/ChapterII-libre.pdf?1454453909=\u0026response-content-disposition=attachment%3B+filename%3DFirst_Order_Proof_Theory_of_Arithmetic.pdf\u0026Expires=1734545058\u0026Signature=Ir2h5qFItyVivaB98KWST7WHFAfWeRAmdroXvSYxbnJhwyo4Up64Z4OFm6PsmT691bsR6Dhh55~KMDjSiWM4I2skFFYMuDWUAmv8EJnubtCpinPb5NCjbUmT3cKrGylBEq252XPeEM-SYdEoWnY~f2JwHlXA5iiEUe4SRc~qxknEajCj7wNDPD3PSuoS0SBMnsajMpH8WCxsB2pA89IX11gumxgcAlUCmcXLRgj8y3Kf4~J6s0ChCnzsJX~7XgJwzqoAgTNtP7TmaX07F0oYi2LA6rE0sisGVLQ2cxtBgJSZ4B7X7FoSxg9z8lYp67kvoYN9CbcVbTFNCQV8m3rerA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"First_Order_Proof_Theory_of_Arithmetic","translated_slug":"","page_count":70,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904055,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904055/thumbnails/1.jpg","file_name":"ChapterII.pdf","download_url":"https://www.academia.edu/attachments/41904055/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"First_Order_Proof_Theory_of_Arithmetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904055/ChapterII-libre.pdf?1454453909=\u0026response-content-disposition=attachment%3B+filename%3DFirst_Order_Proof_Theory_of_Arithmetic.pdf\u0026Expires=1734545058\u0026Signature=Ir2h5qFItyVivaB98KWST7WHFAfWeRAmdroXvSYxbnJhwyo4Up64Z4OFm6PsmT691bsR6Dhh55~KMDjSiWM4I2skFFYMuDWUAmv8EJnubtCpinPb5NCjbUmT3cKrGylBEq252XPeEM-SYdEoWnY~f2JwHlXA5iiEUe4SRc~qxknEajCj7wNDPD3PSuoS0SBMnsajMpH8WCxsB2pA89IX11gumxgcAlUCmcXLRgj8y3Kf4~J6s0ChCnzsJX~7XgJwzqoAgTNtP7TmaX07F0oYi2LA6rE0sisGVLQ2cxtBgJSZ4B7X7FoSxg9z8lYp67kvoYN9CbcVbTFNCQV8m3rerA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":2392,"name":"Proof Theory","url":"https://www.academia.edu/Documents/in/Proof_Theory"},{"id":181847,"name":"First-Order Logic","url":"https://www.academia.edu/Documents/in/First-Order_Logic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480114"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480114/Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic"><img alt="Research paper thumbnail of Axiomatizations and conservation results for fragments of bounded arithmetic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480114/Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic">Axiomatizations and conservation results for fragments of bounded arithmetic</a></div><div class="wp-workCard_item"><span>Contemporary Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480114"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480114"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480114; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480114]").text(description); $(".js-view-count[data-work-id=21480114]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480114; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480114']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480114, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480114]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480114,"title":"Axiomatizations and conservation results for fragments of bounded arithmetic","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Contemporary Mathematics"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480114/Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:45.369-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Axiomatizations_and_conservation_results_for_fragments_of_bounded_arithmetic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":165652,"name":"Bounded Arithmetic","url":"https://www.academia.edu/Documents/in/Bounded_Arithmetic"},{"id":1688083,"name":"Contemporary Mathematics","url":"https://www.academia.edu/Documents/in/Contemporary_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480113"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480113/The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint"><img alt="Research paper thumbnail of The Computational Power of Bounded Arithmetic from the Predicative Viewpoint" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480113/The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint">The Computational Power of Bounded Arithmetic from the Predicative Viewpoint</a></div><div class="wp-workCard_item"><span>New Computational Paradigms</span><span>, 2008</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480113"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480113"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480113; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480113]").text(description); $(".js-view-count[data-work-id=21480113]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480113; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480113']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480113, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480113]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480113,"title":"The Computational Power of Bounded Arithmetic from the Predicative Viewpoint","translated_title":"","metadata":{"abstract":"ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.","publication_date":{"day":null,"month":null,"year":2008,"errors":{}},"publication_name":"New Computational Paradigms"},"translated_abstract":"ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.","internal_url":"https://www.academia.edu/21480113/The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint","translated_internal_url":"","created_at":"2016-02-02T14:51:45.108-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"The_Computational_Power_of_Bounded_Arithmetic_from_the_Predicative_Viewpoint","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper considers theories of bounded arithmetic that are predicative in the sense of Nelson, that is, theories that are interpretable in Robinson’s Q.We give a nearly exact characterization of functions that can be total in predicative bounded theories. As an upper bound, any such function has a polynomial growth rate and its bit-graph is in nondeterministic exponential time and in co-nondeterministic exponential time. In fact, any function uniquely defined in a bounded theory of arithmetic lies in this class. Conversely, any function that is in this class (provably in IΔ0+exp) can be uniquely defined and total in a (predicative) bounded theory of arithmetic.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480112"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480112/On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results"><img alt="Research paper thumbnail of On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480112/On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results">On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results</a></div><div class="wp-workCard_item"><span>Feasible Mathematics</span><span>, 1990</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">... It is open whether the theory CPV= S\(PV) can prove NPB ... Mi^ M} if and only if i i&lt; j. ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">... It is open whether the theory CPV= S\(PV) can prove NPB ... Mi^ M} if and only if i i&lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing&quot; y&gt; x ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480112"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480112"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480112; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480112]").text(description); $(".js-view-count[data-work-id=21480112]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480112; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480112']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480112, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480112]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480112,"title":"On Model Theory for Intuitionistic Bounded Arithmetic with Applications to Independence Results","translated_title":"","metadata":{"abstract":"... It is open whether the theory CPV= S\\(PV) can prove NPB ... Mi^ M} if and only if i i\u0026lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing\u0026quot; y\u0026gt; x ...","publication_date":{"day":null,"month":null,"year":1990,"errors":{}},"publication_name":"Feasible Mathematics"},"translated_abstract":"... It is open whether the theory CPV= S\\(PV) can prove NPB ... Mi^ M} if and only if i i\u0026lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing\u0026quot; y\u0026gt; x ...","internal_url":"https://www.academia.edu/21480112/On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results","translated_internal_url":"","created_at":"2016-02-02T14:51:44.913-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"On_Model_Theory_for_Intuitionistic_Bounded_Arithmetic_with_Applications_to_Independence_Results","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"... It is open whether the theory CPV= S\\(PV) can prove NPB ... Mi^ M} if and only if i i\u0026lt; j. Since it is CPV-normal, IPV* is valid in this Kripke model; it turns ... universal quantifiers and combining like quantifiers we rewrite NPB as where NPBM (x, y, z) is an atomic formula formalizing\u0026quot; y\u0026gt; x ...","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480111"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480111/SAFE_RECURSIVE_SET_FUNCTIONS"><img alt="Research paper thumbnail of SAFE RECURSIVE SET FUNCTIONS" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480111/SAFE_RECURSIVE_SET_FUNCTIONS">SAFE RECURSIVE SET FUNCTIONS</a></div><div class="wp-workCard_item"><span>The Journal of Symbolic Logic</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480111"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480111"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480111; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480111]").text(description); $(".js-view-count[data-work-id=21480111]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480111; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480111']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480111, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480111]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480111,"title":"SAFE RECURSIVE SET FUNCTIONS","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"The Journal of Symbolic Logic"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480111/SAFE_RECURSIVE_SET_FUNCTIONS","translated_internal_url":"","created_at":"2016-02-02T14:51:44.671-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"SAFE_RECURSIVE_SET_FUNCTIONS","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480110"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480110/A_note_on_bootstrapping_intuitionistic_bounded_arithmetic"><img alt="Research paper thumbnail of A note on bootstrapping intuitionistic bounded arithmetic" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480110/A_note_on_bootstrapping_intuitionistic_bounded_arithmetic">A note on bootstrapping intuitionistic bounded arithmetic</a></div><div class="wp-workCard_item"><span>A selection of papers from the Leeds Proof Theory Programme 1990</span><span>, 1993</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480110"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480110"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480110; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480110]").text(description); $(".js-view-count[data-work-id=21480110]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480110; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480110']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480110, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480110]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480110,"title":"A note on bootstrapping intuitionistic bounded arithmetic","translated_title":"","metadata":{"abstract":"ABSTRACT","publication_date":{"day":null,"month":null,"year":1993,"errors":{}},"publication_name":"A selection of papers from the Leeds Proof Theory Programme 1990"},"translated_abstract":"ABSTRACT","internal_url":"https://www.academia.edu/21480110/A_note_on_bootstrapping_intuitionistic_bounded_arithmetic","translated_internal_url":"","created_at":"2016-02-02T14:51:44.461-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"A_note_on_bootstrapping_intuitionistic_bounded_arithmetic","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":924,"name":"Logic","url":"https://www.academia.edu/Documents/in/Logic"},{"id":2392,"name":"Proof Theory","url":"https://www.academia.edu/Documents/in/Proof_Theory"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480109"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480109/FRAGMENTS_OF_APPROXIMATE_COUNTING"><img alt="Research paper thumbnail of FRAGMENTS OF APPROXIMATE COUNTING" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480109/FRAGMENTS_OF_APPROXIMATE_COUNTING">FRAGMENTS OF APPROXIMATE COUNTING</a></div><div class="wp-workCard_item"><span>The Journal of Symbolic Logic</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of b...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek&amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480109"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480109"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480109; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480109]").text(description); $(".js-view-count[data-work-id=21480109]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480109; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480109']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480109, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480109]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480109,"title":"FRAGMENTS OF APPROXIMATE COUNTING","translated_title":"","metadata":{"abstract":"ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek\u0026amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"The Journal of Symbolic Logic"},"translated_abstract":"ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek\u0026amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.","internal_url":"https://www.academia.edu/21480109/FRAGMENTS_OF_APPROXIMATE_COUNTING","translated_internal_url":"","created_at":"2016-02-02T14:51:44.256-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"FRAGMENTS_OF_APPROXIMATE_COUNTING","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We study the long-standing open problem of giving ∀Σ b 1 separa-tions for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek\u0026amp;#39;s theories for approximate counting and their subtheories. We show that the ∀Σ b 1 Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole principle for FP NP functions. We further give new propositional translations, in terms of random resolution refutations, for the consequences of T 1 2 augmented with the surjective weak pigeon-hole principle for polynomial time functions.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":803,"name":"Philosophy","url":"https://www.academia.edu/Documents/in/Philosophy"},{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":179292,"name":"Symbolic Logic","url":"https://www.academia.edu/Documents/in/Symbolic_Logic"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480108"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480108/Short_Proofs_of_the_Kneser_Lov%C3%A1sz_Coloring_Principle"><img alt="Research paper thumbnail of Short Proofs of the Kneser-Lovász Coloring Principle" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480108/Short_Proofs_of_the_Kneser_Lov%C3%A1sz_Coloring_Principle">Short Proofs of the Kneser-Lovász Coloring Principle</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 2015</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT We prove that the propositional translations of the Kneser-Lov\&amp;#39;asz theorem have...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT We prove that the propositional translations of the Kneser-Lov\&amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\&amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480108"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480108"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480108; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480108]").text(description); $(".js-view-count[data-work-id=21480108]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480108; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480108']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480108, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480108]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480108,"title":"Short Proofs of the Kneser-Lovász Coloring Principle","translated_title":"","metadata":{"abstract":"ABSTRACT We prove that the propositional translations of the Kneser-Lov\\\u0026amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\\\u0026amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.","publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Lecture Notes in Computer Science"},"translated_abstract":"ABSTRACT We prove that the propositional translations of the Kneser-Lov\\\u0026amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\\\u0026amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.","internal_url":"https://www.academia.edu/21480108/Short_Proofs_of_the_Kneser_Lov%C3%A1sz_Coloring_Principle","translated_internal_url":"","created_at":"2016-02-02T14:51:44.048-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Short_Proofs_of_the_Kneser_Lovász_Coloring_Principle","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT We prove that the propositional translations of the Kneser-Lov\\\u0026amp;#39;asz theorem have polynomial size extended Frege proofs and quasi-polynomial size Frege proofs. We present a new counting-based combinatorial proof of the Kneser-Lov\\\u0026amp;#39;asz theorem that avoids the topological arguments of prior proofs for all but finitely many cases for each k. We introduce a miniaturization of the octahedral Tucker lemma, called the truncated Tucker lemma: it is open whether its propositional translations have (quasi-)polynomial size Frege or extended Frege proofs.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480107"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480107/Sub_computable_Boundedness_Randomness"><img alt="Research paper thumbnail of Sub-computable Boundedness Randomness" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480107/Sub_computable_Boundedness_Randomness">Sub-computable Boundedness Randomness</a></div><div class="wp-workCard_item"><span>Logical Methods in Computer Science</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\&amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen&amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480107"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480107"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480107; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480107]").text(description); $(".js-view-count[data-work-id=21480107]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480107; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480107']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480107, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480107]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480107,"title":"Sub-computable Boundedness Randomness","translated_title":"","metadata":{"abstract":"ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\\\u0026amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen\u0026amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Logical Methods in Computer Science"},"translated_abstract":"ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\\\u0026amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen\u0026amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.","internal_url":"https://www.academia.edu/21480107/Sub_computable_Boundedness_Randomness","translated_internal_url":"","created_at":"2016-02-02T14:51:43.803-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Sub_computable_Boundedness_Randomness","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"ABSTRACT This paper defines a new notion of bounded computable randomness for certain classes of sub-computable functions which lack a universal machine. In particular, we define such versions of randomness for primitive recursive functions and for PSPACE functions. These new notions are robust in that there are equivalent formulations in terms of (1) Martin-L\\\u0026amp;quot;of tests, (2) Kolmogorov complexity, and (3) martingales. We show these notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove that one direction of van Lambalgen\u0026amp;#39;s theorem holds for relative computability, but the other direction fails. We discuss statistical properties of these notions of randomness.","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"},{"id":64561,"name":"Computer Software","url":"https://www.academia.edu/Documents/in/Computer_Software"},{"id":132545,"name":"Logical Methods in Computer Science","url":"https://www.academia.edu/Documents/in/Logical_Methods_in_Computer_Science"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480106"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480106/Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs"><img alt="Research paper thumbnail of Collapsing modular counting in bounded arithmetic and constant depth propositional proofs" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480106/Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs">Collapsing modular counting in bounded arithmetic and constant depth propositional proofs</a></div><div class="wp-workCard_item"><span>Transactions of the American Mathematical Society</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480106"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480106"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480106; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480106]").text(description); $(".js-view-count[data-work-id=21480106]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480106; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480106']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480106, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480106]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480106,"title":"Collapsing modular counting in bounded arithmetic and constant depth propositional proofs","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Transactions of the American Mathematical Society"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480106/Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs","translated_internal_url":"","created_at":"2016-02-02T14:51:43.343-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Collapsing_modular_counting_in_bounded_arithmetic_and_constant_depth_propositional_proofs","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":19997,"name":"Pure Mathematics","url":"https://www.academia.edu/Documents/in/Pure_Mathematics"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480105"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480105/Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination"><img alt="Research paper thumbnail of Book Review: Matthias Baaz and Alexander Leitsch, Methods of Cut-Elimination" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480105/Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination">Book Review: Matthias Baaz and Alexander Leitsch, Methods of Cut-Elimination</a></div><div class="wp-workCard_item"><span>Studia Logica</span><span>, 2015</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480105"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480105"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480105; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480105]").text(description); $(".js-view-count[data-work-id=21480105]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480105; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480105']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480105, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480105]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480105,"title":"Book Review: Matthias Baaz and Alexander Leitsch, Methods of Cut-Elimination","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2015,"errors":{}},"publication_name":"Studia Logica"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480105/Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination","translated_internal_url":"","created_at":"2016-02-02T14:51:43.097-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Book_Review_Matthias_Baaz_and_Alexander_Leitsch_Methods_of_Cut_Elimination","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":75000,"name":"Philosophy and Religious Studies","url":"https://www.academia.edu/Documents/in/Philosophy_and_Religious_Studies"},{"id":80414,"name":"Mathematical Sciences","url":"https://www.academia.edu/Documents/in/Mathematical_Sciences"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480104"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480104/Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds"><img alt="Research paper thumbnail of Limits on Alternation-Trading Proofs for Time-Space Lower Bounds" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480104/Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds">Limits on Alternation-Trading Proofs for Time-Space Lower Bounds</a></div><div class="wp-workCard_item"><span>2012 IEEE 27th Conference on Computational Complexity</span><span>, 2012</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480104"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480104"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480104; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480104]").text(description); $(".js-view-count[data-work-id=21480104]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480104; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480104']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480104, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480104]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480104,"title":"Limits on Alternation-Trading Proofs for Time-Space Lower Bounds","translated_title":"","metadata":{"publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"2012 IEEE 27th Conference on Computational Complexity"},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480104/Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds","translated_internal_url":"","created_at":"2016-02-02T14:51:42.818-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Limits_on_Alternation_Trading_Proofs_for_Time_Space_Lower_Bounds","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[{"id":2189,"name":"Computational Complexity","url":"https://www.academia.edu/Documents/in/Computational_Complexity"},{"id":571143,"name":"Lower Bound","url":"https://www.academia.edu/Documents/in/Lower_Bound"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480103"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480103/Resolution_and_the_weak_pigeonhole_principle"><img alt="Research paper thumbnail of Resolution and the weak pigeonhole principle" class="work-thumbnail" src="https://attachments.academia-assets.com/41904054/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480103/Resolution_and_the_weak_pigeonhole_principle">Resolution and the weak pigeonhole principle</a></div><div class="wp-workCard_item"><span>Lecture Notes in Computer Science</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give low...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. n ; in other words,</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2fa1e798472a78ba49884cd06bc983b5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904054,"asset_id":21480103,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904054/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480103"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480103"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480103; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480103]").text(description); $(".js-view-count[data-work-id=21480103]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480103; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480103']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480103, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2fa1e798472a78ba49884cd06bc983b5" } } $('.js-work-strip[data-work-id=21480103]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480103,"title":"Resolution and the weak pigeonhole principle","translated_title":"","metadata":{"grobid_abstract":"We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. n ; in other words,","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"Lecture Notes in Computer Science","grobid_abstract_attachment_id":41904054},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480103/Resolution_and_the_weak_pigeonhole_principle","translated_internal_url":"","created_at":"2016-02-02T14:51:42.537-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904054,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904054/thumbnails/1.jpg","file_name":"paper.pdf","download_url":"https://www.academia.edu/attachments/41904054/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Resolution_and_the_weak_pigeonhole_princ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904054/paper-libre.pdf?1454453897=\u0026response-content-disposition=attachment%3B+filename%3DResolution_and_the_weak_pigeonhole_princ.pdf\u0026Expires=1734545058\u0026Signature=A-2RcaZe6RrnyaEqJOnWppGbVKw09CRdZq94qZtmDMvJVdtLbkV9P9ytC3n82h2SvmdEW2ehOyC-UNG~Lv3kA8y-rfuuuOMEnQmSZw-Q99F9XfldrvBOWlBAYzFv8bxqXDqgCGQfl1F7e7e1L6dev7ly57RrK44x8Hg7hau-PB3bpu1T1KcsFrstGvvZbe6MrclgacRqAn0~KMR8DyZLJ9gR8MfiWzSYjtZlSw1Ls9QtlMaKb60DBkgGKoeAwnBLN88PWyeCwD0StJIy-gjtif6CIF~AAo8EPlbAHT2vAkRVF7TuHPn2t~m7eYbDfGBCpB0420iuAO8F1VqoUjm54g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Resolution_and_the_weak_pigeonhole_principle","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"We give new upper bounds for resolution proofs of the weak pigeonhole principle. We also give lower bounds for tree-like resolution proofs. We present a normal form for resolution proofs of pigeonhole principles based on a new monotone resolution rule. n ; in other words,","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904054,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904054/thumbnails/1.jpg","file_name":"paper.pdf","download_url":"https://www.academia.edu/attachments/41904054/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Resolution_and_the_weak_pigeonhole_princ.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904054/paper-libre.pdf?1454453897=\u0026response-content-disposition=attachment%3B+filename%3DResolution_and_the_weak_pigeonhole_princ.pdf\u0026Expires=1734545058\u0026Signature=A-2RcaZe6RrnyaEqJOnWppGbVKw09CRdZq94qZtmDMvJVdtLbkV9P9ytC3n82h2SvmdEW2ehOyC-UNG~Lv3kA8y-rfuuuOMEnQmSZw-Q99F9XfldrvBOWlBAYzFv8bxqXDqgCGQfl1F7e7e1L6dev7ly57RrK44x8Hg7hau-PB3bpu1T1KcsFrstGvvZbe6MrclgacRqAn0~KMR8DyZLJ9gR8MfiWzSYjtZlSw1Ls9QtlMaKb60DBkgGKoeAwnBLN88PWyeCwD0StJIy-gjtif6CIF~AAo8EPlbAHT2vAkRVF7TuHPn2t~m7eYbDfGBCpB0420iuAO8F1VqoUjm54g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":571143,"name":"Lower Bound","url":"https://www.academia.edu/Documents/in/Lower_Bound"},{"id":575846,"name":"Upper Bound","url":"https://www.academia.edu/Documents/in/Upper_Bound"},{"id":2132350,"name":"Normal Form","url":"https://www.academia.edu/Documents/in/Normal_Form"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480102"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480102/THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC"><img alt="Research paper thumbnail of THE POLYNOMIAL HIERARCHY AND INTUITIONISTIC BOUNDED ARITHMETIC" class="work-thumbnail" src="https://attachments.academia-assets.com/41904057/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480102/THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC">THE POLYNOMIAL HIERARCHY AND INTUITIONISTIC BOUNDED ARITHMETIC</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the d...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c80a4a8736875be8e1f9f6d18234e1a1" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":41904057,"asset_id":21480102,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/41904057/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480102"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480102"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480102; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480102]").text(description); $(".js-view-count[data-work-id=21480102]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480102; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480102']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480102, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c80a4a8736875be8e1f9f6d18234e1a1" } } $('.js-work-strip[data-work-id=21480102]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480102,"title":"THE POLYNOMIAL HIERARCHY AND INTUITIONISTIC BOUNDED ARITHMETIC","translated_title":"","metadata":{"grobid_abstract":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","grobid_abstract_attachment_id":41904057},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480102/THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC","translated_internal_url":"","created_at":"2016-02-02T14:51:42.309-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":41904057,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904057/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8.pdf","download_url":"https://www.academia.edu/attachments/41904057/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904057/The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8-libre.pdf?1454453902=\u0026response-content-disposition=attachment%3B+filename%3DTHE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf\u0026Expires=1734545058\u0026Signature=Zm9rGa3YrCkQO86np2vkDVOgR2tRAadX~zCA7tV7ZNHuHIIRb2IkZ2sUPoqfgB-wXwVXHltpYwH~J3tnbqiy2p1fVqDagfmjUgYYsEff4fuPAp~HRAzMeL5ScMojNJx5wp2ZP9vxB44cNvIYUWQMl9S8rsN63NyH~0ptPl0BRBhTJdXA5NBCNq1cbVRQ1RP~ytciYdGbRlQxTde39l~TuL7sekKJ5Uw5yUCiWbBLhtuz~M6BgU-6ENTNX7pRlMaFu1VxCGA4OjHMxZMizn-cenXfwF6eRc95s2Vl09nypm1O7EiDlVbi6dJ25zNAa5icPm9JyAgEi3FPTbNxOI0psQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONISTIC_BOUNDED_ARITHMETIC","translated_slug":"","page_count":33,"language":"en","content_type":"Work","summary":"Intuitionistic theories IS: of Bounded Arithmetic a r e introduced and i t is shown t h a t the definable functions of IS: a r e precisely the 0: functions of t h e polvnomial hierarchy. This is an extension of earlier work on t h e classical Bounded Arithmetic and was first conjectured by S. Cook. In contrast t o t h e classical theories of Bounded b Arithmetic where Ci-definable functions are of interest, our results for intuitionistic theories concern all the definable functions. The method of proof uses 0;-realizability which is inspired by t h e recursive realizability of S.C. Kleene 131 and D. Nelson 151. I t also involves polynomial hierarchy functionals of finite type which a r e introduced in this paper. * Research supported in part by NSF Grant DMS 85-11465. In general, 0: is P The theories Si a r e most advantageously viewed a s Gentzen-style natural deduction systems. A formal proof in a natural deduction system contains sequents of t h e form where each A. and B. is a formula. The meaning of such a sequent is J J In addition t o t h e usual inference rules for natural deduction. the Z:-PIND inference is b","owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[{"id":41904057,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/41904057/thumbnails/1.jpg","file_name":"The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8.pdf","download_url":"https://www.academia.edu/attachments/41904057/download_file?st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&st=MTczNDU0MTQ1OCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"THE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/41904057/The_Polynomial_Hierarchy_and_Intuitionis20160202-10702-1hswzc8-libre.pdf?1454453902=\u0026response-content-disposition=attachment%3B+filename%3DTHE_POLYNOMIAL_HIERARCHY_AND_INTUITIONIS.pdf\u0026Expires=1734545058\u0026Signature=Zm9rGa3YrCkQO86np2vkDVOgR2tRAadX~zCA7tV7ZNHuHIIRb2IkZ2sUPoqfgB-wXwVXHltpYwH~J3tnbqiy2p1fVqDagfmjUgYYsEff4fuPAp~HRAzMeL5ScMojNJx5wp2ZP9vxB44cNvIYUWQMl9S8rsN63NyH~0ptPl0BRBhTJdXA5NBCNq1cbVRQ1RP~ytciYdGbRlQxTde39l~TuL7sekKJ5Uw5yUCiWbBLhtuz~M6BgU-6ENTNX7pRlMaFu1VxCGA4OjHMxZMizn-cenXfwF6eRc95s2Vl09nypm1O7EiDlVbi6dJ25zNAa5icPm9JyAgEi3FPTbNxOI0psQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":165652,"name":"Bounded Arithmetic","url":"https://www.academia.edu/Documents/in/Bounded_Arithmetic"}],"urls":[{"id":6318286,"url":"https://www.researchgate.net/profile/Samuel_Buss/publication/221580481_The_Polynomial_Hierarchy_and_Intuitionistic_Bounded_Arithmetic/links/09e4150cc04ef10888000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="21480101"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/21480101/Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_"><img alt="Research paper thumbnail of Immerman Neil. Upper and lower bounds for first order expressibility. Journal of computer and system sciences, vol. 25 (1982), pp. 76–98. Immerman Neil. Relational queries computable in polynomial time. Information and control, vol. 68 (1986), pp. 86–104. Immerman Neil. Languages that capture com..." class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/21480101/Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_">Immerman Neil. Upper and lower bounds for first order expressibility. Journal of computer and system sciences, vol. 25 (1982), pp. 76–98. Immerman Neil. Relational queries computable in polynomial time. Information and control, vol. 68 (1986), pp. 86–104. Immerman Neil. Languages that capture com...</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="21480101"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="21480101"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 21480101; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=21480101]").text(description); $(".js-view-count[data-work-id=21480101]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 21480101; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='21480101']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 21480101, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=21480101]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":21480101,"title":"Immerman Neil. Upper and lower bounds for first order expressibility. Journal of computer and system sciences, vol. 25 (1982), pp. 76–98. Immerman Neil. Relational queries computable in polynomial time. Information and control, vol. 68 (1986), pp. 86–104. Immerman Neil. Languages that capture com...","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/21480101/Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_","translated_internal_url":"","created_at":"2016-02-02T14:51:42.038-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":5937540,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Immerman_Neil_Upper_and_lower_bounds_for_first_order_expressibility_Journal_of_computer_and_system_sciences_vol_25_1982_pp_76_98_Immerman_Neil_Relational_queries_computable_in_polynomial_time_Information_and_control_vol_68_1986_pp_86_104_Immerman_Neil_Languages_that_capture_com_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":5937540,"first_name":"Sam","middle_initials":null,"last_name":"Buss","page_name":"SamBuss","domain_name":"ucsd","created_at":"2013-10-04T05:16:03.538-07:00","display_name":"Sam Buss","url":"https://ucsd.academia.edu/SamBuss"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "86d5ff30e26c62a470045530e01b66d23c2c15bf4db03396656c8ca917178a61", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="McbWkQq9/EDI/PcLaBBtFpeV7y0/f2SNU+8luMc5UFwGKZDPZb/VjxDO+ae6qSnjzfgugHpDOJ4iaG/e5YcAlA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://ucsd.academia.edu/SamBuss" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="92l+a0I1FI3SF35OMCe6iIuIeakjlXH0QcF4nIyECGXAhjg1LTc9QgolcOLinv590eW4BGapLecwRjL6rjpYrQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>