CINXE.COM
Bassim H Hameed | Qatar University - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Bassim H Hameed | Qatar University - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="TuXp7hIiqAIcLOl4fxTG94ULSsvmzQWW9UGO3Wrozhl8Qbs67GcYDmCoJ/k2cZm1l3kGi79odPIRoT8e8qS4Sw==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="bassim h hameed" /> <meta name="description" content="Dr. Bassim H. Hameed is currently a Professor at the Department of Chemical Engineering, Qatar University. His research expertise is in Catalytic Reaction…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '92477ec68c09d28ae4730a4143c926f074776319'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15276,"monthly_visitors":"113 million","monthly_visitor_count":113458213,"monthly_visitor_count_in_millions":113,"user_count":277573209,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1732840325000); window.Aedu.timeDifference = new Date().getTime() - 1732840325000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-bdb9e8c097f01e611f2fc5e2f1a9dc599beede975e2ae5629983543a1726e947.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-bae13f9b51961d5f1e06008e39e31d0138cb31332e8c2e874c6d6a250ec2bb14.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-19a25d160d01bde427443d06cd6b810c4c92c6026e7cb31519e06313eb24ed90.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://qu.academia.edu/BassimHameed" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://medium.com/@academia">Blog</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-e032f1d55548c2f2dee4eac9fe52f38beaf13471f2298bb2ea82725ae930b83c.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed","photo":"https://0.academia-photos.com/6309698/10491348/11706157/s65_bassim.hameed.jpg","has_photo":true,"department":{"id":106367,"name":"Chemical Engineering","url":"https://qu.academia.edu/Departments/Chemical_Engineering/Documents","university":{"id":1295,"name":"Qatar University","url":"https://qu.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":2738,"name":"Renewable Energy","url":"https://www.academia.edu/Documents/in/Renewable_Energy"},{"id":18845,"name":"Environmental Sustainability","url":"https://www.academia.edu/Documents/in/Environmental_Sustainability"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":93647,"name":"Biofuel","url":"https://www.academia.edu/Documents/in/Biofuel"},{"id":4594,"name":"Carbon Dioxide","url":"https://www.academia.edu/Documents/in/Carbon_Dioxide"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":6515,"name":"Water Purification","url":"https://www.academia.edu/Documents/in/Water_Purification"},{"id":113095,"name":"Adsorption and wastewater treatment","url":"https://www.academia.edu/Documents/in/Adsorption_and_wastewater_treatment"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":15979613,"link":"https://my.linkedin.com/in/bassimhameed","name":"Linkedin","link_domain":"my.linkedin.com","icon":"//www.google.com/s2/u/0/favicons?domain=my.linkedin.com"},{"id":15979638,"link":"http://www.researchgate.net/profile/Bassim_Hameed","name":"ResearchGate","link_domain":"www.researchgate.net","icon":"//www.google.com/s2/u/0/favicons?domain=www.researchgate.net"},{"id":15979652,"link":"http://www.scopus.com/authid/detail.url?authorId=9637775800","name":"Acopus","link_domain":"www.scopus.com","icon":"//www.google.com/s2/u/0/favicons?domain=www.scopus.com"},{"id":59621753,"link":"http://qufaculty.qu.edu.qa/b-hammadi/","name":"Homepage","link_domain":"qufaculty.qu.edu.qa","icon":"//www.google.com/s2/u/0/favicons?domain=qufaculty.qu.edu.qa"},{"id":59621757,"link":"https://scholar.google.com/citations?user=mS_zD_UAAAAJ\u0026hl=en","name":"Google Scholar","link_domain":"scholar.google.com","icon":"//www.google.com/s2/u/0/favicons?domain=scholar.google.com"},{"id":59621768,"link":"https://orcid.org/0000-0001-5171-6189","name":"ORCID","link_domain":"orcid.org","icon":"//www.google.com/s2/u/0/favicons?domain=orcid.org"},{"id":59621798,"link":"https://publons.com/researcher/1284110/bassim-h-hameed/","name":"Publons","link_domain":"publons.com","icon":"//www.google.com/s2/u/0/favicons?domain=publons.com"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://qu.academia.edu/BassimHameed","location":"/BassimHameed","scheme":"https","host":"qu.academia.edu","port":null,"pathname":"/BassimHameed","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-ddde5529-4293-4426-807a-67d99abe882f"></div> <div id="ProfileCheckPaperUpdate-react-component-ddde5529-4293-4426-807a-67d99abe882f"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Bassim H Hameed" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/6309698/10491348/11706157/s200_bassim.hameed.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Bassim H Hameed</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://qu.academia.edu/">Qatar University</a>, <a class="u-tcGrayDarker" href="https://qu.academia.edu/Departments/Chemical_Engineering/Documents">Chemical Engineering</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Bassim" data-follow-user-id="6309698" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="6309698"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">430</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">42</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">13</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;">Dr. Bassim H. Hameed is currently a Professor at the Department of Chemical Engineering, Qatar University. His research expertise is in Catalytic Reaction Engineering and Adsorption Technology. The aim of his research is to develop new and innovative nanoporous materials for the application in the fields of energy and environment. Prior to joining Qatar University in 2019, he was a full professor at the School of Chemical Engineering, University of Science Malaysia and worked for the last 20 years. He has been actively engaged in research, and established an excellent national and international research collaboration network. Also, he managed to secure and complete many research grants; 15 research projects as Lead Principal Investigator and 9 research projects as Principal Investigator. Dr. Bassim has successfully supervised as a main supervisor the works of 5 postdoctoral fellows, 23 Ph.D., 28 master students, and more than 70 final-year projects by research for undergraduate students. His research in the field has resulted in publication of 295 articles in reputable indexed-journals, and other 100 articles in international journals and conference proceedings. His publications have made a great impact in the field by receiving more than 41,000 times (Google Scholar); this is the highest achievement at Qatar University. His top published article received 4,692 citations, and he has many highly-cited articles (Clarivate Analytics). Dr. Bassim’s h-index is 103 and his i10-index is 275. Dr. Bassim received many awards in recognition to his work in the field. His name listed as Highly Cited Researchers in Engineering for six years (2014–2019) (Clarivate Analytics), Most Cited Researchers 2016 for Chemical Engineering & Environmental Science and Engineering Subjects (Shanghai Global Rankings of Academic Subjects).<br /><b>Address: </b>Department of Chemical Engineering<br />College of Engineering, Qatar University<br />P.O. Box: 2713 <br />Doha, Qatar<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="6309698">View All (10)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6309698" href="https://www.academia.edu/Documents/in/Renewable_Energy"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://qu.academia.edu/BassimHameed","location":"/BassimHameed","scheme":"https","host":"qu.academia.edu","port":null,"pathname":"/BassimHameed","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Renewable Energy"]}" data-trace="false" data-dom-id="Pill-react-component-cd02252f-ca43-45d7-a160-ad57bf1b5000"></div> <div id="Pill-react-component-cd02252f-ca43-45d7-a160-ad57bf1b5000"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6309698" href="https://www.academia.edu/Documents/in/Environmental_Sustainability"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Environmental Sustainability"]}" data-trace="false" data-dom-id="Pill-react-component-9f9a5c25-6d36-4257-8ce6-7f002471cb68"></div> <div id="Pill-react-component-9f9a5c25-6d36-4257-8ce6-7f002471cb68"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6309698" href="https://www.academia.edu/Documents/in/Adsorption"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Adsorption"]}" data-trace="false" data-dom-id="Pill-react-component-de8a7ec1-e5eb-4c82-bc88-ef2f7f9f6381"></div> <div id="Pill-react-component-de8a7ec1-e5eb-4c82-bc88-ef2f7f9f6381"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6309698" href="https://www.academia.edu/Documents/in/Activated_Carbon"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Activated Carbon"]}" data-trace="false" data-dom-id="Pill-react-component-3990b96b-40ad-4f4e-9f37-60716fe2f642"></div> <div id="Pill-react-component-3990b96b-40ad-4f4e-9f37-60716fe2f642"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="6309698" href="https://www.academia.edu/Documents/in/Biofuel"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Biofuel"]}" data-trace="false" data-dom-id="Pill-react-component-55301193-833d-426d-a13b-d476eb8d0771"></div> <div id="Pill-react-component-55301193-833d-426d-a13b-d476eb8d0771"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="left-most js-UserInfo-social-cv" data-broccoli-component="user-info.cv-button" data-click-track="profile-user-info-cv" data-cv-filename="Biodata-Prof._Dr._Bassim_H._Hameed.pdf" data-placement="top" data-toggle="tooltip" href="/BassimHameed/CurriculumVitae"><button class="ds2-5-text-link ds2-5-text-link--small" style="font-size: 20px; letter-spacing: 0.8px"><span class="ds2-5-text-link__content">CV</span></button></li><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="nav-container backbone-profile-documents-nav hidden-xs"><ul class="nav-tablist" role="tablist"><li class="nav-chip active" role="presentation"><a data-section-name="" data-toggle="tab" href="#all" role="tab">all</a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Papers" data-toggle="tab" href="#papers" role="tab" title="Papers"><span>75</span> <span class="ds2-5-body-sm-bold">Papers</span></a></li><li class="nav-chip" role="presentation"><a class="js-profile-docs-nav-section u-textTruncate" data-click-track="profile-works-tab" data-section-name="Other" data-toggle="tab" href="#other" role="tab" title="Other"><span>1</span> <span class="ds2-5-body-sm-bold">Other</span></a></li></ul></div><div class="divider ds-divider-16" style="margin: 0px;"></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Bassim H Hameed</h3></div><div class="js-work-strip profile--work_container" data-work-id="43686551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/43686551/Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu"><img alt="Research paper thumbnail of Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu" class="work-thumbnail" src="https://attachments.academia-assets.com/63989159/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/43686551/Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu">Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu</a></div><div class="wp-workCard_item"><span>Carbohydrate Polymers</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However, they have low mechanical properties and unfavorable pore properties in terms of low surface area and total pore volume that limit their adsorption application. Many studies have shown that such weaknesses can be avoided by preparation of composites with carbonaceous materials from these biopolymers. This article provides a systematic review on the preparation of chitosan/chitin-carbonaceous material composites. Commonly used carbonaceous materials such as activated carbon, biochar, carbon nanotubes, graphene oxide and graphene to prepare composites are discussed. The application of chitosan/chitin-carbonaceous material composites for the adsorption of various water pollutants, and the regeneration and reusability of adsorbents are also included. Finally, the challenges and future prospects for the adsorbents applied for the adsorption of water pollutants are summarized.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d81e432a8cf9370d0c8ca099af73e012" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":63989159,"asset_id":43686551,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/63989159/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="43686551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="43686551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43686551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43686551]").text(description); $(".js-view-count[data-work-id=43686551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43686551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='43686551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 43686551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d81e432a8cf9370d0c8ca099af73e012" } } $('.js-work-strip[data-work-id=43686551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":43686551,"title":"Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu","translated_title":"","metadata":{"doi":"10.1016/j.carbpol.2020.116690","abstract":"Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However, they have low mechanical properties and unfavorable pore properties in terms of low surface area and total pore volume that limit their adsorption application. Many studies have shown that such weaknesses can be avoided by preparation of composites with carbonaceous materials from these biopolymers. This article provides a systematic review on the preparation of chitosan/chitin-carbonaceous material composites. Commonly used carbonaceous materials such as activated carbon, biochar, carbon nanotubes, graphene oxide and graphene to prepare composites are discussed. The application of chitosan/chitin-carbonaceous material composites for the adsorption of various water pollutants, and the regeneration and reusability of adsorbents are also included. Finally, the challenges and future prospects for the adsorbents applied for the adsorption of water pollutants are summarized.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Carbohydrate Polymers"},"translated_abstract":"Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However, they have low mechanical properties and unfavorable pore properties in terms of low surface area and total pore volume that limit their adsorption application. Many studies have shown that such weaknesses can be avoided by preparation of composites with carbonaceous materials from these biopolymers. This article provides a systematic review on the preparation of chitosan/chitin-carbonaceous material composites. Commonly used carbonaceous materials such as activated carbon, biochar, carbon nanotubes, graphene oxide and graphene to prepare composites are discussed. The application of chitosan/chitin-carbonaceous material composites for the adsorption of various water pollutants, and the regeneration and reusability of adsorbents are also included. Finally, the challenges and future prospects for the adsorbents applied for the adsorption of water pollutants are summarized.","internal_url":"https://www.academia.edu/43686551/Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu","translated_internal_url":"","created_at":"2020-07-22T01:23:53.737-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":35345163,"work_id":43686551,"tagging_user_id":6309698,"tagged_user_id":7057566,"co_author_invite_id":null,"email":"b***m@yahoo.com","affiliation":"University of Diyala","display_order":1,"name":"ESAM HUMMADI","title":"Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu"}],"downloadable_attachments":[{"id":63989159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989159/thumbnails/1.jpg","file_name":"Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu.pdf","download_url":"https://www.academia.edu/attachments/63989159/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Review_on_recent_progress_in_chitosan_ch.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989159/Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu-libre.pdf?1595407028=\u0026response-content-disposition=attachment%3B+filename%3DReview_on_recent_progress_in_chitosan_ch.pdf\u0026Expires=1732818933\u0026Signature=d0NEHHCGCjinNDGanRi9knZzFAaifoJ8LhzkUb5EBFNRZClJFjTw3ZqMDblOdJqh2DCJAuHBEgzZ2cX7nkC~~ABxShUE9Em2fTDjurgWcrzyFf23S6AkdzbLUrxZr9iVkosmJqn3E3Y6XKbXzvesD0473MOK8GOowK2CVApBjpMNAVVWdDOhnjI4q7At-FrObPdf2oeSSuLqVAq7~8BOlddjm~947NTtkjAID0FvKwGIMXlC4POCbHABqwpGd6Re5G-EVfM8z0VsaEozlmbifRge92Xflad9kO6kdOFJZTuYS2rEtXjqttYt~SbOPlQRnw5EHS9PAWICz4gIEsiM6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":63989159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989159/thumbnails/1.jpg","file_name":"Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu.pdf","download_url":"https://www.academia.edu/attachments/63989159/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Review_on_recent_progress_in_chitosan_ch.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989159/Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu-libre.pdf?1595407028=\u0026response-content-disposition=attachment%3B+filename%3DReview_on_recent_progress_in_chitosan_ch.pdf\u0026Expires=1732818933\u0026Signature=d0NEHHCGCjinNDGanRi9knZzFAaifoJ8LhzkUb5EBFNRZClJFjTw3ZqMDblOdJqh2DCJAuHBEgzZ2cX7nkC~~ABxShUE9Em2fTDjurgWcrzyFf23S6AkdzbLUrxZr9iVkosmJqn3E3Y6XKbXzvesD0473MOK8GOowK2CVApBjpMNAVVWdDOhnjI4q7At-FrObPdf2oeSSuLqVAq7~8BOlddjm~947NTtkjAID0FvKwGIMXlC4POCbHABqwpGd6Re5G-EVfM8z0VsaEozlmbifRge92Xflad9kO6kdOFJZTuYS2rEtXjqttYt~SbOPlQRnw5EHS9PAWICz4gIEsiM6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3471,"name":"Regeneration","url":"https://www.academia.edu/Documents/in/Regeneration"},{"id":4496,"name":"Composites","url":"https://www.academia.edu/Documents/in/Composites"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":9991,"name":"Wastewater Treatment","url":"https://www.academia.edu/Documents/in/Wastewater_Treatment"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":25598,"name":"Biomass Pyrolysis","url":"https://www.academia.edu/Documents/in/Biomass_Pyrolysis"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":44348,"name":"Systematic Reviews","url":"https://www.academia.edu/Documents/in/Systematic_Reviews"},{"id":65757,"name":"Wastewater","url":"https://www.academia.edu/Documents/in/Wastewater"},{"id":74595,"name":"Review Chitosan","url":"https://www.academia.edu/Documents/in/Review_Chitosan"},{"id":564709,"name":"Application of Chitosan in Waste Water Treatment","url":"https://www.academia.edu/Documents/in/Application_of_Chitosan_in_Waste_Water_Treatment"},{"id":687899,"name":"About Chitosan \u0026 Itsapplications","url":"https://www.academia.edu/Documents/in/About_Chitosan_and_Itsapplications"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1256859,"name":"Adsorption Isotherms","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherms"},{"id":2164580,"name":"Hydrothermal carbonization","url":"https://www.academia.edu/Documents/in/Hydrothermal_carbonization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="43686501"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/43686501/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh"><img alt="Research paper thumbnail of Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh" class="work-thumbnail" src="https://attachments.academia-assets.com/63989102/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/43686501/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh">Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh</a></div><div class="wp-workCard_item"><span>International Journal of Biological Macromolecules</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the adsorption of cationic methylene blue (MB) and anionic azo acid blue 29 (AB 29). The 40:60 wt% of chitosan (CS) and carbon–clay (CC) was selected as the best biohybrid adsorbent (CS40CC60) for the adsorption of both dyes. The adsorption of MB and AB 29 on CS40CC60 was carried out in a batch process to investigate the effects of initial dye concentration (25–400 mg/L), initial pH (3−11), contact time and adsorption temperature (30, 40 and 50 °C). The kinetics results of dyes adsorption onto CS40CC60 fit well to the pseudo-second-order model. The isotherms analysis demonstrated that the Freundlich isotherm described the adsorption data, and the qmax (mg/g) were 95.31 for MB and 167.35 for AB29 at 50 °C. These findings reveal the potential and effectiveness of the newly prepared biohybrid adsorbent for the adsorption of both dyes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dab26e32ae8b0558ec3efa495619c5ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":63989102,"asset_id":43686501,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/63989102/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="43686501"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="43686501"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43686501; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43686501]").text(description); $(".js-view-count[data-work-id=43686501]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43686501; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='43686501']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 43686501, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dab26e32ae8b0558ec3efa495619c5ef" } } $('.js-work-strip[data-work-id=43686501]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":43686501,"title":"Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh","translated_title":"","metadata":{"doi":"10.1016/j.ijbiomac.2020.07.032","abstract":"Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the adsorption of cationic methylene blue (MB) and anionic azo acid blue 29 (AB 29). The 40:60 wt% of chitosan (CS) and carbon–clay (CC) was selected as the best biohybrid adsorbent (CS40CC60) for the adsorption of both dyes. The adsorption of MB and AB 29 on CS40CC60 was carried out in a batch process to investigate the effects of initial dye concentration (25–400 mg/L), initial pH (3−11), contact time and adsorption temperature (30, 40 and 50 °C). The kinetics results of dyes adsorption onto CS40CC60 fit well to the pseudo-second-order model. The isotherms analysis demonstrated that the Freundlich isotherm described the adsorption data, and the qmax (mg/g) were 95.31 for MB and 167.35 for AB29 at 50 °C. These findings reveal the potential and effectiveness of the newly prepared biohybrid adsorbent for the adsorption of both dyes.\n\n","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Biological Macromolecules"},"translated_abstract":"Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the adsorption of cationic methylene blue (MB) and anionic azo acid blue 29 (AB 29). The 40:60 wt% of chitosan (CS) and carbon–clay (CC) was selected as the best biohybrid adsorbent (CS40CC60) for the adsorption of both dyes. The adsorption of MB and AB 29 on CS40CC60 was carried out in a batch process to investigate the effects of initial dye concentration (25–400 mg/L), initial pH (3−11), contact time and adsorption temperature (30, 40 and 50 °C). The kinetics results of dyes adsorption onto CS40CC60 fit well to the pseudo-second-order model. The isotherms analysis demonstrated that the Freundlich isotherm described the adsorption data, and the qmax (mg/g) were 95.31 for MB and 167.35 for AB29 at 50 °C. These findings reveal the potential and effectiveness of the newly prepared biohybrid adsorbent for the adsorption of both dyes.\n\n","internal_url":"https://www.academia.edu/43686501/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh","translated_internal_url":"","created_at":"2020-07-22T01:17:16.239-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":35345093,"work_id":43686501,"tagging_user_id":6309698,"tagged_user_id":5018858,"co_author_invite_id":null,"email":"f***i@outlook.com","affiliation":"Ecole Nationale d'Ingénieurs de Sfax (ENIS)","display_order":1,"name":"FATMA MARRAKCHI","title":"Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh"},{"id":35345094,"work_id":43686501,"tagging_user_id":6309698,"tagged_user_id":7057566,"co_author_invite_id":null,"email":"b***m@yahoo.com","affiliation":"University of Diyala","display_order":2,"name":"ESAM HUMMADI","title":"Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh"}],"downloadable_attachments":[{"id":63989102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989102/thumbnails/1.jpg","file_name":"Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh.pdf","download_url":"https://www.academia.edu/attachments/63989102/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_biohybrid_epichlorohydrin_cro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989102/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh-libre.pdf?1595406564=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_biohybrid_epichlorohydrin_cro.pdf\u0026Expires=1732788432\u0026Signature=WZaEsGF50bUtCPNU6-S5sY9aVW5QrPucj3fMNGpkPVIGRorwBQRACoqqvCceXqfi65nqCNPuLFTFgmuV8dTCYQXJw3r5eIkkH0kn2zi8aftgjCb374uAVhXoBWe6xguetwmCZyCt5DB20Qf6H8scIq4xCF134Z4Ror2kB5NZiARipuyscuZD49UGXxqx1XRZIaeAkAqtGLk1pANJojf6-OC6gNwQu~130yXdDyxI2SittLS4TjG9EQkJDb0FnGlFdTK7gJM8p64Ec8ynCoNHFKKaRU4UPUgPL-~c01YZkjH7tS8AFi~NBsC9G6uFzUXN3CFiVVe7V1~jrIjmCalRiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":63989102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989102/thumbnails/1.jpg","file_name":"Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh.pdf","download_url":"https://www.academia.edu/attachments/63989102/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_biohybrid_epichlorohydrin_cro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989102/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh-libre.pdf?1595406564=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_biohybrid_epichlorohydrin_cro.pdf\u0026Expires=1732788432\u0026Signature=WZaEsGF50bUtCPNU6-S5sY9aVW5QrPucj3fMNGpkPVIGRorwBQRACoqqvCceXqfi65nqCNPuLFTFgmuV8dTCYQXJw3r5eIkkH0kn2zi8aftgjCb374uAVhXoBWe6xguetwmCZyCt5DB20Qf6H8scIq4xCF134Z4Ror2kB5NZiARipuyscuZD49UGXxqx1XRZIaeAkAqtGLk1pANJojf6-OC6gNwQu~130yXdDyxI2SittLS4TjG9EQkJDb0FnGlFdTK7gJM8p64Ec8ynCoNHFKKaRU4UPUgPL-~c01YZkjH7tS8AFi~NBsC9G6uFzUXN3CFiVVe7V1~jrIjmCalRiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":9130,"name":"Chitosan","url":"https://www.academia.edu/Documents/in/Chitosan"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":52361,"name":"Textile Dyeing","url":"https://www.academia.edu/Documents/in/Textile_Dyeing"},{"id":1256859,"name":"Adsorption Isotherms","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherms"},{"id":1796784,"name":"Adsorbent of Methylene Blue","url":"https://www.academia.edu/Documents/in/Adsorbent_of_Methylene_Blue"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="38122309"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38122309/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating"><img alt="Research paper thumbnail of Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating" class="work-thumbnail" src="https://attachments.academia-assets.com/58152134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38122309/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating">Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://usm.academia.edu/FooKengYuen">Foo Keng Yuen</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span>Bioresource Technology</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="adf65d689dd5649a4f8fc3242ba3b3ad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58152134,"asset_id":38122309,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58152134/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38122309"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38122309"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38122309; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38122309]").text(description); $(".js-view-count[data-work-id=38122309]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38122309; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38122309']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 38122309, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "adf65d689dd5649a4f8fc3242ba3b3ad" } } $('.js-work-strip[data-work-id=38122309]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38122309,"title":"Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating","translated_title":"","metadata":{"volume":"111","abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.","page_numbers":"425-432","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Bioresource Technology"},"translated_abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.","internal_url":"https://www.academia.edu/38122309/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating","translated_internal_url":"","created_at":"2019-01-09T18:01:04.408-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1211643,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":32202173,"work_id":38122309,"tagging_user_id":1211643,"tagged_user_id":6309698,"co_author_invite_id":null,"email":"b***d@gmail.com","affiliation":"Qatar University","display_order":1,"name":"Bassim H Hameed","title":"Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating"}],"downloadable_attachments":[{"id":58152134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58152134/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating.pdf","download_url":"https://www.academia.edu/attachments/58152134/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58152134/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating-libre.pdf?1547086248=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732818933\u0026Signature=GA7kAvQ4gWCFdnArUqBFDw1W6Cu17ox6EL2CowSag1fVR8gLttBR5DF1WkJPYSqR14k8IarhHrdl2BUC44ndjgAM3HHvINTUbnmR9qkFiPloMngdQLiRuNg1SgvKnHyYQH4h1o9S72n-ReI8aQkC-jPFay4UNKI6sltRtpfTfrj5CC8NqIqFV7uNSH5AZAUt8M8sAuuJHVOROz~aB02b8URx~3n8qIboJkandwepit-aXzJpbNMidW3pH1hHsFsJ4DWZdihecHEoejlFbmSJCujV7tVvGwfC1KuOzHCsrgHmOWFzdXBtYtT7GUqHs00ucNZTOEXDQdlMPPBMoixMyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":1211643,"first_name":"Foo","middle_initials":null,"last_name":"Keng Yuen","page_name":"FooKengYuen","domain_name":"usm","created_at":"2012-02-15T10:01:46.099-08:00","display_name":"Foo Keng Yuen","url":"https://usm.academia.edu/FooKengYuen"},"attachments":[{"id":58152134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58152134/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating.pdf","download_url":"https://www.academia.edu/attachments/58152134/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58152134/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating-libre.pdf?1547086248=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732818933\u0026Signature=GA7kAvQ4gWCFdnArUqBFDw1W6Cu17ox6EL2CowSag1fVR8gLttBR5DF1WkJPYSqR14k8IarhHrdl2BUC44ndjgAM3HHvINTUbnmR9qkFiPloMngdQLiRuNg1SgvKnHyYQH4h1o9S72n-ReI8aQkC-jPFay4UNKI6sltRtpfTfrj5CC8NqIqFV7uNSH5AZAUt8M8sAuuJHVOROz~aB02b8URx~3n8qIboJkandwepit-aXzJpbNMidW3pH1hHsFsJ4DWZdihecHEoejlFbmSJCujV7tVvGwfC1KuOzHCsrgHmOWFzdXBtYtT7GUqHs00ucNZTOEXDQdlMPPBMoixMyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":196381,"name":"Methylene Blue","url":"https://www.academia.edu/Documents/in/Methylene_Blue"},{"id":3103141,"name":"wood sawdust","url":"https://www.academia.edu/Documents/in/wood_sawdust"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25788933"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25788933/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process"><img alt="Research paper thumbnail of Degradation of malachite green in aqueous solution by Fenton process" class="work-thumbnail" src="https://attachments.academia-assets.com/46150164/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25788933/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process">Degradation of malachite green in aqueous solution by Fenton process</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degrada...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration = 0.50 mM and initial ferrous concentration = 0.10 mM for initial MG concentration of 20 mg/L at 30 • C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7dfcc9f4b4f2d80fa6eb845e53301b24" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46150164,"asset_id":25788933,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46150164/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25788933"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25788933"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25788933; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25788933]").text(description); $(".js-view-count[data-work-id=25788933]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25788933; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25788933']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25788933, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7dfcc9f4b4f2d80fa6eb845e53301b24" } } $('.js-work-strip[data-work-id=25788933]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25788933,"title":"Degradation of malachite green in aqueous solution by Fenton process","translated_title":"","metadata":{"abstract":"In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration = 0.50 mM and initial ferrous concentration = 0.10 mM for initial MG concentration of 20 mg/L at 30 • C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction."},"translated_abstract":"In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration = 0.50 mM and initial ferrous concentration = 0.10 mM for initial MG concentration of 20 mg/L at 30 • C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.","internal_url":"https://www.academia.edu/25788933/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process","translated_internal_url":"","created_at":"2016-06-01T19:37:51.012-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46150164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150164/thumbnails/1.jpg","file_name":"Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process.pdf","download_url":"https://www.academia.edu/attachments/46150164/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Degradation_of_malachite_green_in_aqueou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150164/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process-libre.pdf?1464835396=\u0026response-content-disposition=attachment%3B+filename%3DDegradation_of_malachite_green_in_aqueou.pdf\u0026Expires=1732843924\u0026Signature=Jj50nlrpA2R3vV-NsPGJUJetAxQlPM~5A9bNdic404P8kJglkkkpN5XuUdUkxLdRChD7oLVgDu9NRdIEuGoBbO6xvyOxVYEubuBQ2rvYrCK5iq2zcr9MuFKe8qSwcaZyoVHzD-sav42NVX45n91yaxseRnyT67qTkOv-kugG54yli3~nSnDM0am2kU3TcezIddc1LpGi7dyxDOhyXjzVZCfQWz9k2DFb~zTzYfXBSihMWHVYxN87vF8dsJlddZY36wDZwcNlOdvCoLCnOk~-sKv1kloJXpNW-mNEzY2621LNvCOARiDnUIFho8cUUb~fRkZyY51eE2Djjqe2ablrcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46150164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150164/thumbnails/1.jpg","file_name":"Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process.pdf","download_url":"https://www.academia.edu/attachments/46150164/download_file?st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Degradation_of_malachite_green_in_aqueou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150164/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process-libre.pdf?1464835396=\u0026response-content-disposition=attachment%3B+filename%3DDegradation_of_malachite_green_in_aqueou.pdf\u0026Expires=1732843924\u0026Signature=Jj50nlrpA2R3vV-NsPGJUJetAxQlPM~5A9bNdic404P8kJglkkkpN5XuUdUkxLdRChD7oLVgDu9NRdIEuGoBbO6xvyOxVYEubuBQ2rvYrCK5iq2zcr9MuFKe8qSwcaZyoVHzD-sav42NVX45n91yaxseRnyT67qTkOv-kugG54yli3~nSnDM0am2kU3TcezIddc1LpGi7dyxDOhyXjzVZCfQWz9k2DFb~zTzYfXBSihMWHVYxN87vF8dsJlddZY36wDZwcNlOdvCoLCnOk~-sKv1kloJXpNW-mNEzY2621LNvCOARiDnUIFho8cUUb~fRkZyY51eE2Djjqe2ablrcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":163878,"name":"Degradation","url":"https://www.academia.edu/Documents/in/Degradation"},{"id":796207,"name":"Photo-Fenton process","url":"https://www.academia.edu/Documents/in/Photo-Fenton_process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25788884"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25788884/Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption"><img alt="Research paper thumbnail of Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption" class="work-thumbnail" src="https://attachments.academia-assets.com/46150134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25788884/Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption">Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present study explores the viability of microwave irradiation for the preparation of activate...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present study explores the viability of microwave irradiation for the preparation of activated carbon (OPAC) from oil palm fiber, abundantly available from the oil palm processing industries. The activation process was performed at the microwave power of 360 W and irradiation time of 5 min. The BET surface area, pore volume and average pore size of OPAC were 707.79 m 2 /g, 0.3805 m 3 /g and 22.11Å, respectively. The monolayer adsorption capacity of OPAC for methylene blue was 312.5 mg/g. The finding provides a strong evidence to support the potential use of microwave heating as an alternative activation technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ae5d71b31b5f37040c53e3a4c220d36" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46150134,"asset_id":25788884,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46150134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25788884"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25788884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25788884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25788884]").text(description); $(".js-view-count[data-work-id=25788884]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25788884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25788884']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25788884, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ae5d71b31b5f37040c53e3a4c220d36" } } $('.js-work-strip[data-work-id=25788884]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25788884,"title":"Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption","translated_title":"","metadata":{"abstract":"The present study explores the viability of microwave irradiation for the preparation of activated carbon (OPAC) from oil palm fiber, abundantly available from the oil palm processing industries. The activation process was performed at the microwave power of 360 W and irradiation time of 5 min. The BET surface area, pore volume and average pore size of OPAC were 707.79 m 2 /g, 0.3805 m 3 /g and 22.11Å, respectively. The monolayer adsorption capacity of OPAC for methylene blue was 312.5 mg/g. The finding provides a strong evidence to support the potential use of microwave heating as an alternative activation technique.","ai_title_tag":"Microwave-Activated Palm Fiber Carbon for Methylene Blue Adsorption"},"translated_abstract":"The present study explores the viability of microwave irradiation for the preparation of activated carbon (OPAC) from oil palm fiber, abundantly available from the oil palm processing industries. The activation process was performed at the microwave power of 360 W and irradiation time of 5 min. The BET surface area, pore volume and average pore size of OPAC were 707.79 m 2 /g, 0.3805 m 3 /g and 22.11Å, respectively. The monolayer adsorption capacity of OPAC for methylene blue was 312.5 mg/g. The finding provides a strong evidence to support the potential use of microwave heating as an alternative activation technique.","internal_url":"https://www.academia.edu/25788884/Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption","translated_internal_url":"","created_at":"2016-06-01T19:34:56.426-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20862899,"work_id":25788884,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"Bassim Hameed","title":"Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption"}],"downloadable_attachments":[{"id":46150134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150134/thumbnails/1.jpg","file_name":"Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption.pdf","download_url":"https://www.academia.edu/attachments/46150134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Microwave_assisted_preparation_of_oil_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150134/Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption-libre.pdf?1464834901=\u0026response-content-disposition=attachment%3B+filename%3DMicrowave_assisted_preparation_of_oil_pa.pdf\u0026Expires=1732843924\u0026Signature=fTpV54DEusJA7bmWu7cv8GCsC34rp2YyD9mOyZBK-jlpnB3RtyqYuAb9xYFXdRDE5ijV~HMRqk~fRjrZeDk8aUgKmTSdCr04wk8FOKt8NeAmNa1SPYLas1dRq5LWoQCDsnvB26hTw23tbyfADc25mcSnSeoRePyI4kFKGRlasWlZhxRL-o8dJ4igGeFM0XVj1NE82TXAkxqyXiHMIJsN-0xUL-acfABrjTCDKSUvfazGWsmL5AzNqbpY3Y55sDRup0bwnvT00oeuNIaVPDEcCOelQ6ABg-l4SpXFu0Ay50gDJKZySbkdq33qpCS~EnUEykiW-q7K7pSf1-Yh67JSFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46150134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150134/thumbnails/1.jpg","file_name":"Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption.pdf","download_url":"https://www.academia.edu/attachments/46150134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Microwave_assisted_preparation_of_oil_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150134/Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption-libre.pdf?1464834901=\u0026response-content-disposition=attachment%3B+filename%3DMicrowave_assisted_preparation_of_oil_pa.pdf\u0026Expires=1732843924\u0026Signature=fTpV54DEusJA7bmWu7cv8GCsC34rp2YyD9mOyZBK-jlpnB3RtyqYuAb9xYFXdRDE5ijV~HMRqk~fRjrZeDk8aUgKmTSdCr04wk8FOKt8NeAmNa1SPYLas1dRq5LWoQCDsnvB26hTw23tbyfADc25mcSnSeoRePyI4kFKGRlasWlZhxRL-o8dJ4igGeFM0XVj1NE82TXAkxqyXiHMIJsN-0xUL-acfABrjTCDKSUvfazGWsmL5AzNqbpY3Y55sDRup0bwnvT00oeuNIaVPDEcCOelQ6ABg-l4SpXFu0Ay50gDJKZySbkdq33qpCS~EnUEykiW-q7K7pSf1-Yh67JSFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":196381,"name":"Methylene Blue","url":"https://www.academia.edu/Documents/in/Methylene_Blue"},{"id":1279729,"name":"Oil Palm Fiber","url":"https://www.academia.edu/Documents/in/Oil_Palm_Fiber"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25788837"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25788837/Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst"><img alt="Research paper thumbnail of Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst" class="work-thumbnail" src="https://attachments.academia-assets.com/46149839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25788837/Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst">Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like proces...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H 2 O 2 ] o), the initial concentration of AR1 ([AR1] o) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst = 5.0 g L −1 , initial pH = 2.0, [H 2 O 2 ] o = 8 mM, [AR1] o = 50 mg L −1 at temperature 30 • C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="71e58979cd3657721867ad20cee42d12" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46149839,"asset_id":25788837,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46149839/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25788837"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25788837"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25788837; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25788837]").text(description); $(".js-view-count[data-work-id=25788837]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25788837; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25788837']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25788837, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "71e58979cd3657721867ad20cee42d12" } } $('.js-work-strip[data-work-id=25788837]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25788837,"title":"Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst","translated_title":"","metadata":{"abstract":"The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H 2 O 2 ] o), the initial concentration of AR1 ([AR1] o) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst = 5.0 g L −1 , initial pH = 2.0, [H 2 O 2 ] o = 8 mM, [AR1] o = 50 mg L −1 at temperature 30 • C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction."},"translated_abstract":"The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H 2 O 2 ] o), the initial concentration of AR1 ([AR1] o) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst = 5.0 g L −1 , initial pH = 2.0, [H 2 O 2 ] o = 8 mM, [AR1] o = 50 mg L −1 at temperature 30 • C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.","internal_url":"https://www.academia.edu/25788837/Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst","translated_internal_url":"","created_at":"2016-06-01T19:29:13.235-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20862836,"work_id":25788837,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst"}],"downloadable_attachments":[{"id":46149839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46149839/thumbnails/1.jpg","file_name":"Decolorization_of_Acid_Red_1_by_Fenton-like_process_using.pdf","download_url":"https://www.academia.edu/attachments/46149839/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decolorization_of_Acid_Red_1_by_Fenton_l.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46149839/Decolorization_of_Acid_Red_1_by_Fenton-like_process_using-libre.pdf?1464834733=\u0026response-content-disposition=attachment%3B+filename%3DDecolorization_of_Acid_Red_1_by_Fenton_l.pdf\u0026Expires=1732788433\u0026Signature=VysALIkchdLsORO3uDwkltUJp7vEF0b8uWXCuNCifwE-e64Te9YWd-NJoCuVGA63XU4jQJMfDaNb2q5tTGFzcFqRzpO6F4DOP9~Oq~Xz90kASgQtY8GqFq7p7wEyeI-rCSGlSs3wvJsOALCsykIYC01~rB-yoWWATDRgPe0pKo7gmtUivAB5GOzH5ryT4fxv3bvo7MQwToixCgApPJXsbe3Nk8rItYlg~CV1UjchITjjrkOdP5ShEN8jsWrSJ0DTU~hXy3RuOT8Mb18Ki~jWhig8yeoc93GUrI4pOfzW6YoCzDzoYnpL86lYkzD3R1coASRJlo4~GfeW3gj2ISGoSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46149839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46149839/thumbnails/1.jpg","file_name":"Decolorization_of_Acid_Red_1_by_Fenton-like_process_using.pdf","download_url":"https://www.academia.edu/attachments/46149839/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decolorization_of_Acid_Red_1_by_Fenton_l.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46149839/Decolorization_of_Acid_Red_1_by_Fenton-like_process_using-libre.pdf?1464834733=\u0026response-content-disposition=attachment%3B+filename%3DDecolorization_of_Acid_Red_1_by_Fenton_l.pdf\u0026Expires=1732788433\u0026Signature=VysALIkchdLsORO3uDwkltUJp7vEF0b8uWXCuNCifwE-e64Te9YWd-NJoCuVGA63XU4jQJMfDaNb2q5tTGFzcFqRzpO6F4DOP9~Oq~Xz90kASgQtY8GqFq7p7wEyeI-rCSGlSs3wvJsOALCsykIYC01~rB-yoWWATDRgPe0pKo7gmtUivAB5GOzH5ryT4fxv3bvo7MQwToixCgApPJXsbe3Nk8rItYlg~CV1UjchITjjrkOdP5ShEN8jsWrSJ0DTU~hXy3RuOT8Mb18Ki~jWhig8yeoc93GUrI4pOfzW6YoCzDzoYnpL86lYkzD3R1coASRJlo4~GfeW3gj2ISGoSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6399,"name":"Catalysts","url":"https://www.academia.edu/Documents/in/Catalysts"},{"id":151275,"name":"DYE DECOLORİZATİON","url":"https://www.academia.edu/Documents/in/DYE_DECOLORIZATION"},{"id":954818,"name":"Rice husk Ash","url":"https://www.academia.edu/Documents/in/Rice_husk_Ash"},{"id":1445454,"name":"Acid Dyes","url":"https://www.academia.edu/Documents/in/Acid_Dyes"},{"id":1499468,"name":"Fenton-like process","url":"https://www.academia.edu/Documents/in/Fenton-like_process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25711442"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25711442/Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon"><img alt="Research paper thumbnail of Adsorption Isotherms for Phenol Onto Activated Carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/46058638/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25711442/Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon">Adsorption Isotherms for Phenol Onto Activated Carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NOR...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NORIT Granular Activated Carbon (NAC 1240) and NORIT Granular Activated Carbon 010 (NAC 010), for the removal of phenol from aqueous solutions. The study was carried out under batch mode at different initial concentrations (10-60 mg/I) and at temperature of 30°C. The adsorption isotherm parameters for the LangmUir and Freundlich models were determined using the adsorption data. It was found that both the Langmuir and the Freundlich isotherms described well the adsorption behavior of phenol on NAC 010, while the Freundlich isotherm described very well the adsorption of phenol on NAC 1240.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f66491192d8235480a9b69ab8599acdb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46058638,"asset_id":25711442,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46058638/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25711442"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25711442"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25711442; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25711442]").text(description); $(".js-view-count[data-work-id=25711442]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25711442; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25711442']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25711442, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f66491192d8235480a9b69ab8599acdb" } } $('.js-work-strip[data-work-id=25711442]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25711442,"title":"Adsorption Isotherms for Phenol Onto Activated Carbon","translated_title":"","metadata":{"abstract":"This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NORIT Granular Activated Carbon (NAC 1240) and NORIT Granular Activated Carbon 010 (NAC 010), for the removal of phenol from aqueous solutions. The study was carried out under batch mode at different initial concentrations (10-60 mg/I) and at temperature of 30°C. The adsorption isotherm parameters for the LangmUir and Freundlich models were determined using the adsorption data. It was found that both the Langmuir and the Freundlich isotherms described well the adsorption behavior of phenol on NAC 010, while the Freundlich isotherm described very well the adsorption of phenol on NAC 1240."},"translated_abstract":"This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NORIT Granular Activated Carbon (NAC 1240) and NORIT Granular Activated Carbon 010 (NAC 010), for the removal of phenol from aqueous solutions. The study was carried out under batch mode at different initial concentrations (10-60 mg/I) and at temperature of 30°C. The adsorption isotherm parameters for the LangmUir and Freundlich models were determined using the adsorption data. It was found that both the Langmuir and the Freundlich isotherms described well the adsorption behavior of phenol on NAC 010, while the Freundlich isotherm described very well the adsorption of phenol on NAC 1240.","internal_url":"https://www.academia.edu/25711442/Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon","translated_internal_url":"","created_at":"2016-05-29T22:47:44.722-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46058638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46058638/thumbnails/1.jpg","file_name":"Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon.pdf","download_url":"https://www.academia.edu/attachments/46058638/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_Isotherms_for_Phenol_Onto_Act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46058638/Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon-libre.pdf?1464587357=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_Isotherms_for_Phenol_Onto_Act.pdf\u0026Expires=1732843925\u0026Signature=ah1Ilt77ZQUJ9vGlbuzHwAmlqBVOTjx3TzvXcJaKJ6T2uZrJRRMm8CQhiqW8qzIbOfo6x25e531Xs9vG0W4LaUNximPYVcfm31kArSRlQetDW3WxN17IuifmEiI~F4Zzv67D2y-k98kKtJGO7E0Uf~iShHG--m-Q4VdEMJf913rm-WqZOFWL-HkZVC-FAq7ndpXA0srPQXOHzPZeAJSQLb4afGkXgV~o~KrRpx1lv8DiDB3j4rTwdqs0YmmZD038JOBowIDsBWtHRVEwwaqbmgUmahR15Xug7k3F-Euu~xPVnIpbQD-PFrTKRZQk2inAo9~uzaMS~rVoMlems6s1mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46058638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46058638/thumbnails/1.jpg","file_name":"Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon.pdf","download_url":"https://www.academia.edu/attachments/46058638/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_Isotherms_for_Phenol_Onto_Act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46058638/Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon-libre.pdf?1464587357=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_Isotherms_for_Phenol_Onto_Act.pdf\u0026Expires=1732843925\u0026Signature=ah1Ilt77ZQUJ9vGlbuzHwAmlqBVOTjx3TzvXcJaKJ6T2uZrJRRMm8CQhiqW8qzIbOfo6x25e531Xs9vG0W4LaUNximPYVcfm31kArSRlQetDW3WxN17IuifmEiI~F4Zzv67D2y-k98kKtJGO7E0Uf~iShHG--m-Q4VdEMJf913rm-WqZOFWL-HkZVC-FAq7ndpXA0srPQXOHzPZeAJSQLb4afGkXgV~o~KrRpx1lv8DiDB3j4rTwdqs0YmmZD038JOBowIDsBWtHRVEwwaqbmgUmahR15Xug7k3F-Euu~xPVnIpbQD-PFrTKRZQk2inAo9~uzaMS~rVoMlems6s1mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":347988,"name":"Phenols","url":"https://www.academia.edu/Documents/in/Phenols"},{"id":1256859,"name":"Adsorption Isotherms","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherms"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25690487"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25690487/Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst"><img alt="Research paper thumbnail of Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst" class="work-thumbnail" src="https://attachments.academia-assets.com/46032435/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25690487/Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst">Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MMurat3">M. Murat</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Transesterification of vegetable oil with different acid contents into FAME. Best conditions from...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Transesterification of vegetable oil with different acid contents into FAME. Best conditions from the reaction of vegetable oils with different acid contents. The synthesized catalyst was feasible for high-and low-acid-content oil. The properties of both products confirmed the standard requirements. Keywords: Calcium–lanthanum–aluminum catalyst Crude palm oil Karanj oil Fatty acid methyl ester Transesterification a b s t r a c t The synthesis of fatty acid methyl ester (FAME) from the high-and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170 °C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180 min reaction time, and 10 wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150 °C reaction temperature, 9:1 DMC-to-KO molar ratio, 180 min reaction time, and 5 wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst was suitable for high-and low-acid-content vegetable oil.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="de6f574c990ec2b82aef819489365af7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46032435,"asset_id":25690487,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46032435/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25690487"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25690487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25690487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25690487]").text(description); $(".js-view-count[data-work-id=25690487]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25690487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25690487']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25690487, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "de6f574c990ec2b82aef819489365af7" } } $('.js-work-strip[data-work-id=25690487]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25690487,"title":"Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst","translated_title":"","metadata":{"abstract":"Transesterification of vegetable oil with different acid contents into FAME. Best conditions from the reaction of vegetable oils with different acid contents. The synthesized catalyst was feasible for high-and low-acid-content oil. The properties of both products confirmed the standard requirements. Keywords: Calcium–lanthanum–aluminum catalyst Crude palm oil Karanj oil Fatty acid methyl ester Transesterification a b s t r a c t The synthesis of fatty acid methyl ester (FAME) from the high-and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170 °C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180 min reaction time, and 10 wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150 °C reaction temperature, 9:1 DMC-to-KO molar ratio, 180 min reaction time, and 5 wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst was suitable for high-and low-acid-content vegetable oil."},"translated_abstract":"Transesterification of vegetable oil with different acid contents into FAME. Best conditions from the reaction of vegetable oils with different acid contents. The synthesized catalyst was feasible for high-and low-acid-content oil. The properties of both products confirmed the standard requirements. Keywords: Calcium–lanthanum–aluminum catalyst Crude palm oil Karanj oil Fatty acid methyl ester Transesterification a b s t r a c t The synthesis of fatty acid methyl ester (FAME) from the high-and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170 °C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180 min reaction time, and 10 wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150 °C reaction temperature, 9:1 DMC-to-KO molar ratio, 180 min reaction time, and 5 wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst was suitable for high-and low-acid-content vegetable oil.","internal_url":"https://www.academia.edu/25690487/Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst","translated_internal_url":"","created_at":"2016-05-28T20:52:31.127-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20727615,"work_id":25690487,"tagging_user_id":6309698,"tagged_user_id":49414117,"co_author_invite_id":4662364,"email":"c***i@usm.my","display_order":0,"name":"M. Murat","title":"Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst"},{"id":20727616,"work_id":25690487,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":4194304,"name":"B. Hameed","title":"Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst"}],"downloadable_attachments":[{"id":46032435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46032435/thumbnails/1.jpg","file_name":"Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum.pdf","download_url":"https://www.academia.edu/attachments/46032435/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Synthesis_of_fatty_acid_methyl_ester_fro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46032435/Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum-libre.pdf?1464493818=\u0026response-content-disposition=attachment%3B+filename%3DSynthesis_of_fatty_acid_methyl_ester_fro.pdf\u0026Expires=1732788433\u0026Signature=QQOJnAZ-1iWsOmQNm-h8NPbRTOwxNA6xqgcK12ji7ZceA~-g-2FqQtzHQBjnQOh2ii1fOuRIoasV~yYkZoZvdicV~nZ6Rtnyk9TSEd~Y8V2HMc0CvaYCC4jLEnFQYC-ziDl0EjNtygZzna8zPR3EPLDBC3XZT7p5mw9aqOUu4N-tj6UcycRoxIeNRYTw0RfwwvUPKuM2-dJjvbnC8Fkr9zyTeSaL2kwob-BpHaGCA1IJG8B7GTSehGF2VhEqb4EhVHPB9Zs36TPBPBKV0W4sLAmWyk0SG3k6ItBAyvv9AtyY56Pu4oTIdXGmJcIZrY2-6hp0XTfHewVLJN4tXyM1xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46032435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46032435/thumbnails/1.jpg","file_name":"Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum.pdf","download_url":"https://www.academia.edu/attachments/46032435/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Synthesis_of_fatty_acid_methyl_ester_fro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46032435/Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum-libre.pdf?1464493818=\u0026response-content-disposition=attachment%3B+filename%3DSynthesis_of_fatty_acid_methyl_ester_fro.pdf\u0026Expires=1732788433\u0026Signature=QQOJnAZ-1iWsOmQNm-h8NPbRTOwxNA6xqgcK12ji7ZceA~-g-2FqQtzHQBjnQOh2ii1fOuRIoasV~yYkZoZvdicV~nZ6Rtnyk9TSEd~Y8V2HMc0CvaYCC4jLEnFQYC-ziDl0EjNtygZzna8zPR3EPLDBC3XZT7p5mw9aqOUu4N-tj6UcycRoxIeNRYTw0RfwwvUPKuM2-dJjvbnC8Fkr9zyTeSaL2kwob-BpHaGCA1IJG8B7GTSehGF2VhEqb4EhVHPB9Zs36TPBPBKV0W4sLAmWyk0SG3k6ItBAyvv9AtyY56Pu4oTIdXGmJcIZrY2-6hp0XTfHewVLJN4tXyM1xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":469822,"name":"Fatty Acid Methyl Ester","url":"https://www.academia.edu/Documents/in/Fatty_Acid_Methyl_Ester"},{"id":577615,"name":"Transesterification","url":"https://www.academia.edu/Documents/in/Transesterification"},{"id":1451678,"name":"Crude Palm Oil (CPO)","url":"https://www.academia.edu/Documents/in/Crude_Palm_Oil_CPO_"},{"id":2011752,"name":"Karanja Oil","url":"https://www.academia.edu/Documents/in/Karanja_Oil"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23748083"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23748083/Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones"><img alt="Research paper thumbnail of Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones" class="work-thumbnail" src="https://attachments.academia-assets.com/44182575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23748083/Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones">Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derive...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R 2 ≥ 0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="134c0a23d210471c5eace2e39f91f275" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44182575,"asset_id":23748083,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44182575/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23748083"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23748083"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23748083; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23748083]").text(description); $(".js-view-count[data-work-id=23748083]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23748083; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23748083']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23748083, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "134c0a23d210471c5eace2e39f91f275" } } $('.js-work-strip[data-work-id=23748083]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23748083,"title":"Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones","translated_title":"","metadata":{"abstract":"In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R 2 ≥ 0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions."},"translated_abstract":"In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R 2 ≥ 0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.","internal_url":"https://www.academia.edu/23748083/Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones","translated_internal_url":"","created_at":"2016-03-28T20:12:36.683-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18027697,"work_id":23748083,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones"}],"downloadable_attachments":[{"id":44182575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182575/thumbnails/1.jpg","file_name":"Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones.pdf","download_url":"https://www.academia.edu/attachments/44182575/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherm_and_kinetic_modeling.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182575/Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones-libre.pdf?1459246510=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherm_and_kinetic_modeling.pdf\u0026Expires=1732843925\u0026Signature=AC5JxmqXRJt36Trt88kTyU4tcJtnzgNTnUr4a22LQnv00DRnEdIFD0EqFh8lwF6mJD7XIdcFfnGHjlcyN~HnwT6hFmc5uml3Uw4nPktokV85qB-3vsJleZgbdLLFwN8NPyXN0mfss5PzeXrTopcnzdgG88domx7WMGi-ZlNicyAbRdkwl8tzVTVszGEep5xnTqcNnKyWN19MyEw8VXVWglBzJO1UErYIq66XUyw~t21jtQ14HnGQeTiqaXd-o8YOXGIeb~mo-1xEZciPyv3TJdklJ4wSNQ~2lkRD7irbAHX5v4q3PLfcJk78jLAIMpok2wVrOXiDwOKsff-6ZpYLvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44182575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182575/thumbnails/1.jpg","file_name":"Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones.pdf","download_url":"https://www.academia.edu/attachments/44182575/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherm_and_kinetic_modeling.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182575/Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones-libre.pdf?1459246510=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherm_and_kinetic_modeling.pdf\u0026Expires=1732843925\u0026Signature=AC5JxmqXRJt36Trt88kTyU4tcJtnzgNTnUr4a22LQnv00DRnEdIFD0EqFh8lwF6mJD7XIdcFfnGHjlcyN~HnwT6hFmc5uml3Uw4nPktokV85qB-3vsJleZgbdLLFwN8NPyXN0mfss5PzeXrTopcnzdgG88domx7WMGi-ZlNicyAbRdkwl8tzVTVszGEep5xnTqcNnKyWN19MyEw8VXVWglBzJO1UErYIq66XUyw~t21jtQ14HnGQeTiqaXd-o8YOXGIeb~mo-1xEZciPyv3TJdklJ4wSNQ~2lkRD7irbAHX5v4q3PLfcJk78jLAIMpok2wVrOXiDwOKsff-6ZpYLvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":85437,"name":"Pesticides","url":"https://www.academia.edu/Documents/in/Pesticides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23747970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23747970/The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts"><img alt="Research paper thumbnail of The advancements in sol–gel method of doped-TiO 2 photocatalysts" class="work-thumbnail" src="https://attachments.academia-assets.com/44182490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23747970/The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts">The advancements in sol–gel method of doped-TiO 2 photocatalysts</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/UAkpan1">U. Akpan</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided.<br />Various sol–gel and related systems of doping were considered, ranging from co-doping, transition metal<br />ions doping, rare earth metal ions doping to other metals and non-metals ions doping of TiO2. The results<br />available showed that doping TiO2 with transition metal ions usually resulted in a hampered efficiency of<br />the TiO2 photocatalyst, though in some few cases, enhancements of the photocatalytic activity of TiO2<br />were recorded by doping it with some transition metal ions. In most cases, co-doping of TiO2 increases<br />the efficiency of its photocatalytic activity. The review reveals that there are some elemental ions that<br />cannot be used to dope TiO2 because of their negative effects on the photocatalytic activity of the<br />catalyst, while others must be used with caution as their doping will create minimal or no impacts on the<br />TiO2 photocatalytic efficiency</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2cd0f9264d01aa431a221cceaf9b63ea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44182490,"asset_id":23747970,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44182490/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23747970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23747970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23747970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23747970]").text(description); $(".js-view-count[data-work-id=23747970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23747970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23747970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23747970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2cd0f9264d01aa431a221cceaf9b63ea" } } $('.js-work-strip[data-work-id=23747970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23747970,"title":"The advancements in sol–gel method of doped-TiO 2 photocatalysts","translated_title":"","metadata":{"abstract":"A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided.\nVarious sol–gel and related systems of doping were considered, ranging from co-doping, transition metal\nions doping, rare earth metal ions doping to other metals and non-metals ions doping of TiO2. The results\navailable showed that doping TiO2 with transition metal ions usually resulted in a hampered efficiency of\nthe TiO2 photocatalyst, though in some few cases, enhancements of the photocatalytic activity of TiO2\nwere recorded by doping it with some transition metal ions. In most cases, co-doping of TiO2 increases\nthe efficiency of its photocatalytic activity. The review reveals that there are some elemental ions that\ncannot be used to dope TiO2 because of their negative effects on the photocatalytic activity of the\ncatalyst, while others must be used with caution as their doping will create minimal or no impacts on the\nTiO2 photocatalytic efficiency"},"translated_abstract":"A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided.\nVarious sol–gel and related systems of doping were considered, ranging from co-doping, transition metal\nions doping, rare earth metal ions doping to other metals and non-metals ions doping of TiO2. The results\navailable showed that doping TiO2 with transition metal ions usually resulted in a hampered efficiency of\nthe TiO2 photocatalyst, though in some few cases, enhancements of the photocatalytic activity of TiO2\nwere recorded by doping it with some transition metal ions. In most cases, co-doping of TiO2 increases\nthe efficiency of its photocatalytic activity. The review reveals that there are some elemental ions that\ncannot be used to dope TiO2 because of their negative effects on the photocatalytic activity of the\ncatalyst, while others must be used with caution as their doping will create minimal or no impacts on the\nTiO2 photocatalytic efficiency","internal_url":"https://www.academia.edu/23747970/The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts","translated_internal_url":"","created_at":"2016-03-28T20:00:59.643-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18027595,"work_id":23747970,"tagging_user_id":6309698,"tagged_user_id":47496497,"co_author_invite_id":3347495,"email":"u***n@yahoo.co.uk","display_order":0,"name":"U. Akpan","title":"The advancements in sol–gel method of doped-TiO 2 photocatalysts"}],"downloadable_attachments":[{"id":44182490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182490/thumbnails/1.jpg","file_name":"The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts.pdf","download_url":"https://www.academia.edu/attachments/44182490/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_advancements_in_sol_gel_method_of_do.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182490/The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts-libre.pdf?1459246525=\u0026response-content-disposition=attachment%3B+filename%3DThe_advancements_in_sol_gel_method_of_do.pdf\u0026Expires=1732843925\u0026Signature=BspMkgqnG5AM4asmpgTezrfyQHMGRQOet2tZ4EAz~SsMvThXw~OON~dNTkbx~HPqHmZwxHDaGr6uW7d6Ry5ef2Ibw0rtkWAVQT4itlRViGtQyhzbcSyq854lxyBRqnF7U~UFqBHyFOh7pnyAC7D8eZDnDR2PyEGfWI5QltDtzSCRV-l7Li8zZ4PSmNGLwM3bzkdBHUIw99KICl-sJlOdfUw-5I8lQDGhE1zrkpSBY0dR3FHO3qAlHA2qKi9k0E2xNfKEWLhj6mh8FzkkMmn6BhejpcnaDOSnaoEKD7a3tHeII12gzGAX4Oo66K6zO~EjL7gCCP9nLyeK2D0FgfYXrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44182490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182490/thumbnails/1.jpg","file_name":"The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts.pdf","download_url":"https://www.academia.edu/attachments/44182490/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_advancements_in_sol_gel_method_of_do.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182490/The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts-libre.pdf?1459246525=\u0026response-content-disposition=attachment%3B+filename%3DThe_advancements_in_sol_gel_method_of_do.pdf\u0026Expires=1732843925\u0026Signature=BspMkgqnG5AM4asmpgTezrfyQHMGRQOet2tZ4EAz~SsMvThXw~OON~dNTkbx~HPqHmZwxHDaGr6uW7d6Ry5ef2Ibw0rtkWAVQT4itlRViGtQyhzbcSyq854lxyBRqnF7U~UFqBHyFOh7pnyAC7D8eZDnDR2PyEGfWI5QltDtzSCRV-l7Li8zZ4PSmNGLwM3bzkdBHUIw99KICl-sJlOdfUw-5I8lQDGhE1zrkpSBY0dR3FHO3qAlHA2qKi9k0E2xNfKEWLhj6mh8FzkkMmn6BhejpcnaDOSnaoEKD7a3tHeII12gzGAX4Oo66K6zO~EjL7gCCP9nLyeK2D0FgfYXrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6400,"name":"Photocatalysts","url":"https://www.academia.edu/Documents/in/Photocatalysts"},{"id":85460,"name":"Sol Gel Process","url":"https://www.academia.edu/Documents/in/Sol_Gel_Process"},{"id":143739,"name":"TiO2","url":"https://www.academia.edu/Documents/in/TiO2"},{"id":146579,"name":"Natural Dyes","url":"https://www.academia.edu/Documents/in/Natural_Dyes"},{"id":163878,"name":"Degradation","url":"https://www.academia.edu/Documents/in/Degradation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23727873"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23727873/Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials"><img alt="Research paper thumbnail of Decontamination of textile wastewater via TiO 2 /activated carbon composite materials" class="work-thumbnail" src="https://attachments.academia-assets.com/44160495/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23727873/Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials">Decontamination of textile wastewater via TiO 2 /activated carbon composite materials</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9666a80c51e8689480ebeff9f99a2c56" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44160495,"asset_id":23727873,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44160495/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23727873"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23727873"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23727873; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23727873]").text(description); $(".js-view-count[data-work-id=23727873]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23727873; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23727873']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23727873, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9666a80c51e8689480ebeff9f99a2c56" } } $('.js-work-strip[data-work-id=23727873]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23727873,"title":"Decontamination of textile wastewater via TiO 2 /activated carbon composite materials","translated_title":"","metadata":{"abstract":"Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation."},"translated_abstract":"Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.","internal_url":"https://www.academia.edu/23727873/Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials","translated_internal_url":"","created_at":"2016-03-28T01:08:50.114-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17997702,"work_id":23727873,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"Bassim Hameed","title":"Decontamination of textile wastewater via TiO 2 /activated carbon composite materials"}],"downloadable_attachments":[{"id":44160495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44160495/thumbnails/1.jpg","file_name":"Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials.pdf","download_url":"https://www.academia.edu/attachments/44160495/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decontamination_of_textile_wastewater_vi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44160495/Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials-libre.pdf?1459152650=\u0026response-content-disposition=attachment%3B+filename%3DDecontamination_of_textile_wastewater_vi.pdf\u0026Expires=1732843925\u0026Signature=QMETZZs17iFBdH9blWdF9Y1nt0KLguW8thE78JC-f8V~95S6zlkhHVRN2-SV72pBkz8ZSZKS6OI5oJyXYTqc24kZuVWf4CkUvOJAnjLTAV~n5~-Up66uY5VRkG2UW42HvA7UDtBmDsoZhylOxhXijbkkffIG8iK-Q-b9agmX1Bwbyn7QnUSUfYxpzYEUPW~SDcVoPggUBHHxcA~QFbWw1YZYlFgefGpuUSVF5-One0bEahgfx5PtVEZcETfwjwm1hazd1Wsmz2IZS~iuAyCA3CABkOOXSHsHf24pcmIhahwdKgo4BZe-xkQWFW7t~HlAK2UYJvwU-xhN~T28zUrOew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44160495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44160495/thumbnails/1.jpg","file_name":"Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials.pdf","download_url":"https://www.academia.edu/attachments/44160495/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decontamination_of_textile_wastewater_vi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44160495/Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials-libre.pdf?1459152650=\u0026response-content-disposition=attachment%3B+filename%3DDecontamination_of_textile_wastewater_vi.pdf\u0026Expires=1732843925\u0026Signature=QMETZZs17iFBdH9blWdF9Y1nt0KLguW8thE78JC-f8V~95S6zlkhHVRN2-SV72pBkz8ZSZKS6OI5oJyXYTqc24kZuVWf4CkUvOJAnjLTAV~n5~-Up66uY5VRkG2UW42HvA7UDtBmDsoZhylOxhXijbkkffIG8iK-Q-b9agmX1Bwbyn7QnUSUfYxpzYEUPW~SDcVoPggUBHHxcA~QFbWw1YZYlFgefGpuUSVF5-One0bEahgfx5PtVEZcETfwjwm1hazd1Wsmz2IZS~iuAyCA3CABkOOXSHsHf24pcmIhahwdKgo4BZe-xkQWFW7t~HlAK2UYJvwU-xhN~T28zUrOew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":55543,"name":"Zeolites","url":"https://www.academia.edu/Documents/in/Zeolites"},{"id":578992,"name":"Textile Wastewater","url":"https://www.academia.edu/Documents/in/Textile_Wastewater"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706975/Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material"><img alt="Research paper thumbnail of Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material" class="work-thumbnail" src="https://attachments.academia-assets.com/44121072/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706975/Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material">Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 • C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor R L revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cce6eff6aea31ed44d46776decf8e2f7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44121072,"asset_id":23706975,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44121072/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706975]").text(description); $(".js-view-count[data-work-id=23706975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cce6eff6aea31ed44d46776decf8e2f7" } } $('.js-work-strip[data-work-id=23706975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706975,"title":"Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material","translated_title":"","metadata":{"abstract":"Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 • C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor R L revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution."},"translated_abstract":"Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 • C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor R L revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.","internal_url":"https://www.academia.edu/23706975/Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material","translated_internal_url":"","created_at":"2016-03-26T06:41:05.354-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977153,"work_id":23706975,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material"}],"downloadable_attachments":[{"id":44121072,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121072/thumbnails/1.jpg","file_name":"Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material.pdf","download_url":"https://www.academia.edu/attachments/44121072/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_phenol_from_aqueous_solutions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121072/Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material-libre.pdf?1458999688=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_phenol_from_aqueous_solutions.pdf\u0026Expires=1732843925\u0026Signature=TcnFS4DN10DnhWey77kuppa6FuaqxxPn9I5ZiRtxkj5l7AxIIJigTJcmrkCVOD5qquX0WPdx3nNIvzY6ymbhfFRgYGfn2O1aIKcvdmRJisUw1qIJcfJjUs4uGKQRLLimhcaqWHuxDhTrM0mja2ggDC8rcVxJUH-Dw7zHqAAVmw2px-6-tcOO5C5rjfA2I5hO5VQmTBT2sX2czn~SckTi7X1QILnRZPoEcNIO17SNd9-eZYlXxbnrX29sHd6yUobgwLNviHFp0G03YTscrL7F~PLfPSAohDj5w8kAqQP0kt-52Cwb-XePZ0TrHXXw1zuM~4zGxZO-EHIfz9Eg~7Un5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44121072,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121072/thumbnails/1.jpg","file_name":"Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material.pdf","download_url":"https://www.academia.edu/attachments/44121072/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_phenol_from_aqueous_solutions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121072/Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material-libre.pdf?1458999688=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_phenol_from_aqueous_solutions.pdf\u0026Expires=1732843925\u0026Signature=TcnFS4DN10DnhWey77kuppa6FuaqxxPn9I5ZiRtxkj5l7AxIIJigTJcmrkCVOD5qquX0WPdx3nNIvzY6ymbhfFRgYGfn2O1aIKcvdmRJisUw1qIJcfJjUs4uGKQRLLimhcaqWHuxDhTrM0mja2ggDC8rcVxJUH-Dw7zHqAAVmw2px-6-tcOO5C5rjfA2I5hO5VQmTBT2sX2czn~SckTi7X1QILnRZPoEcNIO17SNd9-eZYlXxbnrX29sHd6yUobgwLNviHFp0G03YTscrL7F~PLfPSAohDj5w8kAqQP0kt-52Cwb-XePZ0TrHXXw1zuM~4zGxZO-EHIfz9Eg~7Un5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":347988,"name":"Phenols","url":"https://www.academia.edu/Documents/in/Phenols"},{"id":741421,"name":"Adsorption Isotherm Models","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherm_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706955"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706955/Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon"><img alt="Research paper thumbnail of Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/44121051/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706955/Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon">Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich–Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (H •), standard entropy (S •), standard free energy (G •) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b57bc684346e59cf488f4f741f49cd5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44121051,"asset_id":23706955,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44121051/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706955"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706955"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706955; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706955]").text(description); $(".js-view-count[data-work-id=23706955]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706955; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706955']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706955, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b57bc684346e59cf488f4f741f49cd5" } } $('.js-work-strip[data-work-id=23706955]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706955,"title":"Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon","translated_title":"","metadata":{"abstract":"The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich–Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (H •), standard entropy (S •), standard free energy (G •) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%."},"translated_abstract":"The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich–Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (H •), standard entropy (S •), standard free energy (G •) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.","internal_url":"https://www.academia.edu/23706955/Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon","translated_internal_url":"","created_at":"2016-03-26T06:36:49.005-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977143,"work_id":23706955,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"Bassim Hameed","title":"Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon"}],"downloadable_attachments":[{"id":44121051,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121051/thumbnails/1.jpg","file_name":"Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/44121051/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherms_kinetics_thermodyna.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121051/Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon-libre.pdf?1458999405=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherms_kinetics_thermodyna.pdf\u0026Expires=1732843925\u0026Signature=UyXdx9raENK3aTKz1RF-zgX-p7fuIwD8laKXr~Lb8wR-UzQW8i-6xWubQbNZdoBlLWtIRzU27HFFVWTBYGkADItDZ9JsuBFizLTQPxBMqeWvQDBIbkEfDOb3CaI4jyQhTCtwjJusm1I4pZBZsyyVEM~5ceh~kks5EpefNBPo7~lcCrZRzNMzY7i2Pz8SWbPCwSbco6PvlRDb0AvaDAHEHk-p3RLrDeEwVayVVS4qV6VcC7Bd0oWtlG0xRMWz~qKreO9sCMnGxu2DGUDp~1~wJFt6C7QMmWvDd968usSq-YrG-ouSyxYTQECRXHlnUM2tXPmURk1kgJZ0ryyBmTC11A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44121051,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121051/thumbnails/1.jpg","file_name":"Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/44121051/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherms_kinetics_thermodyna.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121051/Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon-libre.pdf?1458999405=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherms_kinetics_thermodyna.pdf\u0026Expires=1732843925\u0026Signature=UyXdx9raENK3aTKz1RF-zgX-p7fuIwD8laKXr~Lb8wR-UzQW8i-6xWubQbNZdoBlLWtIRzU27HFFVWTBYGkADItDZ9JsuBFizLTQPxBMqeWvQDBIbkEfDOb3CaI4jyQhTCtwjJusm1I4pZBZsyyVEM~5ceh~kks5EpefNBPo7~lcCrZRzNMzY7i2Pz8SWbPCwSbco6PvlRDb0AvaDAHEHk-p3RLrDeEwVayVVS4qV6VcC7Bd0oWtlG0xRMWz~qKreO9sCMnGxu2DGUDp~1~wJFt6C7QMmWvDd968usSq-YrG-ouSyxYTQECRXHlnUM2tXPmURk1kgJZ0ryyBmTC11A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":488206,"name":"Oil Palm Empty Fruit Bunch","url":"https://www.academia.edu/Documents/in/Oil_Palm_Empty_Fruit_Bunch"},{"id":741421,"name":"Adsorption Isotherm Models","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherm_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706920/Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash"><img alt="Research paper thumbnail of Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash" class="work-thumbnail" src="https://attachments.academia-assets.com/44121015/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706920/Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash">Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigated. Experiments were carried out as function of contact time, initial concentration (50–600 mg/L), pH (2–12) and temperature (30–50 • C). The equilibrium adsorption data of AG25 dye on activated palm ash were analyzed by Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. The adsorption capacities of the activated palm ash for removal of AG25 dye was determined with the Langmuir equation and found to be 123.4, 156.3 and 181.8 mg/g at 30, 40, and 50 • C, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (26.64 kJ/mol) indicates that the adsorption is endothermic process. The results indicate that activated palm ash is suitable as adsorbent material for adsorption of AG25 dye from aqueous solutions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="02cf39db35b2fc317e87af9379ebc5d9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44121015,"asset_id":23706920,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44121015/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706920]").text(description); $(".js-view-count[data-work-id=23706920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706920, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "02cf39db35b2fc317e87af9379ebc5d9" } } $('.js-work-strip[data-work-id=23706920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706920,"title":"Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash","translated_title":"","metadata":{"abstract":"Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigated. Experiments were carried out as function of contact time, initial concentration (50–600 mg/L), pH (2–12) and temperature (30–50 • C). The equilibrium adsorption data of AG25 dye on activated palm ash were analyzed by Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. The adsorption capacities of the activated palm ash for removal of AG25 dye was determined with the Langmuir equation and found to be 123.4, 156.3 and 181.8 mg/g at 30, 40, and 50 • C, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (26.64 kJ/mol) indicates that the adsorption is endothermic process. The results indicate that activated palm ash is suitable as adsorbent material for adsorption of AG25 dye from aqueous solutions."},"translated_abstract":"Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigated. Experiments were carried out as function of contact time, initial concentration (50–600 mg/L), pH (2–12) and temperature (30–50 • C). The equilibrium adsorption data of AG25 dye on activated palm ash were analyzed by Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. The adsorption capacities of the activated palm ash for removal of AG25 dye was determined with the Langmuir equation and found to be 123.4, 156.3 and 181.8 mg/g at 30, 40, and 50 • C, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (26.64 kJ/mol) indicates that the adsorption is endothermic process. The results indicate that activated palm ash is suitable as adsorbent material for adsorption of AG25 dye from aqueous solutions.","internal_url":"https://www.academia.edu/23706920/Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash","translated_internal_url":"","created_at":"2016-03-26T06:31:38.738-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977113,"work_id":23706920,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash"},{"id":17977114,"work_id":23706920,"tagging_user_id":6309698,"tagged_user_id":9421414,"co_author_invite_id":null,"email":"a***k@live.co.uk","display_order":4194304,"name":"Eng Aziz","title":"Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash"}],"downloadable_attachments":[{"id":44121015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121015/thumbnails/1.jpg","file_name":"Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash.pdf","download_url":"https://www.academia.edu/attachments/44121015/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isotherms_kinetics_and_thermodynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121015/Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash-libre.pdf?1458999086=\u0026response-content-disposition=attachment%3B+filename%3DIsotherms_kinetics_and_thermodynamics_of.pdf\u0026Expires=1732843925\u0026Signature=VjGiml~ToxWSD-bNAgjIqScPz2hatICIkN527LpiFsp1eQAeQgYpc4VMxzfBaECd~LUSpj4M2GBwcYWTwEfI46SLjwNBoUGCXKQB6MUKQQZRpWXQ1WlZ6LKXh1aQ6FsgS9a23BD~C8~gxGSjt3Gk868qC9dJtGTz3w-HIqAUUN3KSHG1NETHTOOmhV7z7O~yOUgYBUxJkR42td5YBS0zJH-payaCT1HG2Qnz9O5HzocUbnMA2soPIpXwHDEFpCK9iH-h0ahgC68MRmJYf4NSSkrdlZ4cT-w3F-V25zxFup3MhIQlFwIBX~6HXq-w7Jd7HmBSOCgD819yrFBcT-u8~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44121015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121015/thumbnails/1.jpg","file_name":"Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash.pdf","download_url":"https://www.academia.edu/attachments/44121015/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isotherms_kinetics_and_thermodynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121015/Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash-libre.pdf?1458999086=\u0026response-content-disposition=attachment%3B+filename%3DIsotherms_kinetics_and_thermodynamics_of.pdf\u0026Expires=1732843925\u0026Signature=VjGiml~ToxWSD-bNAgjIqScPz2hatICIkN527LpiFsp1eQAeQgYpc4VMxzfBaECd~LUSpj4M2GBwcYWTwEfI46SLjwNBoUGCXKQB6MUKQQZRpWXQ1WlZ6LKXh1aQ6FsgS9a23BD~C8~gxGSjt3Gk868qC9dJtGTz3w-HIqAUUN3KSHG1NETHTOOmhV7z7O~yOUgYBUxJkR42td5YBS0zJH-payaCT1HG2Qnz9O5HzocUbnMA2soPIpXwHDEFpCK9iH-h0ahgC68MRmJYf4NSSkrdlZ4cT-w3F-V25zxFup3MhIQlFwIBX~6HXq-w7Jd7HmBSOCgD819yrFBcT-u8~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":741421,"name":"Adsorption Isotherm Models","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherm_Models"},{"id":808070,"name":"Palm Oil Fuel Ash","url":"https://www.academia.edu/Documents/in/Palm_Oil_Fuel_Ash"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706875"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706875/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust"><img alt="Research paper thumbnail of Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust" class="work-thumbnail" src="https://attachments.academia-assets.com/44120736/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706875/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust">Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of meth-ylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14 mg/g. The dimensionless factor, R L revealed the favorable nature of the isotherm of the dyeeactivated carbon system. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The kinetic parameters of this best-fit model were calculated and the results are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0c47025f8aef65a4f9e4e59948688029" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44120736,"asset_id":23706875,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44120736/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706875"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706875"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706875; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706875]").text(description); $(".js-view-count[data-work-id=23706875]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706875; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706875']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706875, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0c47025f8aef65a4f9e4e59948688029" } } $('.js-work-strip[data-work-id=23706875]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706875,"title":"Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust","translated_title":"","metadata":{"abstract":"Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of meth-ylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14 mg/g. The dimensionless factor, R L revealed the favorable nature of the isotherm of the dyeeactivated carbon system. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The kinetic parameters of this best-fit model were calculated and the results are discussed."},"translated_abstract":"Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of meth-ylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14 mg/g. The dimensionless factor, R L revealed the favorable nature of the isotherm of the dyeeactivated carbon system. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The kinetic parameters of this best-fit model were calculated and the results are discussed.","internal_url":"https://www.academia.edu/23706875/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust","translated_internal_url":"","created_at":"2016-03-26T06:26:49.269-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977049,"work_id":23706875,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust"}],"downloadable_attachments":[{"id":44120736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44120736/thumbnails/1.jpg","file_name":"Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust.pdf","download_url":"https://www.academia.edu/attachments/44120736/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_basic_dye_methylene_blue_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44120736/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust-libre.pdf?1458998838=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_basic_dye_methylene_blue_o.pdf\u0026Expires=1732788434\u0026Signature=b-T3JuQli0AH6OYjNyW7cjQPddOXzcru-gk7YSlKXhisDGz3rEEmGRTg7u5QGYVro6rBFjvYI8Z5~p6fAcn0juBmEd1ptOnAhKWNzrhaK-8WMLKA~DGCc~uFYwBCDgIGFiuzqlvZEByuNNtJnONqsbd2Qkt6OM6wH0-hymvpUwBlQCE7X4WgrNuBAgS1DR3tJz0cXvLwrM2UJ978uPgH3Xn~uFPrY-IpWhsVCyJpzSqDQ3ar9rXUiCwBszV8Lvg1qG4gU5X0JvHH0zibQ6CPmMR3T~FNKJrg1q5o0XIfdIA4dWqc2LoB7c7HJVR4swGGBtnTc864guVHarXfj9BtYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44120736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44120736/thumbnails/1.jpg","file_name":"Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust.pdf","download_url":"https://www.academia.edu/attachments/44120736/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_basic_dye_methylene_blue_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44120736/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust-libre.pdf?1458998838=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_basic_dye_methylene_blue_o.pdf\u0026Expires=1732788434\u0026Signature=b-T3JuQli0AH6OYjNyW7cjQPddOXzcru-gk7YSlKXhisDGz3rEEmGRTg7u5QGYVro6rBFjvYI8Z5~p6fAcn0juBmEd1ptOnAhKWNzrhaK-8WMLKA~DGCc~uFYwBCDgIGFiuzqlvZEByuNNtJnONqsbd2Qkt6OM6wH0-hymvpUwBlQCE7X4WgrNuBAgS1DR3tJz0cXvLwrM2UJ978uPgH3Xn~uFPrY-IpWhsVCyJpzSqDQ3ar9rXUiCwBszV8Lvg1qG4gU5X0JvHH0zibQ6CPmMR3T~FNKJrg1q5o0XIfdIA4dWqc2LoB7c7HJVR4swGGBtnTc864guVHarXfj9BtYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":52361,"name":"Textile Dyeing","url":"https://www.academia.edu/Documents/in/Textile_Dyeing"},{"id":196381,"name":"Methylene Blue","url":"https://www.academia.edu/Documents/in/Methylene_Blue"},{"id":590987,"name":"Rattans","url":"https://www.academia.edu/Documents/in/Rattans"},{"id":972790,"name":"Adsorbent","url":"https://www.academia.edu/Documents/in/Adsorbent"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23700572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23700572/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon"><img alt="Research paper thumbnail of Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/44108524/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23700572/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon">Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, activated carbon was prepared from bamboo waste by chemical activation method using...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, activated carbon was prepared from bamboo waste by chemical activation method using<br />phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand<br />(COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of<br />91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and<br />COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was<br />found best to describe the obtained equilibrium adsorption data at 30 ◦C. The Brunauer–Emmett–Teller<br />(BET) surface area, total pore volume and the average pore diameter were 988.23 m2/g, 0.69 cm3/g and<br />2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were<br />determined from the FTIR results.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fae19e46299c29365650d5bcfa4efa9a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44108524,"asset_id":23700572,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44108524/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23700572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23700572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23700572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23700572]").text(description); $(".js-view-count[data-work-id=23700572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23700572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23700572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23700572, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fae19e46299c29365650d5bcfa4efa9a" } } $('.js-work-strip[data-work-id=23700572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23700572,"title":"Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon","translated_title":"","metadata":{"abstract":"In this work, activated carbon was prepared from bamboo waste by chemical activation method using\nphosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand\n(COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of\n91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and\nCOD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was\nfound best to describe the obtained equilibrium adsorption data at 30 ◦C. The Brunauer–Emmett–Teller\n(BET) surface area, total pore volume and the average pore diameter were 988.23 m2/g, 0.69 cm3/g and\n2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were\ndetermined from the FTIR results."},"translated_abstract":"In this work, activated carbon was prepared from bamboo waste by chemical activation method using\nphosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand\n(COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of\n91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and\nCOD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was\nfound best to describe the obtained equilibrium adsorption data at 30 ◦C. The Brunauer–Emmett–Teller\n(BET) surface area, total pore volume and the average pore diameter were 988.23 m2/g, 0.69 cm3/g and\n2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were\ndetermined from the FTIR results.","internal_url":"https://www.academia.edu/23700572/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon","translated_internal_url":"","created_at":"2016-03-25T16:11:31.863-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44108524,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108524/thumbnails/1.jpg","file_name":"Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton.pdf","download_url":"https://www.academia.edu/attachments/44108524/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_of_COD_and_color_of_dyeing_eff.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108524/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton-libre.pdf?1458947401=\u0026response-content-disposition=attachment%3B+filename%3DReduction_of_COD_and_color_of_dyeing_eff.pdf\u0026Expires=1732843925\u0026Signature=RpliERyzYopH5388EFBeZDFklsxW-L0UeVfd6otSfo1Dac-N~oESO4vIyWELU0o4nVE65eBoenChP~oqO0waQWlfKyUC7TAjYYvERnBwkfFonv1VF0G19jszl6lhrsQrztoqlk13ZrWh-VlwFdgSDEm9oqOY8Uot8GouUZmnE9NvwlGPPlVXas-lBSZEp7O8~C7Ee4wVcwGVqMI8mpeq71rrhc2HPwMYzaa4w--93ccup8an0FRy~fiYqHZHJNIw8MESdsUPVKOatmDdCvkSiR~GI3g9lHP~sy6SfUkDyQH-btmufqWbJogy73QtHo8i42dHRiXyFepR5hferMZTPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44108524,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108524/thumbnails/1.jpg","file_name":"Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton.pdf","download_url":"https://www.academia.edu/attachments/44108524/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_of_COD_and_color_of_dyeing_eff.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108524/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton-libre.pdf?1458947401=\u0026response-content-disposition=attachment%3B+filename%3DReduction_of_COD_and_color_of_dyeing_eff.pdf\u0026Expires=1732843925\u0026Signature=RpliERyzYopH5388EFBeZDFklsxW-L0UeVfd6otSfo1Dac-N~oESO4vIyWELU0o4nVE65eBoenChP~oqO0waQWlfKyUC7TAjYYvERnBwkfFonv1VF0G19jszl6lhrsQrztoqlk13ZrWh-VlwFdgSDEm9oqOY8Uot8GouUZmnE9NvwlGPPlVXas-lBSZEp7O8~C7Ee4wVcwGVqMI8mpeq71rrhc2HPwMYzaa4w--93ccup8an0FRy~fiYqHZHJNIw8MESdsUPVKOatmDdCvkSiR~GI3g9lHP~sy6SfUkDyQH-btmufqWbJogy73QtHo8i42dHRiXyFepR5hferMZTPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":39890,"name":"Bamboo","url":"https://www.academia.edu/Documents/in/Bamboo"},{"id":146579,"name":"Natural Dyes","url":"https://www.academia.edu/Documents/in/Natural_Dyes"},{"id":839274,"name":"COD","url":"https://www.academia.edu/Documents/in/COD"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23700546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23700546/Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon"><img alt="Research paper thumbnail of Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/44108478/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23700546/Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon">Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran usin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran using<br />commercial granular activated carbon, Filtersorb 300 (GAC F300) were studied in a batch system with<br />respect to initial concentration of 2,4-D and carbofuran. The Langmuir and the Freundlich isotherm models<br />were applied to the equilibrium data of 2,4-D and carbofuran adsorption. Observed results showed that the<br />equilibrium data fitted well to the Langmuir equilibrium model in the studied concentration range of 2,4-D<br />and carbofuran. The monolayer adsorption capacities of GAC F300 were 181.82 and 96.15 mg/g for 2,4-D and<br />carbofuran, respectively. Two simplified models, pseudo-first order and pseudo-second order kinetic, were<br />used to test the adsorption kinetics of 2, 4-D and carbofuran on GAC F300. The data was best fitted to the<br />pseudo-second-order kinetic model</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="272c232543da487f519c144451648f17" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44108478,"asset_id":23700546,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44108478/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23700546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23700546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23700546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23700546]").text(description); $(".js-view-count[data-work-id=23700546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23700546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23700546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23700546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "272c232543da487f519c144451648f17" } } $('.js-work-strip[data-work-id=23700546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23700546,"title":"Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon","translated_title":"","metadata":{"abstract":"Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran using\ncommercial granular activated carbon, Filtersorb 300 (GAC F300) were studied in a batch system with\nrespect to initial concentration of 2,4-D and carbofuran. The Langmuir and the Freundlich isotherm models\nwere applied to the equilibrium data of 2,4-D and carbofuran adsorption. Observed results showed that the\nequilibrium data fitted well to the Langmuir equilibrium model in the studied concentration range of 2,4-D\nand carbofuran. The monolayer adsorption capacities of GAC F300 were 181.82 and 96.15 mg/g for 2,4-D and\ncarbofuran, respectively. Two simplified models, pseudo-first order and pseudo-second order kinetic, were\nused to test the adsorption kinetics of 2, 4-D and carbofuran on GAC F300. The data was best fitted to the\npseudo-second-order kinetic model"},"translated_abstract":"Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran using\ncommercial granular activated carbon, Filtersorb 300 (GAC F300) were studied in a batch system with\nrespect to initial concentration of 2,4-D and carbofuran. The Langmuir and the Freundlich isotherm models\nwere applied to the equilibrium data of 2,4-D and carbofuran adsorption. Observed results showed that the\nequilibrium data fitted well to the Langmuir equilibrium model in the studied concentration range of 2,4-D\nand carbofuran. The monolayer adsorption capacities of GAC F300 were 181.82 and 96.15 mg/g for 2,4-D and\ncarbofuran, respectively. Two simplified models, pseudo-first order and pseudo-second order kinetic, were\nused to test the adsorption kinetics of 2, 4-D and carbofuran on GAC F300. The data was best fitted to the\npseudo-second-order kinetic model","internal_url":"https://www.academia.edu/23700546/Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon","translated_internal_url":"","created_at":"2016-03-25T16:06:11.958-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44108478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108478/thumbnails/1.jpg","file_name":"Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran.pdf","download_url":"https://www.academia.edu/attachments/44108478/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_2_4_dichlorophenoxyacetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108478/Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran-libre.pdf?1458947091=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_2_4_dichlorophenoxyacetic.pdf\u0026Expires=1732843925\u0026Signature=WpTLZxwPGRbrzVMEmuF8Vn0euR5lapi8hegQtzBaSTzi9WaacLgYqzkX79nIqI3BDMyDH6t1MjFfWLfc6xjrRl6bQ-cjNkXSSFrscsQ9871Z1xvXSC5xVnaFmo7D23b1AAJpEldUlBulGElC3YyNdi-31KTWXHVszGv0QU9lKYQetEwBylRHLw0X6yKkI3S-zsOM~8eRBGOhx4ls8gCfJpvQAOmAO6tpZ2RBLf2XyZOwDRVjAGs0qEluAPRgYu2-Z8930CgjlKCF6A5T8JPEefsg22JJToBVdcS6G52tZnEY3Y9V31JzFPRbDo9FJwKML6nNcZ0-5jzZkkwkNjehuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44108478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108478/thumbnails/1.jpg","file_name":"Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran.pdf","download_url":"https://www.academia.edu/attachments/44108478/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_2_4_dichlorophenoxyacetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108478/Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran-libre.pdf?1458947091=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_2_4_dichlorophenoxyacetic.pdf\u0026Expires=1732843925\u0026Signature=WpTLZxwPGRbrzVMEmuF8Vn0euR5lapi8hegQtzBaSTzi9WaacLgYqzkX79nIqI3BDMyDH6t1MjFfWLfc6xjrRl6bQ-cjNkXSSFrscsQ9871Z1xvXSC5xVnaFmo7D23b1AAJpEldUlBulGElC3YyNdi-31KTWXHVszGv0QU9lKYQetEwBylRHLw0X6yKkI3S-zsOM~8eRBGOhx4ls8gCfJpvQAOmAO6tpZ2RBLf2XyZOwDRVjAGs0qEluAPRgYu2-Z8930CgjlKCF6A5T8JPEefsg22JJToBVdcS6G52tZnEY3Y9V31JzFPRbDo9FJwKML6nNcZ0-5jzZkkwkNjehuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":85437,"name":"Pesticides","url":"https://www.academia.edu/Documents/in/Pesticides"},{"id":2431626,"name":"Carbofuran","url":"https://www.academia.edu/Documents/in/Carbofuran"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15599948"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15599948/Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review"><img alt="Research paper thumbnail of Developments in activated functionalized carbons and their applications in water decontamination: a review" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15599948/Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review">Developments in activated functionalized carbons and their applications in water decontamination: a review</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://dcu.academia.edu/JennyLawler">Jenny Lawler</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://king-saud.academia.edu/MoonisKhan">Moonis Khan</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span>Desalination and Water Treatment</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbons (ACs) a versatile and universally acclaimed adsorbent. High production costs limit the use of ACs as adsorbents, and this is a major driver for worldwide research targeting cheap precursors to reduce the production cost and to enhance the adsorption efficiency. This review highlights the preparation of ACs from various precursors, their functionalization, characterization, and their applications in water decontamination. A list of cost-effective precursors derived from agricultural waste materials along with the pollutants removed is presented. ACs can be functionally modified to develop highly efficient and adsorbate selective materials. Enhancement of the adsorption efficiency of ACs for inorganic pollutants and metal ions can be achieved by chemical modification, while physical modification of ACs via thermal treatment can enhance the pore size and surface area. A summary of the various chemical, physical, and biological processes that are utilized for these modifications is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15599948"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15599948"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15599948; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15599948]").text(description); $(".js-view-count[data-work-id=15599948]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15599948; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15599948']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15599948, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=15599948]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15599948,"title":"Developments in activated functionalized carbons and their applications in water decontamination: a review","translated_title":"","metadata":{"abstract":"ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbons (ACs) a versatile and universally acclaimed adsorbent. High production costs limit the use of ACs as adsorbents, and this is a major driver for worldwide research targeting cheap precursors to reduce the production cost and to enhance the adsorption efficiency. This review highlights the preparation of ACs from various precursors, their functionalization, characterization, and their applications in water decontamination. A list of cost-effective precursors derived from agricultural waste materials along with the pollutants removed is presented. ACs can be functionally modified to develop highly efficient and adsorbate selective materials. Enhancement of the adsorption efficiency of ACs for inorganic pollutants and metal ions can be achieved by chemical modification, while physical modification of ACs via thermal treatment can enhance the pore size and surface area. A summary of the various chemical, physical, and biological processes that are utilized for these modifications is presented.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Desalination and Water Treatment"},"translated_abstract":"ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbons (ACs) a versatile and universally acclaimed adsorbent. High production costs limit the use of ACs as adsorbents, and this is a major driver for worldwide research targeting cheap precursors to reduce the production cost and to enhance the adsorption efficiency. This review highlights the preparation of ACs from various precursors, their functionalization, characterization, and their applications in water decontamination. A list of cost-effective precursors derived from agricultural waste materials along with the pollutants removed is presented. ACs can be functionally modified to develop highly efficient and adsorbate selective materials. Enhancement of the adsorption efficiency of ACs for inorganic pollutants and metal ions can be achieved by chemical modification, while physical modification of ACs via thermal treatment can enhance the pore size and surface area. A summary of the various chemical, physical, and biological processes that are utilized for these modifications is presented.","internal_url":"https://www.academia.edu/15599948/Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review","translated_internal_url":"","created_at":"2015-09-11T00:43:26.693-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34764908,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5716426,"work_id":15599948,"tagging_user_id":34764908,"tagged_user_id":313282,"co_author_invite_id":null,"email":"m***n@gmail.com","affiliation":"King Saud University","display_order":0,"name":"Moonis Khan","title":"Developments in activated functionalized carbons and their applications in water decontamination: a review"},{"id":5716428,"work_id":15599948,"tagging_user_id":34764908,"tagged_user_id":2598831,"co_author_invite_id":null,"email":"m***i@gmail.com","display_order":4194304,"name":"Mahendra Kumar","title":"Developments in activated functionalized carbons and their applications in water decontamination: a review"},{"id":17667054,"work_id":15599948,"tagging_user_id":34764908,"tagged_user_id":6309698,"co_author_invite_id":null,"email":"b***d@gmail.com","affiliation":"Qatar University","display_order":6291456,"name":"Bassim H Hameed","title":"Developments in activated functionalized carbons and their applications in water decontamination: a review"}],"downloadable_attachments":[],"slug":"Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34764908,"first_name":"Jenny","middle_initials":null,"last_name":"Lawler","page_name":"JennyLawler","domain_name":"dcu","created_at":"2015-09-11T00:39:31.397-07:00","display_name":"Jenny Lawler","url":"https://dcu.academia.edu/JennyLawler"},"attachments":[],"research_interests":[{"id":55,"name":"Environmental Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23431231"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23431231/Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating"><img alt="Research paper thumbnail of Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating" class="work-thumbnail" src="https://attachments.academia-assets.com/43872517/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23431231/Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating">Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4991e5ec00323e44e4af8f68c63b5b5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":43872517,"asset_id":23431231,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/43872517/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23431231"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23431231"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23431231; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23431231]").text(description); $(".js-view-count[data-work-id=23431231]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23431231; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23431231']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23431231, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4991e5ec00323e44e4af8f68c63b5b5f" } } $('.js-work-strip[data-work-id=23431231]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23431231,"title":"Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating","translated_title":"","metadata":{"abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation."},"translated_abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.","internal_url":"https://www.academia.edu/23431231/Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating","translated_internal_url":"","created_at":"2016-03-18T16:22:21.455-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17556109,"work_id":23431231,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating"}],"downloadable_attachments":[{"id":43872517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872517/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust.pdf","download_url":"https://www.academia.edu/attachments/43872517/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872517/Mesoporous_activated_carbon_from_wood_sawdust-libre.pdf?1458343531=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732843925\u0026Signature=BXF7F890Xx1KcZUA-ByVBQrXJB5TIZoXkRRlWzLqPtrD2lr3zIBTGNcUMHgP0ffToNv2v3hSYfhFeTn~CrmLokEFMlrswY0KuK2~psfdOmyn2-wCGMcIhdcABaq8DPd-SyyJxra8oXyielep6KPyGP0iru7k9sj2W-paPTM1xkOtXnJJ0HLmDCe144ZSW9uvzPoFEeDdW~BO8fuuPX3tiRMPyvr8Nx5QWB3AeAImQpM5V2e~HZfbAmQnO6auhH0LJXxXgpeCqfxpRAjrCdSuE2EKTM-AP7RVI3ZUZ6J1omPUjqwiYRMkKrJB816QncBRqvjF95aDmMbmhkItn1SWVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":43872517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872517/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust.pdf","download_url":"https://www.academia.edu/attachments/43872517/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872517/Mesoporous_activated_carbon_from_wood_sawdust-libre.pdf?1458343531=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732843925\u0026Signature=BXF7F890Xx1KcZUA-ByVBQrXJB5TIZoXkRRlWzLqPtrD2lr3zIBTGNcUMHgP0ffToNv2v3hSYfhFeTn~CrmLokEFMlrswY0KuK2~psfdOmyn2-wCGMcIhdcABaq8DPd-SyyJxra8oXyielep6KPyGP0iru7k9sj2W-paPTM1xkOtXnJJ0HLmDCe144ZSW9uvzPoFEeDdW~BO8fuuPX3tiRMPyvr8Nx5QWB3AeAImQpM5V2e~HZfbAmQnO6auhH0LJXxXgpeCqfxpRAjrCdSuE2EKTM-AP7RVI3ZUZ6J1omPUjqwiYRMkKrJB816QncBRqvjF95aDmMbmhkItn1SWVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23431172"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23431172/Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study"><img alt="Research paper thumbnail of Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study" class="work-thumbnail" src="https://attachments.academia-assets.com/43872479/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23431172/Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study">Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this work is to obtain optimal preparation conditions for activated carbons prepar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400–600 • C), activation time (1–3 h) and H 3 PO 4 :precursor (wt%) impregnation ratio (3:1–6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 • C, activation time of 2 h and 14 min and chemical impregnation ratio of 4.45.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c163122bd8f9993d65157db8ddd538f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":43872479,"asset_id":23431172,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/43872479/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23431172"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23431172"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23431172; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23431172]").text(description); $(".js-view-count[data-work-id=23431172]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23431172; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23431172']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23431172, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c163122bd8f9993d65157db8ddd538f5" } } $('.js-work-strip[data-work-id=23431172]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23431172,"title":"Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study","translated_title":"","metadata":{"abstract":"The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400–600 • C), activation time (1–3 h) and H 3 PO 4 :precursor (wt%) impregnation ratio (3:1–6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 • C, activation time of 2 h and 14 min and chemical impregnation ratio of 4.45."},"translated_abstract":"The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400–600 • C), activation time (1–3 h) and H 3 PO 4 :precursor (wt%) impregnation ratio (3:1–6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 • C, activation time of 2 h and 14 min and chemical impregnation ratio of 4.45.","internal_url":"https://www.academia.edu/23431172/Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study","translated_internal_url":"","created_at":"2016-03-18T16:19:12.378-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17556042,"work_id":23431172,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study"}],"downloadable_attachments":[{"id":43872479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872479/thumbnails/1.jpg","file_name":"Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/43872479/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_disperse_dye_from_aqueous_sol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872479/Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon-libre.pdf?1458343267=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_disperse_dye_from_aqueous_sol.pdf\u0026Expires=1732843925\u0026Signature=NuGCuZz5PdBJl4sWvBfZkrEW-mpDVMUZ4f5pDGlPz0O8QMsy3OAMYeu~i4p0AJwa7w3qEWQw0p5st9k3qYDV9IeeCh5cxSgsDHWeJsx8yZ-8mWYg3jOVRyN~GIEdnLt7DXXk4h24Oo5D47BXZyWKgLqQmtGatAGHaeN7lWNLSWGsR3X45Vef13hFqe8nRMI~~tLoc81TDRvChOdVLb-2vPfIrBSYU5HrqlQn9c1jpDzUYOPdAZBu6Il2Wwyw59hTYXyg1LllouJ3mFSiJadzVIRbw-vGjZKykXxPL~ymblPML5pq9friQa2F3JoJdvQW8tbHMdrQwT7Ij0QhGCLrHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":43872479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872479/thumbnails/1.jpg","file_name":"Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/43872479/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_disperse_dye_from_aqueous_sol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872479/Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon-libre.pdf?1458343267=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_disperse_dye_from_aqueous_sol.pdf\u0026Expires=1732843925\u0026Signature=NuGCuZz5PdBJl4sWvBfZkrEW-mpDVMUZ4f5pDGlPz0O8QMsy3OAMYeu~i4p0AJwa7w3qEWQw0p5st9k3qYDV9IeeCh5cxSgsDHWeJsx8yZ-8mWYg3jOVRyN~GIEdnLt7DXXk4h24Oo5D47BXZyWKgLqQmtGatAGHaeN7lWNLSWGsR3X45Vef13hFqe8nRMI~~tLoc81TDRvChOdVLb-2vPfIrBSYU5HrqlQn9c1jpDzUYOPdAZBu6Il2Wwyw59hTYXyg1LllouJ3mFSiJadzVIRbw-vGjZKykXxPL~ymblPML5pq9friQa2F3JoJdvQW8tbHMdrQwT7Ij0QhGCLrHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":702641,"name":"Sawdust","url":"https://www.academia.edu/Documents/in/Sawdust"},{"id":2426871,"name":"Disperse Dye","url":"https://www.academia.edu/Documents/in/Disperse_Dye"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="3793815" id="papers"><div class="js-work-strip profile--work_container" data-work-id="43686551"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/43686551/Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu"><img alt="Research paper thumbnail of Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu" class="work-thumbnail" src="https://attachments.academia-assets.com/63989159/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/43686551/Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu">Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu</a></div><div class="wp-workCard_item"><span>Carbohydrate Polymers</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However, they have low mechanical properties and unfavorable pore properties in terms of low surface area and total pore volume that limit their adsorption application. Many studies have shown that such weaknesses can be avoided by preparation of composites with carbonaceous materials from these biopolymers. This article provides a systematic review on the preparation of chitosan/chitin-carbonaceous material composites. Commonly used carbonaceous materials such as activated carbon, biochar, carbon nanotubes, graphene oxide and graphene to prepare composites are discussed. The application of chitosan/chitin-carbonaceous material composites for the adsorption of various water pollutants, and the regeneration and reusability of adsorbents are also included. Finally, the challenges and future prospects for the adsorbents applied for the adsorption of water pollutants are summarized.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d81e432a8cf9370d0c8ca099af73e012" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":63989159,"asset_id":43686551,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/63989159/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="43686551"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="43686551"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43686551; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43686551]").text(description); $(".js-view-count[data-work-id=43686551]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43686551; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='43686551']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 43686551, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d81e432a8cf9370d0c8ca099af73e012" } } $('.js-work-strip[data-work-id=43686551]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":43686551,"title":"Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu","translated_title":"","metadata":{"doi":"10.1016/j.carbpol.2020.116690","abstract":"Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However, they have low mechanical properties and unfavorable pore properties in terms of low surface area and total pore volume that limit their adsorption application. Many studies have shown that such weaknesses can be avoided by preparation of composites with carbonaceous materials from these biopolymers. This article provides a systematic review on the preparation of chitosan/chitin-carbonaceous material composites. Commonly used carbonaceous materials such as activated carbon, biochar, carbon nanotubes, graphene oxide and graphene to prepare composites are discussed. The application of chitosan/chitin-carbonaceous material composites for the adsorption of various water pollutants, and the regeneration and reusability of adsorbents are also included. Finally, the challenges and future prospects for the adsorbents applied for the adsorption of water pollutants are summarized.","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"Carbohydrate Polymers"},"translated_abstract":"Chitosan and chitin are categorized as low cost, renewable and eco-friendly biopolymers. However, they have low mechanical properties and unfavorable pore properties in terms of low surface area and total pore volume that limit their adsorption application. Many studies have shown that such weaknesses can be avoided by preparation of composites with carbonaceous materials from these biopolymers. This article provides a systematic review on the preparation of chitosan/chitin-carbonaceous material composites. Commonly used carbonaceous materials such as activated carbon, biochar, carbon nanotubes, graphene oxide and graphene to prepare composites are discussed. The application of chitosan/chitin-carbonaceous material composites for the adsorption of various water pollutants, and the regeneration and reusability of adsorbents are also included. Finally, the challenges and future prospects for the adsorbents applied for the adsorption of water pollutants are summarized.","internal_url":"https://www.academia.edu/43686551/Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu","translated_internal_url":"","created_at":"2020-07-22T01:23:53.737-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":35345163,"work_id":43686551,"tagging_user_id":6309698,"tagged_user_id":7057566,"co_author_invite_id":null,"email":"b***m@yahoo.com","affiliation":"University of Diyala","display_order":1,"name":"ESAM HUMMADI","title":"Review on recent progress in chitosan chitin carbonaceous material composites for the adsorption of water pollutants20200722 128905 1nhu"}],"downloadable_attachments":[{"id":63989159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989159/thumbnails/1.jpg","file_name":"Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu.pdf","download_url":"https://www.academia.edu/attachments/63989159/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Review_on_recent_progress_in_chitosan_ch.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989159/Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu-libre.pdf?1595407028=\u0026response-content-disposition=attachment%3B+filename%3DReview_on_recent_progress_in_chitosan_ch.pdf\u0026Expires=1732818933\u0026Signature=d0NEHHCGCjinNDGanRi9knZzFAaifoJ8LhzkUb5EBFNRZClJFjTw3ZqMDblOdJqh2DCJAuHBEgzZ2cX7nkC~~ABxShUE9Em2fTDjurgWcrzyFf23S6AkdzbLUrxZr9iVkosmJqn3E3Y6XKbXzvesD0473MOK8GOowK2CVApBjpMNAVVWdDOhnjI4q7At-FrObPdf2oeSSuLqVAq7~8BOlddjm~947NTtkjAID0FvKwGIMXlC4POCbHABqwpGd6Re5G-EVfM8z0VsaEozlmbifRge92Xflad9kO6kdOFJZTuYS2rEtXjqttYt~SbOPlQRnw5EHS9PAWICz4gIEsiM6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Review_on_recent_progress_in_chitosan_chitin_carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722_128905_1nhu","translated_slug":"","page_count":18,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":63989159,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989159/thumbnails/1.jpg","file_name":"Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu.pdf","download_url":"https://www.academia.edu/attachments/63989159/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Review_on_recent_progress_in_chitosan_ch.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989159/Review_on_recent_progress_in_chitosan_chitin-carbonaceous_material_composites_for_the_adsorption_of_water_pollutants20200722-128905-1nhu-libre.pdf?1595407028=\u0026response-content-disposition=attachment%3B+filename%3DReview_on_recent_progress_in_chitosan_ch.pdf\u0026Expires=1732818933\u0026Signature=d0NEHHCGCjinNDGanRi9knZzFAaifoJ8LhzkUb5EBFNRZClJFjTw3ZqMDblOdJqh2DCJAuHBEgzZ2cX7nkC~~ABxShUE9Em2fTDjurgWcrzyFf23S6AkdzbLUrxZr9iVkosmJqn3E3Y6XKbXzvesD0473MOK8GOowK2CVApBjpMNAVVWdDOhnjI4q7At-FrObPdf2oeSSuLqVAq7~8BOlddjm~947NTtkjAID0FvKwGIMXlC4POCbHABqwpGd6Re5G-EVfM8z0VsaEozlmbifRge92Xflad9kO6kdOFJZTuYS2rEtXjqttYt~SbOPlQRnw5EHS9PAWICz4gIEsiM6w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":3471,"name":"Regeneration","url":"https://www.academia.edu/Documents/in/Regeneration"},{"id":4496,"name":"Composites","url":"https://www.academia.edu/Documents/in/Composites"},{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":9991,"name":"Wastewater Treatment","url":"https://www.academia.edu/Documents/in/Wastewater_Treatment"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":25598,"name":"Biomass Pyrolysis","url":"https://www.academia.edu/Documents/in/Biomass_Pyrolysis"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":44348,"name":"Systematic Reviews","url":"https://www.academia.edu/Documents/in/Systematic_Reviews"},{"id":65757,"name":"Wastewater","url":"https://www.academia.edu/Documents/in/Wastewater"},{"id":74595,"name":"Review Chitosan","url":"https://www.academia.edu/Documents/in/Review_Chitosan"},{"id":564709,"name":"Application of Chitosan in Waste Water Treatment","url":"https://www.academia.edu/Documents/in/Application_of_Chitosan_in_Waste_Water_Treatment"},{"id":687899,"name":"About Chitosan \u0026 Itsapplications","url":"https://www.academia.edu/Documents/in/About_Chitosan_and_Itsapplications"},{"id":1169238,"name":"Chitin","url":"https://www.academia.edu/Documents/in/Chitin"},{"id":1256859,"name":"Adsorption Isotherms","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherms"},{"id":2164580,"name":"Hydrothermal carbonization","url":"https://www.academia.edu/Documents/in/Hydrothermal_carbonization"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="43686501"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/43686501/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh"><img alt="Research paper thumbnail of Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh" class="work-thumbnail" src="https://attachments.academia-assets.com/63989102/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/43686501/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh">Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh</a></div><div class="wp-workCard_item"><span>International Journal of Biological Macromolecules</span><span>, 2020</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the adsorption of cationic methylene blue (MB) and anionic azo acid blue 29 (AB 29). The 40:60 wt% of chitosan (CS) and carbon–clay (CC) was selected as the best biohybrid adsorbent (CS40CC60) for the adsorption of both dyes. The adsorption of MB and AB 29 on CS40CC60 was carried out in a batch process to investigate the effects of initial dye concentration (25–400 mg/L), initial pH (3−11), contact time and adsorption temperature (30, 40 and 50 °C). The kinetics results of dyes adsorption onto CS40CC60 fit well to the pseudo-second-order model. The isotherms analysis demonstrated that the Freundlich isotherm described the adsorption data, and the qmax (mg/g) were 95.31 for MB and 167.35 for AB29 at 50 °C. These findings reveal the potential and effectiveness of the newly prepared biohybrid adsorbent for the adsorption of both dyes.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="dab26e32ae8b0558ec3efa495619c5ef" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":63989102,"asset_id":43686501,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/63989102/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="43686501"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="43686501"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 43686501; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=43686501]").text(description); $(".js-view-count[data-work-id=43686501]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 43686501; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='43686501']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 43686501, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "dab26e32ae8b0558ec3efa495619c5ef" } } $('.js-work-strip[data-work-id=43686501]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":43686501,"title":"Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh","translated_title":"","metadata":{"doi":"10.1016/j.ijbiomac.2020.07.032","abstract":"Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the adsorption of cationic methylene blue (MB) and anionic azo acid blue 29 (AB 29). The 40:60 wt% of chitosan (CS) and carbon–clay (CC) was selected as the best biohybrid adsorbent (CS40CC60) for the adsorption of both dyes. The adsorption of MB and AB 29 on CS40CC60 was carried out in a batch process to investigate the effects of initial dye concentration (25–400 mg/L), initial pH (3−11), contact time and adsorption temperature (30, 40 and 50 °C). The kinetics results of dyes adsorption onto CS40CC60 fit well to the pseudo-second-order model. The isotherms analysis demonstrated that the Freundlich isotherm described the adsorption data, and the qmax (mg/g) were 95.31 for MB and 167.35 for AB29 at 50 °C. These findings reveal the potential and effectiveness of the newly prepared biohybrid adsorbent for the adsorption of both dyes.\n\n","publication_date":{"day":null,"month":null,"year":2020,"errors":{}},"publication_name":"International Journal of Biological Macromolecules"},"translated_abstract":"Epichlorohydrin crosslinked chitosan/carbon–clay (CSCC) biohybrid adsorbent was prepared for the adsorption of cationic methylene blue (MB) and anionic azo acid blue 29 (AB 29). The 40:60 wt% of chitosan (CS) and carbon–clay (CC) was selected as the best biohybrid adsorbent (CS40CC60) for the adsorption of both dyes. The adsorption of MB and AB 29 on CS40CC60 was carried out in a batch process to investigate the effects of initial dye concentration (25–400 mg/L), initial pH (3−11), contact time and adsorption temperature (30, 40 and 50 °C). The kinetics results of dyes adsorption onto CS40CC60 fit well to the pseudo-second-order model. The isotherms analysis demonstrated that the Freundlich isotherm described the adsorption data, and the qmax (mg/g) were 95.31 for MB and 167.35 for AB29 at 50 °C. These findings reveal the potential and effectiveness of the newly prepared biohybrid adsorbent for the adsorption of both dyes.\n\n","internal_url":"https://www.academia.edu/43686501/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh","translated_internal_url":"","created_at":"2020-07-22T01:17:16.239-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":35345093,"work_id":43686501,"tagging_user_id":6309698,"tagged_user_id":5018858,"co_author_invite_id":null,"email":"f***i@outlook.com","affiliation":"Ecole Nationale d'Ingénieurs de Sfax (ENIS)","display_order":1,"name":"FATMA MARRAKCHI","title":"Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh"},{"id":35345094,"work_id":43686501,"tagging_user_id":6309698,"tagged_user_id":7057566,"co_author_invite_id":null,"email":"b***m@yahoo.com","affiliation":"University of Diyala","display_order":2,"name":"ESAM HUMMADI","title":"Mesoporous biohybrid epichlorohydrin crosslinked chitosan carbon clay adsorbent for effective dyes20200722 28399 15nfhh"}],"downloadable_attachments":[{"id":63989102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989102/thumbnails/1.jpg","file_name":"Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh.pdf","download_url":"https://www.academia.edu/attachments/63989102/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_biohybrid_epichlorohydrin_cro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989102/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh-libre.pdf?1595406564=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_biohybrid_epichlorohydrin_cro.pdf\u0026Expires=1732788432\u0026Signature=WZaEsGF50bUtCPNU6-S5sY9aVW5QrPucj3fMNGpkPVIGRorwBQRACoqqvCceXqfi65nqCNPuLFTFgmuV8dTCYQXJw3r5eIkkH0kn2zi8aftgjCb374uAVhXoBWe6xguetwmCZyCt5DB20Qf6H8scIq4xCF134Z4Ror2kB5NZiARipuyscuZD49UGXxqx1XRZIaeAkAqtGLk1pANJojf6-OC6gNwQu~130yXdDyxI2SittLS4TjG9EQkJDb0FnGlFdTK7gJM8p64Ec8ynCoNHFKKaRU4UPUgPL-~c01YZkjH7tS8AFi~NBsC9G6uFzUXN3CFiVVe7V1~jrIjmCalRiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon_clay_adsorbent_for_effective_dyes20200722_28399_15nfhh","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":63989102,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/63989102/thumbnails/1.jpg","file_name":"Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh.pdf","download_url":"https://www.academia.edu/attachments/63989102/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_biohybrid_epichlorohydrin_cro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/63989102/Mesoporous_biohybrid_epichlorohydrin_crosslinked_chitosan_carbon-clay_adsorbent_for_effective_dyes20200722-28399-15nfhh-libre.pdf?1595406564=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_biohybrid_epichlorohydrin_cro.pdf\u0026Expires=1732788432\u0026Signature=WZaEsGF50bUtCPNU6-S5sY9aVW5QrPucj3fMNGpkPVIGRorwBQRACoqqvCceXqfi65nqCNPuLFTFgmuV8dTCYQXJw3r5eIkkH0kn2zi8aftgjCb374uAVhXoBWe6xguetwmCZyCt5DB20Qf6H8scIq4xCF134Z4Ror2kB5NZiARipuyscuZD49UGXxqx1XRZIaeAkAqtGLk1pANJojf6-OC6gNwQu~130yXdDyxI2SittLS4TjG9EQkJDb0FnGlFdTK7gJM8p64Ec8ynCoNHFKKaRU4UPUgPL-~c01YZkjH7tS8AFi~NBsC9G6uFzUXN3CFiVVe7V1~jrIjmCalRiw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":4987,"name":"Kinetics","url":"https://www.academia.edu/Documents/in/Kinetics"},{"id":9130,"name":"Chitosan","url":"https://www.academia.edu/Documents/in/Chitosan"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":52361,"name":"Textile Dyeing","url":"https://www.academia.edu/Documents/in/Textile_Dyeing"},{"id":1256859,"name":"Adsorption Isotherms","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherms"},{"id":1796784,"name":"Adsorbent of Methylene Blue","url":"https://www.academia.edu/Documents/in/Adsorbent_of_Methylene_Blue"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="38122309"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/38122309/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating"><img alt="Research paper thumbnail of Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating" class="work-thumbnail" src="https://attachments.academia-assets.com/58152134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/38122309/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating">Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://usm.academia.edu/FooKengYuen">Foo Keng Yuen</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span>Bioresource Technology</span><span>, 2012</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="adf65d689dd5649a4f8fc3242ba3b3ad" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":58152134,"asset_id":38122309,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/58152134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="38122309"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="38122309"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 38122309; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=38122309]").text(description); $(".js-view-count[data-work-id=38122309]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 38122309; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='38122309']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 38122309, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "adf65d689dd5649a4f8fc3242ba3b3ad" } } $('.js-work-strip[data-work-id=38122309]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":38122309,"title":"Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating","translated_title":"","metadata":{"volume":"111","abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.","page_numbers":"425-432","publication_date":{"day":null,"month":null,"year":2012,"errors":{}},"publication_name":"Bioresource Technology"},"translated_abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.","internal_url":"https://www.academia.edu/38122309/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating","translated_internal_url":"","created_at":"2019-01-09T18:01:04.408-08:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":1211643,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":32202173,"work_id":38122309,"tagging_user_id":1211643,"tagged_user_id":6309698,"co_author_invite_id":null,"email":"b***d@gmail.com","affiliation":"Qatar University","display_order":1,"name":"Bassim H Hameed","title":"Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating"}],"downloadable_attachments":[{"id":58152134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58152134/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating.pdf","download_url":"https://www.academia.edu/attachments/58152134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58152134/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating-libre.pdf?1547086248=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732818933\u0026Signature=GA7kAvQ4gWCFdnArUqBFDw1W6Cu17ox6EL2CowSag1fVR8gLttBR5DF1WkJPYSqR14k8IarhHrdl2BUC44ndjgAM3HHvINTUbnmR9qkFiPloMngdQLiRuNg1SgvKnHyYQH4h1o9S72n-ReI8aQkC-jPFay4UNKI6sltRtpfTfrj5CC8NqIqFV7uNSH5AZAUt8M8sAuuJHVOROz~aB02b8URx~3n8qIboJkandwepit-aXzJpbNMidW3pH1hHsFsJ4DWZdihecHEoejlFbmSJCujV7tVvGwfC1KuOzHCsrgHmOWFzdXBtYtT7GUqHs00ucNZTOEXDQdlMPPBMoixMyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating","translated_slug":"","page_count":1,"language":"en","content_type":"Work","owner":{"id":1211643,"first_name":"Foo","middle_initials":null,"last_name":"Keng Yuen","page_name":"FooKengYuen","domain_name":"usm","created_at":"2012-02-15T10:01:46.099-08:00","display_name":"Foo Keng Yuen","url":"https://usm.academia.edu/FooKengYuen"},"attachments":[{"id":58152134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/58152134/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating.pdf","download_url":"https://www.academia.edu/attachments/58152134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/58152134/Mesoporous_activated_carbon_from_wood_sawdust_by_K2CO3_activation_using_microwave_heating-libre.pdf?1547086248=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732818933\u0026Signature=GA7kAvQ4gWCFdnArUqBFDw1W6Cu17ox6EL2CowSag1fVR8gLttBR5DF1WkJPYSqR14k8IarhHrdl2BUC44ndjgAM3HHvINTUbnmR9qkFiPloMngdQLiRuNg1SgvKnHyYQH4h1o9S72n-ReI8aQkC-jPFay4UNKI6sltRtpfTfrj5CC8NqIqFV7uNSH5AZAUt8M8sAuuJHVOROz~aB02b8URx~3n8qIboJkandwepit-aXzJpbNMidW3pH1hHsFsJ4DWZdihecHEoejlFbmSJCujV7tVvGwfC1KuOzHCsrgHmOWFzdXBtYtT7GUqHs00ucNZTOEXDQdlMPPBMoixMyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":196381,"name":"Methylene Blue","url":"https://www.academia.edu/Documents/in/Methylene_Blue"},{"id":3103141,"name":"wood sawdust","url":"https://www.academia.edu/Documents/in/wood_sawdust"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25788933"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25788933/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process"><img alt="Research paper thumbnail of Degradation of malachite green in aqueous solution by Fenton process" class="work-thumbnail" src="https://attachments.academia-assets.com/46150164/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25788933/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process">Degradation of malachite green in aqueous solution by Fenton process</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degrada...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration = 0.50 mM and initial ferrous concentration = 0.10 mM for initial MG concentration of 20 mg/L at 30 • C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="7dfcc9f4b4f2d80fa6eb845e53301b24" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46150164,"asset_id":25788933,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46150164/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25788933"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25788933"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25788933; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25788933]").text(description); $(".js-view-count[data-work-id=25788933]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25788933; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25788933']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25788933, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "7dfcc9f4b4f2d80fa6eb845e53301b24" } } $('.js-work-strip[data-work-id=25788933]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25788933,"title":"Degradation of malachite green in aqueous solution by Fenton process","translated_title":"","metadata":{"abstract":"In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration = 0.50 mM and initial ferrous concentration = 0.10 mM for initial MG concentration of 20 mg/L at 30 • C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction."},"translated_abstract":"In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration = 0.50 mM and initial ferrous concentration = 0.10 mM for initial MG concentration of 20 mg/L at 30 • C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.","internal_url":"https://www.academia.edu/25788933/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process","translated_internal_url":"","created_at":"2016-06-01T19:37:51.012-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46150164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150164/thumbnails/1.jpg","file_name":"Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process.pdf","download_url":"https://www.academia.edu/attachments/46150164/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Degradation_of_malachite_green_in_aqueou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150164/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process-libre.pdf?1464835396=\u0026response-content-disposition=attachment%3B+filename%3DDegradation_of_malachite_green_in_aqueou.pdf\u0026Expires=1732843924\u0026Signature=Jj50nlrpA2R3vV-NsPGJUJetAxQlPM~5A9bNdic404P8kJglkkkpN5XuUdUkxLdRChD7oLVgDu9NRdIEuGoBbO6xvyOxVYEubuBQ2rvYrCK5iq2zcr9MuFKe8qSwcaZyoVHzD-sav42NVX45n91yaxseRnyT67qTkOv-kugG54yli3~nSnDM0am2kU3TcezIddc1LpGi7dyxDOhyXjzVZCfQWz9k2DFb~zTzYfXBSihMWHVYxN87vF8dsJlddZY36wDZwcNlOdvCoLCnOk~-sKv1kloJXpNW-mNEzY2621LNvCOARiDnUIFho8cUUb~fRkZyY51eE2Djjqe2ablrcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46150164,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150164/thumbnails/1.jpg","file_name":"Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process.pdf","download_url":"https://www.academia.edu/attachments/46150164/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNCw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Degradation_of_malachite_green_in_aqueou.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150164/Degradation_of_malachite_green_in_aqueous_solution_by_Fenton_process-libre.pdf?1464835396=\u0026response-content-disposition=attachment%3B+filename%3DDegradation_of_malachite_green_in_aqueou.pdf\u0026Expires=1732843924\u0026Signature=Jj50nlrpA2R3vV-NsPGJUJetAxQlPM~5A9bNdic404P8kJglkkkpN5XuUdUkxLdRChD7oLVgDu9NRdIEuGoBbO6xvyOxVYEubuBQ2rvYrCK5iq2zcr9MuFKe8qSwcaZyoVHzD-sav42NVX45n91yaxseRnyT67qTkOv-kugG54yli3~nSnDM0am2kU3TcezIddc1LpGi7dyxDOhyXjzVZCfQWz9k2DFb~zTzYfXBSihMWHVYxN87vF8dsJlddZY36wDZwcNlOdvCoLCnOk~-sKv1kloJXpNW-mNEzY2621LNvCOARiDnUIFho8cUUb~fRkZyY51eE2Djjqe2ablrcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":163878,"name":"Degradation","url":"https://www.academia.edu/Documents/in/Degradation"},{"id":796207,"name":"Photo-Fenton process","url":"https://www.academia.edu/Documents/in/Photo-Fenton_process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25788884"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25788884/Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption"><img alt="Research paper thumbnail of Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption" class="work-thumbnail" src="https://attachments.academia-assets.com/46150134/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25788884/Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption">Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The present study explores the viability of microwave irradiation for the preparation of activate...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The present study explores the viability of microwave irradiation for the preparation of activated carbon (OPAC) from oil palm fiber, abundantly available from the oil palm processing industries. The activation process was performed at the microwave power of 360 W and irradiation time of 5 min. The BET surface area, pore volume and average pore size of OPAC were 707.79 m 2 /g, 0.3805 m 3 /g and 22.11Å, respectively. The monolayer adsorption capacity of OPAC for methylene blue was 312.5 mg/g. The finding provides a strong evidence to support the potential use of microwave heating as an alternative activation technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="1ae5d71b31b5f37040c53e3a4c220d36" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46150134,"asset_id":25788884,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46150134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25788884"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25788884"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25788884; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25788884]").text(description); $(".js-view-count[data-work-id=25788884]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25788884; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25788884']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25788884, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "1ae5d71b31b5f37040c53e3a4c220d36" } } $('.js-work-strip[data-work-id=25788884]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25788884,"title":"Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption","translated_title":"","metadata":{"abstract":"The present study explores the viability of microwave irradiation for the preparation of activated carbon (OPAC) from oil palm fiber, abundantly available from the oil palm processing industries. The activation process was performed at the microwave power of 360 W and irradiation time of 5 min. The BET surface area, pore volume and average pore size of OPAC were 707.79 m 2 /g, 0.3805 m 3 /g and 22.11Å, respectively. The monolayer adsorption capacity of OPAC for methylene blue was 312.5 mg/g. The finding provides a strong evidence to support the potential use of microwave heating as an alternative activation technique.","ai_title_tag":"Microwave-Activated Palm Fiber Carbon for Methylene Blue Adsorption"},"translated_abstract":"The present study explores the viability of microwave irradiation for the preparation of activated carbon (OPAC) from oil palm fiber, abundantly available from the oil palm processing industries. The activation process was performed at the microwave power of 360 W and irradiation time of 5 min. The BET surface area, pore volume and average pore size of OPAC were 707.79 m 2 /g, 0.3805 m 3 /g and 22.11Å, respectively. The monolayer adsorption capacity of OPAC for methylene blue was 312.5 mg/g. The finding provides a strong evidence to support the potential use of microwave heating as an alternative activation technique.","internal_url":"https://www.academia.edu/25788884/Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption","translated_internal_url":"","created_at":"2016-06-01T19:34:56.426-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20862899,"work_id":25788884,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"Bassim Hameed","title":"Microwave-assisted preparation of oil palm fiber activated carbon for methylene blue adsorption"}],"downloadable_attachments":[{"id":46150134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150134/thumbnails/1.jpg","file_name":"Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption.pdf","download_url":"https://www.academia.edu/attachments/46150134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Microwave_assisted_preparation_of_oil_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150134/Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption-libre.pdf?1464834901=\u0026response-content-disposition=attachment%3B+filename%3DMicrowave_assisted_preparation_of_oil_pa.pdf\u0026Expires=1732843924\u0026Signature=fTpV54DEusJA7bmWu7cv8GCsC34rp2YyD9mOyZBK-jlpnB3RtyqYuAb9xYFXdRDE5ijV~HMRqk~fRjrZeDk8aUgKmTSdCr04wk8FOKt8NeAmNa1SPYLas1dRq5LWoQCDsnvB26hTw23tbyfADc25mcSnSeoRePyI4kFKGRlasWlZhxRL-o8dJ4igGeFM0XVj1NE82TXAkxqyXiHMIJsN-0xUL-acfABrjTCDKSUvfazGWsmL5AzNqbpY3Y55sDRup0bwnvT00oeuNIaVPDEcCOelQ6ABg-l4SpXFu0Ay50gDJKZySbkdq33qpCS~EnUEykiW-q7K7pSf1-Yh67JSFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Microwave_assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption","translated_slug":"","page_count":4,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46150134,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46150134/thumbnails/1.jpg","file_name":"Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption.pdf","download_url":"https://www.academia.edu/attachments/46150134/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Microwave_assisted_preparation_of_oil_pa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46150134/Microwave-assisted_preparation_of_oil_palm_fiber_activated_carbon_for_methylene_blue_adsorption-libre.pdf?1464834901=\u0026response-content-disposition=attachment%3B+filename%3DMicrowave_assisted_preparation_of_oil_pa.pdf\u0026Expires=1732843924\u0026Signature=fTpV54DEusJA7bmWu7cv8GCsC34rp2YyD9mOyZBK-jlpnB3RtyqYuAb9xYFXdRDE5ijV~HMRqk~fRjrZeDk8aUgKmTSdCr04wk8FOKt8NeAmNa1SPYLas1dRq5LWoQCDsnvB26hTw23tbyfADc25mcSnSeoRePyI4kFKGRlasWlZhxRL-o8dJ4igGeFM0XVj1NE82TXAkxqyXiHMIJsN-0xUL-acfABrjTCDKSUvfazGWsmL5AzNqbpY3Y55sDRup0bwnvT00oeuNIaVPDEcCOelQ6ABg-l4SpXFu0Ay50gDJKZySbkdq33qpCS~EnUEykiW-q7K7pSf1-Yh67JSFA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":196381,"name":"Methylene Blue","url":"https://www.academia.edu/Documents/in/Methylene_Blue"},{"id":1279729,"name":"Oil Palm Fiber","url":"https://www.academia.edu/Documents/in/Oil_Palm_Fiber"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25788837"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25788837/Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst"><img alt="Research paper thumbnail of Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst" class="work-thumbnail" src="https://attachments.academia-assets.com/46149839/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25788837/Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst">Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like proces...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H 2 O 2 ] o), the initial concentration of AR1 ([AR1] o) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst = 5.0 g L −1 , initial pH = 2.0, [H 2 O 2 ] o = 8 mM, [AR1] o = 50 mg L −1 at temperature 30 • C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="71e58979cd3657721867ad20cee42d12" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46149839,"asset_id":25788837,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46149839/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25788837"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25788837"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25788837; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25788837]").text(description); $(".js-view-count[data-work-id=25788837]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25788837; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25788837']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25788837, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "71e58979cd3657721867ad20cee42d12" } } $('.js-work-strip[data-work-id=25788837]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25788837,"title":"Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst","translated_title":"","metadata":{"abstract":"The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H 2 O 2 ] o), the initial concentration of AR1 ([AR1] o) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst = 5.0 g L −1 , initial pH = 2.0, [H 2 O 2 ] o = 8 mM, [AR1] o = 50 mg L −1 at temperature 30 • C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction."},"translated_abstract":"The decolorization of Acid Red 1 (AR1) in aqueous solution was investigated by Fenton-like process. The effect of different reaction parameters such as different iron ions loading on rice husk ash (RHA), dosage of catalyst, initial pH, the initial hydrogen peroxide concentration ([H 2 O 2 ] o), the initial concentration of AR1 ([AR1] o) and the reaction temperature on the decolorization of AR1 was studied. The optimal reacting conditions were found to be 0.070 wt.% of iron (III) oxide loading on RHA, dosage of catalyst = 5.0 g L −1 , initial pH = 2.0, [H 2 O 2 ] o = 8 mM, [AR1] o = 50 mg L −1 at temperature 30 • C. Under optimal condition, 96% decolorization efficiency of AR1 was achieved within 120 min of reaction.","internal_url":"https://www.academia.edu/25788837/Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst","translated_internal_url":"","created_at":"2016-06-01T19:29:13.235-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20862836,"work_id":25788837,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst"}],"downloadable_attachments":[{"id":46149839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46149839/thumbnails/1.jpg","file_name":"Decolorization_of_Acid_Red_1_by_Fenton-like_process_using.pdf","download_url":"https://www.academia.edu/attachments/46149839/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decolorization_of_Acid_Red_1_by_Fenton_l.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46149839/Decolorization_of_Acid_Red_1_by_Fenton-like_process_using-libre.pdf?1464834733=\u0026response-content-disposition=attachment%3B+filename%3DDecolorization_of_Acid_Red_1_by_Fenton_l.pdf\u0026Expires=1732788433\u0026Signature=VysALIkchdLsORO3uDwkltUJp7vEF0b8uWXCuNCifwE-e64Te9YWd-NJoCuVGA63XU4jQJMfDaNb2q5tTGFzcFqRzpO6F4DOP9~Oq~Xz90kASgQtY8GqFq7p7wEyeI-rCSGlSs3wvJsOALCsykIYC01~rB-yoWWATDRgPe0pKo7gmtUivAB5GOzH5ryT4fxv3bvo7MQwToixCgApPJXsbe3Nk8rItYlg~CV1UjchITjjrkOdP5ShEN8jsWrSJ0DTU~hXy3RuOT8Mb18Ki~jWhig8yeoc93GUrI4pOfzW6YoCzDzoYnpL86lYkzD3R1coASRJlo4~GfeW3gj2ISGoSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decolorization_of_Acid_Red_1_by_Fenton_like_process_using_rice_husk_ash_based_catalyst","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46149839,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46149839/thumbnails/1.jpg","file_name":"Decolorization_of_Acid_Red_1_by_Fenton-like_process_using.pdf","download_url":"https://www.academia.edu/attachments/46149839/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decolorization_of_Acid_Red_1_by_Fenton_l.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46149839/Decolorization_of_Acid_Red_1_by_Fenton-like_process_using-libre.pdf?1464834733=\u0026response-content-disposition=attachment%3B+filename%3DDecolorization_of_Acid_Red_1_by_Fenton_l.pdf\u0026Expires=1732788433\u0026Signature=VysALIkchdLsORO3uDwkltUJp7vEF0b8uWXCuNCifwE-e64Te9YWd-NJoCuVGA63XU4jQJMfDaNb2q5tTGFzcFqRzpO6F4DOP9~Oq~Xz90kASgQtY8GqFq7p7wEyeI-rCSGlSs3wvJsOALCsykIYC01~rB-yoWWATDRgPe0pKo7gmtUivAB5GOzH5ryT4fxv3bvo7MQwToixCgApPJXsbe3Nk8rItYlg~CV1UjchITjjrkOdP5ShEN8jsWrSJ0DTU~hXy3RuOT8Mb18Ki~jWhig8yeoc93GUrI4pOfzW6YoCzDzoYnpL86lYkzD3R1coASRJlo4~GfeW3gj2ISGoSA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6399,"name":"Catalysts","url":"https://www.academia.edu/Documents/in/Catalysts"},{"id":151275,"name":"DYE DECOLORİZATİON","url":"https://www.academia.edu/Documents/in/DYE_DECOLORIZATION"},{"id":954818,"name":"Rice husk Ash","url":"https://www.academia.edu/Documents/in/Rice_husk_Ash"},{"id":1445454,"name":"Acid Dyes","url":"https://www.academia.edu/Documents/in/Acid_Dyes"},{"id":1499468,"name":"Fenton-like process","url":"https://www.academia.edu/Documents/in/Fenton-like_process"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25711442"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25711442/Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon"><img alt="Research paper thumbnail of Adsorption Isotherms for Phenol Onto Activated Carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/46058638/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25711442/Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon">Adsorption Isotherms for Phenol Onto Activated Carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NOR...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NORIT Granular Activated Carbon (NAC 1240) and NORIT Granular Activated Carbon 010 (NAC 010), for the removal of phenol from aqueous solutions. The study was carried out under batch mode at different initial concentrations (10-60 mg/I) and at temperature of 30°C. The adsorption isotherm parameters for the LangmUir and Freundlich models were determined using the adsorption data. It was found that both the Langmuir and the Freundlich isotherms described well the adsorption behavior of phenol on NAC 010, while the Freundlich isotherm described very well the adsorption of phenol on NAC 1240.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f66491192d8235480a9b69ab8599acdb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46058638,"asset_id":25711442,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46058638/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25711442"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25711442"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25711442; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25711442]").text(description); $(".js-view-count[data-work-id=25711442]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25711442; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25711442']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25711442, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f66491192d8235480a9b69ab8599acdb" } } $('.js-work-strip[data-work-id=25711442]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25711442,"title":"Adsorption Isotherms for Phenol Onto Activated Carbon","translated_title":"","metadata":{"abstract":"This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NORIT Granular Activated Carbon (NAC 1240) and NORIT Granular Activated Carbon 010 (NAC 010), for the removal of phenol from aqueous solutions. The study was carried out under batch mode at different initial concentrations (10-60 mg/I) and at temperature of 30°C. The adsorption isotherm parameters for the LangmUir and Freundlich models were determined using the adsorption data. It was found that both the Langmuir and the Freundlich isotherms described well the adsorption behavior of phenol on NAC 010, while the Freundlich isotherm described very well the adsorption of phenol on NAC 1240."},"translated_abstract":"This laboratory study investigated the effectiveness of two types of activated carbons (ACs), NORIT Granular Activated Carbon (NAC 1240) and NORIT Granular Activated Carbon 010 (NAC 010), for the removal of phenol from aqueous solutions. The study was carried out under batch mode at different initial concentrations (10-60 mg/I) and at temperature of 30°C. The adsorption isotherm parameters for the LangmUir and Freundlich models were determined using the adsorption data. It was found that both the Langmuir and the Freundlich isotherms described well the adsorption behavior of phenol on NAC 010, while the Freundlich isotherm described very well the adsorption of phenol on NAC 1240.","internal_url":"https://www.academia.edu/25711442/Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon","translated_internal_url":"","created_at":"2016-05-29T22:47:44.722-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":46058638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46058638/thumbnails/1.jpg","file_name":"Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon.pdf","download_url":"https://www.academia.edu/attachments/46058638/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_Isotherms_for_Phenol_Onto_Act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46058638/Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon-libre.pdf?1464587357=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_Isotherms_for_Phenol_Onto_Act.pdf\u0026Expires=1732843925\u0026Signature=ah1Ilt77ZQUJ9vGlbuzHwAmlqBVOTjx3TzvXcJaKJ6T2uZrJRRMm8CQhiqW8qzIbOfo6x25e531Xs9vG0W4LaUNximPYVcfm31kArSRlQetDW3WxN17IuifmEiI~F4Zzv67D2y-k98kKtJGO7E0Uf~iShHG--m-Q4VdEMJf913rm-WqZOFWL-HkZVC-FAq7ndpXA0srPQXOHzPZeAJSQLb4afGkXgV~o~KrRpx1lv8DiDB3j4rTwdqs0YmmZD038JOBowIDsBWtHRVEwwaqbmgUmahR15Xug7k3F-Euu~xPVnIpbQD-PFrTKRZQk2inAo9~uzaMS~rVoMlems6s1mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_Isotherms_for_Phenol_Onto_Activated_Carbon","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46058638,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46058638/thumbnails/1.jpg","file_name":"Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon.pdf","download_url":"https://www.academia.edu/attachments/46058638/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_Isotherms_for_Phenol_Onto_Act.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46058638/Adsorption_Isotherms_For_Phenol_Onto_Activated_Carbon-libre.pdf?1464587357=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_Isotherms_for_Phenol_Onto_Act.pdf\u0026Expires=1732843925\u0026Signature=ah1Ilt77ZQUJ9vGlbuzHwAmlqBVOTjx3TzvXcJaKJ6T2uZrJRRMm8CQhiqW8qzIbOfo6x25e531Xs9vG0W4LaUNximPYVcfm31kArSRlQetDW3WxN17IuifmEiI~F4Zzv67D2y-k98kKtJGO7E0Uf~iShHG--m-Q4VdEMJf913rm-WqZOFWL-HkZVC-FAq7ndpXA0srPQXOHzPZeAJSQLb4afGkXgV~o~KrRpx1lv8DiDB3j4rTwdqs0YmmZD038JOBowIDsBWtHRVEwwaqbmgUmahR15Xug7k3F-Euu~xPVnIpbQD-PFrTKRZQk2inAo9~uzaMS~rVoMlems6s1mQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":347988,"name":"Phenols","url":"https://www.academia.edu/Documents/in/Phenols"},{"id":1256859,"name":"Adsorption Isotherms","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherms"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="25690487"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25690487/Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst"><img alt="Research paper thumbnail of Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst" class="work-thumbnail" src="https://attachments.academia-assets.com/46032435/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25690487/Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst">Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/MMurat3">M. Murat</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Transesterification of vegetable oil with different acid contents into FAME. Best conditions from...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Transesterification of vegetable oil with different acid contents into FAME. Best conditions from the reaction of vegetable oils with different acid contents. The synthesized catalyst was feasible for high-and low-acid-content oil. The properties of both products confirmed the standard requirements. Keywords: Calcium–lanthanum–aluminum catalyst Crude palm oil Karanj oil Fatty acid methyl ester Transesterification a b s t r a c t The synthesis of fatty acid methyl ester (FAME) from the high-and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170 °C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180 min reaction time, and 10 wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150 °C reaction temperature, 9:1 DMC-to-KO molar ratio, 180 min reaction time, and 5 wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst was suitable for high-and low-acid-content vegetable oil.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="de6f574c990ec2b82aef819489365af7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":46032435,"asset_id":25690487,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/46032435/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25690487"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25690487"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25690487; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25690487]").text(description); $(".js-view-count[data-work-id=25690487]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25690487; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25690487']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25690487, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "de6f574c990ec2b82aef819489365af7" } } $('.js-work-strip[data-work-id=25690487]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25690487,"title":"Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst","translated_title":"","metadata":{"abstract":"Transesterification of vegetable oil with different acid contents into FAME. Best conditions from the reaction of vegetable oils with different acid contents. The synthesized catalyst was feasible for high-and low-acid-content oil. The properties of both products confirmed the standard requirements. Keywords: Calcium–lanthanum–aluminum catalyst Crude palm oil Karanj oil Fatty acid methyl ester Transesterification a b s t r a c t The synthesis of fatty acid methyl ester (FAME) from the high-and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170 °C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180 min reaction time, and 10 wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150 °C reaction temperature, 9:1 DMC-to-KO molar ratio, 180 min reaction time, and 5 wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst was suitable for high-and low-acid-content vegetable oil."},"translated_abstract":"Transesterification of vegetable oil with different acid contents into FAME. Best conditions from the reaction of vegetable oils with different acid contents. The synthesized catalyst was feasible for high-and low-acid-content oil. The properties of both products confirmed the standard requirements. Keywords: Calcium–lanthanum–aluminum catalyst Crude palm oil Karanj oil Fatty acid methyl ester Transesterification a b s t r a c t The synthesis of fatty acid methyl ester (FAME) from the high-and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170 °C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180 min reaction time, and 10 wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150 °C reaction temperature, 9:1 DMC-to-KO molar ratio, 180 min reaction time, and 5 wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO–La 2 O 3 –Al 2 O 3 mixed-oxide catalyst was suitable for high-and low-acid-content vegetable oil.","internal_url":"https://www.academia.edu/25690487/Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst","translated_internal_url":"","created_at":"2016-05-28T20:52:31.127-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":20727615,"work_id":25690487,"tagging_user_id":6309698,"tagged_user_id":49414117,"co_author_invite_id":4662364,"email":"c***i@usm.my","display_order":0,"name":"M. Murat","title":"Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst"},{"id":20727616,"work_id":25690487,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":4194304,"name":"B. Hameed","title":"Synthesis of fatty acid methyl ester from the transesterification of high-and low-acid-content crude palm oil (Elaeis guineensis) and karanj oil (Pongamia pinnata) over a calcium–lanthanum–aluminum mixed-oxides catalyst"}],"downloadable_attachments":[{"id":46032435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46032435/thumbnails/1.jpg","file_name":"Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum.pdf","download_url":"https://www.academia.edu/attachments/46032435/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Synthesis_of_fatty_acid_methyl_ester_fro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46032435/Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum-libre.pdf?1464493818=\u0026response-content-disposition=attachment%3B+filename%3DSynthesis_of_fatty_acid_methyl_ester_fro.pdf\u0026Expires=1732788433\u0026Signature=QQOJnAZ-1iWsOmQNm-h8NPbRTOwxNA6xqgcK12ji7ZceA~-g-2FqQtzHQBjnQOh2ii1fOuRIoasV~yYkZoZvdicV~nZ6Rtnyk9TSEd~Y8V2HMc0CvaYCC4jLEnFQYC-ziDl0EjNtygZzna8zPR3EPLDBC3XZT7p5mw9aqOUu4N-tj6UcycRoxIeNRYTw0RfwwvUPKuM2-dJjvbnC8Fkr9zyTeSaL2kwob-BpHaGCA1IJG8B7GTSehGF2VhEqb4EhVHPB9Zs36TPBPBKV0W4sLAmWyk0SG3k6ItBAyvv9AtyY56Pu4oTIdXGmJcIZrY2-6hp0XTfHewVLJN4tXyM1xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Synthesis_of_fatty_acid_methyl_ester_from_the_transesterification_of_high_and_low_acid_content_crude_palm_oil_Elaeis_guineensis_and_karanj_oil_Pongamia_pinnata_over_a_calcium_lanthanum_aluminum_mixed_oxides_catalyst","translated_slug":"","page_count":5,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":46032435,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/46032435/thumbnails/1.jpg","file_name":"Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum.pdf","download_url":"https://www.academia.edu/attachments/46032435/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Synthesis_of_fatty_acid_methyl_ester_fro.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/46032435/Synthesis_fatty_acid_methyl_ester_transesterification__crude_palm_oil_karanj_oil__calcium-lanthanum-aluminum-libre.pdf?1464493818=\u0026response-content-disposition=attachment%3B+filename%3DSynthesis_of_fatty_acid_methyl_ester_fro.pdf\u0026Expires=1732788433\u0026Signature=QQOJnAZ-1iWsOmQNm-h8NPbRTOwxNA6xqgcK12ji7ZceA~-g-2FqQtzHQBjnQOh2ii1fOuRIoasV~yYkZoZvdicV~nZ6Rtnyk9TSEd~Y8V2HMc0CvaYCC4jLEnFQYC-ziDl0EjNtygZzna8zPR3EPLDBC3XZT7p5mw9aqOUu4N-tj6UcycRoxIeNRYTw0RfwwvUPKuM2-dJjvbnC8Fkr9zyTeSaL2kwob-BpHaGCA1IJG8B7GTSehGF2VhEqb4EhVHPB9Zs36TPBPBKV0W4sLAmWyk0SG3k6ItBAyvv9AtyY56Pu4oTIdXGmJcIZrY2-6hp0XTfHewVLJN4tXyM1xw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":469822,"name":"Fatty Acid Methyl Ester","url":"https://www.academia.edu/Documents/in/Fatty_Acid_Methyl_Ester"},{"id":577615,"name":"Transesterification","url":"https://www.academia.edu/Documents/in/Transesterification"},{"id":1451678,"name":"Crude Palm Oil (CPO)","url":"https://www.academia.edu/Documents/in/Crude_Palm_Oil_CPO_"},{"id":2011752,"name":"Karanja Oil","url":"https://www.academia.edu/Documents/in/Karanja_Oil"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23748083"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23748083/Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones"><img alt="Research paper thumbnail of Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones" class="work-thumbnail" src="https://attachments.academia-assets.com/44182575/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23748083/Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones">Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derive...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R 2 ≥ 0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="134c0a23d210471c5eace2e39f91f275" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44182575,"asset_id":23748083,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44182575/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23748083"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23748083"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23748083; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23748083]").text(description); $(".js-view-count[data-work-id=23748083]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23748083; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23748083']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23748083, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "134c0a23d210471c5eace2e39f91f275" } } $('.js-work-strip[data-work-id=23748083]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23748083,"title":"Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones","translated_title":"","metadata":{"abstract":"In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R 2 ≥ 0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions."},"translated_abstract":"In this work, the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D) on activated carbon derived from date stones (DSAC) was studied with respect to pH and initial 2,4-D concentration. The experimental data were analyzed by the Freundlich isotherm, the Langmuir isotherm, and the Temkin isotherm. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 238.10 mg/g. Pseudo-first and pseudo-second-order kinetics models were tested with the experimental data, and pseudo-first-order kinetics was the best for the adsorption of 2,4-D by DSAC with coefficients of correlation R 2 ≥ 0.986 for all initial 2,4-D concentrations studied. The results indicated that the DSAC is very effective for the adsorption of 2,4-D from aqueous solutions.","internal_url":"https://www.academia.edu/23748083/Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones","translated_internal_url":"","created_at":"2016-03-28T20:12:36.683-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18027697,"work_id":23748083,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones"}],"downloadable_attachments":[{"id":44182575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182575/thumbnails/1.jpg","file_name":"Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones.pdf","download_url":"https://www.academia.edu/attachments/44182575/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherm_and_kinetic_modeling.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182575/Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones-libre.pdf?1459246510=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherm_and_kinetic_modeling.pdf\u0026Expires=1732843925\u0026Signature=AC5JxmqXRJt36Trt88kTyU4tcJtnzgNTnUr4a22LQnv00DRnEdIFD0EqFh8lwF6mJD7XIdcFfnGHjlcyN~HnwT6hFmc5uml3Uw4nPktokV85qB-3vsJleZgbdLLFwN8NPyXN0mfss5PzeXrTopcnzdgG88domx7WMGi-ZlNicyAbRdkwl8tzVTVszGEep5xnTqcNnKyWN19MyEw8VXVWglBzJO1UErYIq66XUyw~t21jtQ14HnGQeTiqaXd-o8YOXGIeb~mo-1xEZciPyv3TJdklJ4wSNQ~2lkRD7irbAHX5v4q3PLfcJk78jLAIMpok2wVrOXiDwOKsff-6ZpYLvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_isotherm_and_kinetic_modeling_of_2_4_D_pesticide_on_activated_carbon_derived_from_date_stones","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44182575,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182575/thumbnails/1.jpg","file_name":"Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones.pdf","download_url":"https://www.academia.edu/attachments/44182575/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherm_and_kinetic_modeling.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182575/Adsorption_isotherm_and_kinetic_modeling_of_2_4-D_pesticide_on_activated_carbon_derived_from_date_stones-libre.pdf?1459246510=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherm_and_kinetic_modeling.pdf\u0026Expires=1732843925\u0026Signature=AC5JxmqXRJt36Trt88kTyU4tcJtnzgNTnUr4a22LQnv00DRnEdIFD0EqFh8lwF6mJD7XIdcFfnGHjlcyN~HnwT6hFmc5uml3Uw4nPktokV85qB-3vsJleZgbdLLFwN8NPyXN0mfss5PzeXrTopcnzdgG88domx7WMGi-ZlNicyAbRdkwl8tzVTVszGEep5xnTqcNnKyWN19MyEw8VXVWglBzJO1UErYIq66XUyw~t21jtQ14HnGQeTiqaXd-o8YOXGIeb~mo-1xEZciPyv3TJdklJ4wSNQ~2lkRD7irbAHX5v4q3PLfcJk78jLAIMpok2wVrOXiDwOKsff-6ZpYLvw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":85437,"name":"Pesticides","url":"https://www.academia.edu/Documents/in/Pesticides"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23747970"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23747970/The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts"><img alt="Research paper thumbnail of The advancements in sol–gel method of doped-TiO 2 photocatalysts" class="work-thumbnail" src="https://attachments.academia-assets.com/44182490/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23747970/The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts">The advancements in sol–gel method of doped-TiO 2 photocatalysts</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://independent.academia.edu/UAkpan1">U. Akpan</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided.<br />Various sol–gel and related systems of doping were considered, ranging from co-doping, transition metal<br />ions doping, rare earth metal ions doping to other metals and non-metals ions doping of TiO2. The results<br />available showed that doping TiO2 with transition metal ions usually resulted in a hampered efficiency of<br />the TiO2 photocatalyst, though in some few cases, enhancements of the photocatalytic activity of TiO2<br />were recorded by doping it with some transition metal ions. In most cases, co-doping of TiO2 increases<br />the efficiency of its photocatalytic activity. The review reveals that there are some elemental ions that<br />cannot be used to dope TiO2 because of their negative effects on the photocatalytic activity of the<br />catalyst, while others must be used with caution as their doping will create minimal or no impacts on the<br />TiO2 photocatalytic efficiency</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="2cd0f9264d01aa431a221cceaf9b63ea" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44182490,"asset_id":23747970,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44182490/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23747970"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23747970"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23747970; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23747970]").text(description); $(".js-view-count[data-work-id=23747970]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23747970; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23747970']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23747970, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "2cd0f9264d01aa431a221cceaf9b63ea" } } $('.js-work-strip[data-work-id=23747970]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23747970,"title":"The advancements in sol–gel method of doped-TiO 2 photocatalysts","translated_title":"","metadata":{"abstract":"A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided.\nVarious sol–gel and related systems of doping were considered, ranging from co-doping, transition metal\nions doping, rare earth metal ions doping to other metals and non-metals ions doping of TiO2. The results\navailable showed that doping TiO2 with transition metal ions usually resulted in a hampered efficiency of\nthe TiO2 photocatalyst, though in some few cases, enhancements of the photocatalytic activity of TiO2\nwere recorded by doping it with some transition metal ions. In most cases, co-doping of TiO2 increases\nthe efficiency of its photocatalytic activity. The review reveals that there are some elemental ions that\ncannot be used to dope TiO2 because of their negative effects on the photocatalytic activity of the\ncatalyst, while others must be used with caution as their doping will create minimal or no impacts on the\nTiO2 photocatalytic efficiency"},"translated_abstract":"A critical review on the advancements in sol–gel method of doping TiO2 photocatalysts is provided.\nVarious sol–gel and related systems of doping were considered, ranging from co-doping, transition metal\nions doping, rare earth metal ions doping to other metals and non-metals ions doping of TiO2. The results\navailable showed that doping TiO2 with transition metal ions usually resulted in a hampered efficiency of\nthe TiO2 photocatalyst, though in some few cases, enhancements of the photocatalytic activity of TiO2\nwere recorded by doping it with some transition metal ions. In most cases, co-doping of TiO2 increases\nthe efficiency of its photocatalytic activity. The review reveals that there are some elemental ions that\ncannot be used to dope TiO2 because of their negative effects on the photocatalytic activity of the\ncatalyst, while others must be used with caution as their doping will create minimal or no impacts on the\nTiO2 photocatalytic efficiency","internal_url":"https://www.academia.edu/23747970/The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts","translated_internal_url":"","created_at":"2016-03-28T20:00:59.643-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":18027595,"work_id":23747970,"tagging_user_id":6309698,"tagged_user_id":47496497,"co_author_invite_id":3347495,"email":"u***n@yahoo.co.uk","display_order":0,"name":"U. Akpan","title":"The advancements in sol–gel method of doped-TiO 2 photocatalysts"}],"downloadable_attachments":[{"id":44182490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182490/thumbnails/1.jpg","file_name":"The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts.pdf","download_url":"https://www.academia.edu/attachments/44182490/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_advancements_in_sol_gel_method_of_do.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182490/The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts-libre.pdf?1459246525=\u0026response-content-disposition=attachment%3B+filename%3DThe_advancements_in_sol_gel_method_of_do.pdf\u0026Expires=1732843925\u0026Signature=BspMkgqnG5AM4asmpgTezrfyQHMGRQOet2tZ4EAz~SsMvThXw~OON~dNTkbx~HPqHmZwxHDaGr6uW7d6Ry5ef2Ibw0rtkWAVQT4itlRViGtQyhzbcSyq854lxyBRqnF7U~UFqBHyFOh7pnyAC7D8eZDnDR2PyEGfWI5QltDtzSCRV-l7Li8zZ4PSmNGLwM3bzkdBHUIw99KICl-sJlOdfUw-5I8lQDGhE1zrkpSBY0dR3FHO3qAlHA2qKi9k0E2xNfKEWLhj6mh8FzkkMmn6BhejpcnaDOSnaoEKD7a3tHeII12gzGAX4Oo66K6zO~EjL7gCCP9nLyeK2D0FgfYXrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"The_advancements_in_sol_gel_method_of_doped_TiO_2_photocatalysts","translated_slug":"","page_count":11,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44182490,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44182490/thumbnails/1.jpg","file_name":"The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts.pdf","download_url":"https://www.academia.edu/attachments/44182490/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"The_advancements_in_sol_gel_method_of_do.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44182490/The_advancements_in_sol-gel_method_of_doped-TiO2_photocatalysts-libre.pdf?1459246525=\u0026response-content-disposition=attachment%3B+filename%3DThe_advancements_in_sol_gel_method_of_do.pdf\u0026Expires=1732843925\u0026Signature=BspMkgqnG5AM4asmpgTezrfyQHMGRQOet2tZ4EAz~SsMvThXw~OON~dNTkbx~HPqHmZwxHDaGr6uW7d6Ry5ef2Ibw0rtkWAVQT4itlRViGtQyhzbcSyq854lxyBRqnF7U~UFqBHyFOh7pnyAC7D8eZDnDR2PyEGfWI5QltDtzSCRV-l7Li8zZ4PSmNGLwM3bzkdBHUIw99KICl-sJlOdfUw-5I8lQDGhE1zrkpSBY0dR3FHO3qAlHA2qKi9k0E2xNfKEWLhj6mh8FzkkMmn6BhejpcnaDOSnaoEKD7a3tHeII12gzGAX4Oo66K6zO~EjL7gCCP9nLyeK2D0FgfYXrA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":6400,"name":"Photocatalysts","url":"https://www.academia.edu/Documents/in/Photocatalysts"},{"id":85460,"name":"Sol Gel Process","url":"https://www.academia.edu/Documents/in/Sol_Gel_Process"},{"id":143739,"name":"TiO2","url":"https://www.academia.edu/Documents/in/TiO2"},{"id":146579,"name":"Natural Dyes","url":"https://www.academia.edu/Documents/in/Natural_Dyes"},{"id":163878,"name":"Degradation","url":"https://www.academia.edu/Documents/in/Degradation"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23727873"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23727873/Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials"><img alt="Research paper thumbnail of Decontamination of textile wastewater via TiO 2 /activated carbon composite materials" class="work-thumbnail" src="https://attachments.academia-assets.com/44160495/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23727873/Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials">Decontamination of textile wastewater via TiO 2 /activated carbon composite materials</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoi...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="9666a80c51e8689480ebeff9f99a2c56" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44160495,"asset_id":23727873,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44160495/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23727873"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23727873"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23727873; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23727873]").text(description); $(".js-view-count[data-work-id=23727873]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23727873; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23727873']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23727873, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "9666a80c51e8689480ebeff9f99a2c56" } } $('.js-work-strip[data-work-id=23727873]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23727873,"title":"Decontamination of textile wastewater via TiO 2 /activated carbon composite materials","translated_title":"","metadata":{"abstract":"Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation."},"translated_abstract":"Water scarcity and pollution rank equal to climate change as the most urgent environmental turmoil for the 21st century. To date, the percolation of textile effluents into the waterways and aquifer systems, remain an intricate conundrum abroad the nations. With the renaissance of activated carbon, there has been a steadily growing interest in the research field. Recently, the adoption of titanium dioxide, a prestigious advanced photo-catalyst which formulates the new growing branch of activated carbon composites for enhancement of adsorption rate and discoloration capacity, has attracted stern consideration and supports worldwide. Confirming the assertion, this paper presents a state of art review of titanium dioxide/activated carbon composites technology, its fundamental background studies, and environmental implications. Moreover, its major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of activated carbons composites material represents a potentially viable and powerful tool, leading to the plausible improvement of environmental conservation.","internal_url":"https://www.academia.edu/23727873/Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials","translated_internal_url":"","created_at":"2016-03-28T01:08:50.114-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17997702,"work_id":23727873,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"Bassim Hameed","title":"Decontamination of textile wastewater via TiO 2 /activated carbon composite materials"}],"downloadable_attachments":[{"id":44160495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44160495/thumbnails/1.jpg","file_name":"Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials.pdf","download_url":"https://www.academia.edu/attachments/44160495/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decontamination_of_textile_wastewater_vi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44160495/Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials-libre.pdf?1459152650=\u0026response-content-disposition=attachment%3B+filename%3DDecontamination_of_textile_wastewater_vi.pdf\u0026Expires=1732843925\u0026Signature=QMETZZs17iFBdH9blWdF9Y1nt0KLguW8thE78JC-f8V~95S6zlkhHVRN2-SV72pBkz8ZSZKS6OI5oJyXYTqc24kZuVWf4CkUvOJAnjLTAV~n5~-Up66uY5VRkG2UW42HvA7UDtBmDsoZhylOxhXijbkkffIG8iK-Q-b9agmX1Bwbyn7QnUSUfYxpzYEUPW~SDcVoPggUBHHxcA~QFbWw1YZYlFgefGpuUSVF5-One0bEahgfx5PtVEZcETfwjwm1hazd1Wsmz2IZS~iuAyCA3CABkOOXSHsHf24pcmIhahwdKgo4BZe-xkQWFW7t~HlAK2UYJvwU-xhN~T28zUrOew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Decontamination_of_textile_wastewater_via_TiO_2_activated_carbon_composite_materials","translated_slug":"","page_count":14,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44160495,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44160495/thumbnails/1.jpg","file_name":"Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials.pdf","download_url":"https://www.academia.edu/attachments/44160495/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Decontamination_of_textile_wastewater_vi.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44160495/Decontamination_of_textile_wastewater_via_TiO2activated_carbon_composite_materials-libre.pdf?1459152650=\u0026response-content-disposition=attachment%3B+filename%3DDecontamination_of_textile_wastewater_vi.pdf\u0026Expires=1732843925\u0026Signature=QMETZZs17iFBdH9blWdF9Y1nt0KLguW8thE78JC-f8V~95S6zlkhHVRN2-SV72pBkz8ZSZKS6OI5oJyXYTqc24kZuVWf4CkUvOJAnjLTAV~n5~-Up66uY5VRkG2UW42HvA7UDtBmDsoZhylOxhXijbkkffIG8iK-Q-b9agmX1Bwbyn7QnUSUfYxpzYEUPW~SDcVoPggUBHHxcA~QFbWw1YZYlFgefGpuUSVF5-One0bEahgfx5PtVEZcETfwjwm1hazd1Wsmz2IZS~iuAyCA3CABkOOXSHsHf24pcmIhahwdKgo4BZe-xkQWFW7t~HlAK2UYJvwU-xhN~T28zUrOew__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":55543,"name":"Zeolites","url":"https://www.academia.edu/Documents/in/Zeolites"},{"id":578992,"name":"Textile Wastewater","url":"https://www.academia.edu/Documents/in/Textile_Wastewater"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706975"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706975/Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material"><img alt="Research paper thumbnail of Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material" class="work-thumbnail" src="https://attachments.academia-assets.com/44121072/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706975/Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material">Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 • C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor R L revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cce6eff6aea31ed44d46776decf8e2f7" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44121072,"asset_id":23706975,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44121072/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706975"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706975"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706975; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706975]").text(description); $(".js-view-count[data-work-id=23706975]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706975; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706975']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706975, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cce6eff6aea31ed44d46776decf8e2f7" } } $('.js-work-strip[data-work-id=23706975]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706975,"title":"Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material","translated_title":"","metadata":{"abstract":"Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 • C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor R L revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution."},"translated_abstract":"Activated carbon derived from rattan sawdust (ACR) was evaluated for its ability to remove phenol from an aqueous solution in a batch process. Equilibrium studies were conducted in the range of 25–200 mg/L initial phenol concentrations, 3–10 solution pH and at temperature of 30 • C. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 149.25 mg/g. The dimensionless separation factor R L revealed the favorable nature of the isotherm of the phenol-activated carbon system. The pseudo-second-order kinetic model best described the adsorption process. The results proved that the prepared activated carbon was an effective adsorbent for removal of phenol from aqueous solution.","internal_url":"https://www.academia.edu/23706975/Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material","translated_internal_url":"","created_at":"2016-03-26T06:41:05.354-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977153,"work_id":23706975,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material"}],"downloadable_attachments":[{"id":44121072,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121072/thumbnails/1.jpg","file_name":"Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material.pdf","download_url":"https://www.academia.edu/attachments/44121072/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_phenol_from_aqueous_solutions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121072/Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material-libre.pdf?1458999688=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_phenol_from_aqueous_solutions.pdf\u0026Expires=1732843925\u0026Signature=TcnFS4DN10DnhWey77kuppa6FuaqxxPn9I5ZiRtxkj5l7AxIIJigTJcmrkCVOD5qquX0WPdx3nNIvzY6ymbhfFRgYGfn2O1aIKcvdmRJisUw1qIJcfJjUs4uGKQRLLimhcaqWHuxDhTrM0mja2ggDC8rcVxJUH-Dw7zHqAAVmw2px-6-tcOO5C5rjfA2I5hO5VQmTBT2sX2czn~SckTi7X1QILnRZPoEcNIO17SNd9-eZYlXxbnrX29sHd6yUobgwLNviHFp0G03YTscrL7F~PLfPSAohDj5w8kAqQP0kt-52Cwb-XePZ0TrHXXw1zuM~4zGxZO-EHIfz9Eg~7Un5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Removal_of_phenol_from_aqueous_solutions_by_adsorption_onto_activated_carbon_prepared_from_biomass_material","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44121072,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121072/thumbnails/1.jpg","file_name":"Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material.pdf","download_url":"https://www.academia.edu/attachments/44121072/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_phenol_from_aqueous_solutions.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121072/Removal_of_phenol_aqueous_solutions_by_adsorption_activated_carbon_prepared_biomass_material-libre.pdf?1458999688=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_phenol_from_aqueous_solutions.pdf\u0026Expires=1732843925\u0026Signature=TcnFS4DN10DnhWey77kuppa6FuaqxxPn9I5ZiRtxkj5l7AxIIJigTJcmrkCVOD5qquX0WPdx3nNIvzY6ymbhfFRgYGfn2O1aIKcvdmRJisUw1qIJcfJjUs4uGKQRLLimhcaqWHuxDhTrM0mja2ggDC8rcVxJUH-Dw7zHqAAVmw2px-6-tcOO5C5rjfA2I5hO5VQmTBT2sX2czn~SckTi7X1QILnRZPoEcNIO17SNd9-eZYlXxbnrX29sHd6yUobgwLNviHFp0G03YTscrL7F~PLfPSAohDj5w8kAqQP0kt-52Cwb-XePZ0TrHXXw1zuM~4zGxZO-EHIfz9Eg~7Un5Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":347988,"name":"Phenols","url":"https://www.academia.edu/Documents/in/Phenols"},{"id":741421,"name":"Adsorption Isotherm Models","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherm_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706955"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706955/Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon"><img alt="Research paper thumbnail of Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/44121051/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706955/Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon">Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from o...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich–Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (H •), standard entropy (S •), standard free energy (G •) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="6b57bc684346e59cf488f4f741f49cd5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44121051,"asset_id":23706955,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44121051/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706955"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706955"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706955; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706955]").text(description); $(".js-view-count[data-work-id=23706955]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706955; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706955']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706955, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "6b57bc684346e59cf488f4f741f49cd5" } } $('.js-work-strip[data-work-id=23706955]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706955,"title":"Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon","translated_title":"","metadata":{"abstract":"The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich–Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (H •), standard entropy (S •), standard free energy (G •) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%."},"translated_abstract":"The adsorption characteristics of 2,4,6-trichlorophenol (TCP) on activated carbon prepared from oil palm empty fruit bunch (EFB) were evaluated. The effects of TCP initial concentration, agitation time, solution pH and temperature on TCP adsorption were investigated. TCP adsorption uptake was found to increase with increase in initial concentration, agitation time and solution temperature whereas adsorption of TCP was more favourable at acidic pH. The adsorption equilibrium data were best represented by the Freundlich and Redlich–Peterson isotherms. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Boyd plot revealed that the adsorption of TCP on the activated carbon was mainly governed by particle diffusion. Thermodynamic parameters such as standard enthalpy (H •), standard entropy (S •), standard free energy (G •) and activation energy were determined. The regeneration efficiency of the spent activated carbon was high, with TCP desorption of 99.6%.","internal_url":"https://www.academia.edu/23706955/Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon","translated_internal_url":"","created_at":"2016-03-26T06:36:49.005-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977143,"work_id":23706955,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"Bassim Hameed","title":"Adsorption isotherms, kinetics, thermodynamics and desorption studies of 2,4,6-trichlorophenol on oil palm empty fruit bunch-based activated carbon"}],"downloadable_attachments":[{"id":44121051,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121051/thumbnails/1.jpg","file_name":"Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/44121051/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherms_kinetics_thermodyna.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121051/Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon-libre.pdf?1458999405=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherms_kinetics_thermodyna.pdf\u0026Expires=1732843925\u0026Signature=UyXdx9raENK3aTKz1RF-zgX-p7fuIwD8laKXr~Lb8wR-UzQW8i-6xWubQbNZdoBlLWtIRzU27HFFVWTBYGkADItDZ9JsuBFizLTQPxBMqeWvQDBIbkEfDOb3CaI4jyQhTCtwjJusm1I4pZBZsyyVEM~5ceh~kks5EpefNBPo7~lcCrZRzNMzY7i2Pz8SWbPCwSbco6PvlRDb0AvaDAHEHk-p3RLrDeEwVayVVS4qV6VcC7Bd0oWtlG0xRMWz~qKreO9sCMnGxu2DGUDp~1~wJFt6C7QMmWvDd968usSq-YrG-ouSyxYTQECRXHlnUM2tXPmURk1kgJZ0ryyBmTC11A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_isotherms_kinetics_thermodynamics_and_desorption_studies_of_2_4_6_trichlorophenol_on_oil_palm_empty_fruit_bunch_based_activated_carbon","translated_slug":"","page_count":10,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44121051,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121051/thumbnails/1.jpg","file_name":"Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/44121051/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_isotherms_kinetics_thermodyna.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121051/Adsorption_isotherms__kinetics__thermodynamics__2_4_6-trichlorophenol_oil_palm_empty_fruit_bunch_activated_carbon-libre.pdf?1458999405=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_isotherms_kinetics_thermodyna.pdf\u0026Expires=1732843925\u0026Signature=UyXdx9raENK3aTKz1RF-zgX-p7fuIwD8laKXr~Lb8wR-UzQW8i-6xWubQbNZdoBlLWtIRzU27HFFVWTBYGkADItDZ9JsuBFizLTQPxBMqeWvQDBIbkEfDOb3CaI4jyQhTCtwjJusm1I4pZBZsyyVEM~5ceh~kks5EpefNBPo7~lcCrZRzNMzY7i2Pz8SWbPCwSbco6PvlRDb0AvaDAHEHk-p3RLrDeEwVayVVS4qV6VcC7Bd0oWtlG0xRMWz~qKreO9sCMnGxu2DGUDp~1~wJFt6C7QMmWvDd968usSq-YrG-ouSyxYTQECRXHlnUM2tXPmURk1kgJZ0ryyBmTC11A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":522,"name":"Thermodynamics","url":"https://www.academia.edu/Documents/in/Thermodynamics"},{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":488206,"name":"Oil Palm Empty Fruit Bunch","url":"https://www.academia.edu/Documents/in/Oil_Palm_Empty_Fruit_Bunch"},{"id":741421,"name":"Adsorption Isotherm Models","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherm_Models"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706920"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706920/Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash"><img alt="Research paper thumbnail of Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash" class="work-thumbnail" src="https://attachments.academia-assets.com/44121015/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706920/Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash">Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigated. Experiments were carried out as function of contact time, initial concentration (50–600 mg/L), pH (2–12) and temperature (30–50 • C). The equilibrium adsorption data of AG25 dye on activated palm ash were analyzed by Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. The adsorption capacities of the activated palm ash for removal of AG25 dye was determined with the Langmuir equation and found to be 123.4, 156.3 and 181.8 mg/g at 30, 40, and 50 • C, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (26.64 kJ/mol) indicates that the adsorption is endothermic process. The results indicate that activated palm ash is suitable as adsorbent material for adsorption of AG25 dye from aqueous solutions.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="02cf39db35b2fc317e87af9379ebc5d9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44121015,"asset_id":23706920,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44121015/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706920"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706920"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706920; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706920]").text(description); $(".js-view-count[data-work-id=23706920]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706920; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706920']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706920, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "02cf39db35b2fc317e87af9379ebc5d9" } } $('.js-work-strip[data-work-id=23706920]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706920,"title":"Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash","translated_title":"","metadata":{"abstract":"Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigated. Experiments were carried out as function of contact time, initial concentration (50–600 mg/L), pH (2–12) and temperature (30–50 • C). The equilibrium adsorption data of AG25 dye on activated palm ash were analyzed by Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. The adsorption capacities of the activated palm ash for removal of AG25 dye was determined with the Langmuir equation and found to be 123.4, 156.3 and 181.8 mg/g at 30, 40, and 50 • C, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (26.64 kJ/mol) indicates that the adsorption is endothermic process. The results indicate that activated palm ash is suitable as adsorbent material for adsorption of AG25 dye from aqueous solutions."},"translated_abstract":"Removal of acid green 25 (AG25) dye onto activated palm ash from aqueous solutions was investigated. Experiments were carried out as function of contact time, initial concentration (50–600 mg/L), pH (2–12) and temperature (30–50 • C). The equilibrium adsorption data of AG25 dye on activated palm ash were analyzed by Langmuir and Freundlich models. The results indicate that the Freundlich model provides the best correlation of the experimental data. The adsorption capacities of the activated palm ash for removal of AG25 dye was determined with the Langmuir equation and found to be 123.4, 156.3 and 181.8 mg/g at 30, 40, and 50 • C, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. It was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of adsorption. The positive value of the enthalpy change (26.64 kJ/mol) indicates that the adsorption is endothermic process. The results indicate that activated palm ash is suitable as adsorbent material for adsorption of AG25 dye from aqueous solutions.","internal_url":"https://www.academia.edu/23706920/Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash","translated_internal_url":"","created_at":"2016-03-26T06:31:38.738-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977113,"work_id":23706920,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash"},{"id":17977114,"work_id":23706920,"tagging_user_id":6309698,"tagged_user_id":9421414,"co_author_invite_id":null,"email":"a***k@live.co.uk","display_order":4194304,"name":"Eng Aziz","title":"Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash"}],"downloadable_attachments":[{"id":44121015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121015/thumbnails/1.jpg","file_name":"Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash.pdf","download_url":"https://www.academia.edu/attachments/44121015/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isotherms_kinetics_and_thermodynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121015/Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash-libre.pdf?1458999086=\u0026response-content-disposition=attachment%3B+filename%3DIsotherms_kinetics_and_thermodynamics_of.pdf\u0026Expires=1732843925\u0026Signature=VjGiml~ToxWSD-bNAgjIqScPz2hatICIkN527LpiFsp1eQAeQgYpc4VMxzfBaECd~LUSpj4M2GBwcYWTwEfI46SLjwNBoUGCXKQB6MUKQQZRpWXQ1WlZ6LKXh1aQ6FsgS9a23BD~C8~gxGSjt3Gk868qC9dJtGTz3w-HIqAUUN3KSHG1NETHTOOmhV7z7O~yOUgYBUxJkR42td5YBS0zJH-payaCT1HG2Qnz9O5HzocUbnMA2soPIpXwHDEFpCK9iH-h0ahgC68MRmJYf4NSSkrdlZ4cT-w3F-V25zxFup3MhIQlFwIBX~6HXq-w7Jd7HmBSOCgD819yrFBcT-u8~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Isotherms_kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash","translated_slug":"","page_count":9,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44121015,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44121015/thumbnails/1.jpg","file_name":"Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash.pdf","download_url":"https://www.academia.edu/attachments/44121015/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Isotherms_kinetics_and_thermodynamics_of.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44121015/Isotherms__kinetics_and_thermodynamics_of_acid_dye_adsorption_on_activated_palm_ash-libre.pdf?1458999086=\u0026response-content-disposition=attachment%3B+filename%3DIsotherms_kinetics_and_thermodynamics_of.pdf\u0026Expires=1732843925\u0026Signature=VjGiml~ToxWSD-bNAgjIqScPz2hatICIkN527LpiFsp1eQAeQgYpc4VMxzfBaECd~LUSpj4M2GBwcYWTwEfI46SLjwNBoUGCXKQB6MUKQQZRpWXQ1WlZ6LKXh1aQ6FsgS9a23BD~C8~gxGSjt3Gk868qC9dJtGTz3w-HIqAUUN3KSHG1NETHTOOmhV7z7O~yOUgYBUxJkR42td5YBS0zJH-payaCT1HG2Qnz9O5HzocUbnMA2soPIpXwHDEFpCK9iH-h0ahgC68MRmJYf4NSSkrdlZ4cT-w3F-V25zxFup3MhIQlFwIBX~6HXq-w7Jd7HmBSOCgD819yrFBcT-u8~g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":43189,"name":"Chemical Kinetics","url":"https://www.academia.edu/Documents/in/Chemical_Kinetics"},{"id":741421,"name":"Adsorption Isotherm Models","url":"https://www.academia.edu/Documents/in/Adsorption_Isotherm_Models"},{"id":808070,"name":"Palm Oil Fuel Ash","url":"https://www.academia.edu/Documents/in/Palm_Oil_Fuel_Ash"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23706875"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23706875/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust"><img alt="Research paper thumbnail of Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust" class="work-thumbnail" src="https://attachments.academia-assets.com/44120736/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23706875/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust">Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized a...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of meth-ylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14 mg/g. The dimensionless factor, R L revealed the favorable nature of the isotherm of the dyeeactivated carbon system. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The kinetic parameters of this best-fit model were calculated and the results are discussed.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0c47025f8aef65a4f9e4e59948688029" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44120736,"asset_id":23706875,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44120736/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23706875"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23706875"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23706875; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23706875]").text(description); $(".js-view-count[data-work-id=23706875]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23706875; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23706875']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23706875, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0c47025f8aef65a4f9e4e59948688029" } } $('.js-work-strip[data-work-id=23706875]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23706875,"title":"Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust","translated_title":"","metadata":{"abstract":"Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of meth-ylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14 mg/g. The dimensionless factor, R L revealed the favorable nature of the isotherm of the dyeeactivated carbon system. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The kinetic parameters of this best-fit model were calculated and the results are discussed."},"translated_abstract":"Activated carbon prepared from non-wood forest product waste (rattan sawdust) has been utilized as the adsorbent for the removal of meth-ylene blue dye from an aqueous solution. The experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Equilibrium data fitted well with the Langmuir model with maximum monolayer adsorption capacity of 294.14 mg/g. The dimensionless factor, R L revealed the favorable nature of the isotherm of the dyeeactivated carbon system. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The kinetic parameters of this best-fit model were calculated and the results are discussed.","internal_url":"https://www.academia.edu/23706875/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust","translated_internal_url":"","created_at":"2016-03-26T06:26:49.269-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17977049,"work_id":23706875,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust"}],"downloadable_attachments":[{"id":44120736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44120736/thumbnails/1.jpg","file_name":"Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust.pdf","download_url":"https://www.academia.edu/attachments/44120736/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_basic_dye_methylene_blue_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44120736/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust-libre.pdf?1458998838=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_basic_dye_methylene_blue_o.pdf\u0026Expires=1732788434\u0026Signature=b-T3JuQli0AH6OYjNyW7cjQPddOXzcru-gk7YSlKXhisDGz3rEEmGRTg7u5QGYVro6rBFjvYI8Z5~p6fAcn0juBmEd1ptOnAhKWNzrhaK-8WMLKA~DGCc~uFYwBCDgIGFiuzqlvZEByuNNtJnONqsbd2Qkt6OM6wH0-hymvpUwBlQCE7X4WgrNuBAgS1DR3tJz0cXvLwrM2UJ978uPgH3Xn~uFPrY-IpWhsVCyJpzSqDQ3ar9rXUiCwBszV8Lvg1qG4gU5X0JvHH0zibQ6CPmMR3T~FNKJrg1q5o0XIfdIA4dWqc2LoB7c7HJVR4swGGBtnTc864guVHarXfj9BtYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44120736,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44120736/thumbnails/1.jpg","file_name":"Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust.pdf","download_url":"https://www.academia.edu/attachments/44120736/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_basic_dye_methylene_blue_o.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44120736/Adsorption_of_basic_dye_methylene_blue_onto_activated_carbon_prepared_from_rattan_sawdust-libre.pdf?1458998838=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_basic_dye_methylene_blue_o.pdf\u0026Expires=1732788434\u0026Signature=b-T3JuQli0AH6OYjNyW7cjQPddOXzcru-gk7YSlKXhisDGz3rEEmGRTg7u5QGYVro6rBFjvYI8Z5~p6fAcn0juBmEd1ptOnAhKWNzrhaK-8WMLKA~DGCc~uFYwBCDgIGFiuzqlvZEByuNNtJnONqsbd2Qkt6OM6wH0-hymvpUwBlQCE7X4WgrNuBAgS1DR3tJz0cXvLwrM2UJ978uPgH3Xn~uFPrY-IpWhsVCyJpzSqDQ3ar9rXUiCwBszV8Lvg1qG4gU5X0JvHH0zibQ6CPmMR3T~FNKJrg1q5o0XIfdIA4dWqc2LoB7c7HJVR4swGGBtnTc864guVHarXfj9BtYQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":18469,"name":"Activated carbon adsorption","url":"https://www.academia.edu/Documents/in/Activated_carbon_adsorption"},{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":52361,"name":"Textile Dyeing","url":"https://www.academia.edu/Documents/in/Textile_Dyeing"},{"id":196381,"name":"Methylene Blue","url":"https://www.academia.edu/Documents/in/Methylene_Blue"},{"id":590987,"name":"Rattans","url":"https://www.academia.edu/Documents/in/Rattans"},{"id":972790,"name":"Adsorbent","url":"https://www.academia.edu/Documents/in/Adsorbent"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23700572"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23700572/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon"><img alt="Research paper thumbnail of Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/44108524/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23700572/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon">Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">In this work, activated carbon was prepared from bamboo waste by chemical activation method using...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">In this work, activated carbon was prepared from bamboo waste by chemical activation method using<br />phosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand<br />(COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of<br />91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and<br />COD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was<br />found best to describe the obtained equilibrium adsorption data at 30 ◦C. The Brunauer–Emmett–Teller<br />(BET) surface area, total pore volume and the average pore diameter were 988.23 m2/g, 0.69 cm3/g and<br />2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were<br />determined from the FTIR results.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="fae19e46299c29365650d5bcfa4efa9a" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44108524,"asset_id":23700572,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44108524/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23700572"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23700572"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23700572; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23700572]").text(description); $(".js-view-count[data-work-id=23700572]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23700572; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23700572']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23700572, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "fae19e46299c29365650d5bcfa4efa9a" } } $('.js-work-strip[data-work-id=23700572]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23700572,"title":"Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon","translated_title":"","metadata":{"abstract":"In this work, activated carbon was prepared from bamboo waste by chemical activation method using\nphosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand\n(COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of\n91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and\nCOD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was\nfound best to describe the obtained equilibrium adsorption data at 30 ◦C. The Brunauer–Emmett–Teller\n(BET) surface area, total pore volume and the average pore diameter were 988.23 m2/g, 0.69 cm3/g and\n2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were\ndetermined from the FTIR results."},"translated_abstract":"In this work, activated carbon was prepared from bamboo waste by chemical activation method using\nphosphoric acid as activating agent. The activated carbon was evaluated for chemical oxygen demand\n(COD) and color reduction of a real textile mill effluent. A maximum reduction in color and COD of\n91.84% and 75.21%, respectively was achieved. As a result, the standard B discharge limit of color and\nCOD under the Malaysian Environmental Quality act 1974 was met. The Freundlich isotherm model was\nfound best to describe the obtained equilibrium adsorption data at 30 ◦C. The Brunauer–Emmett–Teller\n(BET) surface area, total pore volume and the average pore diameter were 988.23 m2/g, 0.69 cm3/g and\n2.82 nm, respectively. Various functional groups on the prepared bamboo activated carbon (BAC) were\ndetermined from the FTIR results.","internal_url":"https://www.academia.edu/23700572/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon","translated_internal_url":"","created_at":"2016-03-25T16:11:31.863-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44108524,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108524/thumbnails/1.jpg","file_name":"Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton.pdf","download_url":"https://www.academia.edu/attachments/44108524/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_of_COD_and_color_of_dyeing_eff.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108524/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton-libre.pdf?1458947401=\u0026response-content-disposition=attachment%3B+filename%3DReduction_of_COD_and_color_of_dyeing_eff.pdf\u0026Expires=1732843925\u0026Signature=RpliERyzYopH5388EFBeZDFklsxW-L0UeVfd6otSfo1Dac-N~oESO4vIyWELU0o4nVE65eBoenChP~oqO0waQWlfKyUC7TAjYYvERnBwkfFonv1VF0G19jszl6lhrsQrztoqlk13ZrWh-VlwFdgSDEm9oqOY8Uot8GouUZmnE9NvwlGPPlVXas-lBSZEp7O8~C7Ee4wVcwGVqMI8mpeq71rrhc2HPwMYzaa4w--93ccup8an0FRy~fiYqHZHJNIw8MESdsUPVKOatmDdCvkSiR~GI3g9lHP~sy6SfUkDyQH-btmufqWbJogy73QtHo8i42dHRiXyFepR5hferMZTPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton_textile_mill_by_adsorption_onto_bamboo_based_activated_carbon","translated_slug":"","page_count":6,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44108524,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108524/thumbnails/1.jpg","file_name":"Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton.pdf","download_url":"https://www.academia.edu/attachments/44108524/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Reduction_of_COD_and_color_of_dyeing_eff.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108524/Reduction_of_COD_and_color_of_dyeing_effluent_from_a_cotton-libre.pdf?1458947401=\u0026response-content-disposition=attachment%3B+filename%3DReduction_of_COD_and_color_of_dyeing_eff.pdf\u0026Expires=1732843925\u0026Signature=RpliERyzYopH5388EFBeZDFklsxW-L0UeVfd6otSfo1Dac-N~oESO4vIyWELU0o4nVE65eBoenChP~oqO0waQWlfKyUC7TAjYYvERnBwkfFonv1VF0G19jszl6lhrsQrztoqlk13ZrWh-VlwFdgSDEm9oqOY8Uot8GouUZmnE9NvwlGPPlVXas-lBSZEp7O8~C7Ee4wVcwGVqMI8mpeq71rrhc2HPwMYzaa4w--93ccup8an0FRy~fiYqHZHJNIw8MESdsUPVKOatmDdCvkSiR~GI3g9lHP~sy6SfUkDyQH-btmufqWbJogy73QtHo8i42dHRiXyFepR5hferMZTPw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":39890,"name":"Bamboo","url":"https://www.academia.edu/Documents/in/Bamboo"},{"id":146579,"name":"Natural Dyes","url":"https://www.academia.edu/Documents/in/Natural_Dyes"},{"id":839274,"name":"COD","url":"https://www.academia.edu/Documents/in/COD"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23700546"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23700546/Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon"><img alt="Research paper thumbnail of Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon" class="work-thumbnail" src="https://attachments.academia-assets.com/44108478/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23700546/Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon">Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran usin...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran using<br />commercial granular activated carbon, Filtersorb 300 (GAC F300) were studied in a batch system with<br />respect to initial concentration of 2,4-D and carbofuran. The Langmuir and the Freundlich isotherm models<br />were applied to the equilibrium data of 2,4-D and carbofuran adsorption. Observed results showed that the<br />equilibrium data fitted well to the Langmuir equilibrium model in the studied concentration range of 2,4-D<br />and carbofuran. The monolayer adsorption capacities of GAC F300 were 181.82 and 96.15 mg/g for 2,4-D and<br />carbofuran, respectively. Two simplified models, pseudo-first order and pseudo-second order kinetic, were<br />used to test the adsorption kinetics of 2, 4-D and carbofuran on GAC F300. The data was best fitted to the<br />pseudo-second-order kinetic model</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="272c232543da487f519c144451648f17" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":44108478,"asset_id":23700546,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/44108478/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23700546"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23700546"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23700546; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23700546]").text(description); $(".js-view-count[data-work-id=23700546]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23700546; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23700546']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23700546, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "272c232543da487f519c144451648f17" } } $('.js-work-strip[data-work-id=23700546]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23700546,"title":"Adsorption of 2,4-dichlorophenoxyacetic acid and carbofuran pesticides onto granular activated carbon","translated_title":"","metadata":{"abstract":"Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran using\ncommercial granular activated carbon, Filtersorb 300 (GAC F300) were studied in a batch system with\nrespect to initial concentration of 2,4-D and carbofuran. The Langmuir and the Freundlich isotherm models\nwere applied to the equilibrium data of 2,4-D and carbofuran adsorption. Observed results showed that the\nequilibrium data fitted well to the Langmuir equilibrium model in the studied concentration range of 2,4-D\nand carbofuran. The monolayer adsorption capacities of GAC F300 were 181.82 and 96.15 mg/g for 2,4-D and\ncarbofuran, respectively. Two simplified models, pseudo-first order and pseudo-second order kinetic, were\nused to test the adsorption kinetics of 2, 4-D and carbofuran on GAC F300. The data was best fitted to the\npseudo-second-order kinetic model"},"translated_abstract":"Adsorption equilibrium and kinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) and carbofuran using\ncommercial granular activated carbon, Filtersorb 300 (GAC F300) were studied in a batch system with\nrespect to initial concentration of 2,4-D and carbofuran. The Langmuir and the Freundlich isotherm models\nwere applied to the equilibrium data of 2,4-D and carbofuran adsorption. Observed results showed that the\nequilibrium data fitted well to the Langmuir equilibrium model in the studied concentration range of 2,4-D\nand carbofuran. The monolayer adsorption capacities of GAC F300 were 181.82 and 96.15 mg/g for 2,4-D and\ncarbofuran, respectively. Two simplified models, pseudo-first order and pseudo-second order kinetic, were\nused to test the adsorption kinetics of 2, 4-D and carbofuran on GAC F300. The data was best fitted to the\npseudo-second-order kinetic model","internal_url":"https://www.academia.edu/23700546/Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon","translated_internal_url":"","created_at":"2016-03-25T16:06:11.958-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":44108478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108478/thumbnails/1.jpg","file_name":"Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran.pdf","download_url":"https://www.academia.edu/attachments/44108478/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_2_4_dichlorophenoxyacetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108478/Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran-libre.pdf?1458947091=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_2_4_dichlorophenoxyacetic.pdf\u0026Expires=1732843925\u0026Signature=WpTLZxwPGRbrzVMEmuF8Vn0euR5lapi8hegQtzBaSTzi9WaacLgYqzkX79nIqI3BDMyDH6t1MjFfWLfc6xjrRl6bQ-cjNkXSSFrscsQ9871Z1xvXSC5xVnaFmo7D23b1AAJpEldUlBulGElC3YyNdi-31KTWXHVszGv0QU9lKYQetEwBylRHLw0X6yKkI3S-zsOM~8eRBGOhx4ls8gCfJpvQAOmAO6tpZ2RBLf2XyZOwDRVjAGs0qEluAPRgYu2-Z8930CgjlKCF6A5T8JPEefsg22JJToBVdcS6G52tZnEY3Y9V31JzFPRbDo9FJwKML6nNcZ0-5jzZkkwkNjehuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Adsorption_of_2_4_dichlorophenoxyacetic_acid_and_carbofuran_pesticides_onto_granular_activated_carbon","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":44108478,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/44108478/thumbnails/1.jpg","file_name":"Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran.pdf","download_url":"https://www.academia.edu/attachments/44108478/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Adsorption_of_2_4_dichlorophenoxyacetic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/44108478/Adsorption_of_2_4-dichlorophenoxyacetic_acid_and_carbofuran-libre.pdf?1458947091=\u0026response-content-disposition=attachment%3B+filename%3DAdsorption_of_2_4_dichlorophenoxyacetic.pdf\u0026Expires=1732843925\u0026Signature=WpTLZxwPGRbrzVMEmuF8Vn0euR5lapi8hegQtzBaSTzi9WaacLgYqzkX79nIqI3BDMyDH6t1MjFfWLfc6xjrRl6bQ-cjNkXSSFrscsQ9871Z1xvXSC5xVnaFmo7D23b1AAJpEldUlBulGElC3YyNdi-31KTWXHVszGv0QU9lKYQetEwBylRHLw0X6yKkI3S-zsOM~8eRBGOhx4ls8gCfJpvQAOmAO6tpZ2RBLf2XyZOwDRVjAGs0qEluAPRgYu2-Z8930CgjlKCF6A5T8JPEefsg22JJToBVdcS6G52tZnEY3Y9V31JzFPRbDo9FJwKML6nNcZ0-5jzZkkwkNjehuQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":85437,"name":"Pesticides","url":"https://www.academia.edu/Documents/in/Pesticides"},{"id":2431626,"name":"Carbofuran","url":"https://www.academia.edu/Documents/in/Carbofuran"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="15599948"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/15599948/Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review"><img alt="Research paper thumbnail of Developments in activated functionalized carbons and their applications in water decontamination: a review" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/15599948/Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review">Developments in activated functionalized carbons and their applications in water decontamination: a review</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://dcu.academia.edu/JennyLawler">Jenny Lawler</a>, <a class="" data-click-track="profile-work-strip-authors" href="https://king-saud.academia.edu/MoonisKhan">Moonis Khan</a>, and <a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a></span></div><div class="wp-workCard_item"><span>Desalination and Water Treatment</span><span>, 2014</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbons (ACs) a versatile and universally acclaimed adsorbent. High production costs limit the use of ACs as adsorbents, and this is a major driver for worldwide research targeting cheap precursors to reduce the production cost and to enhance the adsorption efficiency. This review highlights the preparation of ACs from various precursors, their functionalization, characterization, and their applications in water decontamination. A list of cost-effective precursors derived from agricultural waste materials along with the pollutants removed is presented. ACs can be functionally modified to develop highly efficient and adsorbate selective materials. Enhancement of the adsorption efficiency of ACs for inorganic pollutants and metal ions can be achieved by chemical modification, while physical modification of ACs via thermal treatment can enhance the pore size and surface area. A summary of the various chemical, physical, and biological processes that are utilized for these modifications is presented.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="15599948"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="15599948"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 15599948; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=15599948]").text(description); $(".js-view-count[data-work-id=15599948]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 15599948; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='15599948']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 15599948, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=15599948]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":15599948,"title":"Developments in activated functionalized carbons and their applications in water decontamination: a review","translated_title":"","metadata":{"abstract":"ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbons (ACs) a versatile and universally acclaimed adsorbent. High production costs limit the use of ACs as adsorbents, and this is a major driver for worldwide research targeting cheap precursors to reduce the production cost and to enhance the adsorption efficiency. This review highlights the preparation of ACs from various precursors, their functionalization, characterization, and their applications in water decontamination. A list of cost-effective precursors derived from agricultural waste materials along with the pollutants removed is presented. ACs can be functionally modified to develop highly efficient and adsorbate selective materials. Enhancement of the adsorption efficiency of ACs for inorganic pollutants and metal ions can be achieved by chemical modification, while physical modification of ACs via thermal treatment can enhance the pore size and surface area. A summary of the various chemical, physical, and biological processes that are utilized for these modifications is presented.","publication_date":{"day":null,"month":null,"year":2014,"errors":{}},"publication_name":"Desalination and Water Treatment"},"translated_abstract":"ABSTRACT Extremely high surface area, porosity, and other surface properties make activated carbons (ACs) a versatile and universally acclaimed adsorbent. High production costs limit the use of ACs as adsorbents, and this is a major driver for worldwide research targeting cheap precursors to reduce the production cost and to enhance the adsorption efficiency. This review highlights the preparation of ACs from various precursors, their functionalization, characterization, and their applications in water decontamination. A list of cost-effective precursors derived from agricultural waste materials along with the pollutants removed is presented. ACs can be functionally modified to develop highly efficient and adsorbate selective materials. Enhancement of the adsorption efficiency of ACs for inorganic pollutants and metal ions can be achieved by chemical modification, while physical modification of ACs via thermal treatment can enhance the pore size and surface area. A summary of the various chemical, physical, and biological processes that are utilized for these modifications is presented.","internal_url":"https://www.academia.edu/15599948/Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review","translated_internal_url":"","created_at":"2015-09-11T00:43:26.693-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":34764908,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":5716426,"work_id":15599948,"tagging_user_id":34764908,"tagged_user_id":313282,"co_author_invite_id":null,"email":"m***n@gmail.com","affiliation":"King Saud University","display_order":0,"name":"Moonis Khan","title":"Developments in activated functionalized carbons and their applications in water decontamination: a review"},{"id":5716428,"work_id":15599948,"tagging_user_id":34764908,"tagged_user_id":2598831,"co_author_invite_id":null,"email":"m***i@gmail.com","display_order":4194304,"name":"Mahendra Kumar","title":"Developments in activated functionalized carbons and their applications in water decontamination: a review"},{"id":17667054,"work_id":15599948,"tagging_user_id":34764908,"tagged_user_id":6309698,"co_author_invite_id":null,"email":"b***d@gmail.com","affiliation":"Qatar University","display_order":6291456,"name":"Bassim H Hameed","title":"Developments in activated functionalized carbons and their applications in water decontamination: a review"}],"downloadable_attachments":[],"slug":"Developments_in_activated_functionalized_carbons_and_their_applications_in_water_decontamination_a_review","translated_slug":"","page_count":null,"language":"en","content_type":"Work","owner":{"id":34764908,"first_name":"Jenny","middle_initials":null,"last_name":"Lawler","page_name":"JennyLawler","domain_name":"dcu","created_at":"2015-09-11T00:39:31.397-07:00","display_name":"Jenny Lawler","url":"https://dcu.academia.edu/JennyLawler"},"attachments":[],"research_interests":[{"id":55,"name":"Environmental Engineering","url":"https://www.academia.edu/Documents/in/Environmental_Engineering"},{"id":72,"name":"Chemical Engineering","url":"https://www.academia.edu/Documents/in/Chemical_Engineering"},{"id":73,"name":"Civil Engineering","url":"https://www.academia.edu/Documents/in/Civil_Engineering"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23431231"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23431231/Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating"><img alt="Research paper thumbnail of Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating" class="work-thumbnail" src="https://attachments.academia-assets.com/43872517/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23431231/Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating">Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="4991e5ec00323e44e4af8f68c63b5b5f" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":43872517,"asset_id":23431231,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/43872517/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23431231"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23431231"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23431231; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23431231]").text(description); $(".js-view-count[data-work-id=23431231]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23431231; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23431231']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23431231, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "4991e5ec00323e44e4af8f68c63b5b5f" } } $('.js-work-strip[data-work-id=23431231]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23431231,"title":"Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating","translated_title":"","metadata":{"abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation."},"translated_abstract":"Wood sawdust was converted into a high-quality activated carbon (WSAC) via microwave-induced K 2 CO 3 activation. The operational variables including chemical impregnation ratio, microwave power and irradiation time on the carbon yield and adsorption capability were identified. The surface physical characteristics of WSAC were examined by pore structural analysis, scanning electron microscopy and nitrogen adsorption isotherms. The adsorptive behavior of WSAC was quantified using methylene blue as model dye compound. The best conditions resulted in activated carbon with a monolayer adsorption capacity of 423.17 mg/g and carbon yield of 80.75%. The BET surface area, Langmuir surface area and total pore volume were corresponded to 1496.05 m 2 /g, 2245.53 m 2 /g and 0.864 cm 3 /g, respectively. The findings support the potential to prepare high surface area and mesoporous activated carbon from wood sawdust by microwave assisted chemical activation.","internal_url":"https://www.academia.edu/23431231/Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating","translated_internal_url":"","created_at":"2016-03-18T16:22:21.455-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17556109,"work_id":23431231,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Mesoporous activated carbon from wood sawdust by K 2 CO 3 activation using microwave heating"}],"downloadable_attachments":[{"id":43872517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872517/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust.pdf","download_url":"https://www.academia.edu/attachments/43872517/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872517/Mesoporous_activated_carbon_from_wood_sawdust-libre.pdf?1458343531=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732843925\u0026Signature=BXF7F890Xx1KcZUA-ByVBQrXJB5TIZoXkRRlWzLqPtrD2lr3zIBTGNcUMHgP0ffToNv2v3hSYfhFeTn~CrmLokEFMlrswY0KuK2~psfdOmyn2-wCGMcIhdcABaq8DPd-SyyJxra8oXyielep6KPyGP0iru7k9sj2W-paPTM1xkOtXnJJ0HLmDCe144ZSW9uvzPoFEeDdW~BO8fuuPX3tiRMPyvr8Nx5QWB3AeAImQpM5V2e~HZfbAmQnO6auhH0LJXxXgpeCqfxpRAjrCdSuE2EKTM-AP7RVI3ZUZ6J1omPUjqwiYRMkKrJB816QncBRqvjF95aDmMbmhkItn1SWVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Mesoporous_activated_carbon_from_wood_sawdust_by_K_2_CO_3_activation_using_microwave_heating","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":43872517,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872517/thumbnails/1.jpg","file_name":"Mesoporous_activated_carbon_from_wood_sawdust.pdf","download_url":"https://www.academia.edu/attachments/43872517/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Mesoporous_activated_carbon_from_wood_sa.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872517/Mesoporous_activated_carbon_from_wood_sawdust-libre.pdf?1458343531=\u0026response-content-disposition=attachment%3B+filename%3DMesoporous_activated_carbon_from_wood_sa.pdf\u0026Expires=1732843925\u0026Signature=BXF7F890Xx1KcZUA-ByVBQrXJB5TIZoXkRRlWzLqPtrD2lr3zIBTGNcUMHgP0ffToNv2v3hSYfhFeTn~CrmLokEFMlrswY0KuK2~psfdOmyn2-wCGMcIhdcABaq8DPd-SyyJxra8oXyielep6KPyGP0iru7k9sj2W-paPTM1xkOtXnJJ0HLmDCe144ZSW9uvzPoFEeDdW~BO8fuuPX3tiRMPyvr8Nx5QWB3AeAImQpM5V2e~HZfbAmQnO6auhH0LJXxXgpeCqfxpRAjrCdSuE2EKTM-AP7RVI3ZUZ6J1omPUjqwiYRMkKrJB816QncBRqvjF95aDmMbmhkItn1SWVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":5023,"name":"Microwave","url":"https://www.academia.edu/Documents/in/Microwave"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="23431172"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/23431172/Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study"><img alt="Research paper thumbnail of Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study" class="work-thumbnail" src="https://attachments.academia-assets.com/43872479/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/23431172/Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study">Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The purpose of this work is to obtain optimal preparation conditions for activated carbons prepar...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400–600 • C), activation time (1–3 h) and H 3 PO 4 :precursor (wt%) impregnation ratio (3:1–6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 • C, activation time of 2 h and 14 min and chemical impregnation ratio of 4.45.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="c163122bd8f9993d65157db8ddd538f5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":43872479,"asset_id":23431172,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/43872479/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="23431172"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="23431172"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 23431172; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=23431172]").text(description); $(".js-view-count[data-work-id=23431172]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 23431172; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='23431172']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 23431172, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "c163122bd8f9993d65157db8ddd538f5" } } $('.js-work-strip[data-work-id=23431172]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":23431172,"title":"Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study","translated_title":"","metadata":{"abstract":"The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400–600 • C), activation time (1–3 h) and H 3 PO 4 :precursor (wt%) impregnation ratio (3:1–6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 • C, activation time of 2 h and 14 min and chemical impregnation ratio of 4.45."},"translated_abstract":"The purpose of this work is to obtain optimal preparation conditions for activated carbons prepared from rattan sawdust (RSAC) for removal of disperse dye from aqueous solution. The RSAC was prepared by chemical activation with phosphoric acid using response surface methodology (RSM). RSM based on a three-variable central composite design was used to determine the effect of activation temperature (400–600 • C), activation time (1–3 h) and H 3 PO 4 :precursor (wt%) impregnation ratio (3:1–6:1) on C.I. Disperse Orange 30 (DO30) percentage removal and activated carbon yield were investigated. Based on the central composite design, quadratic model was developed to correlate the preparation variables to the two responses. The most influential factor on each experimental design responses was identified from the analysis of variance (ANOVA). The optimum conditions for preparation of RSAC, which were based on response surface and contour plots, were found as follows: temperature of 470 • C, activation time of 2 h and 14 min and chemical impregnation ratio of 4.45.","internal_url":"https://www.academia.edu/23431172/Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study","translated_internal_url":"","created_at":"2016-03-18T16:19:12.378-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":6309698,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":17556042,"work_id":23431172,"tagging_user_id":6309698,"tagged_user_id":null,"co_author_invite_id":297977,"email":"c***m@usm.my","display_order":0,"name":"B. Hameed","title":"Removal of disperse dye from aqueous solution using waste-derived activated carbon: Optimization study"}],"downloadable_attachments":[{"id":43872479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872479/thumbnails/1.jpg","file_name":"Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/43872479/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_disperse_dye_from_aqueous_sol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872479/Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon-libre.pdf?1458343267=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_disperse_dye_from_aqueous_sol.pdf\u0026Expires=1732843925\u0026Signature=NuGCuZz5PdBJl4sWvBfZkrEW-mpDVMUZ4f5pDGlPz0O8QMsy3OAMYeu~i4p0AJwa7w3qEWQw0p5st9k3qYDV9IeeCh5cxSgsDHWeJsx8yZ-8mWYg3jOVRyN~GIEdnLt7DXXk4h24Oo5D47BXZyWKgLqQmtGatAGHaeN7lWNLSWGsR3X45Vef13hFqe8nRMI~~tLoc81TDRvChOdVLb-2vPfIrBSYU5HrqlQn9c1jpDzUYOPdAZBu6Il2Wwyw59hTYXyg1LllouJ3mFSiJadzVIRbw-vGjZKykXxPL~ymblPML5pq9friQa2F3JoJdvQW8tbHMdrQwT7Ij0QhGCLrHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Removal_of_disperse_dye_from_aqueous_solution_using_waste_derived_activated_carbon_Optimization_study","translated_slug":"","page_count":8,"language":"en","content_type":"Work","owner":{"id":6309698,"first_name":"Bassim","middle_initials":"H","last_name":"Hameed","page_name":"BassimHameed","domain_name":"qu","created_at":"2013-10-22T15:57:01.393-07:00","display_name":"Bassim H Hameed","url":"https://qu.academia.edu/BassimHameed"},"attachments":[{"id":43872479,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/43872479/thumbnails/1.jpg","file_name":"Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon.pdf","download_url":"https://www.academia.edu/attachments/43872479/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Removal_of_disperse_dye_from_aqueous_sol.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/43872479/Removal_of_disperse_dye_from_aqueous_solution_using_waste-derived_activated_carbon-libre.pdf?1458343267=\u0026response-content-disposition=attachment%3B+filename%3DRemoval_of_disperse_dye_from_aqueous_sol.pdf\u0026Expires=1732843925\u0026Signature=NuGCuZz5PdBJl4sWvBfZkrEW-mpDVMUZ4f5pDGlPz0O8QMsy3OAMYeu~i4p0AJwa7w3qEWQw0p5st9k3qYDV9IeeCh5cxSgsDHWeJsx8yZ-8mWYg3jOVRyN~GIEdnLt7DXXk4h24Oo5D47BXZyWKgLqQmtGatAGHaeN7lWNLSWGsR3X45Vef13hFqe8nRMI~~tLoc81TDRvChOdVLb-2vPfIrBSYU5HrqlQn9c1jpDzUYOPdAZBu6Il2Wwyw59hTYXyg1LllouJ3mFSiJadzVIRbw-vGjZKykXxPL~ymblPML5pq9friQa2F3JoJdvQW8tbHMdrQwT7Ij0QhGCLrHA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":39752,"name":"Adsorption","url":"https://www.academia.edu/Documents/in/Adsorption"},{"id":39753,"name":"Activated Carbon","url":"https://www.academia.edu/Documents/in/Activated_Carbon"},{"id":702641,"name":"Sawdust","url":"https://www.academia.edu/Documents/in/Sawdust"},{"id":2426871,"name":"Disperse Dye","url":"https://www.academia.edu/Documents/in/Disperse_Dye"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="5266136" id="other"><div class="js-work-strip profile--work_container" data-work-id="25519768"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/25519768/Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis"><img alt="Research paper thumbnail of Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/45843350/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/25519768/Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis">Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://qu.academia.edu/BassimHameed">Bassim H Hameed</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://atbu-ng.academia.edu/KabirGarba">Kabir Garba</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Karanj fruit hulls (KFH) hydrochar combustion profiles were developed. Two isoconversional method...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Karanj fruit hulls (KFH) hydrochar combustion profiles were developed. Two isoconversional methods were applied for kinetic data evaluation. The KFH hydrochar combustion follows multi-steps kinetics. Diffusion mechanisms controlled the combustion reactions. a b s t r a c t This study examined the combustion profile and kinetics of hydrochar produced from hydrothermal car-bonisation (HTC) of Karanj fruit hulls (KFH). The HTC-KFH hydrochar combustion kinetics was investigated at 5, 10, and 20 °C/min by thermogravimetric analysis. The kinetics model, Kissinger–Akahira– Sunose revealed the combustion kinetics parameters for the extent of conversion from 0.1 to 0.8; the activation energy varies from 114 to 67 kJ/mol respectively. The hydrochar combustion followed multi-steps kinetics; the Coats–Redfern models predicted the activation energies and pre-exponential constants for the hydrochar combustion zones. The diffusion models are the effective mechanism in the second and third zone.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="63a1cf555d250154d248fb5b2d73f04b" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":45843350,"asset_id":25519768,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/45843350/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="25519768"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="25519768"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 25519768; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=25519768]").text(description); $(".js-view-count[data-work-id=25519768]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 25519768; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='25519768']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 25519768, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "63a1cf555d250154d248fb5b2d73f04b" } } $('.js-work-strip[data-work-id=25519768]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":25519768,"title":"Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis","translated_title":"","metadata":{"abstract":"Karanj fruit hulls (KFH) hydrochar combustion profiles were developed. Two isoconversional methods were applied for kinetic data evaluation. The KFH hydrochar combustion follows multi-steps kinetics. Diffusion mechanisms controlled the combustion reactions. a b s t r a c t This study examined the combustion profile and kinetics of hydrochar produced from hydrothermal car-bonisation (HTC) of Karanj fruit hulls (KFH). The HTC-KFH hydrochar combustion kinetics was investigated at 5, 10, and 20 °C/min by thermogravimetric analysis. The kinetics model, Kissinger–Akahira– Sunose revealed the combustion kinetics parameters for the extent of conversion from 0.1 to 0.8; the activation energy varies from 114 to 67 kJ/mol respectively. The hydrochar combustion followed multi-steps kinetics; the Coats–Redfern models predicted the activation energies and pre-exponential constants for the hydrochar combustion zones. The diffusion models are the effective mechanism in the second and third zone."},"translated_abstract":"Karanj fruit hulls (KFH) hydrochar combustion profiles were developed. Two isoconversional methods were applied for kinetic data evaluation. The KFH hydrochar combustion follows multi-steps kinetics. Diffusion mechanisms controlled the combustion reactions. a b s t r a c t This study examined the combustion profile and kinetics of hydrochar produced from hydrothermal car-bonisation (HTC) of Karanj fruit hulls (KFH). The HTC-KFH hydrochar combustion kinetics was investigated at 5, 10, and 20 °C/min by thermogravimetric analysis. The kinetics model, Kissinger–Akahira– Sunose revealed the combustion kinetics parameters for the extent of conversion from 0.1 to 0.8; the activation energy varies from 114 to 67 kJ/mol respectively. The hydrochar combustion followed multi-steps kinetics; the Coats–Redfern models predicted the activation energies and pre-exponential constants for the hydrochar combustion zones. The diffusion models are the effective mechanism in the second and third zone.","internal_url":"https://www.academia.edu/25519768/Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis","translated_internal_url":"","created_at":"2016-05-21T18:09:09.600-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":37355217,"coauthors_can_edit":true,"document_type":"other","co_author_tags":[{"id":20500900,"work_id":25519768,"tagging_user_id":37355217,"tagged_user_id":6309698,"co_author_invite_id":null,"email":"b***d@gmail.com","affiliation":"Qatar University","display_order":0,"name":"Bassim H Hameed","title":"Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis"},{"id":20500901,"work_id":25519768,"tagging_user_id":37355217,"tagged_user_id":41445549,"co_author_invite_id":null,"email":"i***l@gmail.com","display_order":4194304,"name":"Azharul Islam","title":"Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis"},{"id":20500902,"work_id":25519768,"tagging_user_id":37355217,"tagged_user_id":null,"co_author_invite_id":4618965,"email":"r***p@yahoo.com","display_order":6291456,"name":"Bassim Hameed","title":"Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis"},{"id":20500903,"work_id":25519768,"tagging_user_id":37355217,"tagged_user_id":null,"co_author_invite_id":4618966,"email":"d***m@yahoo.com","display_order":7340032,"name":"Bassim Hameed","title":"Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj (Pongamia pinnata) fruit hulls via thermogravimetric analysis"}],"downloadable_attachments":[{"id":45843350,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45843350/thumbnails/1.jpg","file_name":"Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj__fruit_hulls_via_TGA.pdf","download_url":"https://www.academia.edu/attachments/45843350/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combustion_kinetics_of_hydrochar_produce.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45843350/Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj__fruit_hulls_via_TGA-libre.pdf?1463879411=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_kinetics_of_hydrochar_produce.pdf\u0026Expires=1732843925\u0026Signature=eaL6dm41NuBhb-CZIfqasluJTS01fiBhL5xULw4uXOnXmoKpmyA3ulZ5supunDcuIrYIAY3mzou5zTiajctHwy65Di1AYAsVtk7KjCL1PrhWvOMuO8H4k5f3d4yIcM7DpDp9m8V3QePu1syige5g0OCVQG91Ox2UHlavtSX4eW~1xGiSzOZM0wSzD968aUh0tm-e1q3EZnyLbsOddx2-njv-TA9FQXyncy7glQ0M5zCB9WtXjghINhuk-mIf2Fn7XnXG~w9wIx~I39V7stu3sWc31DSNi6jmhBllfTegO3t1UzRysyPlYIbqweCbu-b6JfgQizApdvXyGodh9VjhcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj_Pongamia_pinnata_fruit_hulls_via_thermogravimetric_analysis","translated_slug":"","page_count":7,"language":"en","content_type":"Work","owner":{"id":37355217,"first_name":"Kabir","middle_initials":"","last_name":"Garba","page_name":"KabirGarba","domain_name":"atbu-ng","created_at":"2015-10-31T16:58:24.138-07:00","display_name":"Kabir Garba","url":"https://atbu-ng.academia.edu/KabirGarba"},"attachments":[{"id":45843350,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/45843350/thumbnails/1.jpg","file_name":"Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj__fruit_hulls_via_TGA.pdf","download_url":"https://www.academia.edu/attachments/45843350/download_file?st=MTczMjg0MDMyNSw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Combustion_kinetics_of_hydrochar_produce.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/45843350/Combustion_kinetics_of_hydrochar_produced_from_hydrothermal_carbonisation_of_Karanj__fruit_hulls_via_TGA-libre.pdf?1463879411=\u0026response-content-disposition=attachment%3B+filename%3DCombustion_kinetics_of_hydrochar_produce.pdf\u0026Expires=1732843925\u0026Signature=eaL6dm41NuBhb-CZIfqasluJTS01fiBhL5xULw4uXOnXmoKpmyA3ulZ5supunDcuIrYIAY3mzou5zTiajctHwy65Di1AYAsVtk7KjCL1PrhWvOMuO8H4k5f3d4yIcM7DpDp9m8V3QePu1syige5g0OCVQG91Ox2UHlavtSX4eW~1xGiSzOZM0wSzD968aUh0tm-e1q3EZnyLbsOddx2-njv-TA9FQXyncy7glQ0M5zCB9WtXjghINhuk-mIf2Fn7XnXG~w9wIx~I39V7stu3sWc31DSNi6jmhBllfTegO3t1UzRysyPlYIbqweCbu-b6JfgQizApdvXyGodh9VjhcQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":30468,"name":"Biomass to fuel conversion","url":"https://www.academia.edu/Documents/in/Biomass_to_fuel_conversion"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 2 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "4271220b303c15249acef0d4bfb11f1c20aa1a592682ef190e5c412f0c2935bc", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="wpZ3oBN2llKW1B17dJ0QB0SPqodIcVk3lXtSmCKaaU7wMiV07TMmXupQ0/o9+E9FVv3mxxHUKFNxm+NbutYfHA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://qu.academia.edu/BassimHameed" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="7/LSa5itVPFUjitMKpEavK6L0h6ZZIiwZ+Af2pi6n8/dVoC/Zujk/SgK5c1j9EX+vPmeXsDB+dSDAK4ZAPbpnQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>