CINXE.COM
Projective line - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Projective line - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"4a260e6f-1827-4f86-ab67-0635b8213eef","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Projective_line","wgTitle":"Projective line","wgCurRevisionId":1206776261,"wgRevisionId":1206776261,"wgArticleId":398578,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles needing additional references from December 2009","All articles needing additional references","Algebraic curves","Projective geometry"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Projective_line","wgRelevantArticleId":398578,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false, "wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q764115","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={ "ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Projective line - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Projective_line"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Projective_line&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Projective_line"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Projective_line rootpage-Projective_line skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Projective+line" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Projective+line" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Projective+line" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Projective+line" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Homogeneous_coordinates" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Homogeneous_coordinates"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Homogeneous coordinates</span> </div> </a> <ul id="toc-Homogeneous_coordinates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Line_extended_by_a_point_at_infinity" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Line_extended_by_a_point_at_infinity"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Line extended by a point at infinity</span> </div> </a> <ul id="toc-Line_extended_by_a_point_at_infinity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Real_projective_line" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Real_projective_line"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Real projective line</span> </div> </a> <ul id="toc-Real_projective_line-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Complex_projective_line:_the_Riemann_sphere" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Complex_projective_line:_the_Riemann_sphere"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Complex projective line: the Riemann sphere</span> </div> </a> <ul id="toc-Complex_projective_line:_the_Riemann_sphere-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-For_a_finite_field" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#For_a_finite_field"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>For a finite field</span> </div> </a> <ul id="toc-For_a_finite_field-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Symmetry_group" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Symmetry_group"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Symmetry group</span> </div> </a> <ul id="toc-Symmetry_group-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_algebraic_curve" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#As_algebraic_curve"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>As algebraic curve</span> </div> </a> <ul id="toc-As_algebraic_curve-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Projective line</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 10 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-10" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">10 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Projektivn%C3%AD_p%C5%99%C3%ADmka" title="Projektivní přímka – Czech" lang="cs" hreflang="cs" data-title="Projektivní přímka" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Projektive_Gerade" title="Projektive Gerade – German" lang="de" hreflang="de" data-title="Projektive Gerade" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Recta_proyectiva" title="Recta proyectiva – Spanish" lang="es" hreflang="es" data-title="Recta proyectiva" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Droite_projective" title="Droite projective – French" lang="fr" hreflang="fr" data-title="Droite projective" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Retta_proiettiva" title="Retta proiettiva – Italian" lang="it" hreflang="it" data-title="Retta proiettiva" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Projectieve_lijn" title="Projectieve lijn – Dutch" lang="nl" hreflang="nl" data-title="Projectieve lijn" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%B0%84%E5%BD%B1%E7%9B%B4%E7%B7%9A" title="射影直線 – Japanese" lang="ja" hreflang="ja" data-title="射影直線" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Dreapt%C4%83_proiectiv%C4%83" title="Dreaptă proiectivă – Romanian" lang="ro" hreflang="ro" data-title="Dreaptă proiectivă" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D0%BF%D1%80%D1%8F%D0%BC%D0%B0%D1%8F" title="Проективная прямая – Russian" lang="ru" hreflang="ru" data-title="Проективная прямая" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-uk badge-Q70893996 mw-list-item" title=""><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D0%B5%D0%BA%D1%82%D0%B8%D0%B2%D0%BD%D0%B0_%D0%BF%D1%80%D1%8F%D0%BC%D0%B0" title="Проективна пряма – Ukrainian" lang="uk" hreflang="uk" data-title="Проективна пряма" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q764115#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Projective_line" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Projective_line" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Projective_line"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Projective_line&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Projective_line&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Projective_line"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Projective_line&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Projective_line&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Projective_line" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Projective_line" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Projective_line&oldid=1206776261" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Projective_line&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Projective_line&id=1206776261&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FProjective_line"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FProjective_line"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Projective_line&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Projective_line&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q764115" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-More_citations_needed plainlinks metadata ambox ambox-content ambox-Refimprove" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This article <b>needs additional citations for <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">verification</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Projective_line" title="Special:EditPage/Projective line">improve this article</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and removed.<br /><small><span class="plainlinks"><i>Find sources:</i> <a rel="nofollow" class="external text" href="https://www.google.com/search?as_eq=wikipedia&q=%22Projective+line%22">"Projective line"</a> – <a rel="nofollow" class="external text" href="https://www.google.com/search?tbm=nws&q=%22Projective+line%22+-wikipedia&tbs=ar:1">news</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?&q=%22Projective+line%22&tbs=bkt:s&tbm=bks">newspapers</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.google.com/search?tbs=bks:1&q=%22Projective+line%22+-wikipedia">books</a> <b>·</b> <a rel="nofollow" class="external text" href="https://scholar.google.com/scholar?q=%22Projective+line%22">scholar</a> <b>·</b> <a rel="nofollow" class="external text" href="https://www.jstor.org/action/doBasicSearch?Query=%22Projective+line%22&acc=on&wc=on">JSTOR</a></span></small></span> <span class="date-container"><i>(<span class="date">December 2009</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>projective line</b> is, roughly speaking, the extension of a usual <a href="/wiki/Line_(geometry)" title="Line (geometry)">line</a> by a point called a <i><a href="/wiki/Point_at_infinity" title="Point at infinity">point at infinity</a></i>. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a <a href="/wiki/Projective_plane" title="Projective plane">projective plane</a> meet in exactly one point (there is no "parallel" case). </p><p>There are many equivalent ways to formally define a projective line; one of the most common is to define a projective line over a <a href="/wiki/Field_(mathematics)" title="Field (mathematics)">field</a> <i>K</i>, commonly denoted <b>P</b><sup>1</sup>(<i>K</i>), as the set of one-dimensional <a href="/wiki/Linear_subspace" title="Linear subspace">subspaces</a> of a two-dimensional <i>K</i>-<a href="/wiki/Vector_space" title="Vector space">vector space</a>. This definition is a special instance of the general definition of a <a href="/wiki/Projective_space" title="Projective space">projective space</a>. </p><p>The projective line over the <a href="/wiki/Real_number" title="Real number">reals</a> is a <a href="/wiki/Manifold" title="Manifold">manifold</a>; see <i><a href="/wiki/Real_projective_line" title="Real projective line">Real projective line</a></i> for details. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Homogeneous_coordinates">Homogeneous coordinates</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=1" title="Edit section: Homogeneous coordinates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An arbitrary point in the projective line <b>P</b><sup>1</sup>(<i>K</i>) may be represented by an <a href="/wiki/Equivalence_class" title="Equivalence class">equivalence class</a> of <i><a href="/wiki/Homogeneous_coordinates" title="Homogeneous coordinates">homogeneous coordinates</a></i>, which take the form of a pair </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{1}:x_{2}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{1}:x_{2}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09404e16ef9ccccd05414dabeedac84b306fe9e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.999ex; height:2.843ex;" alt="{\displaystyle [x_{1}:x_{2}]}"></span></dd></dl> <p>of elements of <i>K</i> that are not both zero. Two such pairs are <a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalent</a> if they differ by an overall nonzero factor <i>λ</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{1}:x_{2}]\sim [\lambda x_{1}:\lambda x_{2}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>∼<!-- ∼ --></mo> <mo stretchy="false">[</mo> <mi>λ<!-- λ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <mi>λ<!-- λ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{1}:x_{2}]\sim [\lambda x_{1}:\lambda x_{2}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e149dfacd2fd2bfcc157bc3da4e654227498373" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.453ex; height:2.843ex;" alt="{\displaystyle [x_{1}:x_{2}]\sim [\lambda x_{1}:\lambda x_{2}].}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Line_extended_by_a_point_at_infinity">Line extended by a point at infinity</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=2" title="Edit section: Line extended by a point at infinity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The projective line may be identified with the line <i>K</i> extended by a <a href="/wiki/Point_at_infinity" title="Point at infinity">point at infinity</a>. More precisely, the line <i>K</i> may be identified with the subset of <b>P</b><sup>1</sup>(<i>K</i>) given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left\{[x:1]\in \mathbf {P} ^{1}(K)\mid x\in K\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>{</mo> <mrow> <mo stretchy="false">[</mo> <mi>x</mi> <mo>:</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">P</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>∣<!-- ∣ --></mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>K</mi> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left\{[x:1]\in \mathbf {P} ^{1}(K)\mid x\in K\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/086c5d6b3f2d24eccfa35f0847c01d70c75b8c57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:27.238ex; height:3.343ex;" alt="{\displaystyle \left\{[x:1]\in \mathbf {P} ^{1}(K)\mid x\in K\right\}.}"></span></dd></dl> <p>This subset covers all points in <b>P</b><sup>1</sup>(<i>K</i>) except one, which is called the <i>point at infinity</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \infty =[1:0].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>1</mn> <mo>:</mo> <mn>0</mn> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \infty =[1:0].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a6746d720a3849c5aeeeb5b0cb7fb0f12eac33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.625ex; height:2.843ex;" alt="{\displaystyle \infty =[1:0].}"></span></dd></dl> <p>This allows to extend the arithmetic on <i>K</i> to <b>P</b><sup>1</sup>(<i>K</i>) by the formulas </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{0}}=\infty ,\qquad {\frac {1}{\infty }}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>0</mn> </mfrac> </mrow> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{0}}=\infty ,\qquad {\frac {1}{\infty }}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92fb1813885e723a28a5dd43cb095740370857fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.168ex; height:5.176ex;" alt="{\displaystyle {\frac {1}{0}}=\infty ,\qquad {\frac {1}{\infty }}=0,}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x\cdot \infty =\infty \quad {\text{if}}\quad x\not =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>⋅<!-- ⋅ --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> <mspace width="1em" /> <mi>x</mi> <mo>≠</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x\cdot \infty =\infty \quad {\text{if}}\quad x\not =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a3e7d5ea1269dff1e9dc0e8b219d7eb8c18719af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.349ex; height:2.676ex;" alt="{\displaystyle x\cdot \infty =\infty \quad {\text{if}}\quad x\not =0}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x+\infty =\infty \quad {\text{if}}\quad x\not =\infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>=</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtext>if</mtext> </mrow> <mspace width="1em" /> <mi>x</mi> <mo>≠</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x+\infty =\infty \quad {\text{if}}\quad x\not =\infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a4dd2d88379caf16a1f8229dfe60c1690283bee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.672ex; height:2.676ex;" alt="{\displaystyle x+\infty =\infty \quad {\text{if}}\quad x\not =\infty }"></span></dd></dl> <p>Translating this arithmetic in terms of homogeneous coordinates gives, when <span class="nowrap">[0 : 0]</span> does not occur: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{1}:x_{2}]+[y_{1}:y_{2}]=[(x_{1}y_{2}+y_{1}x_{2}):x_{2}y_{2}],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>+</mo> <mo stretchy="false">[</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{1}:x_{2}]+[y_{1}:y_{2}]=[(x_{1}y_{2}+y_{1}x_{2}):x_{2}y_{2}],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74a9ac91bf482d9d4a59fd0e81fed72cea4384ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.815ex; height:2.843ex;" alt="{\displaystyle [x_{1}:x_{2}]+[y_{1}:y_{2}]=[(x_{1}y_{2}+y_{1}x_{2}):x_{2}y_{2}],}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{1}:x_{2}]\cdot [y_{1}:y_{2}]=[x_{1}y_{1}:x_{2}y_{2}],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">[</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{1}:x_{2}]\cdot [y_{1}:y_{2}]=[x_{1}y_{1}:x_{2}y_{2}],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94fa88c74d83459420ba532b4549908fd14cbab9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.427ex; height:2.843ex;" alt="{\displaystyle [x_{1}:x_{2}]\cdot [y_{1}:y_{2}]=[x_{1}y_{1}:x_{2}y_{2}],}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [x_{1}:x_{2}]^{-1}=[x_{2}:x_{1}].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [x_{1}:x_{2}]^{-1}=[x_{2}:x_{1}].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c8afadaa9e638cbce6c51e27ae575b77755bc3cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.075ex; height:3.176ex;" alt="{\displaystyle [x_{1}:x_{2}]^{-1}=[x_{2}:x_{1}].}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=3" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Real_projective_line">Real projective line</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=4" title="Edit section: Real projective line"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Real_projective_line" title="Real projective line">Real projective line</a></div> <p>The projective line over the <a href="/wiki/Real_number" title="Real number">real numbers</a> is called the <b>real projective line</b>. It may also be thought of as the line <i>K</i> together with an idealised <i><a href="/wiki/Point_at_infinity" title="Point at infinity">point at infinity</a></i> ∞; the point connects to both ends of <i>K</i> creating a closed loop or topological circle. </p><p>An example is obtained by projecting points in <b>R</b><sup>2</sup> onto the <a href="/wiki/Unit_circle" title="Unit circle">unit circle</a> and then <a href="/wiki/Quotient_space_(topology)" title="Quotient space (topology)">identifying</a> <a href="/wiki/Diametrically_opposite" class="mw-redirect" title="Diametrically opposite">diametrically opposite</a> points. In terms of <a href="/wiki/Group_theory" title="Group theory">group theory</a> we can take the quotient by the <a href="/wiki/Subgroup" title="Subgroup">subgroup</a> <span class="nowrap">{1, −1}</span>. </p><p>Compare the <a href="/wiki/Extended_real_number_line" title="Extended real number line">extended real number line</a>, which distinguishes ∞ and −∞. </p> <div class="mw-heading mw-heading3"><h3 id="Complex_projective_line:_the_Riemann_sphere">Complex projective line: the Riemann sphere</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=5" title="Edit section: Complex projective line: the Riemann sphere"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Adding a point at infinity to the <a href="/wiki/Complex_plane" title="Complex plane">complex plane</a> results in a space that is topologically a <a href="/wiki/Sphere" title="Sphere">sphere</a>. Hence the complex projective line is also known as the <b><a href="/wiki/Riemann_sphere" title="Riemann sphere">Riemann sphere</a></b> (or sometimes the <i>Gauss sphere</i>). It is in constant use in <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, <a href="/wiki/Algebraic_geometry" title="Algebraic geometry">algebraic geometry</a> and <a href="/wiki/Complex_manifold" title="Complex manifold">complex manifold</a> theory, as the simplest example of a <a href="/wiki/Compact_Riemann_surface" class="mw-redirect" title="Compact Riemann surface">compact Riemann surface</a>. </p> <div class="mw-heading mw-heading3"><h3 id="For_a_finite_field">For a finite field</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=6" title="Edit section: For a finite field"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The projective line over a <a href="/wiki/Finite_field" title="Finite field">finite field</a> <i>F</i><sub><i>q</i></sub> of <i>q</i> elements has <span class="nowrap"><i>q</i> + 1</span> points. In all other respects it is no different from projective lines defined over other types of fields. In the terms of homogeneous coordinates <span class="nowrap">[<i>x</i> : <i>y</i>]</span>, <i>q</i> of these points have the form: </p> <dl><dd><span class="texhtml">[<i>a</i> : 1]</span> for each <span class="texhtml mvar" style="font-style:italic;"><i>a</i></span> in <span class="texhtml mvar" style="font-style:italic;"><i>F</i><sub><i>q</i></sub></span>,</dd></dl> <p>and the remaining <a href="/wiki/Point_at_infinity" title="Point at infinity">point <i>at infinity</i></a> may be represented as <span class="nowrap">[1 : 0]</span>. </p> <div class="mw-heading mw-heading2"><h2 id="Symmetry_group">Symmetry group</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=7" title="Edit section: Symmetry group"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Quite generally, the group of <a href="/wiki/Homography" title="Homography">homographies</a> with <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> in <i>K</i> acts on the projective line <b>P</b><sup>1</sup>(<i>K</i>). This <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">group action</a> is <a href="/wiki/Group_action_(mathematics)#Types_of_actions" class="mw-redirect" title="Group action (mathematics)">transitive</a>, so that <b>P</b><sup>1</sup>(<i>K</i>) is a <a href="/wiki/Homogeneous_space" title="Homogeneous space">homogeneous space</a> for the group, often written PGL<sub>2</sub>(<i>K</i>) to emphasise the projective nature of these transformations. <i>Transitivity</i> says that there exists a homography that will transform any point <i>Q</i> to any other point <i>R</i>. The <i>point at infinity</i> on <b>P</b><sup>1</sup>(<i>K</i>) is therefore an <i>artifact</i> of choice of coordinates: <a href="/wiki/Homogeneous_coordinates" title="Homogeneous coordinates">homogeneous coordinates</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [X:Y]\sim [\lambda X:\lambda Y]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>X</mi> <mo>:</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>∼<!-- ∼ --></mo> <mo stretchy="false">[</mo> <mi>λ<!-- λ --></mi> <mi>X</mi> <mo>:</mo> <mi>λ<!-- λ --></mi> <mi>Y</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [X:Y]\sim [\lambda X:\lambda Y]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6578d7b00b891341414ba7439d96deba71b24318" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.777ex; height:2.843ex;" alt="{\displaystyle [X:Y]\sim [\lambda X:\lambda Y]}"></span></dd></dl> <p>express a one-dimensional subspace by a single non-zero point <span class="nowrap">(<i>X</i>, <i>Y</i>)</span> lying in it, but the symmetries of the projective line can move the point <span class="nowrap">∞ = [1 : 0]</span> to any other, and it is in no way distinguished. </p><p>Much more is true, in that some transformation can take any given <a href="/wiki/Distinct_(mathematics)" class="mw-redirect" title="Distinct (mathematics)">distinct</a> points <i>Q</i><sub><i>i</i></sub> for <span class="nowrap"><i>i</i> = 1, 2, 3</span> to any other 3-tuple <i>R</i><sub><i>i</i></sub> of distinct points (<i>triple transitivity</i>). This amount of specification 'uses up' the three dimensions of PGL<sub>2</sub>(<i>K</i>); in other words, the group action is <a href="/wiki/Group_action_(mathematics)" class="mw-redirect" title="Group action (mathematics)">sharply 3-transitive</a>. The computational aspect of this is the <a href="/wiki/Cross-ratio" title="Cross-ratio">cross-ratio</a>. Indeed, a generalized converse is true: a sharply 3-transitive group action is always (isomorphic to) a generalized form of a PGL<sub>2</sub>(<i>K</i>) action on a projective line, replacing "field" by "KT-field" (generalizing the inverse to a weaker kind of involution), and "PGL" by a corresponding generalization of projective linear maps.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="As_algebraic_curve">As algebraic curve</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=8" title="Edit section: As algebraic curve"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The projective line is a fundamental example of an <a href="/wiki/Algebraic_curve" title="Algebraic curve">algebraic curve</a>. From the point of view of algebraic geometry, <b>P</b><sup>1</sup>(<i>K</i>) is a <a href="/wiki/Algebraic_curve#Singularities" title="Algebraic curve">non-singular</a> curve of <a href="/wiki/Genus_(mathematics)" title="Genus (mathematics)">genus</a> 0. If <i>K</i> is <a href="/wiki/Algebraically_closed" class="mw-redirect" title="Algebraically closed">algebraically closed</a>, it is the unique such curve over <i>K</i>, up to <a href="/wiki/Rational_equivalence" class="mw-redirect" title="Rational equivalence">rational equivalence</a>. In general a (non-singular) curve of genus 0 is rationally equivalent over <i>K</i> to a <a href="/wiki/Conic" class="mw-redirect" title="Conic">conic</a> <i>C</i>, which is itself birationally equivalent to projective line if and only if <i>C</i> has a point defined over <i>K</i>; geometrically such a point <i>P</i> can be used as origin to make explicit the birational equivalence. </p><p>The <a href="/wiki/Function_field_of_an_algebraic_variety" title="Function field of an algebraic variety">function field</a> of the projective line is the field <i>K</i>(<i>T</i>) of <a href="/wiki/Rational_function" title="Rational function">rational functions</a> over <i>K</i>, in a single indeterminate <i>T</i>. The <a href="/wiki/Field_automorphism" class="mw-redirect" title="Field automorphism">field automorphisms</a> of <i>K</i>(<i>T</i>) over <i>K</i> are precisely the group PGL<sub>2</sub>(<i>K</i>) discussed above. </p><p>Any function field <i>K</i>(<i>V</i>) of an <a href="/wiki/Algebraic_variety" title="Algebraic variety">algebraic variety</a> <i>V</i> over <i>K</i>, other than a single point, has a subfield isomorphic with <i>K</i>(<i>T</i>). From the point of view of <a href="/wiki/Birational_geometry" title="Birational geometry">birational geometry</a>, this means that there will be a <a href="/wiki/Rational_map" class="mw-redirect" title="Rational map">rational map</a> from <i>V</i> to <b>P</b><sup>1</sup>(<i>K</i>), that is not constant. The image will omit only finitely many points of <b>P</b><sup>1</sup>(<i>K</i>), and the inverse image of a typical point <i>P</i> will be of dimension <span class="nowrap">dim <i>V</i> − 1</span>. This is the beginning of methods in algebraic geometry that are inductive on dimension. The rational maps play a role analogous to the <a href="/wiki/Meromorphic_function" title="Meromorphic function">meromorphic functions</a> of <a href="/wiki/Complex_analysis" title="Complex analysis">complex analysis</a>, and indeed in the case of <a href="/wiki/Compact_Riemann_surface" class="mw-redirect" title="Compact Riemann surface">compact Riemann surfaces</a> the two concepts coincide. </p><p>If <i>V</i> is now taken to be of dimension 1, we get a picture of a typical algebraic curve <i>C</i> presented 'over' <b>P</b><sup>1</sup>(<i>K</i>). Assuming <i>C</i> is non-singular (which is no loss of generality starting with <i>K</i>(<i>C</i>)), it can be shown that such a rational map from <i>C</i> to <b>P</b><sup>1</sup>(<i>K</i>) will in fact be everywhere defined. (That is not the case if there are singularities, since for example a <i><a href="/wiki/Double_point" class="mw-redirect" title="Double point">double point</a></i> where a curve <i>crosses itself</i> may give an indeterminate result after a rational map.) This gives a picture in which the main geometric feature is <a href="/wiki/Ramification_(mathematics)" title="Ramification (mathematics)">ramification</a>. </p><p>Many curves, for example <a href="/wiki/Hyperelliptic_curve" title="Hyperelliptic curve">hyperelliptic curves</a>, may be presented abstractly, as <a href="/wiki/Ramified_cover" class="mw-redirect" title="Ramified cover">ramified covers</a> of the projective line. According to the <a href="/wiki/Riemann%E2%80%93Hurwitz_formula" title="Riemann–Hurwitz formula">Riemann–Hurwitz formula</a>, the genus then depends only on the type of ramification. </p><p>A <b>rational curve</b> is a curve that is <a href="/wiki/Birational_equivalence" class="mw-redirect" title="Birational equivalence">birationally equivalent</a> to a projective line (see <a href="/wiki/Rational_variety" title="Rational variety">rational variety</a>); its <a href="/wiki/Genus_(mathematics)" title="Genus (mathematics)">genus</a> is 0. A <a href="/wiki/Rational_normal_curve" title="Rational normal curve">rational normal curve</a> in projective space <b>P</b><sup><i>n</i></sup> is a rational curve that lies in no proper linear subspace; it is known that there is only one example (up to projective equivalence),<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> given parametrically in homogeneous coordinates as </p> <dl><dd>[1 : <i>t</i> : <i>t</i><sup>2</sup> : ... : <i>t</i><sup><i>n</i></sup>].</dd></dl> <p>See <i><a href="/wiki/Twisted_cubic" title="Twisted cubic">Twisted cubic</a></i> for the first interesting case. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=9" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Algebraic_curve" title="Algebraic curve">Algebraic curve</a></li> <li><a href="/wiki/Cross-ratio" title="Cross-ratio">Cross-ratio</a></li> <li><a href="/wiki/M%C3%B6bius_transformation" title="Möbius transformation">Möbius transformation</a></li> <li><a href="/wiki/Projective_line_over_a_ring" title="Projective line over a ring">Projective line over a ring</a></li> <li><a href="/wiki/Projectively_extended_real_line" title="Projectively extended real line">Projectively extended real line</a></li> <li><a href="/wiki/Projective_range" title="Projective range">Projective range</a></li> <li><a href="/wiki/Wheel_theory" title="Wheel theory">Wheel theory</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Projective_line&action=edit&section=10" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://mathoverflow.net/q/66865">Action of PGL(2) on Projective Space</a> – see comment and cited paper.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFHarris1992" class="citation cs2">Harris, Joe (1992), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_XxZdhbtf1sC&pg=PA10"><i>Algebraic Geometry: A First Course</i></a>, Graduate Texts in Mathematics, vol. 133, Springer, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780387977164" title="Special:BookSources/9780387977164"><bdi>9780387977164</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraic+Geometry%3A+A+First+Course&rft.series=Graduate+Texts+in+Mathematics&rft.pub=Springer&rft.date=1992&rft.isbn=9780387977164&rft.aulast=Harris&rft.aufirst=Joe&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_XxZdhbtf1sC%26pg%3DPA10&rfr_id=info%3Asid%2Fen.wikipedia.org%3AProjective+line" class="Z3988"></span>.</span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Topics_in_algebraic_curves" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Algebraic_curves_navbox" title="Template:Algebraic curves navbox"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Algebraic_curves_navbox" title="Template talk:Algebraic curves navbox"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Algebraic_curves_navbox" title="Special:EditPage/Template:Algebraic curves navbox"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Topics_in_algebraic_curves" style="font-size:114%;margin:0 4em">Topics in <a href="/wiki/Algebraic_curve" title="Algebraic curve">algebraic curves</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Rational_curve" class="mw-redirect" title="Rational curve">Rational curves</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Five_points_determine_a_conic" title="Five points determine a conic">Five points determine a conic</a></li> <li><a class="mw-selflink selflink">Projective line</a></li> <li><a href="/wiki/Rational_normal_curve" title="Rational normal curve">Rational normal curve</a></li> <li><a href="/wiki/Riemann_sphere" title="Riemann sphere">Riemann sphere</a></li> <li><a href="/wiki/Twisted_cubic" title="Twisted cubic">Twisted cubic</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Elliptic_curve" title="Elliptic curve">Elliptic curves</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Analytic theory</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Elliptic_function" title="Elliptic function">Elliptic function</a></li> <li><a href="/wiki/Elliptic_integral" title="Elliptic integral">Elliptic integral</a></li> <li><a href="/wiki/Fundamental_pair_of_periods" title="Fundamental pair of periods">Fundamental pair of periods</a></li> <li><a href="/wiki/Modular_form" title="Modular form">Modular form</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Arithmetic theory</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Counting_points_on_elliptic_curves" title="Counting points on elliptic curves">Counting points on elliptic curves</a></li> <li><a href="/wiki/Division_polynomials" title="Division polynomials">Division polynomials</a></li> <li><a href="/wiki/Hasse%27s_theorem_on_elliptic_curves" title="Hasse's theorem on elliptic curves">Hasse's theorem on elliptic curves</a></li> <li><a href="/wiki/Mazur%27s_torsion_theorem" class="mw-redirect" title="Mazur's torsion theorem">Mazur's torsion theorem</a></li> <li><a href="/wiki/Modular_elliptic_curve" title="Modular elliptic curve">Modular elliptic curve</a></li> <li><a href="/wiki/Modularity_theorem" title="Modularity theorem">Modularity theorem</a></li> <li><a href="/wiki/Mordell%E2%80%93Weil_theorem" title="Mordell–Weil theorem">Mordell–Weil theorem</a></li> <li><a href="/wiki/Nagell%E2%80%93Lutz_theorem" title="Nagell–Lutz theorem">Nagell–Lutz theorem</a></li> <li><a href="/wiki/Supersingular_elliptic_curve" title="Supersingular elliptic curve">Supersingular elliptic curve</a></li> <li><a href="/wiki/Schoof%27s_algorithm" title="Schoof's algorithm">Schoof's algorithm</a></li> <li><a href="/wiki/Schoof%E2%80%93Elkies%E2%80%93Atkin_algorithm" title="Schoof–Elkies–Atkin algorithm">Schoof–Elkies–Atkin algorithm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Elliptic_curve_cryptography" class="mw-redirect" title="Elliptic curve cryptography">Elliptic curve cryptography</a></li> <li><a href="/wiki/Elliptic_curve_primality" title="Elliptic curve primality">Elliptic curve primality</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Higher genus</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/De_Franchis_theorem" title="De Franchis theorem">De Franchis theorem</a></li> <li><a href="/wiki/Faltings%27s_theorem" title="Faltings's theorem">Faltings's theorem</a></li> <li><a href="/wiki/Hurwitz%27s_automorphisms_theorem" title="Hurwitz's automorphisms theorem">Hurwitz's automorphisms theorem</a></li> <li><a href="/wiki/Hurwitz_surface" title="Hurwitz surface">Hurwitz surface</a></li> <li><a href="/wiki/Hyperelliptic_curve" title="Hyperelliptic curve">Hyperelliptic curve</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Plane_curve" title="Plane curve">Plane curves</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/AF%2BBG_theorem" title="AF+BG theorem">AF+BG theorem</a></li> <li><a href="/wiki/B%C3%A9zout%27s_theorem" title="Bézout's theorem">Bézout's theorem</a></li> <li><a href="/wiki/Bitangent" title="Bitangent">Bitangent</a></li> <li><a href="/wiki/Cayley%E2%80%93Bacharach_theorem" title="Cayley–Bacharach theorem">Cayley–Bacharach theorem</a></li> <li><a href="/wiki/Conic_section" title="Conic section">Conic section</a></li> <li><a href="/wiki/Cramer%27s_paradox" title="Cramer's paradox">Cramer's paradox</a></li> <li><a href="/wiki/Cubic_plane_curve" title="Cubic plane curve">Cubic plane curve</a></li> <li><a href="/wiki/Fermat_curve" title="Fermat curve">Fermat curve</a></li> <li><a href="/wiki/Genus%E2%80%93degree_formula" title="Genus–degree formula">Genus–degree formula</a></li> <li><a href="/wiki/Hilbert%27s_sixteenth_problem" title="Hilbert's sixteenth problem">Hilbert's sixteenth problem</a></li> <li><a href="/wiki/Nagata%27s_conjecture_on_curves" title="Nagata's conjecture on curves">Nagata's conjecture on curves</a></li> <li><a href="/wiki/Pl%C3%BCcker_formula" title="Plücker formula">Plücker formula</a></li> <li><a href="/wiki/Quartic_plane_curve" title="Quartic plane curve">Quartic plane curve</a></li> <li><a href="/wiki/Real_plane_curve" title="Real plane curve">Real plane curve</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Riemann_surface" title="Riemann surface">Riemann surfaces</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Belyi%27s_theorem" title="Belyi's theorem">Belyi's theorem</a></li> <li><a href="/wiki/Bring%27s_curve" title="Bring's curve">Bring's curve</a></li> <li><a href="/wiki/Bolza_surface" title="Bolza surface">Bolza surface</a></li> <li><a href="/wiki/Compact_Riemann_surface" class="mw-redirect" title="Compact Riemann surface">Compact Riemann surface</a></li> <li><a href="/wiki/Dessin_d%27enfant" title="Dessin d'enfant">Dessin d'enfant</a></li> <li><a href="/wiki/Differential_of_the_first_kind" title="Differential of the first kind">Differential of the first kind</a></li> <li><a href="/wiki/Klein_quartic" title="Klein quartic">Klein quartic</a></li> <li><a href="/wiki/Riemann%27s_existence_theorem" class="mw-redirect" title="Riemann's existence theorem">Riemann's existence theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Roch_theorem" title="Riemann–Roch theorem">Riemann–Roch theorem</a></li> <li><a href="/wiki/Teichm%C3%BCller_space" title="Teichmüller space">Teichmüller space</a></li> <li><a href="/wiki/Torelli_theorem" title="Torelli theorem">Torelli theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constructions</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dual_curve" title="Dual curve">Dual curve</a></li> <li><a href="/wiki/Polar_curve" title="Polar curve">Polar curve</a></li> <li><a href="/wiki/Smooth_completion" title="Smooth completion">Smooth completion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Structure of curves</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">Divisors on curves</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abel%E2%80%93Jacobi_map" title="Abel–Jacobi map">Abel–Jacobi map</a></li> <li><a href="/wiki/Brill%E2%80%93Noether_theory" title="Brill–Noether theory">Brill–Noether theory</a></li> <li><a href="/wiki/Clifford%27s_theorem_on_special_divisors" title="Clifford's theorem on special divisors">Clifford's theorem on special divisors</a></li> <li><a href="/wiki/Gonality_of_an_algebraic_curve" title="Gonality of an algebraic curve">Gonality of an algebraic curve</a></li> <li><a href="/wiki/Jacobian_variety" title="Jacobian variety">Jacobian variety</a></li> <li><a href="/wiki/Riemann%E2%80%93Roch_theorem" title="Riemann–Roch theorem">Riemann–Roch theorem</a></li> <li><a href="/wiki/Weierstrass_point" title="Weierstrass point">Weierstrass point</a></li> <li><a href="/wiki/Weil_reciprocity_law" title="Weil reciprocity law">Weil reciprocity law</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Moduli</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/ELSV_formula" title="ELSV formula">ELSV formula</a></li> <li><a href="/wiki/Gromov%E2%80%93Witten_invariant" title="Gromov–Witten invariant">Gromov–Witten invariant</a></li> <li><a href="/wiki/Hodge_bundle" title="Hodge bundle">Hodge bundle</a></li> <li><a href="/wiki/Moduli_of_algebraic_curves" title="Moduli of algebraic curves">Moduli of algebraic curves</a></li> <li><a href="/wiki/Stable_curve" title="Stable curve">Stable curve</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Morphisms</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hasse%E2%80%93Witt_matrix" title="Hasse–Witt matrix">Hasse–Witt matrix</a></li> <li><a href="/wiki/Riemann%E2%80%93Hurwitz_formula" title="Riemann–Hurwitz formula">Riemann–Hurwitz formula</a></li> <li><a href="/wiki/Prym_variety" title="Prym variety">Prym variety</a></li> <li><a href="/wiki/Weber%27s_theorem_(Algebraic_curves)" title="Weber's theorem (Algebraic curves)">Weber's theorem (Algebraic curves)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Singular_point_of_a_curve" title="Singular point of a curve">Singularities</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Ak_singularity" title="Ak singularity"><i>A<sub>k</sub></i> singularity</a></li> <li><a href="/wiki/Acnode" title="Acnode">Acnode</a></li> <li><a href="/wiki/Crunode" title="Crunode">Crunode</a></li> <li><a href="/wiki/Cusp_(singularity)" title="Cusp (singularity)">Cusp</a></li> <li><a href="/wiki/Delta_invariant" class="mw-redirect" title="Delta invariant">Delta invariant</a></li> <li><a href="/wiki/Tacnode" title="Tacnode">Tacnode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_bundle" title="Vector bundle">Vector bundles</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Birkhoff%E2%80%93Grothendieck_theorem" title="Birkhoff–Grothendieck theorem">Birkhoff–Grothendieck theorem</a></li> <li><a href="/wiki/Stable_vector_bundle" title="Stable vector bundle">Stable vector bundle</a></li> <li><a href="/wiki/Vector_bundles_on_algebraic_curves" title="Vector bundles on algebraic curves">Vector bundles on algebraic curves</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐85fc59d95f‐hxh44 Cached time: 20241114055530 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.301 seconds Real time usage: 0.467 seconds Preprocessor visited node count: 681/1000000 Post‐expand include size: 38634/2097152 bytes Template argument size: 355/2097152 bytes Highest expansion depth: 9/100 Expensive parser function count: 3/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 15580/5000000 bytes Lua time usage: 0.189/10.000 seconds Lua memory usage: 3726634/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 324.621 1 -total 30.04% 97.500 1 Template:Reflist 28.98% 94.068 1 Template:Algebraic_curves_navbox 28.92% 93.868 3 Template:Navbox 25.81% 83.787 1 Template:Citation 25.62% 83.160 1 Template:More_citations_needed 20.89% 67.818 1 Template:Ambox 6.19% 20.088 9 Template:Nowrap 5.74% 18.622 1 Template:Main 5.21% 16.924 1 Template:Mset --> <!-- Saved in parser cache with key enwiki:pcache:idhash:398578-0!canonical and timestamp 20241114055530 and revision id 1206776261. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Projective_line&oldid=1206776261">https://en.wikipedia.org/w/index.php?title=Projective_line&oldid=1206776261</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Algebraic_curves" title="Category:Algebraic curves">Algebraic curves</a></li><li><a href="/wiki/Category:Projective_geometry" title="Category:Projective geometry">Projective geometry</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_needing_additional_references_from_December_2009" title="Category:Articles needing additional references from December 2009">Articles needing additional references from December 2009</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 February 2024, at 02:54<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Projective_line&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-ffqzr","wgBackendResponseTime":153,"wgPageParseReport":{"limitreport":{"cputime":"0.301","walltime":"0.467","ppvisitednodes":{"value":681,"limit":1000000},"postexpandincludesize":{"value":38634,"limit":2097152},"templateargumentsize":{"value":355,"limit":2097152},"expansiondepth":{"value":9,"limit":100},"expensivefunctioncount":{"value":3,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":15580,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 324.621 1 -total"," 30.04% 97.500 1 Template:Reflist"," 28.98% 94.068 1 Template:Algebraic_curves_navbox"," 28.92% 93.868 3 Template:Navbox"," 25.81% 83.787 1 Template:Citation"," 25.62% 83.160 1 Template:More_citations_needed"," 20.89% 67.818 1 Template:Ambox"," 6.19% 20.088 9 Template:Nowrap"," 5.74% 18.622 1 Template:Main"," 5.21% 16.924 1 Template:Mset"]},"scribunto":{"limitreport-timeusage":{"value":"0.189","limit":"10.000"},"limitreport-memusage":{"value":3726634,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-85fc59d95f-hxh44","timestamp":"20241114055530","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Projective line","url":"https:\/\/en.wikipedia.org\/wiki\/Projective_line","sameAs":"http:\/\/www.wikidata.org\/entity\/Q764115","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q764115","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-12-12T11:02:55Z","dateModified":"2024-02-13T02:54:47Z","headline":"one-dimensional projective space"}</script> </body> </html>