CINXE.COM

(PDF) Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification | International Journal of Electrical and Computer Engineering (IJECE) - Academia.edu

<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="Tkcz+DnhDam0arEkNAIspIdYDxu+ijKB0pLQWrz+1Nyvp5LFNylyajJMzs2P+45X4P57b6MDzXAzjCrWSm53YA==" /> <meta name="citation_title" content="Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification" /> <meta name="citation_publication_date" content="2021/01/01" /> <meta name="citation_journal_title" content="International Journal of Electrical and Computer Engineering (IJECE)" /> <meta name="citation_author" content="International Journal of Electrical and Computer Engineering (IJECE)" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification" /> <meta name="twitter:title" content="Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification" /> <meta name="twitter:description" content="Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low" /> <meta name="twitter:image" content="https://0.academia-photos.com/163474776/123357473/112705609/s200_international_journal_of_electrical_and_computer_engineering._ijece_.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification" /> <meta property="og:title" content="Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low" /> <meta property="article:author" content="https://independent.academia.edu/JournalIJECE" /> <meta name="description" content="Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low" /> <title>(PDF) Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification | International Journal of Electrical and Computer Engineering (IJECE) - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = 'da4e00fd0e9df28639689ee520a152a4b13e88d2'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1732733372000); window.Aedu.timeDifference = new Date().getTime() - 1732733372000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low quality so that both qualities can be properly differentiated. In the present study, data were obtained from the Forest Research Institute Malaysia (FRIM), Selangor Malaysia and Bioaromatic Research Centre of Excellence (BARCE), Universiti Malaysia Pahang (UMP). The work involves the data from a previous researcher. As a part of ongoing research, the stepwise linear regression and multilayer perceptron have been proposed for grading agarwood oil. The output features of the stepwise regression were the input features for modeling agarwood oil in a multilayer perceptron (MLP) network. A three layer MLP with 10 hidden neurons was used with three different training algorithms, namely resilient backpropagation (RBP), levenberg marquardt (LM) and scaled-conjugate gradient (SCG). All analytical work was performed using MATLAB software version R2017a. It was found that one hidden neuron in LM algorithm performed the most accurate result in the classification of agarwood oil with the lowest mean squared error (MSE) as compared to SCG and RBP algorithms. The findings in this research will be a benefit for future works of agarwood oil research areas, especially in terms of oil quality classification.","author":[{"@context":"https://schema.org","@type":"Person","name":"International Journal of Electrical and Computer Engineering (IJECE)"}],"contributor":[],"dateCreated":"2021-11-11","dateModified":null,"datePublished":"2021-01-01","headline":"Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification","inLanguage":"en","keywords":["Multilayer Perceptron","Levenberg-Marquardt","Stepwise Regression","Scaled Conjugate Gradient","Resilient backpropagation "],"locationCreated":null,"publication":"International Journal of Electrical and Computer Engineering (IJECE)","publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&amp;family=Gupter:wght@400;500;700&amp;family=IBM+Plex+Mono:wght@300;400&amp;family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&amp;display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to&nbsp;<a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">&times;</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span &nbsp;&nbsp;="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9ae98ebb67ea26d98da70f0de5f1fdd17b80bab6933b5b1833c10c5d9751237b", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="vX4CetYEzQTBAetuVDYBWrL6QVSVOPOTofUhG/eejktcnqNH2Myyx0cnlIfvz6Op1Vw1IIixDGJA69uXAQ4t9w==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><input type="hidden" name="authenticity_token" value="iPQ9y3ir70ODel453Ikg3ChzD573hi1ZGrS3q2Xv5mFpFJz2dmOQgAVcIdBncIIvT9V76uoP0qj7qk0nk39F3Q==" autocomplete="off" /><p>Enter the email address you signed up with and we&#39;ll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account?&nbsp;<a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="&#x2713;" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We&#39;re Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-68aeb1ef1aef1565d873e157d2d062b6c25e45987d206ebd19f7e481aab03137.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 163474776; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F61563195%2FModeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F61563195%2FModeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":74558686,"identifier":"Attachment_74558686","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":61563195,"created_at":"2021-11-11T22:59:00.360-08:00","from_world_paper_id":null,"updated_at":"2022-01-16T20:14:46.493-08:00","_data":{"doi":"10.11591/ijece.v11i6.pp5505-5514 ","abstract":"Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low quality so that both qualities can be properly differentiated. In the present study, data were obtained from the Forest Research Institute Malaysia (FRIM), Selangor Malaysia and Bioaromatic Research Centre of Excellence (BARCE), Universiti Malaysia Pahang (UMP). The work involves the data from a previous researcher. As a part of ongoing research, the stepwise linear regression and multilayer perceptron have been proposed for grading agarwood oil. The output features of the stepwise regression were the input features for modeling agarwood oil in a multilayer perceptron (MLP) network. A three layer MLP with 10 hidden neurons was used with three different training algorithms, namely resilient backpropagation (RBP), levenberg marquardt (LM) and scaled-conjugate gradient (SCG). All analytical work was performed using MATLAB software version R2017a. It was found that one hidden neuron in LM algorithm performed the most accurate result in the classification of agarwood oil with the lowest mean squared error (MSE) as compared to SCG and RBP algorithms. The findings in this research will be a benefit for future works of agarwood oil research areas, especially in terms of oil quality classification.","publication_date":"2021,,","publication_name":"International Journal of Electrical and Computer Engineering (IJECE)"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification","broadcastable":true,"draft":false,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [163474776]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;swp-splash-paper-cover&quot;,&quot;attachmentId&quot;:74558686,&quot;attachmentType&quot;:&quot;pdf&quot;}"><img alt="First page of “Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/74558686/mini_magick20211111-29047-10e4kxy.png?1636700383" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Modeling of agarwood oil compounds based on linear regression and ANN for oil quality classification</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE"><img alt="Profile image of International Journal of Electrical and Computer Engineering (IJECE)" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/163474776/123357473/112705609/s65_international_journal_of_electrical_and_computer_engineering._ijece_.jpg" />International Journal of Electrical and Computer Engineering (IJECE)</a></div><div class="ds-work-card--detail"><p class="ds-work-card--detail ds2-5-body-sm">2021, International Journal of Electrical and Computer Engineering (IJECE)</p></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Agarwood oil is in increasing demand in Malaysia throughout the world for use in incense, traditional medicine, and perfumes. However, there is still no standardized grading method for agarwood oil. It is vital to grade agarwood oil into high and low quality so that both qualities can be properly differentiated. In the present study, data were obtained from the Forest Research Institute Malaysia (FRIM), Selangor Malaysia and Bioaromatic Research Centre of Excellence (BARCE), Universiti Malaysia Pahang (UMP). The work involves the data from a previous researcher. As a part of ongoing research, the stepwise linear regression and multilayer perceptron have been proposed for grading agarwood oil. The output features of the stepwise regression were the input features for modeling agarwood oil in a multilayer perceptron (MLP) network. A three layer MLP with 10 hidden neurons was used with three different training algorithms, namely resilient backpropagation (RBP), levenberg marquardt (LM) and scaled-conjugate gradient (SCG). All analytical work was performed using MATLAB software version R2017a. It was found that one hidden neuron in LM algorithm performed the most accurate result in the classification of agarwood oil with the lowest mean squared error (MSE) as compared to SCG and RBP algorithms. The findings in this research will be a benefit for future works of agarwood oil research areas, especially in terms of oil quality classification.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--work-card&quot;,&quot;attachmentId&quot;:74558686,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification&quot;}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--work-card&quot;,&quot;attachmentId&quot;:74558686,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:&quot;https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification&quot;}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="74558686" data-landing_url="https://www.academia.edu/61563195/Modeling_of_agarwood_oil_compounds_based_on_linear_regression_and_ANN_for_oil_quality_classification" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="89089556" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89089556/A_novel_application_of_artificial_neural_network_for_classifying_agarwood_essential_oil_quality">A novel application of artificial neural network for classifying agarwood essential oil quality</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">This work studies the agarwood oil classification into high and low quality by using two different techniques. Initially, the Forest Research Institute Malaysia (FRIM) and Universiti Malaysia Pahang (UMP) are where the sample preparation and compound extraction of agarwood oil is collected. The data collections were done from the previous researcher consists of 96 samples from seven significant agarwood oil compounds. The artificial neural network (ANN) and the proposed stepwise regression technique were used in this study. The stepwise regression was done the feature selection and successfully reduced agarwood oil compounds from seven to four. Then, the ANN technique was used to classify agarwood oil into high and low using input from seven and four compounds separately. The performance of ANN with different inputs is compared (ANN with seven inputs compared with ANN with four inputs). All the experimental work was performed using the MATLAB R2017b using the &quot;patternet&quot; implemented Levenberg Marquardt algorithm and ten hidden neurons. It was found that the ANN technique using seven compounds obtained the best performance according to high accuracy and lower mean square error (MSE) value. Finally, 1 hidden neuron in ANN with seven inputs selected as the best neuron for grading the agarwood oil compounds.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A novel application of artificial neural network for classifying agarwood essential oil quality&quot;,&quot;attachmentId&quot;:92952933,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89089556/A_novel_application_of_artificial_neural_network_for_classifying_agarwood_essential_oil_quality&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89089556/A_novel_application_of_artificial_neural_network_for_classifying_agarwood_essential_oil_quality"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="116963708" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/116963708/Agarwood_oil_quality_identification_using_artificial_neural_network_modelling_for_five_grades">Agarwood oil quality identification using artificial neural network modelling for five grades</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2024</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood (Aquilaria Malaccensis) oil stands out as one of the most valuable and highly sought-after oils with a hefty price tag due to its widespread use of fragrances, incense, perfumes, ceremonial practices, medicinal applications and as a symbol of luxury. However, nowadays the conventional method that rely on color alone has its limitations as it yields varying results depending on individual panelists&#39; experiences. Hence, the quality identification system of Agarwood oil using its chemical compounds had been proposed in this study to enhance the precision of the Agarwood oil grades thus addressing the shortcomings of traditional methods. This study indicates that the primary chemical compounds of Agarwood oil encompass ɤ-Eudesmol, ar-curcumene, β-dihydroagarofuran, ϒ-cadinene, α-agarofuran, allo-aromadendrene epoxide, valerianol, α-guaiene, 10-epi-ɤeudesmol, β-agarofuran and dihydrocollumellarin. This study employed artificial neural network analysis with the implementation of Levenberg-Marquardt algorithm to identify the Agarwood oil grades. The study&#39;s findings revealed that this modeling system of five grades got 100% accuracies with mean square error of 0.14338×10-08. Notably, this lowest mean square error (MSE) value falls within the best hidden neuron 3. These study outcomes play a pivotal role in highlighting the Levenberg Marquardtartificial neural network (LM-ANN) modeling that contribute to the successful of Agarwood oil quality identification using its chemical compounds.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Agarwood oil quality identification using artificial neural network modelling for five grades&quot;,&quot;attachmentId&quot;:112948170,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/116963708/Agarwood_oil_quality_identification_using_artificial_neural_network_modelling_for_five_grades&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/116963708/Agarwood_oil_quality_identification_using_artificial_neural_network_modelling_for_five_grades"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="88723301" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/88723301/Comparison_of_ANN_Performance_Towards_Agarwood_Oil_Compounds_Pre_processing_Based_on_Principal_Component_Analysis_PCA_and_Stepwise_Regression_Selection_Method">Comparison of ANN Performance Towards Agarwood Oil Compounds Pre-processing Based on Principal Component Analysis (PCA) and Stepwise Regression Selection Method</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="167341124" href="https://independent.academia.edu/YusoffZakiah">Zakiah Yusoff</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Electrical &amp;amp; Electronic Systems Research, 2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Comparison of ANN Performance Towards Agarwood Oil Compounds Pre-processing Based on Principal Component Analysis (PCA) and Stepwise Regression Selection Method&quot;,&quot;attachmentId&quot;:92645119,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/88723301/Comparison_of_ANN_Performance_Towards_Agarwood_Oil_Compounds_Pre_processing_Based_on_Principal_Component_Analysis_PCA_and_Stepwise_Regression_Selection_Method&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/88723301/Comparison_of_ANN_Performance_Towards_Agarwood_Oil_Compounds_Pre_processing_Based_on_Principal_Component_Analysis_PCA_and_Stepwise_Regression_Selection_Method"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="43862645" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/43862645/Linear_Regression_of_Gaharu_Oil_Significant_Compounds_for_Oil_Quality_Differentiation">Linear Regression of Gaharu Oil Significant Compounds for Oil Quality Differentiation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2688209" href="https://independent.academia.edu/SenthilKumar32">WARSE The World Academy of Research in Science and Engineering</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="167341124" href="https://independent.academia.edu/YusoffZakiah">Zakiah Yusoff</a></div><p class="ds-related-work--metadata ds2-5-body-xs"> International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), 2020</p><p class="ds-related-work--abstract ds2-5-body-sm">This study presented the Linear Regression model that is trained in Feed Forward Neural Network (FFNN). The model is trained using Matlab version R2017a. The sample of dataset of Gaharu oil that used in this research study was obtained from Forest Research Institute Malaysia (FRIM), Selangor Malaysia, and BioAromatic Research Centre of Excellence (BARCE), Universiti Malaysia Pahang (UMP), Malaysia. As Feed-Forward Neural Network consists of input layer, hidden layer and output layer, this related to situation that is used in the research. In this experiment, the seven significant compounds of gaharu oil that consists of 96 data samples from high and low quality are representing the input layer. The hidden layer is varying from 1 to 10 hidden neurons to evaluate each of the performances. The output layer is presenting the quality of gaharu oil within the range of 0 and 1 which is low and high, respectively. The experiment involved the data pre-processing consists of data normalization, randomization and division. The parameter concerned is on the value of correlation coefficient, R and the mean squared error (MSE) for each of the hidden neurons. The training algorithm is involving Levenberg Marquadt as a default algorithm in FFNN besides has a good stability and fast in convergence. Based on the results of the study, hidden neurons number 2 outperforms others due to successfully show the best performance towards regression value and MSE.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Linear Regression of Gaharu Oil Significant Compounds for Oil Quality Differentiation&quot;,&quot;attachmentId&quot;:64186153,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/43862645/Linear_Regression_of_Gaharu_Oil_Significant_Compounds_for_Oil_Quality_Differentiation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/43862645/Linear_Regression_of_Gaharu_Oil_Significant_Compounds_for_Oil_Quality_Differentiation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="92661067" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/92661067/The_significance_of_artificial_intelligent_technique_in_classifying_various_grades_of_agarwood_oil">The significance of artificial intelligent technique in classifying various grades of agarwood oil</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250847811" href="https://independent.academia.edu/AmidonAqibFawwazMohd">Aqib Fawwaz Mohd Amidon</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184756992" href="https://independent.academia.edu/ijeecsteam">Indonesian Journal of Electrical Engineering and Computer Science</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Agarwood oil quality is often separated into two or three categories. This makes classifying agarwood oil quality using current methods difficult. Current approaches rely solely on human perception to determine the quality of agarwood, whether in raw material or oil. This technique has other undesirable implications. It can affect the human sensory system, particularly the eyes and nose. Categorization takes time, which is a considerable expense to succeed in this method. As a result, a new classification system should be devised. The chemical components in agarwood oil are used to classify it in this study. In this study, samples with preprocessing data from two to five quality levels were used. The purpose is to categorize this data based on its qualities and analyze whether this new quality group is acceptable. The K-nearest neighbours (KNN) approach was used to classify all samples and their properties for this dataset. All samples may be correctly classified by grade without any errors. This shows the chemical compound-based classification of agarwood oil can be retained. With these findings, future agarwood oil research may focus on building a new classification.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The significance of artificial intelligent technique in classifying various grades of agarwood oil&quot;,&quot;attachmentId&quot;:95610634,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/92661067/The_significance_of_artificial_intelligent_technique_in_classifying_various_grades_of_agarwood_oil&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/92661067/The_significance_of_artificial_intelligent_technique_in_classifying_various_grades_of_agarwood_oil"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="80964596" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/80964596/Prediction_of_palm_oil_properties_using_artificial_neural_network">Prediction of palm oil properties using artificial neural network</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34455313" href="https://independent.academia.edu/AbdullahSalwani">Salwani Abdullah</a></div><p class="ds-related-work--metadata ds2-5-body-xs">IJCSNS, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Prediction of palm oil properties using artificial neural network&quot;,&quot;attachmentId&quot;:87171072,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/80964596/Prediction_of_palm_oil_properties_using_artificial_neural_network&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/80964596/Prediction_of_palm_oil_properties_using_artificial_neural_network"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="104683265" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/104683265/Stepwise_regression_of_agarwood_oil_significant_chemical_compounds_into_four_quality_differentiation">Stepwise regression of agarwood oil significant chemical compounds into four quality differentiation</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184756992" href="https://independent.academia.edu/ijeecsteam">Indonesian Journal of Electrical Engineering and Computer Science</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 2023</p><p class="ds-related-work--abstract ds2-5-body-sm">This paper gives precise summary on the application of stepwise regression model based upon the pre-process analysis of boxplot for four chemical compounds into four different qualities of agarwood oil. In the global market, agarwood oil is acknowledged as a pricey and valuable nature product owing to its benefits. Unfortunately, there is no standard grading method for agarwood oil grade classification. Intelligent model in grading the quality of agarwood oil is crucial as one of the efforts to classify the agarwood quality. The main model chosen in this study is stepwise regression by concerned specific parameter which is the value of correlation coefficient, R2. To achieve this goal, four out of eleven significant compounds of agarwood oil that consist of 660 data samples from low, medium low, medium high and high quality are representing the input. The independent variables are X1, X2, X3 and X4 which refer to the ɤ-Eudesmol, 10-epi-ɤ-eudesmol, β-agarofuran and dihydrocollumellarin compounds, respectively. MATLAB software version r2015a has been chosen as the simulation platform for this research work. The result showed that the stepwise regression model has a correlation coefficient of 0.756 and p-value less than 0.05 significance level which successfully passed the performance criteria toward regression value.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Stepwise regression of agarwood oil significant chemical compounds into four quality differentiation&quot;,&quot;attachmentId&quot;:104346419,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/104683265/Stepwise_regression_of_agarwood_oil_significant_chemical_compounds_into_four_quality_differentiation&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/104683265/Stepwise_regression_of_agarwood_oil_significant_chemical_compounds_into_four_quality_differentiation"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="120415220" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/120415220/MSVM_Modelling_on_Agarwood_Oil_Various_Qualities_Classification">MSVM Modelling on Agarwood Oil Various Qualities Classification</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250847811" href="https://independent.academia.edu/AmidonAqibFawwazMohd">Aqib Fawwaz Mohd Amidon</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Electrical &amp;amp; Electronic Systems Research</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;MSVM Modelling on Agarwood Oil Various Qualities Classification&quot;,&quot;attachmentId&quot;:115572098,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/120415220/MSVM_Modelling_on_Agarwood_Oil_Various_Qualities_Classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/120415220/MSVM_Modelling_on_Agarwood_Oil_Various_Qualities_Classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="89850401" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/89850401/A_preliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading">A preliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="245422617" href="https://independent.academia.edu/AqibFawwazMohdAmidon">Aqib Fawwaz Mohd Amidon</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="184756992" href="https://independent.academia.edu/ijeecsteam">Indonesian Journal of Electrical Engineering and Computer Science</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Essential oils extracted from trees has various usages like perfumes, incense, aromatherapy and traditional medicine which increase their popularity in global market. In Malaysia, the recognition system for identifying the essential oil quality still does not reach its standard since mostly graded by using human sensory evaluation. However, previous researchers discovered new modern techniques to present the quality of essential oils by analyse the chemical compounds. Agarwood essential oil had been chosen for the proposed integrated intelligent models with the implementation of k-nearest neighbor (k-NN) due to the high demand and an expensive natural raw world resource. k-NN with Euclidean distance metrics had better performance in terms of its confusion matrix, sensitivity, precision accuracy and specificity. This paper presents an overview of essential oils as well as their previous analysis technique. The review on k-NN is done to prove the technique is compatible for future research studies based on its performance.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A preliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading&quot;,&quot;attachmentId&quot;:93576916,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/89850401/A_preliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/89850401/A_preliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="97851305" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97851305/Crude_Palm_Oil_Prediction_Based_on_Backpropagation_Neural_Network_Approach">Crude Palm Oil Prediction Based on Backpropagation Neural Network Approach</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="238446607" href="https://independent.academia.edu/HijratulAini4">Hijratul Aini</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Knowledge Engineering and Data Science, 2019</p><p class="ds-related-work--abstract ds2-5-body-sm">Crude palm oil (CPO) production at PT. Perkebunan Nusantara (PTPN) XIII from January 2015 to January 2018 have been treated. This paper aims to predict CPO production using intelligent algorithms called Backpropagation Neural Network (BPNN). The accuracy of prediction algorithms have been measured by mean square error (MSE). The experiment showed that the best hidden layer architecture (HLA) is 5-10-11-12-13-1 with learning function (LF) of trainlm, activation function (AF) of logsig and purelin, and learning rate (LR) of 0.5. This architecture has a good accuracy with MSE of 0.0643. The results showed that this model can predict CPO production in 2019.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Crude Palm Oil Prediction Based on Backpropagation Neural Network Approach&quot;,&quot;attachmentId&quot;:99361751,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/97851305/Crude_Palm_Oil_Prediction_Based_on_Backpropagation_Neural_Network_Approach&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/97851305/Crude_Palm_Oil_Prediction_Based_on_Backpropagation_Neural_Network_Approach"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;continue-reading-button--sticky-ctas&quot;,&quot;attachmentId&quot;:74558686,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;download-pdf-button--sticky-ctas&quot;,&quot;attachmentId&quot;:74558686,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;workUrl&quot;:null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_74558686" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="14109333" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/14109333/Classification_of_multicomponent_analytical_data_of_olive_oils_using_different_neural_networks">Classification of multicomponent analytical data of olive oils using different neural networks</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="33111982" href="https://independent.academia.edu/JohannGasteiger">Johann Gasteiger</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Analytica Chimica Acta, 1994</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of multicomponent analytical data of olive oils using different neural networks&quot;,&quot;attachmentId&quot;:44595431,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/14109333/Classification_of_multicomponent_analytical_data_of_olive_oils_using_different_neural_networks&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/14109333/Classification_of_multicomponent_analytical_data_of_olive_oils_using_different_neural_networks"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="88723094" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading">A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="167341124" href="https://independent.academia.edu/YusoffZakiah">Zakiah Yusoff</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;A Ppreliminary study on the intelligent model of k-nearest neighbor for agarwood oil quality grading&quot;,&quot;attachmentId&quot;:92644930,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/88723094/A_Ppreliminary_study_on_the_intelligent_model_of_k_nearest_neighbor_for_agarwood_oil_quality_grading"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="99720155" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/99720155/Characterization_and_identification_of_edible_oil_blends_and_prediction_of_the_composition_by_artificial_neural_networks_a_case_study">Characterization and identification of edible oil blends and prediction of the composition by artificial neural networks - a case study</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="197476976" href="https://independent.academia.edu/SitaNurRamdhaniDevi">Sita Nur Ramdhani Devi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Chemometrics and Intelligent Laboratory Systems, 1996</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Characterization and identification of edible oil blends and prediction of the composition by artificial neural networks - a case study&quot;,&quot;attachmentId&quot;:100734504,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/99720155/Characterization_and_identification_of_edible_oil_blends_and_prediction_of_the_composition_by_artificial_neural_networks_a_case_study&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/99720155/Characterization_and_identification_of_edible_oil_blends_and_prediction_of_the_composition_by_artificial_neural_networks_a_case_study"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="25789285" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/25789285/Artificial_Neural_Network_Based_Model_for_Quality_Estimation_of_Refined_Palm_Oil">Artificial Neural Network-Based Model for Quality Estimation of Refined Palm Oil</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="58168383" href="https://teknologimalaysia.academia.edu/KMohdYusof">Khairiyah Mohd Yusof</a><span>, </span><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13474734" href="https://teknologimalaysia.academia.edu/NurulSulaihaSulaiman">Nurul Sulaiha Sulaiman</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Artificial Neural Network-Based Model for Quality Estimation of Refined Palm Oil&quot;,&quot;attachmentId&quot;:46150911,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/25789285/Artificial_Neural_Network_Based_Model_for_Quality_Estimation_of_Refined_Palm_Oil&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/25789285/Artificial_Neural_Network_Based_Model_for_Quality_Estimation_of_Refined_Palm_Oil"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="113133188" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/113133188/Preliminary_study_on_agarwood_essential_oil_and_its_classification_techniques_using_machine_learning">Preliminary study on agarwood essential oil and its classification techniques using machine learning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="250501650" href="https://independent.academia.edu/AnisHazirahIzzatiHAlHadi">Anis Hazirah ‘Izzati H. Al-Hadi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2023</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Preliminary study on agarwood essential oil and its classification techniques using machine learning&quot;,&quot;attachmentId&quot;:110173281,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/113133188/Preliminary_study_on_agarwood_essential_oil_and_its_classification_techniques_using_machine_learning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/113133188/Preliminary_study_on_agarwood_essential_oil_and_its_classification_techniques_using_machine_learning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="82652889" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82652889/Perbezaan_kualiti_minyak_gaharu_menggunakan_rangkaian_neural_Tiruan">Perbezaan kualiti minyak gaharu menggunakan rangkaian neural Tiruan</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44246" href="https://ump.academia.edu/SaifulNizamTajuddin">Saiful Nizam Tajuddin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">The Malaysian Journal of Analytical Sciences, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Perbezaan kualiti minyak gaharu menggunakan rangkaian neural Tiruan&quot;,&quot;attachmentId&quot;:88288894,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/82652889/Perbezaan_kualiti_minyak_gaharu_menggunakan_rangkaian_neural_Tiruan&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/82652889/Perbezaan_kualiti_minyak_gaharu_menggunakan_rangkaian_neural_Tiruan"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="43635776" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/43635776/Agarwood_Oil_Quality_Classification_using_Support_Vector_Classifier_and_Grid_Search_Cross_Validation_Hyperparameter_Tuning">Agarwood Oil Quality Classification using Support Vector Classifier and Grid Search Cross Validation Hyperparameter Tuning</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2688209" href="https://independent.academia.edu/SenthilKumar32">WARSE The World Academy of Research in Science and Engineering</a></div><p class="ds-related-work--metadata ds2-5-body-xs"> International Journal of Emerging Trends in Engineering Research, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Agarwood Oil Quality Classification using Support Vector Classifier and Grid Search Cross Validation Hyperparameter Tuning&quot;,&quot;attachmentId&quot;:63936872,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/43635776/Agarwood_Oil_Quality_Classification_using_Support_Vector_Classifier_and_Grid_Search_Cross_Validation_Hyperparameter_Tuning&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/43635776/Agarwood_Oil_Quality_Classification_using_Support_Vector_Classifier_and_Grid_Search_Cross_Validation_Hyperparameter_Tuning"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="82284908" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82284908/k_nearest_neighbor_modelling_of_agarwood_oil_samples_available_in_capital_of_Malaysia_market">k-nearest neighbor modelling of agarwood oil samples available in capital of Malaysia market</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="163474776" href="https://independent.academia.edu/JournalIJECE">International Journal of Electrical and Computer Engineering (IJECE)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Electrical and Computer Engineering (IJECE), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;k-nearest neighbor modelling of agarwood oil samples available in capital of Malaysia market&quot;,&quot;attachmentId&quot;:88042343,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/82284908/k_nearest_neighbor_modelling_of_agarwood_oil_samples_available_in_capital_of_Malaysia_market&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/82284908/k_nearest_neighbor_modelling_of_agarwood_oil_samples_available_in_capital_of_Malaysia_market"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="15716166" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/15716166/Use_of_artificial_neural_networks_for_the_classification_of_vegetable_oils_after_GC_analysis">Use of artificial neural networks for the classification of vegetable oils after GC analysis</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34906173" href="https://independent.academia.edu/FernandoLan%C3%A7as">Fernando Lanças</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Chromatographia, 1993</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Use of artificial neural networks for the classification of vegetable oils after GC analysis&quot;,&quot;attachmentId&quot;:42942254,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/15716166/Use_of_artificial_neural_networks_for_the_classification_of_vegetable_oils_after_GC_analysis&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/15716166/Use_of_artificial_neural_networks_for_the_classification_of_vegetable_oils_after_GC_analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="83312223" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/83312223/SVM_Modelling_of_Agarwood_Oil_Quality_Grading_using_Radial_Basis_Function_RBF_and_Sequential_Minimal_Optimization_SMO_Learning_Algorithms">SVM Modelling of Agarwood Oil Quality Grading using Radial Basis Function (RBF) and Sequential Minimal Optimization (SMO) Learning Algorithms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="120592104" href="https://independent.academia.edu/haziqhaikal24">haziq haikal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Emerging Trends in Engineering Research, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;SVM Modelling of Agarwood Oil Quality Grading using Radial Basis Function (RBF) and Sequential Minimal Optimization (SMO) Learning Algorithms&quot;,&quot;attachmentId&quot;:88699405,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/83312223/SVM_Modelling_of_Agarwood_Oil_Quality_Grading_using_Radial_Basis_Function_RBF_and_Sequential_Minimal_Optimization_SMO_Learning_Algorithms&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/83312223/SVM_Modelling_of_Agarwood_Oil_Quality_Grading_using_Radial_Basis_Function_RBF_and_Sequential_Minimal_Optimization_SMO_Learning_Algorithms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="87308696" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/87308696/Multilayer_perceptron_neural_networking_for_prediction_of_quality_attributes_of_spray_dried_vegetable_oil_powder">Multilayer perceptron neural networking for prediction of quality attributes of spray-dried vegetable oil powder</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="142690024" href="https://independent.academia.edu/ShubhangiSrivastava30">Shubhangi Srivastava</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Soft Computing, 2019</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Multilayer perceptron neural networking for prediction of quality attributes of spray-dried vegetable oil powder&quot;,&quot;attachmentId&quot;:91554592,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/87308696/Multilayer_perceptron_neural_networking_for_prediction_of_quality_attributes_of_spray_dried_vegetable_oil_powder&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/87308696/Multilayer_perceptron_neural_networking_for_prediction_of_quality_attributes_of_spray_dried_vegetable_oil_powder"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="97036638" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97036638/The_k_nearest_neighbor_modelling_by_varying_Mahalanobis_and_correlation_in_distance_metric_for_agarwood_oil_quality_classification">The k-nearest neighbor modelling by varying Mahalanobis and correlation in distance metric for agarwood oil quality classification</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="201854234" href="https://independent.academia.edu/ijaasjournal">IJAAS Journal</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Advances in Applied Sciences (IJAAS), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;The k-nearest neighbor modelling by varying Mahalanobis and correlation in distance metric for agarwood oil quality classification&quot;,&quot;attachmentId&quot;:98768742,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/97036638/The_k_nearest_neighbor_modelling_by_varying_Mahalanobis_and_correlation_in_distance_metric_for_agarwood_oil_quality_classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/97036638/The_k_nearest_neighbor_modelling_by_varying_Mahalanobis_and_correlation_in_distance_metric_for_agarwood_oil_quality_classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="82652859" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/82652859/Quadratic_tuned_kernel_parameter_in_Non_linear_support_vector_machine_SVM_for_agarwood_oil_compounds_quality_classification">Quadratic tuned kernel parameter in Non-linear support vector machine (SVM) for agarwood oil compounds quality classification</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44246" href="https://ump.academia.edu/SaifulNizamTajuddin">Saiful Nizam Tajuddin</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indonesian Journal of Electrical Engineering and Computer Science, 2020</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Quadratic tuned kernel parameter in Non-linear support vector machine (SVM) for agarwood oil compounds quality classification&quot;,&quot;attachmentId&quot;:88288873,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/82652859/Quadratic_tuned_kernel_parameter_in_Non_linear_support_vector_machine_SVM_for_agarwood_oil_compounds_quality_classification&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/82652859/Quadratic_tuned_kernel_parameter_in_Non_linear_support_vector_machine_SVM_for_agarwood_oil_compounds_quality_classification"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="8119993" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8119993/Classification_of_Agarwood_Oil_Using_an_Electronic_Nose">Classification of Agarwood Oil Using an Electronic Nose</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15774409" href="https://unn-ng.academia.edu/WahyuHidayat">Wahyu Hidayat</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Sensors, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{&quot;location&quot;:&quot;wsj-grid-card-download-pdf-modal&quot;,&quot;work_title&quot;:&quot;Classification of Agarwood Oil Using an Electronic Nose&quot;,&quot;attachmentId&quot;:48209356,&quot;attachmentType&quot;:&quot;pdf&quot;,&quot;work_url&quot;:&quot;https://www.academia.edu/8119993/Classification_of_Agarwood_Oil_Using_an_Electronic_Nose&quot;,&quot;alternativeTracking&quot;:true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/8119993/Classification_of_Agarwood_Oil_Using_an_Electronic_Nose"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="238159" href="https://www.academia.edu/Documents/in/Multilayer_Perceptron">Multilayer Perceptron</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="807699" href="https://www.academia.edu/Documents/in/Levenberg-Marquardt">Levenberg-Marquardt</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="972948" href="https://www.academia.edu/Documents/in/Stepwise_Regression">Stepwise Regression</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="1281369" href="https://www.academia.edu/Documents/in/Scaled_Conjugate_Gradient">Scaled Conjugate Gradient</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>&nbsp;<strong>We&#39;re Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>&nbsp;<strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia &copy;2024</li></ul></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10