CINXE.COM
Search results for: Liang Cheng
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Liang Cheng</title> <meta name="description" content="Search results for: Liang Cheng"> <meta name="keywords" content="Liang Cheng"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Liang Cheng" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Liang Cheng"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 713</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Liang Cheng</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">713</span> High Performance Electrocardiogram Steganography Based on Fast Discrete Cosine Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang-Ta%20Cheng">Liang-Ta Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yu%20Yang"> Ching-Yu Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on fast discrete cosine transform (FDCT), the authors present a high capacity and high perceived quality method for electrocardiogram (ECG) signal. By using a simple adjusting policy to the 1-dimentional (1-D) DCT coefficients, a large volume of secret message can be effectively embedded in an ECG host signal and be successfully extracted at the intended receiver. Simulations confirmed that the resulting perceived quality is good, while the hiding capability of the proposed method significantly outperforms that of existing techniques. In addition, our proposed method has a certain degree of robustness. Since the computational complexity is low, it is feasible for our method being employed in real-time applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20hiding" title="data hiding">data hiding</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG%20steganography" title=" ECG steganography"> ECG steganography</a>, <a href="https://publications.waset.org/abstracts/search?q=fast%20discrete%20cosine%20transform" title=" fast discrete cosine transform"> fast discrete cosine transform</a>, <a href="https://publications.waset.org/abstracts/search?q=1-D%20DCT%20bundle" title=" 1-D DCT bundle"> 1-D DCT bundle</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20applications" title=" real-time applications"> real-time applications</a> </p> <a href="https://publications.waset.org/abstracts/81916/high-performance-electrocardiogram-steganography-based-on-fast-discrete-cosine-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">712</span> Multiscale Structures and Their Evolution in a Screen Cylinder Wake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azlin%20Mohd%20Azmi">Azlin Mohd Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tongming%20Zhou"> Tongming Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Akira%20Rinoshika"> Akira Rinoshika</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng"> Liang Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been reduced to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multi-resolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequency f0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d > 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses at x/d =10 before being taken over by the large-scale structures (f0) further downstream. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=turbulent%20structure" title="turbulent structure">turbulent structure</a>, <a href="https://publications.waset.org/abstracts/search?q=screen%20cylinder" title=" screen cylinder"> screen cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a>, <a href="https://publications.waset.org/abstracts/search?q=wavelet%20multi-resolution%20analysis" title=" wavelet multi-resolution analysis"> wavelet multi-resolution analysis</a> </p> <a href="https://publications.waset.org/abstracts/2815/multiscale-structures-and-their-evolution-in-a-screen-cylinder-wake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">711</span> Gimbal Structure for the Design of 3D Flywheel System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-En%20Tsai">Cheng-En Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Chun%20Hsiao"> Chung-Chun Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu-Yuan%20Chang"> Fu-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Lun%20Lan"> Liang-Lun Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia-Ying%20Tu"> Jia-Ying Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gimbal" title="Gimbal">Gimbal</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20robot" title=" spherical robot"> spherical robot</a>, <a href="https://publications.waset.org/abstracts/search?q=gyroscope" title=" gyroscope"> gyroscope</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrangian%20formulation" title=" Lagrangian formulation"> Lagrangian formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flyball" title=" flyball"> flyball</a> </p> <a href="https://publications.waset.org/abstracts/22902/gimbal-structure-for-the-design-of-3d-flywheel-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">710</span> Effect of Resveratrol and Ascorbic Acid on the Stability of Alfa-Tocopherol in Whey Protein Isolate Stabilized O/W Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang">Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Bakry"> Amr M. Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food proteins have been widely used as carrier materials because of their multiple functional properties. In this study, alfa-tocopherol was encapsulated in the oil phase of an oil-in-water emulsion stabilized with whey protein isolate (WPI). The influence of WPI concentration and resveratrol or ascorbic acid on the decomposition of alfa-tocopherol in the emulsion during storage is discussed. Decomposition decreased as WPI concentrations increased. Decomposition was delayed at ascorbic acid/WPI molar ratios lower than 5 but was promoted at higher ratios. Resveratrol partitioned into the oil-water interface by binding to WPI and its cis-isomer is believed to have contributed most of the protective effect of this polyphenol. These results suggest the possibility of using the emulsifying and ligand-binging properties of WPI to produce carriers for simultaneous encapsulation of alfa-tocopherol and resveratrol in a single emulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=alfa-tocopherol" title=" alfa-tocopherol"> alfa-tocopherol</a>, <a href="https://publications.waset.org/abstracts/search?q=resveratrol" title=" resveratrol"> resveratrol</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20isolate" title=" whey protein isolate"> whey protein isolate</a> </p> <a href="https://publications.waset.org/abstracts/32495/effect-of-resveratrol-and-ascorbic-acid-on-the-stability-of-alfa-tocopherol-in-whey-protein-isolate-stabilized-ow-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">709</span> Application of Groundwater Level Data Mining in Aquifer Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng%20Chang">Liang Cheng Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Ju%20Huang"> Wei Ju Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=You%20Cheng%20Chen"> You Cheng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquifer%20identification" title="aquifer identification">aquifer identification</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater" title=" groundwater"> groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20transform" title=" Fourier transform"> Fourier transform</a> </p> <a href="https://publications.waset.org/abstracts/134623/application-of-groundwater-level-data-mining-in-aquifer-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134623.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">708</span> The Effects of Xiang Sha Liu Jun Zi Tang to Diarrhea and Growth Performance of Piglets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siao-Wei%20Jiang">Siao-Wei Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Boy-Young%20Hsieh"> Boy-Young Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Liang%20Hsieh"> Ching-Liang Hsieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Yung%20Lin"> Cheng-Yung Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problems of multiple drug resistance in the pig farming industry have been emphasized in recent years. Diarrhea syndrome is common in weaning piglets and often treated with antibiotics as a feed additive, leading to the rapid spread of antibiotic resistance and posing high health risks to humans. The study aimed to alleviate diarrhea syndrome with traditional herbal medicine, Xiang Sha Liu Jun Zi Tang, whose effects enhanced digestive function. Piglets at 4 weeks old with stool classified to Bristol stool classification type 6 or type 7 were randomly divided into the control group, group A (1% of Xiang Sha Liu Jun Zi Tang) and group B (0.1% Colistin). The piglets were administrated for 7 days, and their weight, feed intake, and stool score were recorded daily before and after the trial. The results showed that the diarrhea index score in group A and group B improved significantly compared to the control group, indicating that Xiang Sha Liu Jun Zi Tang may have the same effect on alleviating diarrhea syndrome as Colistin, and it may be another replacement for antibiotics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pig" title="pig">pig</a>, <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title=" diarrhea"> diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=herbal%20medicine" title=" herbal medicine"> herbal medicine</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Sha%20Liu%20Jun%20Zi%20Tang" title=" Xiang Sha Liu Jun Zi Tang"> Xiang Sha Liu Jun Zi Tang</a> </p> <a href="https://publications.waset.org/abstracts/182911/the-effects-of-xiang-sha-liu-jun-zi-tang-to-diarrhea-and-growth-performance-of-piglets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">707</span> Hsa-miR-326 Functions as a Tumor Suppressor in Non-Small Cell Lung Cancer through Targeting CCND1</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Cao%20Sun">Cheng-Cao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Jun%20Li"> Shu-Jun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuili%20Yang"> Cuili Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongyong%20Xi"> Yongyong Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wang"> Liang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhang"> Feng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=De-Jia%20Li"> De-Jia Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hsa-miRNA-326 (miR-326) has recently been discovered having anticancer efficacy in different organs. However, the role of miR-326 on non-small cell lung cancer (NSCLC) is still ambiguous. In this study, we investigated the role of miR-326 on the development of NSCLC. The results indicated that miR-326 was significantly down-regulated in primary tumor tissues and very low levels were found in NSCLC cell lines. Ectopic expression of miR-326 in NSCLC cell lines significantly suppressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibition of cyclin D1, cyclin D2, CDK4, and up-regulation of p57(Kip2) and p21(Waf1/Cip1). In addition, miR-326 induced apoptosis, as indicated by concomitantly with up-regulation of key apoptosis protein cleaved caspase-3, and down-regulation of anti-apoptosis protein Bcl2. Moreover, miR-326 inhibited cellular migration and invasiveness through inhibition of matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene CCND1 was revealed to be a putative target of miR-326, which was inversely correlated with miR-326 expression in NSCLC. Taken together, our results demonstrated that miR-326 played a pivotal role on NSCLC through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic CCND1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hsa-miRNA-326%20%28miR-326%29" title="hsa-miRNA-326 (miR-326)">hsa-miRNA-326 (miR-326)</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclin%20D1" title="cyclin D1">cyclin D1</a>, <a href="https://publications.waset.org/abstracts/search?q=non-small%20cell%20lung%20cancer%20%28NSCLC%29" title=" non-small cell lung cancer (NSCLC)"> non-small cell lung cancer (NSCLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/41380/hsa-mir-326-functions-as-a-tumor-suppressor-in-non-small-cell-lung-cancer-through-targeting-ccnd1" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">706</span> The Isolation of Enterobacter Ludwigii Strain T976 from Nicotiana Tabacum L. Yunyan 97 and Its Application Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Qin">Gao Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hu%20Liwei"> Hu Liwei</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Xiangzhou"> Dong Xiangzhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Qifa"> Zhu Qifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Tingming"> Cheng Tingming</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Limei"> Zhao Limei</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Mengmeng"> Yang Mengmeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhai%20Zhen"> Zhai Zhen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dai%20Huaxin"> Dai Huaxin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Taibo"> Liang Taibo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhang%20Shixiang"> Zhang Shixiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Chaoqun"> Xue Chaoqun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The functional strain T976 for starch degradation was isolated from Nicotiana tabacum L. Yunyan 97 tobacco leaves, the ratio of starch hydrolysis transparent circle diameter to colony diameter of the strain was 4.14, 16S rDNA sequencing identified these strains as Enterobacter ludwigii. Then Enterobacter ludwigii T976 was fermented and spaying Yunyan 97 plant in vigorous growing stage. The results of once spraying fermentation broth of Enterobacter ludwigii T976 showed that starch content of upper leaves decreased slightly, from 3.77% to 3.1%, the reducing sugar content increased from 4.39% to 5.53%, and the total sugar content increased from 5.82% to 7.39%. The chemical content was also checked after three time spraying. The starch content of middle leaves decreased from 5.63% to 3.74%, while the content of total sugar and reducing sugar decreased slightly. And the starch content of upper leaves decreased from 7.62% to 4.78%, the total sugar and reducing sugar decreased slightly, and starch content of middle leaf decreased from 6.27% to 3.62%, the total sugar and reducing sugar did not change much, and other chemical components were in a suitable range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nicotiana%20tabacum" title="nicotiana tabacum">nicotiana tabacum</a>, <a href="https://publications.waset.org/abstracts/search?q=yunyan%2097" title=" yunyan 97"> yunyan 97</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf" title=" leaf"> leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=starch" title=" starch"> starch</a>, <a href="https://publications.waset.org/abstracts/search?q=degradation" title=" degradation"> degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=enterobacter%20ludwigii" title=" enterobacter ludwigii"> enterobacter ludwigii</a> </p> <a href="https://publications.waset.org/abstracts/181858/the-isolation-of-enterobacter-ludwigii-strain-t976-from-nicotiana-tabacum-l-yunyan-97-and-its-application-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">705</span> The Existence of Field Corn Networks on the Thailand-Burma Border under the Patron-Client Contract Farming System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kettawa%20Boonprakarn">Kettawa Boonprakarn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jedsarid%20Sangkaphan"> Jedsarid Sangkaphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bejapornd%20Deekhuntod"> Bejapornd Deekhuntod</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuntharat%20Suriyo"> Nuntharat Suriyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the existence of field corn networks on the Thailand-Burma border under the patron-client contract farming system. The data of this qualitative study were collected through in-depth interviews with nine key informants. The results of the study revealed that the existence of the field corn networks was associated with the relationship where farmers had to share their crops with protectors in the areas under the influence of the KNU (Karen National Union) and the DKBA (Democratic Karen Buddhist Army) or Burmese soldiers. A Mae Liang, the person who starts a network has a connection with a Thaokae, Luk Rai Hua Chai or the head of a group of farmers, and farmers. They are under the patron-client system with trust and loyalty that enable the head of the group and the farmers in the Burma border side to remain under the same Mae Liang even though the business has been passed down to later generations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existence" title="existence">existence</a>, <a href="https://publications.waset.org/abstracts/search?q=field-corn%20networks" title=" field-corn networks"> field-corn networks</a>, <a href="https://publications.waset.org/abstracts/search?q=patron-client%20system" title=" patron-client system"> patron-client system</a>, <a href="https://publications.waset.org/abstracts/search?q=contract%20farming" title=" contract farming"> contract farming</a> </p> <a href="https://publications.waset.org/abstracts/3431/the-existence-of-field-corn-networks-on-the-thailand-burma-border-under-the-patron-client-contract-farming-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">704</span> Hsa-miR-329 Functions as a Tumor Suppressor through Targeting MET in Non-Small Cell Lung Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Cao%20Sun">Cheng-Cao Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Jun%20Li"> Shu-Jun Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuili%20Yang"> Cuili Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongyong%20Xi"> Yongyong Xi</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wang"> Liang Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Zhang"> Feng Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=De-Jia%20Li"> De-Jia Li </a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) act as key regulators of multiple cancers. Hsa-miR-329 (miR-329) functions as a tumor suppressor in some malignancies. However, its role on lung cancer remains poorly understood. In this study, we investigated the role of miR-329 on the development of lung cancer. The results indicated that miR-329 was decreased in primary lung cancer tissues compared with matched adjacent normal lung tissues and very low levels were found in a non-small cell lung cancer (NSCLC) cell lines. Ectopic expression of miR-329 in lung cancer cell lines substantially repressed cell growth as evidenced by cell viability assay, colony formation assay and BrdU staining, through inhibiting cyclin D1, cyclin D2, and up-regulatiing p57(Kip2) and p21(WAF1/CIP1). In addition, miR-329 promoted NSCLC cell apoptosis, as indicated by up-regulation of key apoptosis gene cleaved caspase-3, and down-regulation of anti-apoptosis gene Bcl2. Moreover, miR-329 inhibited cellular migration and invasiveness through inhibiting matrix metalloproteinases (MMP)-7 and MMP-9. Further, oncogene MET was revealed to be a putative target of miR-329, which was inversely correlated with miR-329 expression. Furthermore, down-regulation of MET by siRNA performed similar effects to over-expression of miR-329. Collectively, our results demonstrated that miR-329 played a pivotal role in lung cancer through inhibiting cell proliferation, migration, invasion, and promoting apoptosis by targeting oncogenic MET. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hsa-miRNA-329%28miR-329%29" title="hsa-miRNA-329(miR-329)">hsa-miRNA-329(miR-329)</a>, <a href="https://publications.waset.org/abstracts/search?q=MET" title=" MET"> MET</a>, <a href="https://publications.waset.org/abstracts/search?q=non-small%20cell%20lung%20cancer%20%28NSCLC%29" title="non-small cell lung cancer (NSCLC)">non-small cell lung cancer (NSCLC)</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a> </p> <a href="https://publications.waset.org/abstracts/41379/hsa-mir-329-functions-as-a-tumor-suppressor-through-targeting-met-in-non-small-cell-lung-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">703</span> Sensitivity and Uncertainty Analysis of One Dimensional Shape Memory Alloy Constitutive Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20M.%20Rezaul%20Islam">A. B. M. Rezaul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ernur%20Karadogan"> Ernur Karadogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shape memory alloys (SMAs) are known for their shape memory effect and pseudoelasticity behavior. Their thermomechanical behaviors are modeled by numerous researchers using microscopic thermodynamic and macroscopic phenomenological point of view. Tanaka, Liang-Rogers and Ivshin-Pence models are some of the most popular SMA macroscopic phenomenological constitutive models. They describe SMA behavior in terms of stress, strain and temperature. These models involve material parameters and they have associated uncertainty present in them. At different operating temperatures, the uncertainty propagates to the output when the material is subjected to loading followed by unloading. The propagation of uncertainty while utilizing these models in real-life application can result in performance discrepancies or failure at extreme conditions. To resolve this, we used probabilistic approach to perform the sensitivity and uncertainty analysis of Tanaka, Liang-Rogers, and Ivshin-Pence models. Sobol and extended Fourier Amplitude Sensitivity Testing (eFAST) methods have been used to perform the sensitivity analysis for simulated isothermal loading/unloading at various operating temperatures. As per the results, it is evident that the models vary due to the change in operating temperature and loading condition. The average and stress-dependent sensitivity indices present the most significant parameters at several temperatures. This work highlights the sensitivity and uncertainty analysis results and shows comparison of them at different temperatures and loading conditions for all these models. The analysis presented will aid in designing engineering applications by eliminating the probability of model failure due to the uncertainty in the input parameters. Thus, it is recommended to have a proper understanding of sensitive parameters and the uncertainty propagation at several operating temperatures and loading conditions as per Tanaka, Liang-Rogers, and Ivshin-Pence model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constitutive%20models" title="constitutive models">constitutive models</a>, <a href="https://publications.waset.org/abstracts/search?q=FAST%20sensitivity%20analysis" title=" FAST sensitivity analysis"> FAST sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=sobol" title=" sobol"> sobol</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20analysis" title=" uncertainty analysis"> uncertainty analysis</a> </p> <a href="https://publications.waset.org/abstracts/117933/sensitivity-and-uncertainty-analysis-of-one-dimensional-shape-memory-alloy-constitutive-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">702</span> Using Predictive Analytics to Identify First-Year Engineering Students at Risk of Failing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beng%20Yew%20Low">Beng Yew Low</a>, <a href="https://publications.waset.org/abstracts/search?q=Cher%20Liang%20Cha"> Cher Liang Cha</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng%20Yong%20Teoh"> Cheng Yong Teoh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to a lack of continual assessment or grade related data, identifying first-year engineering students in a polytechnic education at risk of failing is challenging. Our experience over the years tells us that there is no strong correlation between having good entry grades in Mathematics and the Sciences and excelling in hardcore engineering subjects. Hence, identifying students at risk of failure cannot be on the basis of entry grades in Mathematics and the Sciences alone. These factors compound the difficulty of early identification and intervention. This paper describes the development of a predictive analytics model in the early detection of students at risk of failing and evaluates its effectiveness. Data from continual assessments conducted in term one, supplemented by data of student psychological profiles such as interests and study habits, were used. Three classification techniques, namely Logistic Regression, K Nearest Neighbour, and Random Forest, were used in our predictive model. Based on our findings, Random Forest was determined to be the strongest predictor with an Area Under the Curve (AUC) value of 0.994. Correspondingly, the Accuracy, Precision, Recall, and F-Score were also highest among these three classifiers. Using this Random Forest Classification technique, students at risk of failure could be identified at the end of term one. They could then be assigned to a Learning Support Programme at the beginning of term two. This paper gathers the results of our findings. It also proposes further improvements that can be made to the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continual%20assessment" title="continual assessment">continual assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20analytics" title=" predictive analytics"> predictive analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20psychological%20profile" title=" student psychological profile"> student psychological profile</a> </p> <a href="https://publications.waset.org/abstracts/129977/using-predictive-analytics-to-identify-first-year-engineering-students-at-risk-of-failing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">701</span> Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng">Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Bakry"> Amr M. Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=milk%20protein" title="milk protein">milk protein</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20nutrient" title=" bioactive nutrient"> bioactive nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=protection" title=" protection"> protection</a> </p> <a href="https://publications.waset.org/abstracts/32528/encapsulation-and-protection-of-bioactive-nutrients-based-on-ligand-binding-property-of-milk-proteins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32528.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">700</span> Roll Forming Process and Die Design for a Large Size Square Tube</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinn-Jong%20Sheu">Jinn-Jong Sheu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cang-Fu%20Liang"> Cang-Fu Liang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Hsien%20Yu"> Cheng-Hsien Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposed the cold roll forming process and the die design methods for a 400mm by 400 mm square tube with 16 mm in thickness. The tubular blank made by cold roll forming is 508mm in diameter. The square tube roll forming process was designed considering the layout of rolls and the compression ratio distribution for each stand. The final tube corner radius and the edge straightness in the front end of the tube are to be controlled according to the tube specification. A five-stand forming design using four rolls at each stand was proposed to establish the base reference of square tube roll forming quality. Different numbers of pass and roll designs were proposed and compared to the base design in order to find the feasibility of increase pass number to improve the square tube quality. The proposed roll forming processes were simulated using FEM analysis. The thickness variations of the corner and the edge areas were examined. The maximum loads and the torques of each stand were calculated to study the power consumption of the roll forming machine. The simulation results showed the square tube thickness variations and concavity of the edge are acceptable with the JIS tube specifications for the base design. But the maximum loads and torques are very high. By changing the layout and the number of the rolls were able to obtain better tube geometry and decrease the maximum load and torque of each stand. This paper had shown the feasibility of designing the roll forming process and the layout of dies using FEM simulation. The obtained information is helpful to the roll forming machine design for a large size square tube making. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20roll%20forming" title="cold roll forming">cold roll forming</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM%20analysis" title=" FEM analysis"> FEM analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20forming%20die%20design" title=" roll forming die design"> roll forming die design</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20roll%20forming" title=" tube roll forming"> tube roll forming</a> </p> <a href="https://publications.waset.org/abstracts/62390/roll-forming-process-and-die-design-for-a-large-size-square-tube" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62390.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">699</span> Design and Fabrication of an Array Microejector Driven by a Shear-Mode Piezoelectric Actuator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Yih%20Cheng"> Hong-Yih Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tung-Hsun%20Hsu"> Tung-Hsun Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports a novel actuating design that uses the shear deformation of a piezoelectric actuator to deflect a bulge-diaphragm for driving an array microdroplet ejector. In essence, we employed a circular-shaped actuator poled radial direction with remnant polarization normal to the actuating electric field for inducing the piezoelectric shear effect. The array microdroplet ejector consists of a shear type piezoelectric actuator, a vibration plate, two chamber plates, two channel plates and a nozzle plate. The vibration, chamber and nozzle plate components are fabricated using nickel electroforming technology, whereas the channel plate is fabricated by etching of stainless steel. The diaphragm displacement was measured by the laser two-dimensional scanning vibrometer. The ejected droplets of the microejector were also observed via an optic visualization system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=actuator" title="actuator">actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=microejector" title=" microejector"> microejector</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/26870/design-and-fabrication-of-an-array-microejector-driven-by-a-shear-mode-piezoelectric-actuator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">698</span> High-Frequency Modulation of Light-Emitting Diodes for New Ultraviolet Communications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Chyi%20Wu">Meng-Chyi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonn%20Lin"> Bonn Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyun-Hao%20Liao"> Jyun-Hao Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chein-Ju%20Chen"> Chein-Ju Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Jhuang"> Yu-Cheng Jhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mau-Phon%20Houng"> Mau-Phon Houng</a>, <a href="https://publications.waset.org/abstracts/search?q=Fang-Hsing%20Wang"> Fang-Hsing Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Chu%20Liu"> Min-Chu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Fu%20Yang"> Cheng-Fu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Shong%20Hong"> Cheng-Shong Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since the use of wireless communications has become critical nowadays, the available RF spectrum has become limited. Ultraviolet (UV) communication system can alleviate the spectrum constraint making UV communication system a potential alternative to future communication demands. Also, UV links can provide faster communication rate and can be used in combination with existing RF communication links, providing new communications diversity with higher user capacity. The UV region of electromagnetic spectrum has been of interest to detector, imaging and communication technologies because the stratospheric ozone layer effectively absorbs some solar UV radiation from reaching the earth surface. The wavebands where most of UV radiation is absorbed by the ozone are commonly known as the solar blind region. By operating in UV-C band (200-280 nm) the communication system can minimize the transmission power consumption since it will have less radiation noise. UV communication uses the UV ray as the medium. Electric signal is carried on this band after being modulated and then be transmitted within the atmosphere as channel. Though the background noise of UV-C communication is very low owing to the solar-blind feature, it leads to a large propagation loss. The 370 nm UV provides a much lower propagation loss than that the UV-C does and the recent device technology for UV source on this band is more mature. The fabricated 370 nm AlGaN light-emitting diodes (LEDs) with an aperture size of 45 m exhibit a modulation bandwidth of 165 MHz at 30 mA and a high power of 7 W/cm2 at 230 A/cm2. In order to solve the problem of low power in single UV LED, a UV LED array is presented in. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultraviolet%20%28UV%29%20communication" title="ultraviolet (UV) communication">ultraviolet (UV) communication</a>, <a href="https://publications.waset.org/abstracts/search?q=light-emitting%20diodes%20%28LEDs%29" title=" light-emitting diodes (LEDs)"> light-emitting diodes (LEDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=modulation%20bandwidth" title=" modulation bandwidth"> modulation bandwidth</a>, <a href="https://publications.waset.org/abstracts/search?q=LED%20array" title=" LED array"> LED array</a>, <a href="https://publications.waset.org/abstracts/search?q=370%20nm" title=" 370 nm"> 370 nm</a> </p> <a href="https://publications.waset.org/abstracts/46357/high-frequency-modulation-of-light-emitting-diodes-for-new-ultraviolet-communications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">697</span> UCP1 Regulates Cardiolipin Metabolism and Mediates Mitochondrial Homeostasis Maintenance of ANXA1 in Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Han%20Li">Zi-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Fang"> Lu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wu"> Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yuan%20Chang"> Dong-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Manyuan%20Dong"> Manyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ji"> Liang Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hui%20Zhao"> Ming-Hui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sydney%20C.%20W.%20Tang"> Sydney C. W. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemin%20Zheng"> Lemin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, we found that ANXA1 could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, we identified uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) by combining it with thioredoxin. Moreover, specific overexpression of UCP1 in the renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established an alternative principle to harness the power of uncouplers for the treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupling%20protein%201" title=" uncoupling protein 1"> uncoupling protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20homeostasis" title=" mitochondrial homeostasis"> mitochondrial homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiolipin%20metabolism" title=" cardiolipin metabolism"> cardiolipin metabolism</a> </p> <a href="https://publications.waset.org/abstracts/178981/ucp1-regulates-cardiolipin-metabolism-and-mediates-mitochondrial-homeostasis-maintenance-of-anxa1-in-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178981.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">696</span> ANXA1 Plays A Nephroprotective Role By Maintaining Mitochondrial Homeostasis Via Upregulating Uncoupling Protein 1 In Diabetic Nephropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zi-Han%20Li">Zi-Han Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Fang"> Lu Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Wu"> Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong-Yuan%20Chang"> Dong-Yuan Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Manyuan%20Dong"> Manyuan Dong</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang%20Ji"> Liang Ji</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Zhang"> Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Hui%20Zhao"> Ming-Hui Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sydney%20C.W.%20Tang"> Sydney C.W. Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lemin%20Zheng"> Lemin Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncoupling of mitochondrial respiration by chemical uncouplers has proven effective in ameliorating obesity, insulin resistance, and hyperglycemia, which were risk factors for diabetic nephropathy (DN). Recently, it was found that annexin A1(ANXA1) could improve mitochondrial function to mitigate DN progression. However, the underlying mechanism is not fully clear yet. Here, it was identified that uncoupling protein 1 (UCP1), an inner membrane protein of mitochondria, as a key to mitochondrial homeostasis improved by ANXA1. Specifically, ANXA1 attenuated mitochondrial dysfunction via appropriately upregulating UCP1 by stabilizing its transcription factor GATA binding protein 3 (GATA3) through combining with thioredoxin. Moreover, specific overexpression of UCP1 in renal cortex rescued renal injuries in diabetic Anxa1-KO mice. UCP1 deletion aggravated renal injuries in HFD/STZ-induced diabetic mice. Mechanistically, UCP1 reduced mitochondrial fission through the aristaless-related homeobox (ARX)/cardiolipin synthase 1 (CRLS1) pathway. Therapeutically, CL316243, a UCP1 agonist, could attenuate established DN in db/db mice. This work established a novel principle to harness the power of uncouplers for the treatment of DN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetic%20nephropathy" title="diabetic nephropathy">diabetic nephropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=uncoupling%20protein%201" title=" uncoupling protein 1"> uncoupling protein 1</a>, <a href="https://publications.waset.org/abstracts/search?q=mitochondrial%20homeostasis" title=" mitochondrial homeostasis"> mitochondrial homeostasis</a>, <a href="https://publications.waset.org/abstracts/search?q=cardiolipin%20metabolism" title=" cardiolipin metabolism"> cardiolipin metabolism</a> </p> <a href="https://publications.waset.org/abstracts/178984/anxa1-plays-a-nephroprotective-role-by-maintaining-mitochondrial-homeostasis-via-upregulating-uncoupling-protein-1-in-diabetic-nephropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">695</span> Design and Fabrication of Micro-Bubble Oxygenator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Yih%20Cheng"> Hong-Yih Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-bubble" title="micro-bubble">micro-bubble</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygenator" title=" oxygenator"> oxygenator</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/67526/design-and-fabrication-of-micro-bubble-oxygenator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">694</span> An Integrated CFD and Experimental Analysis on Double-Skin Window</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheam-Chyun%20Lin">Sheam-Chyun Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Kai%20Chen"> Wei-Kai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Cheng%20Yen"> Hung-Cheng Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Jen%20Cheng"> Yung-Jen Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Cheng%20Chen"> Yu-Cheng Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there’s always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20energy" title="solar energy">solar energy</a>, <a href="https://publications.waset.org/abstracts/search?q=double-skin%20fa%C3%A7ades" title=" double-skin façades"> double-skin façades</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20buoyancy" title=" thermal buoyancy"> thermal buoyancy</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20machinery" title=" fluid machinery"> fluid machinery</a> </p> <a href="https://publications.waset.org/abstracts/26752/an-integrated-cfd-and-experimental-analysis-on-double-skin-window" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">693</span> The Effects of NaF Concentration on the Zinc Coating Electroplated in Supercritical CO2 Mixed Zinc Chloride Bath</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Ying%20Lee">Chun-Ying Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Wen%20Wu"> Mei-Wen Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Yi%20Cheng"> Li-Yi Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng"> Chiang-Ho Cheng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research studies the electroplating of zinc coating in the zinc chloride bath mixed with supercritical CO2. The sodium fluoride (NaF) was used as the bath additive to change the structure and property of the coating, and therefore the roughness and corrosion resistance of the zinc coating was investigated. The surface characterization was performed using optical microscope (OM), X-ray diffractometer (XRD), and α-step profilometer. Moreover, the potentiodynamic polarization measurement in 3% NaCl solution was employed in the corrosion resistance evaluation. Because of the emulsification of the electrolyte mixed in Sc-CO2, the electroplated zinc produced the coating with smoother surface, smaller grain, better throwing power and higher corrosion resistance. The main role played by the NaF was to reduce the coating’s roughness and grain size. In other words, the CO2 mixed with the electrolyte under the supercritical condition performed the similar function as brighter and leveler in zinc electroplating to enhance the throwing power and corrosion resistance of the coating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supercritical%20CO2" title="supercritical CO2">supercritical CO2</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc-electroplating" title=" zinc-electroplating"> zinc-electroplating</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20fluoride" title=" sodium fluoride"> sodium fluoride</a>, <a href="https://publications.waset.org/abstracts/search?q=electroplating" title=" electroplating"> electroplating</a> </p> <a href="https://publications.waset.org/abstracts/7415/the-effects-of-naf-concentration-on-the-zinc-coating-electroplated-in-supercritical-co2-mixed-zinc-chloride-bath" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">692</span> Simple Multiple-Attribute Rating Technique for Optimal Decision-Making Model on Selecting Best Spiker of World Grand Prix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen%20Chih-Cheng">Chen Chih-Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20I-Cheng"> Chen I-Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Yung-Tan"> Lee Yung-Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo%20Yen-Whea"> Kuo Yen-Whea</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chin-Hung"> Yu Chin-Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to construct a model for best spike player selection in a top volleyball tournament of the world. Data consisted of the records of 2013 World Grand Prix declared by International Volleyball Federation (FIVB). Simple Multiple-Attribute Rating Technique (SMART) was used for optimal decision-making model on the best spike player selection. The research results showed that the best spike player ranking by SMART is different than the ranking by FIVB. The results demonstrated the effectiveness and feasibility of the proposed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simple%20multiple-attribute%20rating%20technique" title="simple multiple-attribute rating technique">simple multiple-attribute rating technique</a>, <a href="https://publications.waset.org/abstracts/search?q=World%20Grand%20Prix" title=" World Grand Prix"> World Grand Prix</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20spike%20player" title=" best spike player"> best spike player</a>, <a href="https://publications.waset.org/abstracts/search?q=International%20Volleyball%20Federation" title=" International Volleyball Federation"> International Volleyball Federation</a> </p> <a href="https://publications.waset.org/abstracts/3166/simple-multiple-attribute-rating-technique-for-optimal-decision-making-model-on-selecting-best-spiker-of-world-grand-prix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">691</span> Direct Bonded Aluminum to Alumina Using a Transient Eutectic Liquid Phase for Power Electronics Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Ting%20Wang">Yu-Ting Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hsiang%20Cheng"> Yun-Hsiang Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Cheng%20Lin"> Chien-Cheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Lin%20Lin"> Kun-Lin Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using a transient liquid phase method, Al was successfully bonded with Al₂O₃, which deposited Ni, Cu, Ge, and Si at the surface of the Al₂O₃ substrate after annealing at the relatively low melting point of Al. No reaction interlayer existed at the interface of any Al/Al₂O₃ specimens. Al−Fe intermetallic compounds, such as Al₉Fe₂ and Al₃Fe, formed in the Al substrate because of the precipitation of Fe, which was an impurity of the Al foil, and the reaction with Al at the grain boundaries of Al during annealing processing. According to the evaluation results of mechanical and thermal properties, the Al/Al₂O₃ specimen deposited on the Ni film possessed the highest shear strength, thermal conductivity, and bonding area percentage, followed by the Cu, Ge, and Si films. The properties of the Al/Al₂O₃ specimens deposited with Ge and Si were relatively unsatisfactory, which could be because the deposited amorphous layers easily formed oxide, resulting in inferior adhesion between Al and Al₂O₃. Therefore, the optimal choice for use in high-power devices is Al/Al₂O₃, with the deposition of Ni film. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct-bonded%20aluminum" title="direct-bonded aluminum">direct-bonded aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20liquid%20phase" title=" transient liquid phase"> transient liquid phase</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/116949/direct-bonded-aluminum-to-alumina-using-a-transient-eutectic-liquid-phase-for-power-electronics-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">690</span> A Study on Utilizing Temporary Water Treatment Facilities to Tackle Century-Long Drought and Emergency Water Supply</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Che%20Cheng">Yu-Che Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Lih%20Chang"> Min-Lih Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ke-Hao%20Cheng"> Ke-Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chuan-Cheng%20Wang"> Chuan-Cheng Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Taiwan is an island located along the southeastern coast of the Asian continent, located between Japan and the Philippines. It is surrounded by the sea on all sides. However, due to the presence of the Central Mountain Range, the rivers on the east and west coasts of Taiwan are relatively short. This geographical feature results in a phenomenon where, despite having rainfall that is 2.6 times the world average, 58.5% of the rainwater flows into the ocean. Moreover, approximately 80% of the annual rainfall occurs between May and October, leading to distinct wet and dry periods. To address these challenges, Taiwan relies on large reservoirs, storage ponds, and groundwater extraction for water resource allocation. It is necessary to construct water treatment facilities at suitable locations to provide the population with a stable and reliable water supply. In general, the construction of a new water treatment plant requires careful planning and evaluation. The process involves acquiring land and issuing contracts for construction in a sequential manner. With the increasing severity of global warming and climate change, there is a heightened risk of extreme hydrological events and severe water situations in the future. In cases of urgent water supply needs in a region, relying on traditional lengthy processes for constructing water treatment plants might not be sufficient to meet the urgent demand. Therefore, this study aims to explore the use of simplified water treatment procedures and the construction of rapid "temporary water treatment plants" to tackle the challenges posed by extreme climate conditions (such as a century-long drought) and situations where water treatment plant construction cannot keep up with the pace of water source development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temporary%20water%20treatment%20plant" title="temporary water treatment plant">temporary water treatment plant</a>, <a href="https://publications.waset.org/abstracts/search?q=emergency%20water%20supply" title=" emergency water supply"> emergency water supply</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20site%20groundwater" title=" construction site groundwater"> construction site groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=drought" title=" drought"> drought</a> </p> <a href="https://publications.waset.org/abstracts/175729/a-study-on-utilizing-temporary-water-treatment-facilities-to-tackle-century-long-drought-and-emergency-water-supply" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175729.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">689</span> Microencapsulation of Tuna Oil and Mentha Piperita Oil Mixture using Different Combinations of Wall Materials with Whey Protein Isolate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amr%20Mohamed%20Bakry%20Ibrahim">Amr Mohamed Bakry Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuna oil (omega-3 oil) has become increasingly popular in the last ten years, because it is considered one of the treasures of food which has many beneficial health effects for the humans. Nevertheless, the susceptibility of omega-3 oils to oxidative deterioration, resulting in the formation of oxidation products, in addition to organoleptic problems including “fishy” flavors, have presented obstacles to the more widespread use of tuna oils in the food industry. This study sought to evaluate the potential impact of Mentha piperita oil on physicochemical characteristics and oxidative stability of tuna oil microcapsules formed by spray drying using the partial substitution to whey protein isolate by carboxymethyl cellulose and pullulan. The emulsions before the drying process were characterized regarding size and ζ-potential, viscosity, surface tension. Confocal laser scanning microscopy showed that all emulsions were sphericity and homogeneous distribution without any visible particle aggregation. The microcapsules obtained after spray drying were characterized regarding microencapsulation efficiency, water activity, color, bulk density, flowability, scanning surface morphology and oxidative stability. The microcapsules were spherical shape had low water activity (0.11-0.23 aw). The microcapsules containing both tuna oil and Mentha piperita oil were smaller than others and addition of pullulan into wall materials improved the morphology of microcapsules. Microencapsulation efficiency of powdered oil ranged from 90% to 94%. Using Mentha piperita oil in the process of microencapsulation tuna oil enhanced the oxidative stability using whey protein isolate only or with carboxymethyl cellulose or pullulan as wall materials, resulting in improved storage stability and mask fishy odor. Therefore, it is foreseen using tuna-Mentha piperita oil mixture microcapsules in the applications of the food industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mentha%20piperita%20oil" title="Mentha piperita oil">Mentha piperita oil</a>, <a href="https://publications.waset.org/abstracts/search?q=microcapsule" title=" microcapsule"> microcapsule</a>, <a href="https://publications.waset.org/abstracts/search?q=tuna%20oil" title=" tuna oil"> tuna oil</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20isolate" title=" whey protein isolate"> whey protein isolate</a> </p> <a href="https://publications.waset.org/abstracts/33292/microencapsulation-of-tuna-oil-and-mentha-piperita-oil-mixture-using-different-combinations-of-wall-materials-with-whey-protein-isolate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33292.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">688</span> Design of a Multidisciplinary Project-Oriented Capstone Course for Mechanical Engineering Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chi-Cheng%20Cheng">Chi-Cheng Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Che-Hsin%20Lin"> Che-Hsin Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Jen%20Wang"> Yu-Jen Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chua-Chin%20Wang"> Chua-Chin Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project-oriented capstone course has become a required element for most engineering educational units. It is not only because the capstone course is an important criterion for international accreditation of engineering degree programs under Washington Accord, but also the capstone course provides an opportunity for students to apply what they have learned in their school years to actual engineering problems. Nevertheless, most project-oriented capstone courses are conducted with one single project for all students or teams. In other words, students work to reach the same or similar goals by coming up with different layouts and approaches. It appears not suitable for a multidisciplinary engineering department. Therefore, a one-year multidisciplinary project-oriented capstone course was designed for the junior year of the undergraduate program. About one-half of faculty members in the department needs to be involved in generating as many projects as possible to meet different students' interests and specialties. Project achievement has to be displayed and demonstrated in the annual exposition and competition at the end of this course. Significant success in attracting attention and hardworking of students on projects was witnessed for the past two pilot years. Analysis of course evaluation demonstrates positive impact on all perspectives despite of slightly negative influence due to poor communication and collaboration between students and their project supervisors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Capstone%20course" title="Capstone course">Capstone course</a>, <a href="https://publications.waset.org/abstracts/search?q=CDIO" title=" CDIO"> CDIO</a>, <a href="https://publications.waset.org/abstracts/search?q=engineering%20education" title=" engineering education"> engineering education</a>, <a href="https://publications.waset.org/abstracts/search?q=project-oriented%20learning" title=" project-oriented learning"> project-oriented learning</a> </p> <a href="https://publications.waset.org/abstracts/69448/design-of-a-multidisciplinary-project-oriented-capstone-course-for-mechanical-engineering-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">687</span> The Retinoprotective Effects and Mechanisms of Fungal Ingredient 3,4-Dihydroxybenzalacetone through Inhibition of Retinal Müller and Microglial Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Wen%20Cheng">Yu-Wen Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Jau-Der%20Ho"> Jau-Der Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Huan%20Wu"> Liang-Huan Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Fan-Li%20Lin"> Fan-Li Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Huei%20Chen"> Li-Huei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Hung-Ming%20Chang"> Hung-Ming Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yueh-Hsiung%20Kuo"> Yueh-Hsiung Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=George%20Hsiao"> George Hsiao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Retina glial activation and neuroinflammation have been confirmed to cause devastating responses in retinodegenerative diseases. The expression and activation of matrix metalloproteinase (MMP)-9 and inducible nitric oxide synthase (iNOS) could be exerted as the crucial pathological factors in glaucoma- and blue light-induced retinal injuries. The present study aimed to investigate the retinoprotective effects and mechanisms of fungal ingredient 3,4-dihydroxybenzalacetone (DBL) isolated from Phellinus linteus in the retinal glial activation and retinodegenerative animal models. According to the cellular studies, DBL significantly and concentration-dependently abrogated MMP-9 activation and expression in TNFα-stimulated retinal Müller (rMC-1) cells. We found the inhibitory activities of DBL were strongly through the STAT- and ERK-dependent pathways. Furthermore, DBL dramatically attenuated MMP-9 activation in the stimulated Müller cells exposed to conditioned media from LPS-stimulated microglia BV-2 cells. On the other hand, DBL strongly suppressed LPS-induced production of NO and ROS and expression of iNOS in microglia BV-2 cells. Consistently, the phosphorylation of STAT was substantially blocked by DBL in LPS-stimulated microglia BV-2 cells. In the evaluation of retinoprotective functions, the high IOP-induced scotopic electroretinographic (ERG) deficit and blue light-induced abnormal pupillary light response (PLR) were assessed. The deficit scotopic ERG responses markedly recovered by DBL in a rat model of glaucoma-like ischemia/reperfusion (I/R)-injury. DBL also reduced the aqueous gelatinolytic activity and retinal MMP-9 expression in high IOP-injured conditions. Additionally, DBL could restore the abnormal PLR and reduce retinal MMP-9 activation. In summary, DBL could ameliorate retinal neuroinflammation and MMP-9 activation by predominantly inhibiting STAT3 activation in the retinal Müller cells and microglia, which exhibits therapeutic potential for glaucoma and other retinal degenerative diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glaucoma" title="glaucoma">glaucoma</a>, <a href="https://publications.waset.org/abstracts/search?q=blue%20light" title=" blue light"> blue light</a>, <a href="https://publications.waset.org/abstracts/search?q=DBL" title=" DBL"> DBL</a>, <a href="https://publications.waset.org/abstracts/search?q=retinal%20M%C3%BCller%20cell" title=" retinal Müller cell"> retinal Müller cell</a>, <a href="https://publications.waset.org/abstracts/search?q=MMP-9" title=" MMP-9"> MMP-9</a>, <a href="https://publications.waset.org/abstracts/search?q=STAT" title=" STAT"> STAT</a>, <a href="https://publications.waset.org/abstracts/search?q=Microglia" title=" Microglia"> Microglia</a>, <a href="https://publications.waset.org/abstracts/search?q=iNOS" title=" iNOS"> iNOS</a>, <a href="https://publications.waset.org/abstracts/search?q=ERG" title=" ERG"> ERG</a>, <a href="https://publications.waset.org/abstracts/search?q=PLR" title=" PLR"> PLR</a> </p> <a href="https://publications.waset.org/abstracts/136717/the-retinoprotective-effects-and-mechanisms-of-fungal-ingredient-34-dihydroxybenzalacetone-through-inhibition-of-retinal-muller-and-microglial-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">686</span> Development of Piezoelectric Gas Micropumps with the PDMS Check Valve Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiang-Ho%20Cheng">Chiang-Ho Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=An-Shik%20Yang"> An-Shik Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hon-Yi%20Cheng"> Hon-Yi Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Yu%20Lai"> Ming-Yu Lai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and fabrication of a novel piezoelectric actuator for a gas micropump with check valve having the advantages of miniature size, light weight and low power consumption. The micropump is designed to have eight major components, namely a stainless steel upper cover layer, a piezoelectric actuator, a stainless steel diaphragm, a PDMS chamber layer, two stainless steel channel layers with two valve seats, a PDMS check valve layer with two cantilever-type check valves and an acrylic substrate. A prototype of the gas micropump, with a size of 52 mm × 50 mm × 5.0 mm, is fabricated by precise manufacturing. This device is designed to pump gases with the capability of performing the self-priming and bubble-tolerant work mode by maximizing the stroke volume of the membrane as well as the compression ratio via minimization of the dead volume of the micropump chamber and channel. By experiment apparatus setup, we can get the real-time values of the flow rate of micropump and the displacement of the piezoelectric actuator, simultaneously. The gas micropump obtained higher output performance under the sinusoidal waveform of 250 Vpp. The micropump achieved the maximum pumping rates of 1185 ml/min and back pressure of 7.14 kPa at the corresponding frequency of 120 and 50 Hz. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PDMS" title="PDMS">PDMS</a>, <a href="https://publications.waset.org/abstracts/search?q=check%20valve" title=" check valve"> check valve</a>, <a href="https://publications.waset.org/abstracts/search?q=micropump" title=" micropump"> micropump</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectric" title=" piezoelectric"> piezoelectric</a> </p> <a href="https://publications.waset.org/abstracts/24822/development-of-piezoelectric-gas-micropumps-with-the-pdms-check-valve-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24822.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">685</span> A Potential Spin-orbit Torque Device Using the Tri-layer Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chih-Wei%20Cheng">Chih-Wei Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Jen%20Chan"> Wei-Jen Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Han%20Huang"> Yu-Han Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Tsung%20Lin"> Yi-Tsung Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yen-Wei%20Huang"> Yen-Wei Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min-Cheng%20Chen"> Min-Cheng Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shou-Zen%20Chang"> Shou-Zen Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Chern"> G. Chern</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Chieh%20Tseng"> Yuan-Chieh Tseng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> How to develop spin-orbit-torque (SOT) devices with the virtues of field-free, perpendicular magnetic anisotropy (PMA), and low switching current is one of the many challenges in spintronics today. We propose a CoFeB/Ta/CoFeB tri-layer antiferromagnetic SOT device that could meet the above requirements. The device’s PMA was developed by adopting CoFeB–MgO interface. The key to the success of this structure is to ensure that (i)changes of the inter-layer coupling(IEC) and CoFeB anisotropy can occur simultaneously; (ii) one of the CoFeB needs to have a slightly tilted moment in the beginning. When sufficient current is given, the SHEreverses the already-tiltedCoFeB, and the other CoFeB can be reversed simultaneously by the IEC with the field-free nature. Adjusting the thickness of Ta can modify the coupling state to reduce the switching current while the field-free nature was preserved. Micromagnetic simulation suggests that the Néel orange peel effect (NOPE) is non-negligible due to interface roughness and coupling effect in the presence of perpendicular anisotropy. Fortunately, the Néel field induced by the NOPE appears to favor the field-free reversal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CoFeB" title="CoFeB">CoFeB</a>, <a href="https://publications.waset.org/abstracts/search?q=spin-orbit%20torque" title=" spin-orbit torque"> spin-orbit torque</a>, <a href="https://publications.waset.org/abstracts/search?q=antiferromagnetic" title=" antiferromagnetic"> antiferromagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=MRAM" title=" MRAM"> MRAM</a>, <a href="https://publications.waset.org/abstracts/search?q=trilayer" title=" trilayer"> trilayer</a> </p> <a href="https://publications.waset.org/abstracts/158357/a-potential-spin-orbit-torque-device-using-the-tri-layer-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">684</span> The Application of Collision Damage Analysis in Reconstruction of Sedan-Scooter Accidents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Liang%20Wu">Chun-Liang Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai-Ping%20Shaw"> Kai-Ping Shaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ping%20Yu"> Cheng-Ping Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu-Chien%20Chien"> Wu-Chien Chien</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsiao-Ting%20Chen"> Hsiao-Ting Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shao-Huang%20Wu"> Shao-Huang Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study analyzed three criminal judicial cases. We applied the damage analysis of the two vehicles to verify other evidence, such as dashboard camera records of each accident, reconstruct the scenes, and pursue the truth. Methods: Evidence analysis, the method is to collect evidence and the reason for the results in judicial procedures, then analyze the involved damage evidence to verify other evidence. The collision damage analysis method is to inspect the damage to the vehicles and utilize the principles of tool mark analysis, Newtonian physics, and vehicle structure to understand the relevant factors when the vehicles collide. Results: Case 1: Sedan A turned right at the T junction and collided with Scooter B, which was going straight on the left road. The dashboard camera records showed that the left side of Sedan A’s front bumper collided with the body of Scooter B and rider B. After the analysis of the study, the truth was that the front of the left side of Sedan A impacted the right pedal of Scooter B and the right lower limb of rider B. Case 2: Sedan C collided with Scooter D on the left road at the crossroads. The dashboard camera record showed that the left side of the Sedan C’s front bumper collided with the body of Scooter D and rider D. After the analysis of the study, the truth was that the left side of the Sedan C impacted the left side of the car body and the front wheel of Scooter D and rider D. Case 3: Sedan E collided with Scooter F on the right road at the crossroads. The dashboard camera record showed that the right side of the Sedan E’s front bumper collided with the body of Scooter F and rider F. After the analysis of the study, the truth was that the right side of the front bumper and the right side of the Sedan F impacted the Scooter. Conclusion: The application of collision damage analysis in the reconstruction of a sedan-scooter collision could discover the truth and provide the basis for judicial justice. The cases and methods could be the reference for the road safety policy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evidence%20analysis" title="evidence analysis">evidence analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=collision%20damage%20analysis" title=" collision damage analysis"> collision damage analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=accident%20reconstruction" title=" accident reconstruction"> accident reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=sedan-scooter%20collision" title=" sedan-scooter collision"> sedan-scooter collision</a>, <a href="https://publications.waset.org/abstracts/search?q=dashboard%20camera%20records" title=" dashboard camera records"> dashboard camera records</a> </p> <a href="https://publications.waset.org/abstracts/161008/the-application-of-collision-damage-analysis-in-reconstruction-of-sedan-scooter-accidents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=23">23</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=24">24</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Liang%20Cheng&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>