CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 65 results for author: <span class="mathjax">Pagnanini, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Pagnanini, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Pagnanini%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Pagnanini, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12870">arXiv:2406.12870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12870">pdf</a>, <a href="https://arxiv.org/format/2406.12870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-12923-2">10.1140/epjc/s10052-024-12923-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Water Cherenkov muon veto for the COSINUS experiment: design and simulation optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&amp;query=Bharadwaj%2C+M+R">M. R. Bharadwaj</a>, <a href="/search/physics?searchtype=author&amp;query=Cababie%2C+M">M. Cababie</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Einfalt%2C+L">L. Einfalt</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fichtinger%2C+S">S. Fichtinger</a>, <a href="/search/physics?searchtype=author&amp;query=Filipponi%2C+A">A. Filipponi</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+T">T. Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Friedl%2C+M">M. Friedl</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Z. Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Heikinheimo%2C+M">M. Heikinheimo</a>, <a href="/search/physics?searchtype=author&amp;query=Hughes%2C+M+N">M. N. Hughes</a>, <a href="/search/physics?searchtype=author&amp;query=Huitu%2C+K">K. Huitu</a>, <a href="/search/physics?searchtype=author&amp;query=Kellermann%2C+M">M. Kellermann</a>, <a href="/search/physics?searchtype=author&amp;query=Maji%2C+R">R. Maji</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Petricca%2C+F">F. Petricca</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pr%C3%B6bst%2C+F">F. Pr枚bst</a>, <a href="/search/physics?searchtype=author&amp;query=Profeta%2C+G">G. Profeta</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Reindl%2C+F">F. Reindl</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12870v1-abstract-short" style="display: inline;"> COSINUS is a dark matter (DM) direct search experiment that uses sodium iodide (NaI) crystals as cryogenic calorimeters. Thanks to the low nuclear recoil energy threshold and event-by-event discrimination capability, COSINUS will address the long-standing DM claim made by the DAMA/LIBRA collaboration. The experiment is currently under construction at the Laboratori Nazionali del Gran Sasso, Italy,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12870v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12870v1-abstract-full" style="display: none;"> COSINUS is a dark matter (DM) direct search experiment that uses sodium iodide (NaI) crystals as cryogenic calorimeters. Thanks to the low nuclear recoil energy threshold and event-by-event discrimination capability, COSINUS will address the long-standing DM claim made by the DAMA/LIBRA collaboration. The experiment is currently under construction at the Laboratori Nazionali del Gran Sasso, Italy, and employs a large cylindrical water tank as a passive shield to meet the required background rate. However, muon-induced neutrons can mimic a DM signal therefore requiring an active veto system, which is achieved by instrumenting the water tank with an array of photomultiplier tubes (PMTs). This study optimizes the number, arrangement, and trigger conditions of the PMTs as well as the size of an optically invisible region. The objective was to maximize the muon veto efficiency while minimizing the accidental trigger rate due to the ambient and instrumental background. The final configuration predicts a veto efficiency of 99.63 $\pm$ 0.16 $\%$ and 44.4 $\pm$ $5.6\%$ in the tagging of muon events and showers of secondary particles, respectively. The active veto will reduce the cosmogenic neutron background rate to 0.11 $\pm$ 0.02 cts$\cdot$kg$^{-1}$$\cdot$year$^{-1}$, corresponding to less than one background event in the region of interest for the whole COSINUS-1$蟺$ exposure of 1000 kg$\cdot$days. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12870v1-abstract-full').style.display = 'none'; document.getElementById('2406.12870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12380">arXiv:2406.12380</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.12380">pdf</a>, <a href="https://arxiv.org/format/2406.12380">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for fractionally charged particles with CUORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12380v1-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12380v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12380v1-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using the first tonne-year of CUORE&#39;s exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various Standard Model extensions and would have suppressed interactions with matter. No excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges between $e/24-e/5$ at 90\% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale sub-Kelvin detectors to diverse signatures of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'none'; document.getElementById('2406.12380v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17937">arXiv:2405.17937</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17937">pdf</a>, <a href="https://arxiv.org/format/2405.17937">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.052003">10.1103/PhysRevD.110.052003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data-driven background model for the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17937v1-abstract-short" style="display: inline;"> We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth explo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17937v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17937v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17937v1-abstract-full" style="display: none;"> We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth exploration of both spatial and time dependence of backgrounds. We achieve high sensitivity to both bulk and surface activities of the materials of the setup, detecting levels as low as 10 nBq kg$^{-1}$ and 0.1 nBq cm$^{-2}$, respectively. We compare the contamination levels we extract from the background model with prior radio-assay data, which informs future background risk mitigation strategies. The results of this background model play a crucial role in constructing the background budget for the CUPID experiment as it will exploit the same CUORE infrastructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17937v1-abstract-full').style.display = 'none'; document.getElementById('2405.17937v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15741">arXiv:2404.15741</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15741">pdf</a>, <a href="https://arxiv.org/format/2404.15741">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13123-8">10.1140/epjc/s10052-024-13123-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First measurement of Gallium Arsenide as a low-temperature calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Helis%2C+D+L">D. L. Helis</a>, <a href="/search/physics?searchtype=author&amp;query=Melchiorre%2C+A">A. Melchiorre</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Continenza%2C+A">A. Continenza</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Ferella%2C+A">A. Ferella</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrari%2C+C">C. Ferrari</a>, <a href="/search/physics?searchtype=author&amp;query=Giannesi%2C+F">F. Giannesi</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Monticone%2C+E">E. Monticone</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Profeta%2C+G">G. Profeta</a>, <a href="/search/physics?searchtype=author&amp;query=Rajteri%2C+M">M. Rajteri</a>, <a href="/search/physics?searchtype=author&amp;query=Settembri%2C+P">P. Settembri</a>, <a href="/search/physics?searchtype=author&amp;query=Shaikina%2C+A">A. Shaikina</a>, <a href="/search/physics?searchtype=author&amp;query=Tresca%2C+C">C. Tresca</a>, <a href="/search/physics?searchtype=author&amp;query=Trotta%2C+D">D. Trotta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15741v1-abstract-short" style="display: inline;"> In this paper, we present the first measurement of a Gallium Arsenide crystal working as low-temperature calorimeter for direct Dark Matter (DM) searches within the DAREDEVIL (DARk-mattEr DEVIces for Low energy detection) project. In the quest for direct dark matter detection, innovative approaches to lower the detection thershold and explore the sub-GeV mass DM range, have gained high relevance i&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15741v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15741v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15741v1-abstract-full" style="display: none;"> In this paper, we present the first measurement of a Gallium Arsenide crystal working as low-temperature calorimeter for direct Dark Matter (DM) searches within the DAREDEVIL (DARk-mattEr DEVIces for Low energy detection) project. In the quest for direct dark matter detection, innovative approaches to lower the detection thershold and explore the sub-GeV mass DM range, have gained high relevance in the last decade. This study presents the pioneering use of Gallium Arsenide (GaAs) as a low-temperature calorimeter for probing the dark matter-electron interaction channel. Our experimental setup features a GaAs crystal at ultralow temperature of 15 mK, coupled with a Neutron Transmutation Doped (NTD) thermal sensor for precise energy estimation. This configuration is the first step towards the detection of single electrons scattered by dark matter particles within the GaAs crystal, to significantly improve the sensitivity to low-mass dark matter candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15741v1-abstract-full').style.display = 'none'; document.getElementById('2404.15741v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur.Phys.J.C 84 (2024) 7, 749 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.06258">arXiv:2401.06258</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.06258">pdf</a>, <a href="https://arxiv.org/format/2401.06258">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> LUCE: A milli-Kelvin calorimeter experiment to study the electron capture of 176Lu </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">Shihong Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">Giovanni Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">Carlo Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">Paolo Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaumon%2C+P+V">Pedro V. Guillaumon</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+J">Jiang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">Serge Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Nozzoli%2C+F">Francesco Nozzoli</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">Lorenzo Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">Andrei Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Stukel%2C+M">Matthew Stukel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.06258v1-abstract-short" style="display: inline;"> The LUCE (LUtetium sCintillation Experiment) project will search for the 176Lu electron capture based on a milli-Kelvin calorimetric approach. This decay is of special interest in the field of nuclear structure, with implications for the s-process and for a better comprehension of the nuclear matrix elements of neutrinoless double beta decay (0谓\b{eta}\b{eta}) and two-neutrino double beta decay (2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06258v1-abstract-full').style.display = 'inline'; document.getElementById('2401.06258v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.06258v1-abstract-full" style="display: none;"> The LUCE (LUtetium sCintillation Experiment) project will search for the 176Lu electron capture based on a milli-Kelvin calorimetric approach. This decay is of special interest in the field of nuclear structure, with implications for the s-process and for a better comprehension of the nuclear matrix elements of neutrinoless double beta decay (0谓\b{eta}\b{eta}) and two-neutrino double beta decay (2谓\b{eta}\b{eta}). Possible impacts also include the development of a new class of coherent elastic neutrino-nucleus scattering (CE谓NS) and spin-dependent (independent) dark matter detectors. We report on the current status and design of a novel detector cryogenic-module for the measurement of the electron capture and detail a future measurement plan. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.06258v1-abstract-full').style.display = 'none'; document.getElementById('2401.06258v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">proceedings</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11066">arXiv:2307.11066</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11066">pdf</a>, <a href="https://arxiv.org/format/2307.11066">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.082003">10.1103/PhysRevD.109.082003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle discrimination in a NaI crystal using the COSINUS remote TES design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=COSINUS+Collaboration"> COSINUS Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&amp;query=Bharadwaj%2C+M+R">M. R. Bharadwaj</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Einfalt%2C+L">L. Einfalt</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fichtinger%2C+S">S. Fichtinger</a>, <a href="/search/physics?searchtype=author&amp;query=Filipponi%2C+A">A. Filipponi</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+T">T. Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Friedl%2C+M">M. Friedl</a>, <a href="/search/physics?searchtype=author&amp;query=Fuss%2C+A">A. Fuss</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Z. Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Heikinheimo%2C+M">M. Heikinheimo</a>, <a href="/search/physics?searchtype=author&amp;query=Hughes%2C+M+N">M. N. Hughes</a>, <a href="/search/physics?searchtype=author&amp;query=Huitu%2C+K">K. Huitu</a>, <a href="/search/physics?searchtype=author&amp;query=Kellermann%2C+M">M. Kellermann</a>, <a href="/search/physics?searchtype=author&amp;query=Maji%2C+R">R. Maji</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Petricca%2C+F">F. Petricca</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pr%C3%B6bst%2C+F">F. Pr枚bst</a>, <a href="/search/physics?searchtype=author&amp;query=Profeta%2C+G">G. Profeta</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11066v1-abstract-short" style="display: inline;"> The COSINUS direct dark matter experiment situated at Laboratori Nazionali del Gran Sasso in Italy is set to investigate the nature of the annually modulating signal detected by the DAMA/LIBRA experiment. COSINUS has already demonstrated that sodium iodide crystals can be operated at mK temperature as cryogenic scintillating calorimeters using transition edge sensors, despite the complication of h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11066v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11066v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11066v1-abstract-full" style="display: none;"> The COSINUS direct dark matter experiment situated at Laboratori Nazionali del Gran Sasso in Italy is set to investigate the nature of the annually modulating signal detected by the DAMA/LIBRA experiment. COSINUS has already demonstrated that sodium iodide crystals can be operated at mK temperature as cryogenic scintillating calorimeters using transition edge sensors, despite the complication of handling a hygroscopic and low melting point material. With results from a new COSINUS prototype, we show that particle discrimination on an event-by-event basis in NaI is feasible using the dual-channel readout of both phonons and scintillation light. The detector was mounted in the novel remoTES design and operated in an above-ground facility for 9.06 g$\cdot$d of exposure. With a 3.7 g NaI crystal, e$^-$/$纬$ events could be clearly distinguished from nuclear recoils down to the nuclear recoil energy threshold of 15 keV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11066v1-abstract-full').style.display = 'none'; document.getElementById('2307.11066v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01949">arXiv:2305.01949</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.01949">pdf</a>, <a href="https://arxiv.org/format/2305.01949">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjp/s13360-023-03946-x">10.1140/epjp/s13360-023-03946-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Array of Cryogenic Calorimeters to Evaluate the Spectral Shape of forbidden $尾$-decays: the ACCESS project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Corbett%2C+J">J. Corbett</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Stefano%2C+P">P. Di Stefano</a>, <a href="/search/physics?searchtype=author&amp;query=Ghislandi%2C+S">S. Ghislandi</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Helis%2C+D+L">D. L. Helis</a>, <a href="/search/physics?searchtype=author&amp;query=Knobel%2C+R">R. Knobel</a>, <a href="/search/physics?searchtype=author&amp;query=Kostensalo%2C+J">J. Kostensalo</a>, <a href="/search/physics?searchtype=author&amp;query=Kotila%2C+J">J. Kotila</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">S. Pozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Quitadamo%2C+S">S. Quitadamo</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">M. Sisti</a>, <a href="/search/physics?searchtype=author&amp;query=Suhonen%2C+J">J. Suhonen</a>, <a href="/search/physics?searchtype=author&amp;query=Kuznetsov%2C+S">S. Kuznetsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01949v1-abstract-short" style="display: inline;"> The ACCESS (Array of Cryogenic Calorimeters to Evaluate Spectral Shapes) project aims to establish a novel technique to perform precision measurements of forbidden \b{eta}-decays, which can serve as an important benchmark for nuclear physics calculations and represent a significant background in astroparticle physics experiments. ACCESS will operate a pilot array of cryogenic calorimeters based on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01949v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01949v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01949v1-abstract-full" style="display: none;"> The ACCESS (Array of Cryogenic Calorimeters to Evaluate Spectral Shapes) project aims to establish a novel technique to perform precision measurements of forbidden \b{eta}-decays, which can serve as an important benchmark for nuclear physics calculations and represent a significant background in astroparticle physics experiments. ACCESS will operate a pilot array of cryogenic calorimeters based on natural and doped crystals containing \b{eta}-emitting radionuclides. In this way, natural (e.g. 113 Cd and 115In) and synthetic isotopes (e.g. 99Tc) will be simultaneously measured with a common experimental technique. The array will also include further crystals optimised to disentangle the different background sources, thus reducing the systematic uncertainty. In this paper, we give an overview of the ACCESS research program, discussing a detector design study and promising results of 115In. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01949v1-abstract-full').style.display = 'none'; document.getElementById('2305.01949v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. Plus 138, 445 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01402">arXiv:2305.01402</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.01402">pdf</a>, <a href="https://arxiv.org/format/2305.01402">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11830-2">10.1140/epjc/s10052-023-11830-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The background model of the CUPID-Mo $0谓尾尾$ experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+C">CUPID-Mo Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&amp;query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Fujikawa%2C+B+K">B. K. Fujikawa</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01402v1-abstract-short" style="display: inline;"> CUPID-Mo, located in the Laboratoire Souterrain de Modane (France), was a demonstrator for the next generation $0谓尾尾$ decay experiment, CUPID. It consisted of an array of 20 enriched Li$_{2}$$ ^{100}$MoO$_4$ bolometers and 20 Ge light detectors and has demonstrated that the technology of scintillating bolometers with particle identification capabilities is mature. Furthermore, CUPID-Mo can inform&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01402v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01402v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01402v1-abstract-full" style="display: none;"> CUPID-Mo, located in the Laboratoire Souterrain de Modane (France), was a demonstrator for the next generation $0谓尾尾$ decay experiment, CUPID. It consisted of an array of 20 enriched Li$_{2}$$ ^{100}$MoO$_4$ bolometers and 20 Ge light detectors and has demonstrated that the technology of scintillating bolometers with particle identification capabilities is mature. Furthermore, CUPID-Mo can inform and validate the background prediction for CUPID. In this paper, we present a detailed model of the CUPID-Mo backgrounds. This model is able to describe well the features of the experimental data and enables studies of the $2谓尾尾$ decay and other processes with high precision. We also measure the radio-purity of the Li$_{2}$$^{100}$MoO$_4$ crystals which are found to be sufficient for the CUPID goals. Finally, we also obtain a background index in the region of interest of 3.7$^{+0.9}_{-0.8}$(stat)$^{+1.5}_{-0.7}$(syst)$\times10^{-3}$counts/$螖$E$_{FWHM}$/mol$_{iso}$/yr, the lowest in a bolometric $0谓尾尾$ decay experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01402v1-abstract-full').style.display = 'none'; document.getElementById('2305.01402v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05043">arXiv:2304.05043</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.05043">pdf</a>, <a href="https://arxiv.org/format/2304.05043">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06026">10.1088/1748-0221/18/06/P06026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ZnO-based scintillating bolometers: New prospects to study double beta decay of $^{64}$Zn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&amp;query=Laubenstein%2C+M">M. Laubenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&amp;query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&amp;query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S+S">S. S. Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Nisi%2C+S">S. Nisi</a>, <a href="/search/physics?searchtype=author&amp;query=Nones%2C+C">C. Nones</a>, <a href="/search/physics?searchtype=author&amp;query=Olivieri%2C+E">E. Olivieri</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Poda%2C+D+V">D. V. Poda</a>, <a href="/search/physics?searchtype=author&amp;query=Scarpaci%2C+J+-">J. -A. Scarpaci</a>, <a href="/search/physics?searchtype=author&amp;query=Zolotarova%2C+A+S">A. S. Zolotarova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05043v1-abstract-short" style="display: inline;"> The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05043v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05043v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05043v1-abstract-full" style="display: none;"> The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the experiment, 2.0--6.0 keV. The light yield for $尾$/$纬$ events was measured as 1.5(3) keV/MeV, while it varies for $伪$ particles in the range of 0.2--3.0 keV/MeV. The detector demonstrate an effective identification of the $尾$/$纬$ events from $伪$ events using time-properties of only heat signals. %(namely, Rise time parameter). The radiopurity of the ZnO crystal was evaluated using the Inductively Coupled Plasma Mass Spectrometry, an ultra-low-background High Purity Ge $纬$-spectrometer, and bolometric measurements. Only limits were set at the level of $\mathcal{O}$(1--100) mBq/kg on activities of \Nuc{K}{40}, \Nuc{Cs}{137} and daughter nuclides from the U/Th natural decay chains. The total internal $伪$-activity was calculated to be 22(2) mBq/kg, with a major contribution caused by 6(1) mBq/kg of \Nuc{Th}{232} and 12(2) mBq/kg of \Nuc{U}{234}. Limits on double beta decay (DBD) processes in \Nuc{Zn}{64} and \Nuc{Zn}{70} isotopes were set on the level of $\mathcal{O}(10^{17}$--$10^{18})$ yr for various decay modes profiting from 271 h of acquired background data in the above-ground lab. This study shows a good potential for ZnO-based scintillating bolometers to search for DBD processes of Zn isotopes, especially in \Nuc{Zn}{64}, with the most prominent spectral features at $\sim$10--20 keV, like the two neutrino double electron capture. A 10 kg-scale experiment can reach the experimental sensitivity at the level of $\mathcal{O}(10^{24})$ yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05043v1-abstract-full').style.display = 'none'; document.getElementById('2304.05043v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 27 pages, 9 figures, and 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04674">arXiv:2304.04674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04674">pdf</a>, <a href="https://arxiv.org/format/2304.04674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06033">10.1088/1748-0221/18/06/P06033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a> , et al. (154 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04674v1-abstract-short" style="display: inline;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04674v1-abstract-full" style="display: none;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70--90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained outstanding energy resolutions at the 356 keV line from a $^{133}$Ba source with one light detector achieving 0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when compared to $纬$ detectors of any technology in this energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'none'; document.getElementById('2304.04674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 16 pages, 7 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04611">arXiv:2304.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.04611">pdf</a>, <a href="https://arxiv.org/format/2304.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06018">10.1088/1748-0221/18/06/P06018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twelve-crystal prototype of Li$_2$MoO$_4$ scintillating bolometers for CUPID and CROSS experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUPID"> CUPID</a>, <a href="/search/physics?searchtype=author&amp;query=collaborations%2C+C">CROSS collaborations</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04611v1-abstract-short" style="display: inline;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04611v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04611v1-abstract-full" style="display: none;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, $渭$Bq/kg, level of the LMO crystals radioactive contamination by $^{228}$Th and $^{226}$Ra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'none'; document.getElementById('2304.04611v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 23 pages, 9 figures, and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13597">arXiv:2211.13597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13597">pdf</a>, <a href="https://arxiv.org/format/2211.13597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11199-2">10.1140/epjc/s10052-023-11199-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disentangling the sources of ionizing radiation in superconducting qubits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=De+Dominicis%2C+F">F. De Dominicis</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Imperio%2C+G">G. D&#39;Imperio</a>, <a href="/search/physics?searchtype=author&amp;query=Laubenstein%2C+M">M. Laubenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Mariani%2C+A">A. Mariani</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Frolov%2C+D">D. Frolov</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Grassellino%2C+A">A. Grassellino</a>, <a href="/search/physics?searchtype=author&amp;query=Junker%2C+M">M. Junker</a>, <a href="/search/physics?searchtype=author&amp;query=Kopas%2C+C">C. Kopas</a>, <a href="/search/physics?searchtype=author&amp;query=Lachman%2C+E">E. Lachman</a>, <a href="/search/physics?searchtype=author&amp;query=McRae%2C+C+R+H">C. R. H. McRae</a>, <a href="/search/physics?searchtype=author&amp;query=Mutus%2C+J">J. Mutus</a>, <a href="/search/physics?searchtype=author&amp;query=Nastasi%2C+M">M. Nastasi</a>, <a href="/search/physics?searchtype=author&amp;query=Pappas%2C+D+P">D. P. Pappas</a>, <a href="/search/physics?searchtype=author&amp;query=Pilipenko%2C+R">R. Pilipenko</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">M. Sisti</a>, <a href="/search/physics?searchtype=author&amp;query=Pettinacci%2C+V">V. Pettinacci</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13597v1-abstract-short" style="display: inline;"> Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and gamma&#39;s emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13597v1-abstract-full').style.display = 'inline'; document.getElementById('2211.13597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13597v1-abstract-full" style="display: none;"> Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and gamma&#39;s emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We develop a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13597v1-abstract-full').style.display = 'none'; document.getElementById('2211.13597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09490">arXiv:2209.09490</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09490">pdf</a>, <a href="https://arxiv.org/format/2209.09490">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.032006">10.1103/PhysRevD.107.032006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Majoron-like particles with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Collaboration%2C+C">CUPID-0 Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=%3A"> :</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Domp%C3%A8%2C+V">V. Domp猫</a>, <a href="/search/physics?searchtype=author&amp;query=Fantini%2C+G">G. Fantini</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09490v1-abstract-short" style="display: inline;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09490v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09490v1-abstract-full" style="display: none;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the existence of a Majoron-like boson coupling to the neutrino. The energy spectra arising from the emission of such bosons in the neutrinoless double $尾$ decay have spectral indices $n=$ 1, 2, 3 or 7. We found no evidence of any of these decay modes, setting a lower limit (90% of credibility interval) on the half-life of 1.2 $\times$ 10$^{23}$ yr in the case of $n=$ 1, 3.8 $\times$ 10$^{22}$ yr for $n=$ 2, 1.4 $\times$ 10$^{22}$ yr for $n=$ 3 and 2.2 $\times$ 10$^{21}$ yr for $n=$ 7. These are the best limits on the $0谓尾尾蠂_0$ half-life of the $^{82}$Se, and demonstrate the potentiality of the CUPID-0 technology in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'none'; document.getElementById('2209.09490v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05130">arXiv:2206.05130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05130">pdf</a>, <a href="https://arxiv.org/format/2206.05130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.111801">10.1103/PhysRevLett.129.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=De+Dominics%2C+F">F. De Dominics</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05130v1-abstract-short" style="display: inline;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05130v1-abstract-full" style="display: none;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last phase (June 2019 - February 2020). In this letter, we describe the search for neutrinoless double beta decay of $^{82}$Se with a total exposure (phase I + II) of 8.82 kg$\times$yr of isotope. We set a limit on the half-life of $^{82}$Se to the ground state of $^{82}$Kr of T$^{0谓}_{1/2}$($^{82}$Se)$&gt;$ 4.6$\times \mathrm{10}^{24}$ yr (90\% credible interval), corresponding to an effective Majorana neutrino mass m$_{尾尾} &lt;$ (263 -- 545) meV. We also set the most stringent lower limits on the neutrinoless decays of $^{82}$Se to the 0$_1^+$, 2$_1^+$ and 2$_2^+$ excited states of $^{82}$Kr, finding 1.8$\times$10$^{23}$ yr, 3.0$\times$10$^{23}$ yr, 3.2$\times$10$^{23}$ yr (90$\%$ credible interval) respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'none'; document.getElementById('2206.05130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05116">arXiv:2206.05116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.05116">pdf</a>, <a href="https://arxiv.org/format/2206.05116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Characterization of a kg-scale archaeological lead-based cryogenic detectors for the RES-NOVA experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Lorenzo%2C+S">S. Di Lorenzo</a>, <a href="/search/physics?searchtype=author&amp;query=Dubovik%2C+O+M">O. M. Dubovik</a>, <a href="/search/physics?searchtype=author&amp;query=Iachellini%2C+N+F">N. Ferreiro Iachellini</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+E">E. Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">S. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Garai%2C+A">A. Garai</a>, <a href="/search/physics?searchtype=author&amp;query=Ghislandi%2C+S">S. Ghislandi</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaumon%2C+P+V">P. V. Guillaumon</a>, <a href="/search/physics?searchtype=author&amp;query=Helis%2C+D+L">D. L. Helis</a>, <a href="/search/physics?searchtype=author&amp;query=Kovtun%2C+G+P">G. P. Kovtun</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05116v2-abstract-short" style="display: inline;"> One of the most energetic events in the Universe are core-collapse Supernovae (SNe), where almost all the star&#39;s binding energy is released as neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse. RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources, by deploying the first t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05116v2-abstract-full').style.display = 'inline'; document.getElementById('2206.05116v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05116v2-abstract-full" style="display: none;"> One of the most energetic events in the Universe are core-collapse Supernovae (SNe), where almost all the star&#39;s binding energy is released as neutrinos. These particles are direct probes of the processes occurring in the stellar core and provide unique insights into the gravitational collapse. RES-NOVA will revolutionize how we detect neutrinos from astrophysical sources, by deploying the first ton-scale array of cryogenic detectors made from archaeological lead. Pb offers the highest neutrino interaction cross-section via coherent elastic neutrino-nucleus scattering (CE$谓$NS). Such process will enable RES-NOVA to be equally sensitive to all neutrino flavors. For the first time, we propose to use archaeological Pb as sensitive target material in order to achieve an ultra-low background level in the region of interest (\textit{O}(1keV)). All these features make possible the deployment of the first cm-scale neutrino telescope for the investigation of astrophysical sources. In this contribution, we will characterize the radiopurity level and the performance of a small-scale proof-of-principle detector of RES-NOVA, consisting in a PbWO$_4$ crystal made from archaeological-Pb operated as cryogenic detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05116v2-abstract-full').style.display = 'none'; document.getElementById('2206.05116v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04549">arXiv:2205.04549</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.04549">pdf</a>, <a href="https://arxiv.org/format/2205.04549">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> An Energy-dependent Electro-thermal Response Model of CUORE Cryogenic Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04549v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay ($0谓尾尾$) in $^{130}\text{Te}$. CUORE uses a cryogenic array of 988 TeO$_2$ calorimeters operated at $\sim$10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear therm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04549v2-abstract-full').style.display = 'inline'; document.getElementById('2205.04549v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04549v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay ($0谓尾尾$) in $^{130}\text{Te}$. CUORE uses a cryogenic array of 988 TeO$_2$ calorimeters operated at $\sim$10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors&#39; energy dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04549v2-abstract-full').style.display = 'none'; document.getElementById('2205.04549v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 14 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07441">arXiv:2203.07441</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07441">pdf</a>, <a href="https://arxiv.org/format/2203.07441">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10656-8">10.1140/epjc/s10052-022-10656-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiopurity of a kg-scale PbWO$_4$ cryogenic detector produced from archaeological Pb for the RES-NOVA experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Lorenzo%2C+S">S. Di Lorenzo</a>, <a href="/search/physics?searchtype=author&amp;query=Dubovik%2C+O+M">O. M. Dubovik</a>, <a href="/search/physics?searchtype=author&amp;query=Iachellini%2C+N+F">N. Ferreiro Iachellini</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+E">E. Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Fu%2C+S">S. Fu</a>, <a href="/search/physics?searchtype=author&amp;query=Garai%2C+A">A. Garai</a>, <a href="/search/physics?searchtype=author&amp;query=Ghislandi%2C+S">S. Ghislandi</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Guillaumon%2C+P+V">P. V. Guillaumon</a>, <a href="/search/physics?searchtype=author&amp;query=Helis%2C+D+L">D. L. Helis</a>, <a href="/search/physics?searchtype=author&amp;query=Kovtun%2C+G+P">G. P. Kovtun</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07441v2-abstract-short" style="display: inline;"> RES-NOVA is a newly proposed experiment for the detection of neutrinos from astrophysical sources, mainly Supernovae, using an array of cryogenic detectors made of PbWO$_4$ crystals produced from archaeological Pb. This unconventional material, characterized by intrinsic high radiopurity, enables to achieve low-background levels in the region of interest for the neutrino detection via Coherent Ela&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07441v2-abstract-full').style.display = 'inline'; document.getElementById('2203.07441v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07441v2-abstract-full" style="display: none;"> RES-NOVA is a newly proposed experiment for the detection of neutrinos from astrophysical sources, mainly Supernovae, using an array of cryogenic detectors made of PbWO$_4$ crystals produced from archaeological Pb. This unconventional material, characterized by intrinsic high radiopurity, enables to achieve low-background levels in the region of interest for the neutrino detection via Coherent Elastic neutrino-Nucleus Scattering (CE$谓$NS). This signal lies at the detector energy threshold, O(1 keV), and it is expected to be hidden by naturally occurring radioactive contaminants of the crystal absorber. Here, we present the results of a radiopurity assay on a 0.84 kg PbWO$_4$ crystal produced from archaeological Pb operated as a cryogenic detector. The crystal internal radioactive contaminations are: $^{232}$Th $&lt;$40 $渭$Bq/kg, $^{238}$U $&lt;$30 $渭$Bq/kg, $^{226}$Ra 1.3 mBq/kg and $^{210}$Pb 22.5 mBq/kg. We present also a background projection for the final experiment and possible mitigation strategies for further background suppression. The achieved results demonstrate the feasibility of realizing this new class of detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07441v2-abstract-full').style.display = 'none'; document.getElementById('2203.07441v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">New analysis with high statistic</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2022) 82:692 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08716">arXiv:2202.08716</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.08716">pdf</a>, <a href="https://arxiv.org/format/2202.08716">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10942-5">10.1140/epjc/s10052-022-10942-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final results on the $0谓尾尾$ decay half-life limit of $^{100}$Mo from the CUPID-Mo experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&amp;query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&amp;query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&amp;query=Fujikawa%2C+B+K">B. K. Fujikawa</a>, <a href="/search/physics?searchtype=author&amp;query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08716v2-abstract-short" style="display: inline;"> The CUPID-Mo experiment to search for 0$谓尾尾$ decay in $^{100}$Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0$谓尾尾$ decay experiment. CUPID-Mo was comprised of 20 enriched Li$_2$$^{100}$MoO$_4$ scintillating calorimeters, each with a mass of $\sim$ 0.2 kg, operated at $\sim$20&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08716v2-abstract-full').style.display = 'inline'; document.getElementById('2202.08716v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08716v2-abstract-full" style="display: none;"> The CUPID-Mo experiment to search for 0$谓尾尾$ decay in $^{100}$Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0$谓尾尾$ decay experiment. CUPID-Mo was comprised of 20 enriched Li$_2$$^{100}$MoO$_4$ scintillating calorimeters, each with a mass of $\sim$ 0.2 kg, operated at $\sim$20 mK. We present here the final analysis with the full exposure of CUPID-Mo ($^{100}$Mo exposure of 1.47 kg$\times$yr) used to search for lepton number violation via 0$谓尾尾$ decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the $^{100}$Mo 0$谓尾尾$ decay half-life of $T^{0谓}_{1/2} &gt; 1.8 \times 10^{24}$ year (stat.+syst.) at 90% CI. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of $\left&lt;m_{尾尾}\right&gt; &lt; (0.28$--$0.49)$ eV, dependent upon the nuclear matrix element utilized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08716v2-abstract-full').style.display = 'none'; document.getElementById('2202.08716v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 82, 1033 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06279">arXiv:2202.06279</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06279">pdf</a>, <a href="https://arxiv.org/format/2202.06279">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the first CUPID detector module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Ballen%2C+K">K. Ballen</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06279v1-abstract-short" style="display: inline;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06279v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06279v1-abstract-full" style="display: none;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of $伪$ particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 $\pm$ 0.2) keV FWHM at the $Q$-value of $^{100}$Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors&#39; mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an $伪$ particle rejection higher than 99.9%, fully satisfying the requirements for CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'none'; document.getElementById('2202.06279v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.00349">arXiv:2111.00349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.00349">pdf</a>, <a href="https://arxiv.org/format/2111.00349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167532">10.1016/j.nima.2022.167532 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First measurements of remoTES cryogenic calorimeters: easy-to-fabricate particle detectors for a wide choice of target materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&amp;query=Bharadwaj%2C+M+R">M. R. Bharadwaj</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Einfalt%2C+L">L. Einfalt</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fichtinger%2C+S">S. Fichtinger</a>, <a href="/search/physics?searchtype=author&amp;query=Filipponi%2C+A">A. Filipponi</a>, <a href="/search/physics?searchtype=author&amp;query=Frank%2C+T">T. Frank</a>, <a href="/search/physics?searchtype=author&amp;query=Friedl%2C+M">M. Friedl</a>, <a href="/search/physics?searchtype=author&amp;query=Fuss%2C+A">A. Fuss</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Z. Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Heikinheimo%2C+M">M. Heikinheimo</a>, <a href="/search/physics?searchtype=author&amp;query=Huitu%2C+K">K. Huitu</a>, <a href="/search/physics?searchtype=author&amp;query=Kellermann%2C+M">M. Kellermann</a>, <a href="/search/physics?searchtype=author&amp;query=Maji%2C+R">R. Maji</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Petricca%2C+F">F. Petricca</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Proebst%2C+F">F. Proebst</a>, <a href="/search/physics?searchtype=author&amp;query=Profeta%2C+G">G. Profeta</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Reindl%2C+F">F. Reindl</a>, <a href="/search/physics?searchtype=author&amp;query=Schaeffner%2C+K">K. Schaeffner</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.00349v2-abstract-short" style="display: inline;"> Low-temperature calorimeters based on a readout via Transition Edge Sensors (TESs) and operated below $100$ mK are well suited for rare event searches with outstanding resolution and low thresholds. We present first experimental results from two detector prototypes using a novel design of the thermometer coupling denoted remoTES, which further extends the applicability of the TES technology by inc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00349v2-abstract-full').style.display = 'inline'; document.getElementById('2111.00349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.00349v2-abstract-full" style="display: none;"> Low-temperature calorimeters based on a readout via Transition Edge Sensors (TESs) and operated below $100$ mK are well suited for rare event searches with outstanding resolution and low thresholds. We present first experimental results from two detector prototypes using a novel design of the thermometer coupling denoted remoTES, which further extends the applicability of the TES technology by including a wider class of potential absorber materials. In particular, this design facilitates the use of materials whose physical and chemical properties, as e.g. hygroscopicity, low hardness and low melting point, prevent the direct fabrication of the TES onto their surface. This is especially relevant in the context of the COSINUS experiment (Cryogenic Observatory for SIgnals seen in Next-Generation Underground Searches), where sodium iodide (NaI) is used as absorber material. With two remoTES prototype detectors operated in an above-ground R&amp;D facility, we achieve energy resolutions of $蟽=87.8$ eV for a $2.33$ g silicon absorber and $蟽= 193.5$ eV for a $2.27$ g $伪$-TeO$_{2}$ absorber, respectively. RemoTES calorimeters offer - besides the wider choice of absorber materials - a simpler production process combined with a higher reproducibility for large detector arrays and an enhanced radiopurity standard. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.00349v2-abstract-full').style.display = 'none'; document.getElementById('2111.00349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1045 (2023) 167532 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03934">arXiv:2110.03934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03934">pdf</a>, <a href="https://arxiv.org/format/2110.03934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.166682">10.1016/j.nima.2022.166682 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of cryogenic calorimeters to measure the spectral shape of In-115 beta decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Galazka%2C+Z">Z. Galazka</a>, <a href="/search/physics?searchtype=author&amp;query=Laubenstein%2C+M">M. Laubenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03934v1-abstract-short" style="display: inline;"> The spectral shape of forbidden beta-decays is a crucial benchmark for nuclear physics calculations and has important implications also for astroparticle physics experiments. Among the interesting isotopes in this field, $^{115}$In is an excellent candidate, being a primordial nuclide featuring a good compromise among Q-value (497.954 keV) and half-life (4.41$\times$10$^{14}$ yr). In this paper, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03934v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03934v1-abstract-full" style="display: none;"> The spectral shape of forbidden beta-decays is a crucial benchmark for nuclear physics calculations and has important implications also for astroparticle physics experiments. Among the interesting isotopes in this field, $^{115}$In is an excellent candidate, being a primordial nuclide featuring a good compromise among Q-value (497.954 keV) and half-life (4.41$\times$10$^{14}$ yr). In this paper, we propose to exploit a cryogenic calorimeter based on In$_2$O$_3$ crystal to perform a high-precision measurement of the $尾$-decay energy spectrum, discussing also the results obtained within a preliminary test of this crystal and the next steps to improve the detector performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03934v1-abstract-full').style.display = 'none'; document.getElementById('2110.03934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 166682 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl.Instrum.Meth.A 1033 (2022) 166682 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07883">arXiv:2108.07883</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.07883">pdf</a>, <a href="https://arxiv.org/format/2108.07883">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2021.103902">10.1016/j.ppnp.2021.103902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUORE Opens the Door to Tonne-scale Cryogenics Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alessandria%2C+F">F. Alessandria</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Andreotti%2C+E">E. Andreotti</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&amp;query=Biare%2C+D">D. Biare</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bragazzi%2C+F">F. Bragazzi</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bryant%2C+A">A. Bryant</a>, <a href="/search/physics?searchtype=author&amp;query=Buccheri%2C+A">A. Buccheri</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07883v2-abstract-short" style="display: inline;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require eve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'inline'; document.getElementById('2108.07883v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07883v2-abstract-full" style="display: none;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'none'; document.getElementById('2108.07883v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog. Part. Nucl. Phys., 122 (2021), Article 103902 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07390">arXiv:2106.07390</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07390">pdf</a>, <a href="https://arxiv.org/format/2106.07390">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10184-5">10.1140/epjc/s10052-022-10184-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation-based design study for the passive shielding of the COSINUS dark matter experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fichtinger%2C+S">S. Fichtinger</a>, <a href="/search/physics?searchtype=author&amp;query=Filipponi%2C+A">A. Filipponi</a>, <a href="/search/physics?searchtype=author&amp;query=Friedl%2C+M">M. Friedl</a>, <a href="/search/physics?searchtype=author&amp;query=Fuss%2C+A">A. Fuss</a>, <a href="/search/physics?searchtype=author&amp;query=Ge%2C+Z">Z. Ge</a>, <a href="/search/physics?searchtype=author&amp;query=Heikinheimo%2C+M">M. Heikinheimo</a>, <a href="/search/physics?searchtype=author&amp;query=Huitu%2C+K">K. Huitu</a>, <a href="/search/physics?searchtype=author&amp;query=Maji%2C+R">R. Maji</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Petricca%2C+F">F. Petricca</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pr%C3%B6bst%2C+F">F. Pr枚bst</a>, <a href="/search/physics?searchtype=author&amp;query=Profeta%2C+G">G. Profeta</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Reindl%2C+F">F. Reindl</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4ffner%2C+K">K. Sch盲ffner</a>, <a href="/search/physics?searchtype=author&amp;query=Schieck%2C+J">J. Schieck</a>, <a href="/search/physics?searchtype=author&amp;query=Schmiedmayer%2C+D">D. Schmiedmayer</a>, <a href="/search/physics?searchtype=author&amp;query=Schwertner%2C+C">C. Schwertner</a>, <a href="/search/physics?searchtype=author&amp;query=Stahlberg%2C+M">M. Stahlberg</a> , et al. (6 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07390v1-abstract-short" style="display: inline;"> The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07390v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07390v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07390v1-abstract-full" style="display: none;"> The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07390v1-abstract-full').style.display = 'none'; document.getElementById('2106.07390v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04409">arXiv:2105.04409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.04409">pdf</a>, <a href="https://arxiv.org/format/2105.04409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09476-z">10.1140/epjc/s10052-021-09476-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background identification in cryogenic calorimeters through $伪-伪$ delayed coincidences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04409v2-abstract-short" style="display: inline;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to inv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04409v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04409v2-abstract-full" style="display: none;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $伪$ decay position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'none'; document.getElementById('2105.04409v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 722 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03329">arXiv:2105.03329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03329">pdf</a>, <a href="https://arxiv.org/format/2105.03329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136642">10.1016/j.physletb.2021.136642 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of $^{216}$Po half-life with the CUPID-0 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03329v2-abstract-short" style="display: inline;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'inline'; document.getElementById('2105.03329v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03329v2-abstract-full" style="display: none;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited exposure. In this paper, we present a further application. Exploiting the analysis of delayed coincidence, we can identify the signals caused by the $^{220}$Rn-$^{216}$Po decay sequence on an event-by-event basis. The analysis of these events allows us to extract the time differences between the two decays, leading to a new evaluation of $^{216}$ half-life, estimated as (143.3 $\pm$ 2.8) ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'none'; document.getElementById('2105.03329v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03140">arXiv:2105.03140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03140">pdf</a>, <a href="https://arxiv.org/format/2105.03140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09759-5">10.1140/epjc/s10052-021-09759-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improving radioactive contaminant identification through the analysis of delayed coincidences with an $伪$-spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baccolo%2C+G">G. Baccolo</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Nastasi%2C+M">M. Nastasi</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">S. Pozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Sisti%2C+M">M. Sisti</a>, <a href="/search/physics?searchtype=author&amp;query=Terragni%2C+G">G. Terragni</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03140v3-abstract-short" style="display: inline;"> In the framework of rare event searches, the identification of radioactive contaminants in ultra-pure samples is a challenging task, because the signal is often at the same level of the instrumental background. This is a rather common situation for $伪$-spectrometers and other detectors used for low-activity measurements. In order to obtain the target sensitivity without extending the data taking l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03140v3-abstract-full').style.display = 'inline'; document.getElementById('2105.03140v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03140v3-abstract-full" style="display: none;"> In the framework of rare event searches, the identification of radioactive contaminants in ultra-pure samples is a challenging task, because the signal is often at the same level of the instrumental background. This is a rather common situation for $伪$-spectrometers and other detectors used for low-activity measurements. In order to obtain the target sensitivity without extending the data taking live-time, analysis strategies that highlight the presence of the signal sought should be developed. In this paper, we show how to improve the contaminant tagging capability relying on the time-correlation of radioactive decay sequences. We validate the proposed technique by measuring the impurity level of both contaminated and ultra-pure copper samples, demonstrating the potential of this analysis tool in disentangling different background sources and providing an effective way to mitigate their impact in rare event searches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03140v3-abstract-full').style.display = 'none'; document.getElementById('2105.03140v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 971 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08672">arXiv:2103.08672</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08672">pdf</a>, <a href="https://arxiv.org/format/2103.08672">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2021/10/064">10.1088/1475-7516/2021/10/064 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Iachellini%2C+N+F">N. Ferreiro Iachellini</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+E">E. Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Garai%2C+A">A. Garai</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Mancuso%2C+M">M. Mancuso</a>, <a href="/search/physics?searchtype=author&amp;query=Nisi%2C+S">S. Nisi</a>, <a href="/search/physics?searchtype=author&amp;query=Petricca%2C+F">F. Petricca</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">S. Pozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Puiu%2C+A">A. Puiu</a>, <a href="/search/physics?searchtype=author&amp;query=Rothe%2C+J">J. Rothe</a>, <a href="/search/physics?searchtype=author&amp;query=Schoenert%2C+S">S. Schoenert</a>, <a href="/search/physics?searchtype=author&amp;query=Shtembari%2C+L">L. Shtembari</a>, <a href="/search/physics?searchtype=author&amp;query=Strauss%2C+R">R. Strauss</a>, <a href="/search/physics?searchtype=author&amp;query=Wagner%2C+V">V. Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08672v3-abstract-short" style="display: inline;"> RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CE$谓$NS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). RES-NOVA with only a total active volume of (60 cm)$^3$ and an energy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08672v3-abstract-full').style.display = 'inline'; document.getElementById('2103.08672v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08672v3-abstract-full" style="display: none;"> RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CE$谓$NS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). RES-NOVA with only a total active volume of (60 cm)$^3$ and an energy threshold of 1 keV will probe the entire Milky Way Galaxy for (failed) core-collapse SNe with $&gt; 3 蟽$ detection significance. The high detector modularity makes RES-NOVA ideal also for reconstructing the main parameters (e.g. average neutrino energy, star binding energy) of SNe occurring in our vicinity, without deterioration of the detector performance caused by the high neutrino interaction rate. For the first time, distances $&lt;3$ kpc can be surveyed, similarly to the ones where all known past galactic SNe happened. We discuss the RES-NOVA potential, accounting for a realistic setup, considering the detector geometry, modularity and background level in the region of interest. We report on the RES-NOVA background model and on the sensitivity to SN neutrinos as a function of the distance travelled by neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08672v3-abstract-full').style.display = 'none'; document.getElementById('2103.08672v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 10 (2021) 064 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.05873">arXiv:2012.05873</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.05873">pdf</a>, <a href="https://arxiv.org/format/2012.05873">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-08918-y">10.1140/epjc/s10052-021-08918-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for double $尾$-decay modes of $^{64}$Zn using purified zinc </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Gorbenko%2C+Y+V">Yu. V. Gorbenko</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Kovtun%2C+G+P">G. P. Kovtun</a>, <a href="/search/physics?searchtype=author&amp;query=Laubenstein%2C+M">M. Laubenstein</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Nisi%2C+S">S. Nisi</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Schaffner%2C+K">K. Schaffner</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.05873v1-abstract-short" style="display: inline;"> The production of ultra-pure raw material is a crucial step to ensure the required background level in rare event searches. In this work, we establish an innovative technique developed to produce high-purity (99.999%) granular zinc. We demonstrate the effectiveness of the refining procedure by measuring the internal contaminations of the purified zinc with a high-purity germanium detector at the L&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05873v1-abstract-full').style.display = 'inline'; document.getElementById('2012.05873v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.05873v1-abstract-full" style="display: none;"> The production of ultra-pure raw material is a crucial step to ensure the required background level in rare event searches. In this work, we establish an innovative technique developed to produce high-purity (99.999%) granular zinc. We demonstrate the effectiveness of the refining procedure by measuring the internal contaminations of the purified zinc with a high-purity germanium detector at the Laboratori Nazionali del Gran Sasso. The total activity of cosmogenic activated nuclides is measured at the level of a few mBq/kg, as well as limits on naturally occurring radionuclides are set to less than mBq/kg. The excellent radiopurity of the zinc sample allows us to search for electron capture with positron emission and neutrinoless double electron capture of $^{64}$Zn, setting the currently most stringent lower limits on their half-lives, $T_{1/2}^{\varepsilon尾^+} &gt; 2.7 \times 10^{21}\text{yr}$ (90% C.I.), and $T_{1/2}^{0\nu2\varepsilon}&gt; 2.6 \times 10^{21}\text{yr}$ (90% C.I.), respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.05873v1-abstract-full').style.display = 'none'; document.getElementById('2012.05873v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13806">arXiv:2011.13806</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13806">pdf</a>, <a href="https://arxiv.org/format/2011.13806">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02037">10.1088/1748-0221/16/02/P02037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A CUPID Li$_{2}$$^{100}$MoO$_4$ scintillating bolometer tested in the CROSS underground facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+CUPID+Interest+Group"> The CUPID Interest Group</a>, <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13806v1-abstract-short" style="display: inline;"> A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2尾$ experiment CUPID. The measurements were performed at 18 an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13806v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13806v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13806v1-abstract-full" style="display: none;"> A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2尾$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $纬$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($\sim$8$蟽$) between $纬$($尾$) and $伪$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $渭$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0\nu2尾$ decay in CROSS and CUPID projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13806v1-abstract-full').style.display = 'none'; document.getElementById('2011.13806v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13656">arXiv:2011.13656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.13656">pdf</a>, <a href="https://arxiv.org/format/2011.13656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Characterization of cubic Li$_{2}$$^{100}$MoO$_4$ crystals for the CUPID experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A">A. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A8%2C+L">L. Berg猫</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13656v1-abstract-short" style="display: inline;"> The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13656v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13656v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13656v1-abstract-full" style="display: none;"> The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of (6.7$\pm$0.6) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $伪$ particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $伪$-induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13656v1-abstract-full').style.display = 'none'; document.getElementById('2011.13656v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11726">arXiv:2011.11726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.11726">pdf</a>, <a href="https://arxiv.org/format/2011.11726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.015501">10.1103/PhysRevC.104.015501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel technique for the study of pile-up events in cryogenic bolometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A">A. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11726v2-abstract-short" style="display: inline;"> Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11726v2-abstract-full').style.display = 'inline'; document.getElementById('2011.11726v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11726v2-abstract-full" style="display: none;"> Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15ms down to time separation between the individual events of about 2ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11726v2-abstract-full').style.display = 'none'; document.getElementById('2011.11726v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 104, 015501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09295">arXiv:2011.09295</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.09295">pdf</a>, <a href="https://arxiv.org/format/2011.09295">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> New results from the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/physics?searchtype=author&amp;query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&amp;query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&amp;query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a> , et al. (88 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09295v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0谓尾尾$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09295v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09295v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09295v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0谓尾尾$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its 2\textsuperscript{nd} result of the search for $0谓尾尾$ with a TeO$_2$ exposure of 372.5 kg$\cdot$yr and a median exclusion sensitivity to a $^{130}$Te $0谓尾尾$ decay half-life of $1.7\cdot 10^{25}$ yr. We find no evidence for $0谓尾尾$ decay and set a 90\% C.I. (credibility interval) Bayesian lower limit of $3.2\cdot 10^{25}$ yr on the $^{130}$Te $0谓尾尾$ decay half-life. In this work, we present the current status of CUORE&#39;s search for $0谓尾尾$, as well as review the detector performance. Finally, we give an update of the CUORE background model and the measurement of the $^{130}$Te two neutrino double-beta ($2谓尾尾$) decay half-life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09295v2-abstract-full').style.display = 'none'; document.getElementById('2011.09295v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of 40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic (virtual meeting). arXiv admin note: text overlap with arXiv:1905.07667</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04033">arXiv:2010.04033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.04033">pdf</a>, <a href="https://arxiv.org/format/2010.04033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/03/P03032">10.1088/1748-0221/16/03/P03032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse Shape Discrimination in CUPID-Mo using Principal Component Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Huang%2C+R">R. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V+B">V. B. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&amp;query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04033v2-abstract-short" style="display: inline;"> CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay ($0谓尾尾$) of $^{100}$Mo. It uses 20 scintillating $^{100}$Mo-enriched Li$_2$MoO$_4$ bolometers instrumented with Ge light detectors to perform active suppression of $伪$ backgrounds, drastically reducing the expected background in the $0谓尾尾$ signal region. As a result, pileup events and small detector instab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04033v2-abstract-full').style.display = 'inline'; document.getElementById('2010.04033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04033v2-abstract-full" style="display: none;"> CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay ($0谓尾尾$) of $^{100}$Mo. It uses 20 scintillating $^{100}$Mo-enriched Li$_2$MoO$_4$ bolometers instrumented with Ge light detectors to perform active suppression of $伪$ backgrounds, drastically reducing the expected background in the $0谓尾尾$ signal region. As a result, pileup events and small detector instabilities that mimic normal signals become non-negligible potential backgrounds. These types of events can in principle be eliminated based on their signal shapes, which are different from those of regular bolometric pulses. We show that a purely data-driven principal component analysis based approach is able to filter out these anomalous events, without the aid of detector response simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04033v2-abstract-full').style.display = 'none'; document.getElementById('2010.04033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 (2021) P03032 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.13851">arXiv:2006.13851</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.13851">pdf</a>, <a href="https://arxiv.org/ps/2006.13851">ps</a>, <a href="https://arxiv.org/format/2006.13851">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164474">10.1016/j.nima.2020.164474 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of a Silicon Drift Detector for High-Resolution Electron Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gugiatti%2C+M">Matteo Gugiatti</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">Matteo Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Carminati%2C+M">Marco Carminati</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">Oliviero Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=King%2C+P">Pietro King</a>, <a href="/search/physics?searchtype=author&amp;query=Lechner%2C+P">Peter Lechner</a>, <a href="/search/physics?searchtype=author&amp;query=Mertens%2C+S">Susanne Mertens</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">Lorenzo Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">Maura Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">Stefano Pozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.13851v2-abstract-short" style="display: inline;"> Silicon Drift Detectors, widely employed in high-resolution and high-rate X-ray applications, are considered here with interest also for electron detection. The accurate measurement of the tritium beta decay is the core of the TRISTAN (TRitium Investigation on STerile to Active Neutrino mixing) project. This work presents the characterization of a single-pixel SDD detector with a mono-energetic el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13851v2-abstract-full').style.display = 'inline'; document.getElementById('2006.13851v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.13851v2-abstract-full" style="display: none;"> Silicon Drift Detectors, widely employed in high-resolution and high-rate X-ray applications, are considered here with interest also for electron detection. The accurate measurement of the tritium beta decay is the core of the TRISTAN (TRitium Investigation on STerile to Active Neutrino mixing) project. This work presents the characterization of a single-pixel SDD detector with a mono-energetic electron beam obtained from a Scanning Electron Microscope. The suitability of the SDD to detect electrons, in the energy range spanning from few keV to tens of keV, is demonstrated. Experimental measurements reveal a strong effect of the detector&#39;s entrance window structure on the observed energy response. A detailed detector model is therefore necessary to reconstruct the spectrum of an unknown beta-decay source. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.13851v2-abstract-full').style.display = 'none'; document.getElementById('2006.13851v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.11026">arXiv:2003.11026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.11026">pdf</a>, <a href="https://arxiv.org/format/2003.11026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Electron spectrometry with SDDs: a GEANT4 based method for detector response reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">Matteo Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Gugiatti%2C+M">Matteo Gugiatti</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">Silvia Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Carminati%2C+M">Marco Carminati</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">Oliviero Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Lechner%2C+P">Peter Lechner</a>, <a href="/search/physics?searchtype=author&amp;query=Mertens%2C+S">Susanne Mertens</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">Lorenzo Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">Maura Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">Stefano Pozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.11026v1-abstract-short" style="display: inline;"> Electron spectrometry is traditionally challenging due to the difficulty of correctly reconstructing the original energy of the detected electrons. Silicon Drift Detectors, extensively used for X-ray spectrometry, are a promising technology for the precise measurement of electrons energy. The ability to correctly model the detector entrance window response to the energy deposited by electrons is a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11026v1-abstract-full').style.display = 'inline'; document.getElementById('2003.11026v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.11026v1-abstract-full" style="display: none;"> Electron spectrometry is traditionally challenging due to the difficulty of correctly reconstructing the original energy of the detected electrons. Silicon Drift Detectors, extensively used for X-ray spectrometry, are a promising technology for the precise measurement of electrons energy. The ability to correctly model the detector entrance window response to the energy deposited by electrons is a critical aspect of this application. We hereby describe a MonteCarlo-based approach to this problem, together with characterization and validation measurements performed with electron beams from a Scanning Electron Microscope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.11026v1-abstract-full').style.display = 'none'; document.getElementById('2003.11026v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.10840">arXiv:2003.10840</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.10840">pdf</a>, <a href="https://arxiv.org/format/2003.10840">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8280-4">10.1140/epjc/s10052-020-8280-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Neutrino-less Double Beta Decay of $^{64}$Zn and $^{70}$Zn with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremomesi%2C+O">O. Cremomesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.10840v2-abstract-short" style="display: inline;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrino-less double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Laboratori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg$\times$yr to search for the neutrino-less double beta decay of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10840v2-abstract-full').style.display = 'inline'; document.getElementById('2003.10840v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.10840v2-abstract-full" style="display: none;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project searching for neutrino-less double beta decay. In its first scientific run, CUPID-0 operated 26 ZnSe cryogenic calorimeters coupled to light detectors in the underground Laboratori Nazionali del Gran Sasso. In this work, we analyzed a ZnSe exposure of 11.34 kg$\times$yr to search for the neutrino-less double beta decay of $^{70}$Zn and for the neutrino-less positron-emitting electron capture of $^{64}$Zn. We found no evidence for these decays and set 90$\%$ credible interval limits of ${\rm T}_{1/2}^{0谓尾尾}(^{70}{\rm Zn}) &gt; 1.6 \times 10^{21}$ yr and ${\rm T}_{1/2}^{0谓EC 尾+}(^{64}{\rm Zn}) &gt; 1.2 \times 10^{22}$ yr, surpassing by almost two orders of magnitude the previous experimental results <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.10840v2-abstract-full').style.display = 'none'; document.getElementById('2003.10840v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.07272">arXiv:1912.07272</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.07272">pdf</a>, <a href="https://arxiv.org/ps/1912.07272">ps</a>, <a href="https://arxiv.org/format/1912.07272">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8203-4">10.1140/epjc/s10052-020-8203-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Precise measurement of $2谓尾尾$ decay of $^{100}$Mo with the CUPID-Mo detection technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+M">M. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&amp;query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&amp;query=Eitel%2C+K">K. Eitel</a> , et al. (65 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.07272v1-abstract-short" style="display: inline;"> We report the measurement of the two-neutrino double-beta ($2谓尾尾$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07272v1-abstract-full').style.display = 'inline'; document.getElementById('1912.07272v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.07272v1-abstract-full" style="display: none;"> We report the measurement of the two-neutrino double-beta ($2谓尾尾$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2谓}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2谓尾尾$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $&gt;3蟽$, that the single-state dominance model of the $2谓尾尾$ decay of $^{100}$Mo is favored over the high-state dominance model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.07272v1-abstract-full').style.display = 'none'; document.getElementById('1912.07272v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.13217">arXiv:1911.13217</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.13217">pdf</a>, <a href="https://arxiv.org/format/1911.13217">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.164160">10.1016/j.nima.2020.164160 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Na-based crystal scintillators for next-generation rare event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Sorbino%2C+S">S. Sorbino</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Grigorieva%2C+V+D">V. D. Grigorieva</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Nisi%2C+S">S. Nisi</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4ffner%2C+K">K. Sch盲ffner</a>, <a href="/search/physics?searchtype=author&amp;query=Shlegel%2C+V+N">V. N. Shlegel</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.13217v1-abstract-short" style="display: inline;"> The growing interest in clarifying the controversial situation in the Dark Matter sector has driven the experimental efforts towards new ways to investigate the long-standing DAMA/LIBRA result. Among them, low-temperature calorimeters based on Na-containing scintillating crystals offer the possibility to clarify the nature of the measured signal via particle identification. Here we report the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13217v1-abstract-full').style.display = 'inline'; document.getElementById('1911.13217v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.13217v1-abstract-full" style="display: none;"> The growing interest in clarifying the controversial situation in the Dark Matter sector has driven the experimental efforts towards new ways to investigate the long-standing DAMA/LIBRA result. Among them, low-temperature calorimeters based on Na-containing scintillating crystals offer the possibility to clarify the nature of the measured signal via particle identification. Here we report the first measurement of Na-containing crystals, based on material different from NaI, i.e. Na$_2$Mo$_2$O$_7$ and Na$_2$W$_2$O$_7$, pointing out their excellent performance in term of energy resolution, light yield, and particle identification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.13217v1-abstract-full').style.display = 'none'; document.getElementById('1911.13217v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.10426">arXiv:1911.10426</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.10426">pdf</a>, <a href="https://arxiv.org/format/1911.10426">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1742-6596/1468/1/012129">10.1088/1742-6596/1468/1/012129 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First data from the CUPID-Mo neutrinoless double beta decay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Schmidt%2C+B">B. Schmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+M">M. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V+B">V. B. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&amp;query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a> , et al. (65 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.10426v1-abstract-short" style="display: inline;"> The CUPID-Mo experiment is searching for neutrinoless double beta decay in $^{100}$Mo, evaluating the technology of cryogenic scintillating Li$_{2}^{100}$MoO$_4$ detectors for CUPID (CUORE Upgrade with Particle ID). CUPID-Mo detectors feature background suppression using a dual-readout scheme with Li$_{2}$MoO$_4$ crystals complemented by Ge bolometers for light detection. The detection of both hea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10426v1-abstract-full').style.display = 'inline'; document.getElementById('1911.10426v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.10426v1-abstract-full" style="display: none;"> The CUPID-Mo experiment is searching for neutrinoless double beta decay in $^{100}$Mo, evaluating the technology of cryogenic scintillating Li$_{2}^{100}$MoO$_4$ detectors for CUPID (CUORE Upgrade with Particle ID). CUPID-Mo detectors feature background suppression using a dual-readout scheme with Li$_{2}$MoO$_4$ crystals complemented by Ge bolometers for light detection. The detection of both heat and scintillation light signals allows the efficient discrimination of $伪$ from $纬$&amp;$尾$ events. In this proceedings, we discuss results from the first 2 months of data taking in spring 2019. In addition to an excellent bolometric performance of 6.7$\,$keV (FWHM) at 2615$\,$keV and an $伪$ separation of better than 99.9\% for all detectors, we report on bulk radiopurity for Th and U. Finally, we interpret the accumulated physics data in terms of a limit of $T_{1/2}^{0谓}\,&gt; 3\times10^{23}\,$yr for $^{100}$Mo and discuss the sensitivity of CUPID-Mo until the expected end of physics data taking in early 2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.10426v1-abstract-full').style.display = 'none'; document.getElementById('1911.10426v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for TAUP 2019, submitted to IOP Journal of Physics: Conference Series</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Physics: Conference Series 1468 (2020) 012129 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.02446">arXiv:1911.02446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.02446">pdf</a>, <a href="https://arxiv.org/format/1911.02446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.092002">10.1103/PhysRevD.100.092002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First search for Lorentz violation in double beta decay with scintillating calorimeters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.02446v1-abstract-short" style="display: inline;"> We present the search for Lorentz violation in the double beta decay of ^{82}Se~with CUPID-0, using an exposure of 9.95 kg x y. We found no evidence for the searched signal and set a limit on the isotropic components of the Lorentz violating coefficient of $\mathring{a}_{\text{of}}^{(3)} &lt; 4.1\cdot10^{-6}$ GeV (90\% Credible Interval). This results is obtained with a Bayesian analysis of the exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02446v1-abstract-full').style.display = 'inline'; document.getElementById('1911.02446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.02446v1-abstract-full" style="display: none;"> We present the search for Lorentz violation in the double beta decay of ^{82}Se~with CUPID-0, using an exposure of 9.95 kg x y. We found no evidence for the searched signal and set a limit on the isotropic components of the Lorentz violating coefficient of $\mathring{a}_{\text{of}}^{(3)} &lt; 4.1\cdot10^{-6}$ GeV (90\% Credible Interval). This results is obtained with a Bayesian analysis of the experimental data and fully includes the systematic uncertainties of the model. This is the first limit on $\mathring{a}_{\text{of}}^{(3)}$ obtained with a scintillating bolometer, showing the potentiality of this technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.02446v1-abstract-full').style.display = 'none'; document.getElementById('1911.02446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> O. Azzolini et al., Phys. Rev. D 100, 092002 - Published 6 November 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02994">arXiv:1909.02994</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02994">pdf</a>, <a href="https://arxiv.org/format/1909.02994">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7578-6">10.1140/epjc/s10052-019-7578-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&amp;query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&amp;query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&amp;query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Briere%2C+M">M. Briere</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V+B">V. B. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&amp;query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&amp;query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&amp;query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&amp;query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&amp;query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&amp;query=Eitel%2C+K">K. Eitel</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02994v1-abstract-short" style="display: inline;"> CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0谓尾尾$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of $^{100}$Mo-enriched 0.2 kg Li$_2$MoO&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02994v1-abstract-full').style.display = 'inline'; document.getElementById('1909.02994v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02994v1-abstract-full" style="display: none;"> CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0谓尾尾$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and provide results from the first datasets. The demonstrator consists of an array of 20 scintillating bolometers comprised of $^{100}$Mo-enriched 0.2 kg Li$_2$MoO$_4$ crystals. The detectors are complemented by 20 thin cryogenic Ge bolometers acting as light detectors to distinguish $伪$ from $纬$/$尾$ events by the detection of both heat and scintillation light signals. We observe good detector uniformity, facilitating the operation of a large detector array as well as excellent energy resolution of 5.3 keV (6.5 keV) FWHM at 2615 keV, in calibration (physics) data. Based on the observed energy resolutions and light yields a separation of $伪$ particles at much better than 99.9\% with equally high acceptance for $纬$/$尾$ events is expected for events in the region of interest for $^{100}$Mo $0谓尾尾$. We present limits on the crystals&#39; radiopurity ($\leq$3 $渭$Bq/kg of $^{226}$Ra and $\leq$2 $渭$Bq/kg of $^{232}$Th). Based on these initial results we also discuss a sensitivity study for the science reach of the CUPID-Mo experiment, in particular, the ability to set the most stringent half-life limit on the $^{100}$Mo $0谓尾尾$ decay after half a year of livetime. The achieved results show that CUPID-Mo is a successful demonstrator of the technology - developed in the framework of the LUMINEU project - selected for the CUPID experiment, a proposed follow-up of CUORE, the currently running first tonne-scale cryogenic $0谓尾尾$ experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02994v1-abstract-full').style.display = 'none'; document.getElementById('1909.02994v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 18 figures, 3 tables; to be submitted to EPJC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.09296">arXiv:1906.09296</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.09296">pdf</a>, <a href="https://arxiv.org/format/1906.09296">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Production and characterization of a PbMoO$_4$ cryogenic detector from archaeological Pb </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a>, <a href="/search/physics?searchtype=author&amp;query=Nisi%2C+S">S. Nisi</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Schaeffner%2C+K">K. Schaeffner</a>, <a href="/search/physics?searchtype=author&amp;query=Shlegel%2C+V+N">V. N. Shlegel</a>, <a href="/search/physics?searchtype=author&amp;query=Zhdankov%2C+V+N">V. N. Zhdankov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.09296v2-abstract-short" style="display: inline;"> We operated a PbMoO$_4$ scintillating cryogenic detector of 570 g, produced with archaeological lead. This compound features excellent low temperature characteristics in terms of light yield, 12 keV/MeV for $尾/纬$ interactions, and FWHM energy resolution, 11.7 keV at 2.6 MeV. Furthermore, the detector allows for an effective particle identification by means of pulse shape analysis on the heat read-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09296v2-abstract-full').style.display = 'inline'; document.getElementById('1906.09296v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.09296v2-abstract-full" style="display: none;"> We operated a PbMoO$_4$ scintillating cryogenic detector of 570 g, produced with archaeological lead. This compound features excellent low temperature characteristics in terms of light yield, 12 keV/MeV for $尾/纬$ interactions, and FWHM energy resolution, 11.7 keV at 2.6 MeV. Furthermore, the detector allows for an effective particle identification by means of pulse shape analysis on the heat read-out channel. The implementation of innovative techniques and procedures for the purification of raw materials used for the crystal growth, and the highly-pure archaeological Pb, allowed the production of large volume high quality crystal. The overall characteristics of the detector operated at cryogenic temperatures makes PbMoO$_4$ an excellent compound for neutrino physics applications, especially neutrinoless double-beta studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.09296v2-abstract-full').style.display = 'none'; document.getElementById('1906.09296v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A 56, (2020) 38 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05001">arXiv:1906.05001</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.05001">pdf</a>, <a href="https://arxiv.org/format/1906.05001">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.032501">10.1103/PhysRevLett.123.032501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final result of CUPID-0 phase-I in the search for the $^{82}$Se Neutrinoless Double Beta Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05001v1-abstract-short" style="display: inline;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0$谓$DBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a $^{82}$Se exposure of 5.29 kg$\times$yr. In this paper w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05001v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05001v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05001v1-abstract-full" style="display: none;"> CUPID-0 is the first pilot experiment of CUPID, a next-generation project for the measurement of neutrinoless double beta decay (0$谓$DBD) with scintillating bolometers. The detector, consisting of 24 enriched and 2 natural ZnSe crystals, has been taking data at Laboratori Nazionali del Gran Sasso from June 2017 to December 2018, collecting a $^{82}$Se exposure of 5.29 kg$\times$yr. In this paper we present the phase-I results in the search for 0$谓$DBD. We demonstrate that the technology implemented by CUPID-0 allows us to reach the lowest background for calorimetric experiments: $(3.5^{+1.0}_{-0.9})\times10^{-3}$ counts/(keV kg yr). Monitoring 3.88$\times$10$^{25}$ $^{82}$Se nuclei$\times$yr we reach a 90% credible interval median sensitivity of $\rm{T}^{0谓}_{1/2}&gt;5.0\times10^{24} \rm{yr}$ and set the most stringent limit on the half-life of $^{82}$Se 0$谓$DBD : $\rm{T}^{0谓}_{1/2}&gt;3.5\times10^{24} \rm{yr}$ (90% credible interval), corresponding to m$_{尾尾} &lt;$ (311-638) meV depending on the nuclear matrix element calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05001v1-abstract-full').style.display = 'none'; document.getElementById('1906.05001v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 032501 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.12087">arXiv:1905.12087</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.12087">pdf</a>, <a href="https://arxiv.org/format/1905.12087">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A novel application of solid state detectors for high precision, low systematics measurement of beta decay energy spectra of interest for neutrino and nuclear physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">Matteo Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Carminati%2C+M">Marco Carminati</a>, <a href="/search/physics?searchtype=author&amp;query=Coraggio%2C+L">Luigi Coraggio</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">Oliviero Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+C">Carlo Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">Claudio Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Gugiatti%2C+M">Matteo Gugiatti</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">Lorenzo Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">Maura Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">Stefano Pozzi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.12087v1-abstract-short" style="display: inline;"> This project is focused on the development of a novel strategy for the precise measurement of beta decay energy spectra. The exact determination of beta spectra has wide implications in the particle and nuclear physics fields: from sterile neutrino searches \cite{Adhikari 2016} to validation of nuclear models of interest for double beta decay searches \cite{Suhonen 2017}, to reactor neutrino exper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12087v1-abstract-full').style.display = 'inline'; document.getElementById('1905.12087v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.12087v1-abstract-full" style="display: none;"> This project is focused on the development of a novel strategy for the precise measurement of beta decay energy spectra. The exact determination of beta spectra has wide implications in the particle and nuclear physics fields: from sterile neutrino searches \cite{Adhikari 2016} to validation of nuclear models of interest for double beta decay searches \cite{Suhonen 2017}, to reactor neutrino experiments. The experimental strategy is focused on the mitigation of the systematic uncertainty in the determination of the spectral shape related to the energy response of the detector. The plan is to use Silicon Drift Detectors (SDDs), exploiting their excellent energy resolution and response uniformity, the thin dead layer and the fast signal that allows high rate operations. A complete modeling of SDDs response to the interaction of beta particles via numerical simulations, validated with dedicated measurements, aims at identifying and canceling the detector-related systematics. Similar attention will be devoted to the integration of beta radioactive sources that preserve the energy information carried by the emitted electrons, and to a veto system with a full solid angle coverage to intercept any escaping particle potentially carrying a fraction of the original electron energy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.12087v1-abstract-full').style.display = 'none'; document.getElementById('1905.12087v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.10397">arXiv:1904.10397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.10397">pdf</a>, <a href="https://arxiv.org/format/1904.10397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7078-8">10.1140/epjc/s10052-019-7078-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background Model of the CUPID-0 Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&amp;query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&amp;query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&amp;query=Martinez%2C+M">M. Martinez</a>, <a href="/search/physics?searchtype=author&amp;query=Nagorny%2C+S">S. Nagorny</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.10397v2-abstract-short" style="display: inline;"> CUPID-0 is the first large mass array of enriched Zn$^{82}$Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg yr. Thanks to the excellent rejection of $伪$ particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10397v2-abstract-full').style.display = 'inline'; document.getElementById('1904.10397v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.10397v2-abstract-full" style="display: none;"> CUPID-0 is the first large mass array of enriched Zn$^{82}$Se scintillating low temperature calorimeters, operated at LNGS since 2017. During its first scientific runs, CUPID-0 collected an exposure of 9.95 kg yr. Thanks to the excellent rejection of $伪$ particles, we attained the lowest background ever measured with thermal detectors in the energy region where we search for the signature of $^{82}$Se neutrinoless double beta decay. In this work we develop a model to reconstruct the CUPID-0 background over the whole energy range of experimental data. We identify the background sources exploiting their distinctive signatures and we assess their extremely low contribution (down to $\sim10^{-4}$ counts/(keV kg yr)) in the region of interest for $^{82}$Se neutrinoless double beta decay search. This result represents a crucial step towards the comprehension of the background in experiments based on scintillating calorimeters and in next generation projects such as CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.10397v2-abstract-full').style.display = 'none'; document.getElementById('1904.10397v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This is a post-peer-review, pre-copyedit version of an article published in Eur. Phys. J. C. The final authenticated version is available online at: https://doi.org/10.1140/epjc/s10052-019-7078-8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> O. Azzolini et al., Eur. Phys. J. C (2019) 79: 583 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.04040">arXiv:1904.04040</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1904.04040">pdf</a>, <a href="https://arxiv.org/format/1904.04040">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/i2019-12809-0">10.1140/epja/i2019-12809-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radiopurity of an archeological Roman Lead cryogenic detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Fiorini%2C+E">E. Fiorini</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4ffner%2C+K">K. Sch盲ffner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.04040v3-abstract-short" style="display: inline;"> Archeological Roman lead (Pb) is known to be a suitable material for shielding experimental apparata in rare event searches. In the past years the intrinsic radiopurity of this material was investigated using different technologies. In this work we applied the latest advancements in cryogenic techniques to study the bulk radiopurity of a 1 cm$^{3}$ sample of archeological Roman Pb. We report the l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04040v3-abstract-full').style.display = 'inline'; document.getElementById('1904.04040v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.04040v3-abstract-full" style="display: none;"> Archeological Roman lead (Pb) is known to be a suitable material for shielding experimental apparata in rare event searches. In the past years the intrinsic radiopurity of this material was investigated using different technologies. In this work we applied the latest advancements in cryogenic techniques to study the bulk radiopurity of a 1 cm$^{3}$ sample of archeological Roman Pb. We report the lowest ever measured limit on $^{210}$Pb content in Roman Pb, with a concentration lower than 715 $渭$Bq/kg. Furthermore, we also studied $^{238}$U and $^{232}$Th impurity concentrations. Our values concur with independent measurements reported in literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.04040v3-abstract-full').style.display = 'none'; document.getElementById('1904.04040v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A (2019) 55: 127 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.11009">arXiv:1901.11009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.11009">pdf</a>, <a href="https://arxiv.org/format/1901.11009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.05.019">10.1016/j.nima.2019.05.019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cryogenic light detectors with enhanced performance for rare events physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%A4ffner%2C+K">K. Sch盲ffner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.11009v2-abstract-short" style="display: inline;"> We have developed and tested a new way of coupling bolometric light detectors to scintillating crystal bolometers based upon simply resting the light detector on the crystal surface, held in position only by gravity. This straightforward mounting results in three important improvements: (1) it decreases the amount of non-active materials needed to assemble the detector, (2) it substantially increa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11009v2-abstract-full').style.display = 'inline'; document.getElementById('1901.11009v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.11009v2-abstract-full" style="display: none;"> We have developed and tested a new way of coupling bolometric light detectors to scintillating crystal bolometers based upon simply resting the light detector on the crystal surface, held in position only by gravity. This straightforward mounting results in three important improvements: (1) it decreases the amount of non-active materials needed to assemble the detector, (2) it substantially increases the light collection efficiency by minimizing the light losses induced by the mounting structure, and (3) it enhances the thermal signal induced in the light detector thanks to the extremely weak thermal link to the thermal bath. We tested this new technique with a 16 cm$^2$ Ge light detector with thermistor readout sitting on the surface of a large TeO$_2$ bolometer. The light collection efficiency was increased by greater than 50\% compared to previously tested alternative mountings. We obtained a baseline energy resolution on the light detector of 20~eV RMS that, together with increased light collection, enabled us to obtain the best $伪$ vs $尾/纬$ discrimination ever obtained with massive TeO$_2$ crystals. At the same time we achieved rise and decay times of 0.8 and 1.6 ms, respectively. This superb performance meets all of the requirements for the CUPID (CUORE Upgrade with Particle IDentification) experiment, which is a 1-ton scintillating bolometer follow up to CUORE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.11009v2-abstract-full').style.display = 'none'; document.getElementById('1901.11009v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 935 (2019) 150 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.10434">arXiv:1901.10434</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.10434">pdf</a>, <a href="https://arxiv.org/format/1901.10434">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/08/P08017">10.1088/1748-0221/14/08/P08017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Resolution enhancement with light/heat decorrelation in CUPID-0 bolometric detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Pattavina%2C+L">L. Pattavina</a>, <a href="/search/physics?searchtype=author&amp;query=Pavan%2C+M">M. Pavan</a>, <a href="/search/physics?searchtype=author&amp;query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&amp;query=Pozzi%2C+S">S. Pozzi</a>, <a href="/search/physics?searchtype=author&amp;query=Previtali%2C+E">E. Previtali</a>, <a href="/search/physics?searchtype=author&amp;query=Rusconi%2C+C">C. Rusconi</a>, <a href="/search/physics?searchtype=author&amp;query=Tomei%2C+C">C. Tomei</a>, <a href="/search/physics?searchtype=author&amp;query=Vignati%2C+M">M. Vignati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.10434v3-abstract-short" style="display: inline;"> The CUPID-0 experiment searches for neutrinoless double beta decay ($0谓尾尾$) using the first array of enriched Zn$^{82}$Se scintillating bolometers with double (heat and light) read-out. To further enhance the CUPID-0 detector performances, the heat-light correlation has been exploited to improve the energy resolution. Different decorrelation algorithms have been studied and the best result is the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10434v3-abstract-full').style.display = 'inline'; document.getElementById('1901.10434v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.10434v3-abstract-full" style="display: none;"> The CUPID-0 experiment searches for neutrinoless double beta decay ($0谓尾尾$) using the first array of enriched Zn$^{82}$Se scintillating bolometers with double (heat and light) read-out. To further enhance the CUPID-0 detector performances, the heat-light correlation has been exploited to improve the energy resolution. Different decorrelation algorithms have been studied and the best result is the average reduction of the full width at half maximum (FWHM) energy resolution to $(90.5\pm0.6)~\%$ of its original value , corresponding to a change from $\text{FWHM}=(20.7\pm0.5)~\text{keV}$ to $\text{FWHM}=(18.7\pm0.5)~\text{keV}$ at the 2615 keV $纬$ line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.10434v3-abstract-full').style.display = 'none'; document.getElementById('1901.10434v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.00665">arXiv:1807.00665</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.00665">pdf</a>, <a href="https://arxiv.org/format/1807.00665">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-6340-9">10.1140/epjc/s10052-018-6340-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search of the neutrino-less double beta decay of $^{82}$Se into the excited states of $^{82}$Kr with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barrera%2C+M+T">M. T. Barrera</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.00665v3-abstract-short" style="display: inline;"> The CUPID0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95$\%$ enriched in $^{82}$Se and 2 natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of $^{82}$Se into the 0$_1^+$, 2$_1^+$ and 2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00665v3-abstract-full').style.display = 'inline'; document.getElementById('1807.00665v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.00665v3-abstract-full" style="display: none;"> The CUPID0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95$\%$ enriched in $^{82}$Se and 2 natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of $^{82}$Se into the 0$_1^+$, 2$_1^+$ and 2$_2^+$ excited states of $^{82}$Kr with an exposure of 5.74 kg$\cdot$yr (2.24$\times$10$^{25}$ emitters$\cdot$yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: $螕$($^{82}$Se $\rightarrow ^{82}$Kr$_{0_1^+}$)$&lt;$8.55$\times$10$^{-24}$ yr$^{-1}$, $螕$($^{82}$Se $\rightarrow ^{82}$Kr$_{2_1^+}$)$&lt;6.25 \times10^{-24}$ yr$^{-1}$, $螕$($^{82}$Se $\rightarrow ^{82}$Kr$_{2_2^+}$)$&lt;$8.25$\times$10$^{-24}$ yr$^{-1}$ (90$\%$ credible interval <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.00665v3-abstract-full').style.display = 'none'; document.getElementById('1807.00665v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02826">arXiv:1806.02826</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02826">pdf</a>, <a href="https://arxiv.org/format/1806.02826">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-6202-5">10.1140/epjc/s10052-018-6202-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of cryogenic calorimeters with light and heat read-out for double beta decay searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&amp;query=Barrera%2C+M+T">M. T. Barrera</a>, <a href="/search/physics?searchtype=author&amp;query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&amp;query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&amp;query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&amp;query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&amp;query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&amp;query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&amp;query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&amp;query=Casalia%2C+N">N. Casalia</a>, <a href="/search/physics?searchtype=author&amp;query=Cassina%2C+L">L. Cassina</a>, <a href="/search/physics?searchtype=author&amp;query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&amp;query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&amp;query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Addabbo%2C+A">A. D&#39;Addabbo</a>, <a href="/search/physics?searchtype=author&amp;query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&amp;query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&amp;query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&amp;query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&amp;query=Gorla%2C+P">P. Gorla</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02826v2-abstract-short" style="display: inline;"> The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by 伪 particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation lig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02826v2-abstract-full').style.display = 'inline'; document.getElementById('1806.02826v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02826v2-abstract-full" style="display: none;"> The suppression of spurious events in the region of interest for neutrinoless double beta decay will play a major role in next generation experiments. The background of detectors based on the technology of cryogenic calorimeters is expected to be dominated by 伪 particles, that could be disentangled from double beta decay signals by exploiting the difference in the emission of the scintillation light. CUPID-0, an array of enriched Zn$^{82}$Se scintillating calorimeters, is the first large mass demonstrator of this technology. The detector started data-taking in 2017 at the Laboratori Nazionali del Gran Sasso with the aim of proving that dual read-out of light and heat allows for an efficient suppression of the 伪 background. In this paper we describe the software tools we developed for the analysis of scintillating calorimeters and we demonstrate that this technology allows to reach an unprecedented background for cryogenic calorimeters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02826v2-abstract-full').style.display = 'none'; document.getElementById('1806.02826v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 9 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Pagnanini%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10