CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 138 results for author: <span class="mathjax">Giuliani, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Giuliani%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Giuliani, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Giuliani%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Giuliani, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04826">arXiv:2409.04826</a> <span> [<a href="https://arxiv.org/pdf/2409.04826">pdf</a>, <a href="https://arxiv.org/format/2409.04826">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> A comprehensive exploration of quasisymmetric stellarators and their coil sets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a>, <a href="/search/physics?searchtype=author&query=Rodr%C3%ADguez%2C+E">Eduardo Rodr铆guez</a>, <a href="/search/physics?searchtype=author&query=Spivak%2C+M">Marina Spivak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04826v1-abstract-short" style="display: inline;"> We augment the `QUAsi-symmetric Stellarator Repository' (QUASR) to include vacuum field stellarators with quasihelical symmetry using a globalized optimization workflow. The database now has almost 370,000 quasisaxisymmetry and quasihelically symmetric devices along with coil sets, optimized for a variety of aspect ratios, rotational transforms, and discrete rotational symmetries. This paper outli… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04826v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04826v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04826v1-abstract-full" style="display: none;"> We augment the `QUAsi-symmetric Stellarator Repository' (QUASR) to include vacuum field stellarators with quasihelical symmetry using a globalized optimization workflow. The database now has almost 370,000 quasisaxisymmetry and quasihelically symmetric devices along with coil sets, optimized for a variety of aspect ratios, rotational transforms, and discrete rotational symmetries. This paper outlines a couple of ways to explore and characterize the data set. We plot devices on a near-axis quasisymmetry landscape, revealing close correspondence to this predicted landscape. We also use principal component analysis to reduce the dimensionality of the data so that it can easily be visualized in two or three dimensions. Principal component analysis also gives a mechanism to compare the new devices here to previously published ones in the literature. We are able to characterize the structure of the data, observe clusters, and visualize the progression of devices in these clusters. These techniques reveal that the data has structure, and that typically one, two or three principal components are sufficient to characterize it. QUASR is archived at https://zenodo.org/doi/10.5281/zenodo.10050655 and can be explored online at quasr.flatironinstitute.org. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04826v1-abstract-full').style.display = 'none'; document.getElementById('2409.04826v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.12380">arXiv:2406.12380</a> <span> [<a href="https://arxiv.org/pdf/2406.12380">pdf</a>, <a href="https://arxiv.org/format/2406.12380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for fractionally charged particles with CUORE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.12380v1-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'inline'; document.getElementById('2406.12380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.12380v1-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5$\;$cm$\times$5$\;$cm$\times$5$\;$cm TeO$_2$ crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in $^{130}$Te. Unprecedented in size amongst cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic through-going particles. Using the first tonne-year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various Standard Model extensions and would have suppressed interactions with matter. No excess of FCP candidate tracks is observed over background, setting leading limits on the underground FCP flux with charges between $e/24-e/5$ at 90\% confidence level. Using the low background environment and segmented geometry of CUORE, we establish the sensitivity of tonne-scale sub-Kelvin detectors to diverse signatures of new physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.12380v1-abstract-full').style.display = 'none'; document.getElementById('2406.12380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07830">arXiv:2406.07830</a> <span> [<a href="https://arxiv.org/pdf/2406.07830">pdf</a>, <a href="https://arxiv.org/format/2406.07830">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Simplified and Flexible Coils for Stellarators using Single-Stage Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jorge%2C+R">R. Jorge</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Loizu%2C+J">J. Loizu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07830v1-abstract-short" style="display: inline;"> Single-stage optimization, also known as combined plasma-coil algorithms or direct coil optimization, has recently emerged as a possible method to expedite the design of stellarator devices by including, in a single step, confinement, stability, and engineering constraints. In this work, we show how such frameworks allow us to find new designs in a streamlined manner, yielding a broad range of new… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07830v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07830v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07830v1-abstract-full" style="display: none;"> Single-stage optimization, also known as combined plasma-coil algorithms or direct coil optimization, has recently emerged as a possible method to expedite the design of stellarator devices by including, in a single step, confinement, stability, and engineering constraints. In this work, we show how such frameworks allow us to find new designs in a streamlined manner, yielding a broad range of new configurations. Examples are shown for stellarators with a small number of coils and quasisymmetric stellarators with only one to three coils per half field period, with external trim coils, helical coils, and a single set of coils generating both a quasi-axisymmetric and a quasi-helical equilibrium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07830v1-abstract-full').style.display = 'none'; document.getElementById('2406.07830v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01444">arXiv:2406.01444</a> <span> [<a href="https://arxiv.org/pdf/2406.01444">pdf</a>, <a href="https://arxiv.org/format/2406.01444">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Development of large-volume $^{130}$TeO$_2$ bolometers for the CROSS $2尾$ decay search experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferella%2C+F">F. Ferella</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gallas%2C+A">A. Gallas</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">P. Gras</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01444v2-abstract-short" style="display: inline;"> We report on the development of thermal detectors based on large-size tellurium dioxide crystals (45x45x45 mm), containing tellurium enriched in $^{130}$Te to about 91%, for the CROSS double-beta decay experiment. A powder used for the crystals growth was additionally purified by the directional solidification method, resulting in the reduction of the concentration of impurities by a factor 10, to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01444v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01444v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01444v2-abstract-full" style="display: none;"> We report on the development of thermal detectors based on large-size tellurium dioxide crystals (45x45x45 mm), containing tellurium enriched in $^{130}$Te to about 91%, for the CROSS double-beta decay experiment. A powder used for the crystals growth was additionally purified by the directional solidification method, resulting in the reduction of the concentration of impurities by a factor 10, to a few ppm of the total concentration of residual elements (the main impurity is Fe). The purest part of the ingot (the first ~200 mm, about 80% of the total length of the cylindrical part of the ingot) was determined by scanning segregation profiles of impurities and used for the $^{130}$TeO$_2$ powder production with no evidence of re-contamination. The crystal growth was verified with precursors produced from powder with natural Te isotopic composition, and two small-size (20x20x10 mm) samples were tested at a sea-level laboratory showing high bolometric and spectrometric performance together with acceptable $^{210}$Po content (below 10 mBq/kg). This growth method was then applied for the production of six large cubic $^{130}$TeO$_2$ crystals and 4 of them were taken randomly to be characterized at the Canfranc underground laboratory, in the CROSS-dedicated low-background cryogenic facility. Two $^{130}$TeO$_2$ samples were coated with a thin, $O$(100 nm), metal film in form of Al layer (on 4 sides) or AlPd grid (on a single side) to investigate the possibility to tag surface events by pulse-shape discrimination. Similarly to the small natural precursors, large-volume $^{130}$TeO$_2$ bolometers show high performance and even better internal purity ($^{210}$Po activity $\sim$ 1 mBq/kg, while activities of $^{228}$Th and $^{226}$Ra are below 0.01 mBq/kg), satisfying requirements for the CROSS and, potentially, next-generation experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01444v2-abstract-full').style.display = 'none'; document.getElementById('2406.01444v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST; 22 pages, 11 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18980">arXiv:2405.18980</a> <span> [<a href="https://arxiv.org/pdf/2405.18980">pdf</a>, <a href="https://arxiv.org/format/2405.18980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> A novel mechanical design of a bolometric array for the CROSS double-beta decay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Auguste%2C+D">D. Auguste</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gallas%2C+A">A. Gallas</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">P. Gras</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18980v2-abstract-short" style="display: inline;"> The CROSS experiment will search for neutrinoless double-beta decay using a specific mechanical structure to hold thermal detectors. The design of the structure was tuned to minimize the background contribution, keeping an optimal detector performance. A single module of the structure holds two scintillating bolometers (with a crystal size of 45x45x45 mm and a Ge slab facing the crystal's upper si… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18980v2-abstract-full').style.display = 'inline'; document.getElementById('2405.18980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18980v2-abstract-full" style="display: none;"> The CROSS experiment will search for neutrinoless double-beta decay using a specific mechanical structure to hold thermal detectors. The design of the structure was tuned to minimize the background contribution, keeping an optimal detector performance. A single module of the structure holds two scintillating bolometers (with a crystal size of 45x45x45 mm and a Ge slab facing the crystal's upper side) in the Cu frame, allowing for a modular construction of a large-scale array. Two designs are released: the initial $Thick$ version contains around 15% of Cu over the crystal mass (lithium molybdate, LMO), while this ratio is reduced to ~6% in a finer ($Slim$) design. Both designs were tested extensively at aboveground (IJCLab, France) and underground (LSC, Spain) laboratories. In particular, at LSC we used a pulse-tube-based CROSS facility to operate a 6-crystal array of LMOs enriched/depleted in $^{100}$Mo. The tested LMOs show high spectrometric performance in both designs; notably, the measured energy resolution is 5--7 keV FWHM at 2615 keV $纬$s, nearby the Q-value of $^{100}$Mo (3034 keV). Due to the absence of a reflective cavity around LMOs, a low scintillation signal is detected by Ge bolometers: ~0.3 keV (150 photons) for 1-MeV $纬$($尾$) LMO-event. Despite that, an acceptable separation between $伪$ and $纬$($尾$) events is achieved with most devices. The highest efficiency is reached with light detectors in the $Thick$ design thanks to a lower baseline noise width (0.05--0.09 keV RMS) when compared to that obtained in the $Slim$ version (0.10--0.35 keV RMS). Given the pivotal role of bolometric photodetectors for particle identification and random coincidences rejection, we will use the structure here described with upgraded light detectors, featuring thermal signal amplification via the Neganov-Trofimov-Luke effect, as also demonstrated in the present work. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18980v2-abstract-full').style.display = 'none'; document.getElementById('2405.18980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to JINST; 31 pages, 16 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17937">arXiv:2405.17937</a> <span> [<a href="https://arxiv.org/pdf/2405.17937">pdf</a>, <a href="https://arxiv.org/format/2405.17937">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.052003">10.1103/PhysRevD.110.052003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data-driven background model for the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+J">J. Cao</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a> , et al. (93 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17937v1-abstract-short" style="display: inline;"> We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth explo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17937v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17937v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17937v1-abstract-full" style="display: none;"> We present the model we developed to reconstruct the CUORE radioactive background based on the analysis of an experimental exposure of 1038.4 kg yr. The data reconstruction relies on a simultaneous Bayesian fit applied to energy spectra over a broad energy range. The high granularity of the CUORE detector, together with the large exposure and extended stable operations, allow for an in-depth exploration of both spatial and time dependence of backgrounds. We achieve high sensitivity to both bulk and surface activities of the materials of the setup, detecting levels as low as 10 nBq kg$^{-1}$ and 0.1 nBq cm$^{-2}$, respectively. We compare the contamination levels we extract from the background model with prior radio-assay data, which informs future background risk mitigation strategies. The results of this background model play a crucial role in constructing the background budget for the CUPID experiment as it will exploit the same CUORE infrastructure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17937v1-abstract-full').style.display = 'none'; document.getElementById('2405.17937v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12262">arXiv:2402.12262</a> <span> [<a href="https://arxiv.org/pdf/2402.12262">pdf</a>, <a href="https://arxiv.org/format/2402.12262">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> BINGO innovative assembly for background reduction in bolometric $0谓尾尾$ experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gomez%2C+H">H. Gomez</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&query=Juillard%2C+A">A. Juillard</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12262v2-abstract-short" style="display: inline;"> BINGO is a project aiming to set the grounds for large-scale bolometric neutrinoless double-beta-decay experiments capable of investigating the effective Majorana neutrino mass at a few meV level. It focuses on developing innovative technologies (a detector assembly, cryogenic photodetectors and active veto) to achieve a very low background index, of the order of $10^{-5}$ counts/(keV kg yr) in th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12262v2-abstract-full').style.display = 'inline'; document.getElementById('2402.12262v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12262v2-abstract-full" style="display: none;"> BINGO is a project aiming to set the grounds for large-scale bolometric neutrinoless double-beta-decay experiments capable of investigating the effective Majorana neutrino mass at a few meV level. It focuses on developing innovative technologies (a detector assembly, cryogenic photodetectors and active veto) to achieve a very low background index, of the order of $10^{-5}$ counts/(keV kg yr) in the region of interest. The BINGO demonstrator, called MINI-BINGO, is designed to investigate the promising double-beta-decay isotopes $^{100}$Mo and $^{130}$Te and it will be composed of Li$_2$MoO$_4$ and TeO$_2$ crystals coupled to bolometric light detectors and surrounded by a Bi$_4$Ge$_3$O$_{12}$-based veto. This will allow us to reject a significant background in bolometers caused by surface contamination from $伪$-active radionuclides by means of light yield selection and to mitigate other sources of background, such as surface contamination from $尾$-active radionuclides, external $纬$ radioactivity, and pile-up due to random coincidence of background events. This paper describes an R\&D program towards the BINGO goals, particularly focusing on the development of an innovative assembly designed to reduce the passive materials within the line of sight of the detectors, which is expected to be a dominant source of background in next-generation bolometric experiments. We present the performance of two prototype modules -- housing four cubic (4.5-cm side) Li$_2$MoO$_4$ crystals in total -- operated in the Canfranc underground laboratory in Spain within a facility developed for the CROSS double-beta-decay experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12262v2-abstract-full').style.display = 'none'; document.getElementById('2402.12262v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Nucl. Instr. Meth. A; 28 pages, 11 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.19097">arXiv:2310.19097</a> <span> [<a href="https://arxiv.org/pdf/2310.19097">pdf</a>, <a href="https://arxiv.org/format/2310.19097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377824000412">10.1017/S0022377824000412 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct stellarator coil design using global optimization: application to a comprehensive exploration of quasi-axisymmetric devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.19097v2-abstract-short" style="display: inline;"> Many stellarator coil design problems are plagued by multiple minima, where the locally optimal coil sets can sometimes vary substantially in performance. As a result, solving a coil design problem a single time with a local optimization algorithm is usually insufficient and better optima likely do exist. To address this problem, we propose a global optimization algorithm for the design of stellar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19097v2-abstract-full').style.display = 'inline'; document.getElementById('2310.19097v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.19097v2-abstract-full" style="display: none;"> Many stellarator coil design problems are plagued by multiple minima, where the locally optimal coil sets can sometimes vary substantially in performance. As a result, solving a coil design problem a single time with a local optimization algorithm is usually insufficient and better optima likely do exist. To address this problem, we propose a global optimization algorithm for the design of stellarator coils and outline how to apply box constraints to the physical positions of the coils. The algorithm has a global exploration phase that searches for interesting regions of design space and is followed by three local optimization algorithms that search in these interesting regions (a ``global-to-local" approach). The first local algorithm (phase I), following the globalization phase, is based on near-axis expansions and finds stellarator coils that optimize for quasisymmetry in the neighborhood of a magnetic axis. The second local algorithm (phase II) takes these coil sets and optimizes them for nested flux surfaces and quasisymmetry on a toroidal volume. The final local algorithm (phase III) polishes these configurations for an accurate approximation of quasisymmetry. Using our global algorithm, we study the trade-off between coil length, aspect ratio, rotational transform, and quality of quasi-axisymmetry. The database of stellarators, which comprises approximately 200,000 coil sets, is available online and is called QUASR, for `QUAsi-symmetric Stellarator Repository'. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.19097v2-abstract-full').style.display = 'none'; document.getElementById('2310.19097v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. 90 (2024) 905900303 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.14831">arXiv:2307.14831</a> <span> [<a href="https://arxiv.org/pdf/2307.14831">pdf</a>, <a href="https://arxiv.org/format/2307.14831">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Test of $^{116}$CdWO$_4$ and Li$_2$MoO$_4$ scintillating bolometers in the CROSS underground facility with upgraded detector suspension </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmine%2C+A">A. Ahmine</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">P. Gras</a>, <a href="/search/physics?searchtype=author&query=Helis%2C+D+L">D. L. Helis</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.14831v1-abstract-short" style="display: inline;"> In preparation to the CROSS $2尾$ decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14831v1-abstract-full').style.display = 'inline'; document.getElementById('2307.14831v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.14831v1-abstract-full" style="display: none;"> In preparation to the CROSS $2尾$ decay experiment, we installed a new detector suspension with magnetic dumping inside a pulse-tube cryostat of a dedicated low-background facility at the LSC (Spain). The suspension was tested with two scintillating bolometers based on large-volume 116CdWO4 (CWO-enr) and Li2MoO4 (LMO) crystals. The former, a reference device, was used for testing new noise conditions and for comparing bolometric performance of an advanced Li2MoO4 crystal developed in the framework of the CLYMENE project, in view of next-generation double-beta decay experiments like CUPID. We cooled down detectors to 15 mK and achieved high performance for all tested devices. In particular both CWO-enr and LMO bolometers demonstrated the energy resolution of 6 keV FWHM for the 2.6 MeV gamma quanta, among the best for thermal detectors based on such compounds. The baseline noise resolution (FWHM) of the CWO-enr detector was improved by 2 keV, compared to the best previous measurement of this detector in the CROSS facility, while the noise of the Ge-based optical bolometer was improved by a factor 2, to 100 eV FWHM. Despite of the evident progress in the improving of noise conditions of the set-up, we see high-frequency harmonics of a pulse-tube induced noise, suggesting a noise pick-up by cabling. Another Ge light detector was assisted with the signal amplification exploiting the Neganov-Trofimov-Luke effect, which allowed to reach 20 eV FWHM noise resolution by applying 60 V electrode bias. Highly-efficient particle identification was achieved with both detectors, despite a low scintillation efficiency of the LMO material. The radiopurity level of the LMO crystal is rather high; only traces of 210Po and 226Ra were detected (0.1 mBq/kg each), while the 228Th activity is expected to be at least an order of magnitude lower, as well as a 40K activity is found to be < 6 mBq/kg. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.14831v1-abstract-full').style.display = 'none'; document.getElementById('2307.14831v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST, 26 pages, 8 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.10139">arXiv:2305.10139</a> <span> [<a href="https://arxiv.org/pdf/2305.10139">pdf</a>, <a href="https://arxiv.org/format/2305.10139">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Study of collision and $纬$-cascade times following neutron-capture processes in cryogenic detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CRAB+collaboration"> CRAB collaboration</a>, <a href="/search/physics?searchtype=author&query=Soum-Sidikov%2C+G">G. Soum-Sidikov</a>, <a href="/search/physics?searchtype=author&query=Abele%2C+H">H. Abele</a>, <a href="/search/physics?searchtype=author&query=Burkhart%2C+J">J. Burkhart</a>, <a href="/search/physics?searchtype=author&query=Cappella%2C+F">F. Cappella</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cerulli%2C+R">R. Cerulli</a>, <a href="/search/physics?searchtype=author&query=Chalil%2C+A">A. Chalil</a>, <a href="/search/physics?searchtype=author&query=Chebboubi%2C+A">A. Chebboubi</a>, <a href="/search/physics?searchtype=author&query=Crocombette%2C+J">J-P. Crocombette</a>, <a href="/search/physics?searchtype=author&query=del+Castello%2C+G">G. del Castello</a>, <a href="/search/physics?searchtype=author&query=Roccagiovine%2C+M+d+G">M. del Gallo Roccagiovine</a>, <a href="/search/physics?searchtype=author&query=Doblhammer%2C+A">A. Doblhammer</a>, <a href="/search/physics?searchtype=author&query=Dorer%2C+S">S. Dorer</a>, <a href="/search/physics?searchtype=author&query=Dumonteil%2C+E">E. Dumonteil</a>, <a href="/search/physics?searchtype=author&query=Erhart%2C+A">A. Erhart</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Goupy%2C+C">C. Goupy</a>, <a href="/search/physics?searchtype=author&query=Gunsing%2C+F">F. Gunsing</a>, <a href="/search/physics?searchtype=author&query=Jericha%2C+E">E. Jericha</a>, <a href="/search/physics?searchtype=author&query=Kaznacheeva%2C+M">M. Kaznacheeva</a>, <a href="/search/physics?searchtype=author&query=Kinast%2C+A">A. Kinast</a>, <a href="/search/physics?searchtype=author&query=Kluck%2C+H">H. Kluck</a>, <a href="/search/physics?searchtype=author&query=Langenk%C3%A4mper%2C+A">A. Langenk盲mper</a>, <a href="/search/physics?searchtype=author&query=Lasserre%2C+T">T. Lasserre</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.10139v1-abstract-short" style="display: inline;"> The emission of $纬$-rays after a neutron capture in a cryogenic detector can generate mono-energetic nuclear recoils in the sub-keV regime, of direct interest for the calibration of Dark Matter and Coherent Elastic Neutrino Nucleus Scattering experiments. Here we show that accurate predictions of the nuclear recoil spectra induced by neutron captures require taking into account the interplay betwe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10139v1-abstract-full').style.display = 'inline'; document.getElementById('2305.10139v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.10139v1-abstract-full" style="display: none;"> The emission of $纬$-rays after a neutron capture in a cryogenic detector can generate mono-energetic nuclear recoils in the sub-keV regime, of direct interest for the calibration of Dark Matter and Coherent Elastic Neutrino Nucleus Scattering experiments. Here we show that accurate predictions of the nuclear recoil spectra induced by neutron captures require taking into account the interplay between the development in time of the de-excitation $纬$-cascade of the target nucleus and that of the associated atomic collisions in matter. We present detailed simulations coupling the FIFRELIN code for the description of the $纬$-cascades and the IRADINA code for the modelling of the fast atomic movements in matter. Nuclear recoil spectra are predicted, and made available to the community, for concrete cases of Al$_2$O$_3$, Si, Ge and CaWO$_4$ crystals exposed to a low intensity beam of thermal neutrons. We find that timing effects cause new calibration peaks to emerge in the recoil spectra and also impact the shape of the continuous recoil distribution. We discuss how they could give access to a rich physics program, spanning the accurate study of the response of cryogenic detectors in the sub-keV range, tests of solid state physics simulations and tests of nuclear models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.10139v1-abstract-full').style.display = 'none'; document.getElementById('2305.10139v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01402">arXiv:2305.01402</a> <span> [<a href="https://arxiv.org/pdf/2305.01402">pdf</a>, <a href="https://arxiv.org/format/2305.01402">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11830-2">10.1140/epjc/s10052-023-11830-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The background model of the CUPID-Mo $0谓尾尾$ experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+C">CUPID-Mo Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Fujikawa%2C+B+K">B. K. Fujikawa</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01402v1-abstract-short" style="display: inline;"> CUPID-Mo, located in the Laboratoire Souterrain de Modane (France), was a demonstrator for the next generation $0谓尾尾$ decay experiment, CUPID. It consisted of an array of 20 enriched Li$_{2}$$ ^{100}$MoO$_4$ bolometers and 20 Ge light detectors and has demonstrated that the technology of scintillating bolometers with particle identification capabilities is mature. Furthermore, CUPID-Mo can inform… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01402v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01402v1-abstract-full" style="display: none;"> CUPID-Mo, located in the Laboratoire Souterrain de Modane (France), was a demonstrator for the next generation $0谓尾尾$ decay experiment, CUPID. It consisted of an array of 20 enriched Li$_{2}$$ ^{100}$MoO$_4$ bolometers and 20 Ge light detectors and has demonstrated that the technology of scintillating bolometers with particle identification capabilities is mature. Furthermore, CUPID-Mo can inform and validate the background prediction for CUPID. In this paper, we present a detailed model of the CUPID-Mo backgrounds. This model is able to describe well the features of the experimental data and enables studies of the $2谓尾尾$ decay and other processes with high precision. We also measure the radio-purity of the Li$_{2}$$^{100}$MoO$_4$ crystals which are found to be sufficient for the CUPID goals. Finally, we also obtain a background index in the region of interest of 3.7$^{+0.9}_{-0.8}$(stat)$^{+1.5}_{-0.7}$(syst)$\times10^{-3}$counts/$螖$E$_{FWHM}$/mol$_{iso}$/yr, the lowest in a bolometric $0谓尾尾$ decay experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01402v1-abstract-full').style.display = 'none'; document.getElementById('2305.01402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14926">arXiv:2304.14926</a> <span> [<a href="https://arxiv.org/pdf/2304.14926">pdf</a>, <a href="https://arxiv.org/format/2304.14926">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168765">10.1016/j.nima.2023.168765 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Results from a Prototype TES Detector for the Ricochet Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ricochet+Collaboration"> Ricochet Collaboration</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Baulieu%2C+G">G. Baulieu</a>, <a href="/search/physics?searchtype=author&query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Bres%2C+G">G. Bres</a>, <a href="/search/physics?searchtype=author&query=Bret%2C+J+L">J-. L. Bret</a>, <a href="/search/physics?searchtype=author&query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+M">M. Calvo</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chaize%2C+D">D. Chaize</a>, <a href="/search/physics?searchtype=author&query=Chala%2C+M">M. Chala</a>, <a href="/search/physics?searchtype=author&query=Chang%2C+C+L">C. L. Chang</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Chaplinsky%2C+L">L. Chaplinsky</a>, <a href="/search/physics?searchtype=author&query=Chemin%2C+G">G. Chemin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/physics?searchtype=author&query=Colas%2C+J">J. Colas</a>, <a href="/search/physics?searchtype=author&query=Cudmore%2C+E">E. Cudmore</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Exshaw%2C+O">O. Exshaw</a>, <a href="/search/physics?searchtype=author&query=Ferriol%2C+S">S. Ferriol</a> , et al. (66 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14926v2-abstract-short" style="display: inline;"> Coherent elastic neutrino-nucleus scattering (CE$谓$NS) offers valuable sensitivity to physics beyond the Standard Model. The Ricochet experiment will use cryogenic solid-state detectors to perform a precision measurement of the CE$谓$NS spectrum induced by the high neutrino flux from the Institut Laue-Langevin nuclear reactor. The experiment will employ an array of detectors, each with a mass of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14926v2-abstract-full').style.display = 'inline'; document.getElementById('2304.14926v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14926v2-abstract-full" style="display: none;"> Coherent elastic neutrino-nucleus scattering (CE$谓$NS) offers valuable sensitivity to physics beyond the Standard Model. The Ricochet experiment will use cryogenic solid-state detectors to perform a precision measurement of the CE$谓$NS spectrum induced by the high neutrino flux from the Institut Laue-Langevin nuclear reactor. The experiment will employ an array of detectors, each with a mass of $\sim$30 g and a targeted energy threshold of 50 eV. Nine of these detectors (the "Q-Array") will be based on a novel Transition-Edge Sensor (TES) readout style, in which the TES devices are thermally coupled to the absorber using a gold wire bond. We present initial characterization of a Q-Array-style detector using a 1 gram silicon absorber, obtaining a baseline root-mean-square resolution of less than 40 eV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14926v2-abstract-full').style.display = 'none'; document.getElementById('2304.14926v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1057 (2023) 168765 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13100">arXiv:2304.13100</a> <span> [<a href="https://arxiv.org/pdf/2304.13100">pdf</a>, <a href="https://arxiv.org/format/2304.13100">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Li$_2$$^{100\textrm{depl}}$MoO$_4$ Scintillating Bolometers for Rare-Event Search Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Grigorieva%2C+V+D">V. D. Grigorieva</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=Madhukuttan%2C+M">M. Madhukuttan</a>, <a href="/search/physics?searchtype=author&query=Makarov%2C+E+P">E. P. Makarov</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13100v1-abstract-short" style="display: inline;"> We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-$尾$ active isotope $^{100}$Mo (Li$_2$$^{100\textrm{depl}}$MoO$_4$). We used two Li$_2$$^{100\textrm{depl}}$MoO$_4$ cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-$尾$ search experimen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13100v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13100v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13100v1-abstract-full" style="display: none;"> We report on the development of scintillating bolometers based on lithium molybdate crystals containing molybdenum depleted in the double-$尾$ active isotope $^{100}$Mo (Li$_2$$^{100\textrm{depl}}$MoO$_4$). We used two Li$_2$$^{100\textrm{depl}}$MoO$_4$ cubic samples, 45 mm side and 0.28 kg each, produced following purification and crystallization protocols developed for double-$尾$ search experiments with $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals. Bolometric Ge detectors were utilized to register scintillation photons emitted by the Li$_2$$^{100\textrm{depl}}$MoO$_4$ crystal scintillators. The measurements were performed in the CROSS cryogenic set-up at the Canfranc underground laboratory (Spain). We observed that the Li$_2$$^{100\textrm{depl}}$MoO$_4$ scintillating bolometers are characterized by excellent spectrometric performance ($\sim$3--6 keV FWHM at 0.24--2.6 MeV $纬$'s), moderate scintillation signal ($\sim$0.3--0.6 keV/MeV depending on light collection conditions) and high radiopurity ($^{228}$Th and $^{226}$Ra activities are below a few $渭$Bq/kg), comparable to the best reported results of low-temperature detectors based on Li$_2$MoO$_4$ with natural or $^{100}$Mo-enriched molybdenum content. Prospects of Li$_2$$^{100\textrm{depl}}$MoO$_4$ bolometers for use in rare-event search experiments are briefly discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13100v1-abstract-full').style.display = 'none'; document.getElementById('2304.13100v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to MDPI Sensors; 16 pages, 7 figures, and 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.05043">arXiv:2304.05043</a> <span> [<a href="https://arxiv.org/pdf/2304.05043">pdf</a>, <a href="https://arxiv.org/format/2304.05043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06026">10.1088/1748-0221/18/06/P06026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ZnO-based scintillating bolometers: New prospects to study double beta decay of $^{64}$Zn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Laubenstein%2C+M">M. Laubenstein</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Nagorny%2C+S+S">S. S. Nagorny</a>, <a href="/search/physics?searchtype=author&query=Nisi%2C+S">S. Nisi</a>, <a href="/search/physics?searchtype=author&query=Nones%2C+C">C. Nones</a>, <a href="/search/physics?searchtype=author&query=Olivieri%2C+E">E. Olivieri</a>, <a href="/search/physics?searchtype=author&query=Pagnanini%2C+L">L. Pagnanini</a>, <a href="/search/physics?searchtype=author&query=Pirro%2C+S">S. Pirro</a>, <a href="/search/physics?searchtype=author&query=Poda%2C+D+V">D. V. Poda</a>, <a href="/search/physics?searchtype=author&query=Scarpaci%2C+J+-">J. -A. Scarpaci</a>, <a href="/search/physics?searchtype=author&query=Zolotarova%2C+A+S">A. S. Zolotarova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.05043v1-abstract-short" style="display: inline;"> The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the exp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05043v1-abstract-full').style.display = 'inline'; document.getElementById('2304.05043v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.05043v1-abstract-full" style="display: none;"> The first detailed study on the performance of a ZnO-based cryogenic scintillating bolometer as a detector to search for rare processes in zinc isotopes was performed. A 7.2 g ZnO low-temperature detector, containing more than 80\% of zinc in its mass, exhibits good energy resolution of baseline noise 1.0--2.7 keV FWHM at various working temperatures resulting in a low-energy threshold for the experiment, 2.0--6.0 keV. The light yield for $尾$/$纬$ events was measured as 1.5(3) keV/MeV, while it varies for $伪$ particles in the range of 0.2--3.0 keV/MeV. The detector demonstrate an effective identification of the $尾$/$纬$ events from $伪$ events using time-properties of only heat signals. %(namely, Rise time parameter). The radiopurity of the ZnO crystal was evaluated using the Inductively Coupled Plasma Mass Spectrometry, an ultra-low-background High Purity Ge $纬$-spectrometer, and bolometric measurements. Only limits were set at the level of $\mathcal{O}$(1--100) mBq/kg on activities of \Nuc{K}{40}, \Nuc{Cs}{137} and daughter nuclides from the U/Th natural decay chains. The total internal $伪$-activity was calculated to be 22(2) mBq/kg, with a major contribution caused by 6(1) mBq/kg of \Nuc{Th}{232} and 12(2) mBq/kg of \Nuc{U}{234}. Limits on double beta decay (DBD) processes in \Nuc{Zn}{64} and \Nuc{Zn}{70} isotopes were set on the level of $\mathcal{O}(10^{17}$--$10^{18})$ yr for various decay modes profiting from 271 h of acquired background data in the above-ground lab. This study shows a good potential for ZnO-based scintillating bolometers to search for DBD processes of Zn isotopes, especially in \Nuc{Zn}{64}, with the most prominent spectral features at $\sim$10--20 keV, like the two neutrino double electron capture. A 10 kg-scale experiment can reach the experimental sensitivity at the level of $\mathcal{O}(10^{24})$ yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.05043v1-abstract-full').style.display = 'none'; document.getElementById('2304.05043v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 27 pages, 9 figures, and 7 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04674">arXiv:2304.04674</a> <span> [<a href="https://arxiv.org/pdf/2304.04674">pdf</a>, <a href="https://arxiv.org/format/2304.04674">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06033">10.1088/1748-0221/18/06/P06033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A first test of CUPID prototypal light detectors with NTD-Ge sensors in a pulse-tube cryostat </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a> , et al. (154 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04674v1-abstract-short" style="display: inline;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04674v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04674v1-abstract-full" style="display: none;"> CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ~250 kg of isotopic mass of $^{100}$Mo. It will operate at $\sim$10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of $^{100}$Mo-enriched Li$_2$MoO$_4$ crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70--90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained outstanding energy resolutions at the 356 keV line from a $^{133}$Ba source with one light detector achieving 0.71(5) keV FWHM, which is -- to our knowledge -- the best ever obtained when compared to $纬$ detectors of any technology in this energy range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04674v1-abstract-full').style.display = 'none'; document.getElementById('2304.04674v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 16 pages, 7 figures, and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04611">arXiv:2304.04611</a> <span> [<a href="https://arxiv.org/pdf/2304.04611">pdf</a>, <a href="https://arxiv.org/format/2304.04611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/06/P06018">10.1088/1748-0221/18/06/P06018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Twelve-crystal prototype of Li$_2$MoO$_4$ scintillating bolometers for CUPID and CROSS experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUPID"> CUPID</a>, <a href="/search/physics?searchtype=author&query=collaborations%2C+C">CROSS collaborations</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Berest%2C+V">V. Berest</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a> , et al. (160 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04611v1-abstract-short" style="display: inline;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04611v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04611v1-abstract-full" style="display: none;"> An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, $渭$Bq/kg, level of the LMO crystals radioactive contamination by $^{228}$Th and $^{226}$Ra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04611v1-abstract-full').style.display = 'none'; document.getElementById('2304.04611v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Prepared for submission to JINST; 23 pages, 9 figures, and 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02067">arXiv:2303.02067</a> <span> [<a href="https://arxiv.org/pdf/2303.02067">pdf</a>, <a href="https://arxiv.org/format/2303.02067">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.022006">10.1103/PhysRevD.108.022006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tagging and localisation of ionizing events using NbSi transition edge phonon sensors for Dark Matter searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=EDELWEISS+Collaboration"> EDELWEISS Collaboration</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&query=Colas%2C+J">J. Colas</a>, <a href="/search/physics?searchtype=author&query=De+J%C3%A9sus%2C+M">M. De J茅sus</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&query=Filippini%2C+J+B">J. B. Filippini</a>, <a href="/search/physics?searchtype=author&query=Filosofov%2C+D">D. Filosofov</a>, <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&query=Guy%2C+E">E. Guy</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Y. Jin</a>, <a href="/search/physics?searchtype=author&query=Juillard%2C+A">A. Juillard</a>, <a href="/search/physics?searchtype=author&query=Lattaud%2C+H">H. Lattaud</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Martini%2C+N">N. Martini</a> , et al. (14 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02067v1-abstract-short" style="display: inline;"> In the context of direct searches of sub-GeV Dark Matter particles with germanium detectors, the EDELWEISS collaboration has tested a new technique to tag ionizing events using NbSi transition edge athermal phonon sensors. The emission of the athermal phonons generated by the Neganov-Trofimov-Luke effect associated with the drift of electrons and holes through the detectors is used to tag ionizati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02067v1-abstract-full').style.display = 'inline'; document.getElementById('2303.02067v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02067v1-abstract-full" style="display: none;"> In the context of direct searches of sub-GeV Dark Matter particles with germanium detectors, the EDELWEISS collaboration has tested a new technique to tag ionizing events using NbSi transition edge athermal phonon sensors. The emission of the athermal phonons generated by the Neganov-Trofimov-Luke effect associated with the drift of electrons and holes through the detectors is used to tag ionization events generated in specific parts of the detector localized in front of the NbSi sensor and to reject by more than a factor 5 (at 90% C.L.) the background from heat-only events that dominates the spectrum above 3 keV. This method is able to improve by a factor 2.8 the previous limit on spin-independent interactions of 1 GeV/c2 WIMPs obtained with the same detector and data set but without this tagging technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02067v1-abstract-full').style.display = 'none'; document.getElementById('2303.02067v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13944">arXiv:2302.13944</a> <span> [<a href="https://arxiv.org/pdf/2302.13944">pdf</a>, <a href="https://arxiv.org/format/2302.13944">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11519-6">10.1140/epjc/s10052-023-11519-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced light signal for the suppression of pile-up events in Mo-based bolometers for the $0谓尾尾$ decay search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ahmine%2C+A">A. Ahmine</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Imbert%2C+L">L. Imbert</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a>, <a href="/search/physics?searchtype=author&query=Nones%2C+C">C. Nones</a>, <a href="/search/physics?searchtype=author&query=Olivieri%2C+E">E. Olivieri</a>, <a href="/search/physics?searchtype=author&query=de+Sol%C3%B2rzano%2C+A+O">A. Ortiz de Sol貌rzano</a>, <a href="/search/physics?searchtype=author&query=Pessina%2C+G">G. Pessina</a>, <a href="/search/physics?searchtype=author&query=Poda%2C+D+V">D. V. Poda</a>, <a href="/search/physics?searchtype=author&query=Redon%2C+T">Th. Redon</a>, <a href="/search/physics?searchtype=author&query=Scarpaci%2C+J+A">J. A. Scarpaci</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13944v2-abstract-short" style="display: inline;"> Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of $^{100}$Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li$_2$MoO$_4$ crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to red… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13944v2-abstract-full').style.display = 'inline'; document.getElementById('2302.13944v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13944v2-abstract-full" style="display: none;"> Random coincidences of events could be one of the main sources of background in the search for neutrino-less double-beta decay of $^{100}$Mo with macro-bolometers, due to their modest time resolution. Scintillating bolometers as those based on Li$_2$MoO$_4$ crystals and employed in the CROSS and CUPID experiments can eventually exploit the coincident fast signal detected in a light detector to reduce this background. However, the scintillation provides a modest signal-to-noise ratio, making difficult a pile-up pulse-shape recognition and rejection at timescales shorter than a few ms. Neganov-Trofimov-Luke assisted light detectors (NTL-LDs) offer the possibility to effectively increase the signal-to-noise ratio, preserving a fast time-response, and enhance the capability of pile-up rejection via pulse shape analysis. In this article we present: a) an experimental work performed with a Li$_2$MoO$_4$ scintillating bolometer, studied in the framework of the CROSS experiment, and utilizing a NTL-LD; b) a simulation method to reproduce, synthetically, randomly coincident two-neutrino double-beta decay events; c) a new analysis method based on a pulse-shape discrimination algorithm capable of providing high pile-up rejection efficiencies. We finally show how the NTL-LDs offer a balanced solution between performance and complexity to reach background index $\sim$$10^{-4}$ counts/keV/kg/year with 280~g Li$_2$MoO$_4$ ($^{100}$Mo enriched) bolometers at 3034 keV, the Q-value of the double-beta decay, and target the goal of a next generation experiment like CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13944v2-abstract-full').style.display = 'none'; document.getElementById('2302.13944v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12395">arXiv:2211.12395</a> <span> [<a href="https://arxiv.org/pdf/2211.12395">pdf</a>, <a href="https://arxiv.org/format/2211.12395">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/e25010021">10.3390/e25010021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reconstruction of the temporal correlation network of all-cause mortality fluctuation across Italian regions: the importance of temperature and among-nodes flux </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gigante%2C+G">Guido Gigante</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Alessandro Giuliani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12395v1-abstract-short" style="display: inline;"> All-cause mortality is a very coarse grain, albeit very reliable, index to check the health implications of lifestyle determinants, systemic threats and socio-demographic factors. In this work we adopt a statistical-mechanics approach to the analysis of temporal fluctuations of all-cause mortality, focusing on the correlation structure of this index across different regions of Italy. The correlati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12395v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12395v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12395v1-abstract-full" style="display: none;"> All-cause mortality is a very coarse grain, albeit very reliable, index to check the health implications of lifestyle determinants, systemic threats and socio-demographic factors. In this work we adopt a statistical-mechanics approach to the analysis of temporal fluctuations of all-cause mortality, focusing on the correlation structure of this index across different regions of Italy. The correlation network among the 20 Italian regions was reconstructed using temperature oscillations and travellers' flux (as a function of distance and region's attractiveness, based on GDP), allowing for a separation between infective and non-infective death causes. The proposed approach allows monitoring of emerging systemic threats in terms of anomalies of correlation network structure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12395v1-abstract-full').style.display = 'none'; document.getElementById('2211.12395v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">For (Python + Pandas + Jax) code, see https://github.com/GuidoGigante/All-cause-mortality-fluctuation-across-Italian-regions/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03631">arXiv:2211.03631</a> <span> [<a href="https://arxiv.org/pdf/2211.03631">pdf</a>, <a href="https://arxiv.org/format/2211.03631">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.211802">10.1103/PhysRevLett.130.211802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of a nuclear recoil peak at the 100 eV scale induced by neutron capture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CRAB+Collaboration"> CRAB Collaboration</a>, <a href="/search/physics?searchtype=author&query=NUCLEUS+Collaboration"> NUCLEUS Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abele%2C+H">H. Abele</a>, <a href="/search/physics?searchtype=author&query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&query=Bento%2C+A">A. Bento</a>, <a href="/search/physics?searchtype=author&query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&query=Cappella%2C+F">F. Cappella</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cerulli%2C+R">R. Cerulli</a>, <a href="/search/physics?searchtype=author&query=Chalil%2C+A">A. Chalil</a>, <a href="/search/physics?searchtype=author&query=Chebboubi%2C+A">A. Chebboubi</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Crocombette%2C+J+-">J. -P. Crocombette</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=Del+Castello%2C+G">G. Del Castello</a>, <a href="/search/physics?searchtype=author&query=Roccagiovine%2C+M+d+G">M. del Gallo Roccagiovine</a>, <a href="/search/physics?searchtype=author&query=Desforge%2C+D">D. Desforge</a>, <a href="/search/physics?searchtype=author&query=Doblhammer%2C+A">A. Doblhammer</a>, <a href="/search/physics?searchtype=author&query=Dumonteil%2C+E">E. Dumonteil</a>, <a href="/search/physics?searchtype=author&query=Dorer%2C+S">S. Dorer</a>, <a href="/search/physics?searchtype=author&query=Erhart%2C+A">A. Erhart</a>, <a href="/search/physics?searchtype=author&query=Fuss%2C+A">A. Fuss</a>, <a href="/search/physics?searchtype=author&query=Friedl%2C+M">M. Friedl</a>, <a href="/search/physics?searchtype=author&query=Garai%2C+A">A. Garai</a> , et al. (53 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03631v2-abstract-short" style="display: inline;"> Coherent elastic neutrino-nucleus scattering and low-mass Dark Matter detectors rely crucially on the understanding of their response to nuclear recoils. We report the first observation of a nuclear recoil peak at around 112 eV induced by neutron capture. The measurement was performed with a CaWO$_4$ cryogenic detector from the NUCLEUS experiment exposed to a $^{252}$Cf source placed in a compact… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03631v2-abstract-full').style.display = 'inline'; document.getElementById('2211.03631v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03631v2-abstract-full" style="display: none;"> Coherent elastic neutrino-nucleus scattering and low-mass Dark Matter detectors rely crucially on the understanding of their response to nuclear recoils. We report the first observation of a nuclear recoil peak at around 112 eV induced by neutron capture. The measurement was performed with a CaWO$_4$ cryogenic detector from the NUCLEUS experiment exposed to a $^{252}$Cf source placed in a compact moderator. The measured spectrum is found in agreement with simulations and the expected peak structure from the single-$纬$ de-excitation of $^{183}$W is identified with 3 $蟽$ significance. This result demonstrates a new method for precise, in-situ, and non-intrusive calibration of low-threshold experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03631v2-abstract-full').style.display = 'none'; document.getElementById('2211.03631v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 211802 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03248">arXiv:2210.03248</a> <span> [<a href="https://arxiv.org/pdf/2210.03248">pdf</a>, <a href="https://arxiv.org/format/2210.03248">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0129716">10.1063/5.0129716 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct stellarator coil optimization for nested magnetic surfaces with precise quasi-symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a>, <a href="/search/physics?searchtype=author&query=Wechsung%2C+F">Florian Wechsung</a>, <a href="/search/physics?searchtype=author&query=Cerfon%2C+A">Antoine Cerfon</a>, <a href="/search/physics?searchtype=author&query=Landreman%2C+M">Matt Landreman</a>, <a href="/search/physics?searchtype=author&query=Stadler%2C+G">Georg Stadler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03248v3-abstract-short" style="display: inline;"> We present a robust optimization algorithm for the design of electromagnetic coils that generate vacuum magnetic fields with nested flux surfaces and precise quasi-symmetry. The method is based on a bilevel optimization problem, where the outer coil optimization is constrained by a set of inner least-squares optimization problems whose solutions describe magnetic surfaces. The outer optimization o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03248v3-abstract-full').style.display = 'inline'; document.getElementById('2210.03248v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03248v3-abstract-full" style="display: none;"> We present a robust optimization algorithm for the design of electromagnetic coils that generate vacuum magnetic fields with nested flux surfaces and precise quasi-symmetry. The method is based on a bilevel optimization problem, where the outer coil optimization is constrained by a set of inner least-squares optimization problems whose solutions describe magnetic surfaces. The outer optimization objective targets coils that generate a field with nested magnetic surfaces and good quasi-symmetry. The inner optimization problems identify magnetic surfaces when they exist, and approximate surfaces in the presence of magnetic islands or chaos. We show that this formulation can be used to heal islands and chaos, thus producing coils that result in magnetic fields with precise quasi-symmetry. We show that the method can be initialized with coils from the traditional two stage coil design process, as well as coils from a near axis expansion optimization. We present a numerical example where island chains are healed and quasi-symmetry is optimized up to surfaces with aspect ratio 6. Another numerical example illustrates that the aspect ratio of nested flux surfaces with optimized quasi-symmetry can be decreased from 6 to approximately 4. The last example shows that our approach is robust and a cold-start using coils from a near-axis expansion optimization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03248v3-abstract-full').style.display = 'none'; document.getElementById('2210.03248v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09490">arXiv:2209.09490</a> <span> [<a href="https://arxiv.org/pdf/2209.09490">pdf</a>, <a href="https://arxiv.org/format/2209.09490">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.032006">10.1103/PhysRevD.107.032006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Majoron-like particles with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Collaboration%2C+C">CUPID-0 Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Domp%C3%A8%2C+V">V. Domp猫</a>, <a href="/search/physics?searchtype=author&query=Fantini%2C+G">G. Fantini</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09490v1-abstract-short" style="display: inline;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09490v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09490v1-abstract-full" style="display: none;"> We present the first search for the Majoron-emitting modes of the neutrinoless double $尾$ decay ($0谓尾尾蠂_0$) using scintillating cryogenic calorimeters. We analysed the CUPID-0 Phase I data using a Bayesian approach to reconstruct the background sources activities, and evaluate the potential contribution of the $^{82}$Se $0谓尾尾蠂_0$. We considered several possible theoretical models which predict the existence of a Majoron-like boson coupling to the neutrino. The energy spectra arising from the emission of such bosons in the neutrinoless double $尾$ decay have spectral indices $n=$ 1, 2, 3 or 7. We found no evidence of any of these decay modes, setting a lower limit (90% of credibility interval) on the half-life of 1.2 $\times$ 10$^{23}$ yr in the case of $n=$ 1, 3.8 $\times$ 10$^{22}$ yr for $n=$ 2, 1.4 $\times$ 10$^{22}$ yr for $n=$ 3 and 2.2 $\times$ 10$^{21}$ yr for $n=$ 7. These are the best limits on the $0谓尾尾蠂_0$ half-life of the $^{82}$Se, and demonstrate the potentiality of the CUPID-0 technology in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09490v1-abstract-full').style.display = 'none'; document.getElementById('2209.09490v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01760">arXiv:2208.01760</a> <span> [<a href="https://arxiv.org/pdf/2208.01760">pdf</a>, <a href="https://arxiv.org/format/2208.01760">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11150-x">10.1140/epjc/s10052-022-11150-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Baulieu%2C+G">G. Baulieu</a>, <a href="/search/physics?searchtype=author&query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&query=Berge%2C+L">L. Berge</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Bres%2C+G">G. Bres</a>, <a href="/search/physics?searchtype=author&query=Bret%2C+J+-">J. -L. Bret</a>, <a href="/search/physics?searchtype=author&query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+M">M. Calvo</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chaize%2C+D">D. Chaize</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Chaplinsky%2C+L">L. Chaplinsky</a>, <a href="/search/physics?searchtype=author&query=Chemin%2C+G">G. Chemin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/physics?searchtype=author&query=Colas%2C+J">J. Colas</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Exshaw%2C+O">O. Exshaw</a>, <a href="/search/physics?searchtype=author&query=Ferriol%2C+S">S. Ferriol</a>, <a href="/search/physics?searchtype=author&query=Figueroa-Feliciano%2C+E">E. Figueroa-Feliciano</a>, <a href="/search/physics?searchtype=author&query=Filippini%2C+J+-">J. -B. Filippini</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Fuard%2C+S">S. Fuard</a> , et al. (58 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01760v1-abstract-short" style="display: inline;"> The future Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 meters away from the 58 MW resear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01760v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01760v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01760v1-abstract-full" style="display: none;"> The future Ricochet experiment aims at searching for new physics in the electroweak sector by providing a high precision measurement of the Coherent Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV nuclear recoil energy range. The experiment will deploy a kg-scale low-energy-threshold detector array combining Ge and Zn target crystals 8.8 meters away from the 58 MW research nuclear reactor core of the Institut Laue Langevin (ILL) in Grenoble, France. Currently, the Ricochet collaboration is characterizing the backgrounds at its future experimental site in order to optimize the experiment's shielding design. The most threatening background component, which cannot be actively rejected by particle identification, consists of keV-scale neutron-induced nuclear recoils. These initial fast neutrons are generated by the reactor core and surrounding experiments (reactogenics), and by the cosmic rays producing primary neutrons and muon-induced neutrons in the surrounding materials. In this paper, we present the Ricochet neutron background characterization using $^3$He proportional counters which exhibit a high sensitivity to thermal, epithermal and fast neutrons. We compare these measurements to the Ricochet Geant4 simulations to validate our reactogenic and cosmogenic neutron background estimations. Eventually, we present our estimated neutron background for the future Ricochet experiment and the resulting CENNS detection significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01760v1-abstract-full').style.display = 'none'; document.getElementById('2208.01760v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.06559">arXiv:2206.06559</a> <span> [<a href="https://arxiv.org/pdf/2206.06559">pdf</a>, <a href="https://arxiv.org/format/2206.06559">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.232502">10.1103/PhysRevLett.129.232502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Determining $g_{A}/g_{V}$ with High Resolution Spectral Measurements Using an LiInSe$_2$ Bolometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Leder%2C+A+F">A. F. Leder</a>, <a href="/search/physics?searchtype=author&query=Mayer%2C+D">D. Mayer</a>, <a href="/search/physics?searchtype=author&query=Ouellet%2C+J+L">J. L. Ouellet</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Kostensalo%2C+J">J. Kostensalo</a>, <a href="/search/physics?searchtype=author&query=Kotila%2C+J">J. Kotila</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Nones%2C+C">C. Nones</a>, <a href="/search/physics?searchtype=author&query=Novati%2C+V">V. Novati</a>, <a href="/search/physics?searchtype=author&query=Olivieri%2C+E">E. Olivieri</a>, <a href="/search/physics?searchtype=author&query=Poda%2C+D">D. Poda</a>, <a href="/search/physics?searchtype=author&query=Suhonen%2C+J">J. Suhonen</a>, <a href="/search/physics?searchtype=author&query=Tretyak%2C+V+I">V. I. Tretyak</a>, <a href="/search/physics?searchtype=author&query=Winslow%2C+L">L. Winslow</a>, <a href="/search/physics?searchtype=author&query=Zolotarova%2C+A">A. Zolotarova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.06559v2-abstract-short" style="display: inline;"> Neutrinoless Double-Beta decay (0$谓尾尾$) processes sample a wide range of intermediate forbidden nuclear transitions, which may be impacted by quenching of the axial vector coupling constant ($g_A/g_V$), the uncertainty of which plays a pivotal role in determining the sensitivity reach of 0$谓尾尾$ experiments. In this Letter, we present measurements performed on a high-resolution LiInSe$_{2}$~ bolome… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06559v2-abstract-full').style.display = 'inline'; document.getElementById('2206.06559v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.06559v2-abstract-full" style="display: none;"> Neutrinoless Double-Beta decay (0$谓尾尾$) processes sample a wide range of intermediate forbidden nuclear transitions, which may be impacted by quenching of the axial vector coupling constant ($g_A/g_V$), the uncertainty of which plays a pivotal role in determining the sensitivity reach of 0$谓尾尾$ experiments. In this Letter, we present measurements performed on a high-resolution LiInSe$_{2}$~ bolometer in a ''source=detector'' configuration to measure the spectral shape of the 4-fold forbidden $尾$-decay of $^{115}$In. The value of $g_A/g_V$ is determined by comparing the spectral shape of theoretical predictions to the experimental $尾$ spectrum taking into account various simulated background components as well as a variety of detector effects. We find evidence of quenching of $g_A/g_V$ at $>5蟽$ with a model-dependent quenching factor of $0.655\pm0.002$ as compared to the free-nucleon value for the Interacting Shell Model. We also measured the $^{115}$In half-life to be [$5.18\pm0.06(\text{stat.})^{+0.005}_{-0.015}(\text{sys.})]\times{10}^{14}$ yr within the Interacting Shell Model framework. This work demonstrates the power of the bolometeric technique to perform precision nuclear physics single-$尾$ decay measurements, which can help reduce the uncertainties in the calculation of $0谓尾尾$ nuclear matrix elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.06559v2-abstract-full').style.display = 'none'; document.getElementById('2206.06559v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 4 Figures, 2 Tables, Submitted to PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.05130">arXiv:2206.05130</a> <span> [<a href="https://arxiv.org/pdf/2206.05130">pdf</a>, <a href="https://arxiv.org/format/2206.05130">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.111801">10.1103/PhysRevLett.129.111801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final Result on the Neutrinoless Double Beta Decay of $^{82}$Se with CUPID-0 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=De+Dominics%2C+F">F. De Dominics</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gorla%2C+P">P. Gorla</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.05130v1-abstract-short" style="display: inline;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'inline'; document.getElementById('2206.05130v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.05130v1-abstract-full" style="display: none;"> CUPID-0, an array of Zn$^{82}$Se cryogenic calorimeters, was the first medium-scale demonstrator of the scintillating bolometers technology. The first project phase (March 2017 - December 2018) allowed the most stringent limit on the neutrinoless double beta decay half-life of the isotope of interest, $^{82}$Se, to be set. After a six months long detector upgrade, CUPID-0 began its second and last phase (June 2019 - February 2020). In this letter, we describe the search for neutrinoless double beta decay of $^{82}$Se with a total exposure (phase I + II) of 8.82 kg$\times$yr of isotope. We set a limit on the half-life of $^{82}$Se to the ground state of $^{82}$Kr of T$^{0谓}_{1/2}$($^{82}$Se)$>$ 4.6$\times \mathrm{10}^{24}$ yr (90\% credible interval), corresponding to an effective Majorana neutrino mass m$_{尾尾} <$ (263 -- 545) meV. We also set the most stringent lower limits on the neutrinoless decays of $^{82}$Se to the 0$_1^+$, 2$_1^+$ and 2$_2^+$ excited states of $^{82}$Kr, finding 1.8$\times$10$^{23}$ yr, 3.0$\times$10$^{23}$ yr, 3.2$\times$10$^{23}$ yr (90$\%$ credible interval) respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.05130v1-abstract-full').style.display = 'none'; document.getElementById('2206.05130v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.04549">arXiv:2205.04549</a> <span> [<a href="https://arxiv.org/pdf/2205.04549">pdf</a>, <a href="https://arxiv.org/format/2205.04549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> An Energy-dependent Electro-thermal Response Model of CUORE Cryogenic Calorimeter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a> , et al. (96 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.04549v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay ($0谓尾尾$) in $^{130}\text{Te}$. CUORE uses a cryogenic array of 988 TeO$_2$ calorimeters operated at $\sim$10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear therm… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04549v2-abstract-full').style.display = 'inline'; document.getElementById('2205.04549v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.04549v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the most sensitive experiment searching for neutrinoless double-beta decay ($0谓尾尾$) in $^{130}\text{Te}$. CUORE uses a cryogenic array of 988 TeO$_2$ calorimeters operated at $\sim$10 mK with a total mass of 741 kg. To further increase the sensitivity, the detector response must be well understood. Here, we present a non-linear thermal model for the CUORE experiment on a detector-by-detector basis. We have examined both equilibrium and dynamic electro-thermal models of detectors by numerically fitting non-linear differential equations to the detector data of a subset of CUORE channels which are well characterized and representative of all channels. We demonstrate that the hot-electron effect and electric-field dependence of resistance in NTD-Ge thermistors alone are inadequate to describe our detectors' energy dependent pulse shapes. We introduce an empirical second-order correction factor in the exponential temperature dependence of the thermistor, which produces excellent agreement with energy-dependent pulse shape data up to 6 MeV. We also present a noise analysis using the fitted thermal parameters and show that the intrinsic thermal noise is negligible compared to the observed noise for our detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.04549v2-abstract-full').style.display = 'none'; document.getElementById('2205.04549v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 14 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14161">arXiv:2204.14161</a> <span> [<a href="https://arxiv.org/pdf/2204.14161">pdf</a>, <a href="https://arxiv.org/format/2204.14161">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> First cryogenic tests on BINGO innovations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Charrier%2C+A">A. Charrier</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F">F. Danevich</a>, <a href="/search/physics?searchtype=author&query=De+Combarieu%2C+M">M. De Combarieu</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gomez%2C+H">H. Gomez</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&query=Juillard%2C+A">A. Juillard</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Kobychev%2C+V+V">V. V. Kobychev</a>, <a href="/search/physics?searchtype=author&query=Lefevre%2C+M">M. Lefevre</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14161v1-abstract-short" style="display: inline;"> Neutrinoless double-beta decay ($0\nu2尾$) is a hypothetical rare nuclear transition. Its observation would provide an important insight about the nature of neutrinos (Dirac or Majorana particle) demonstrating that the lepton number is not conserved. BINGO (Bi-Isotope $0\nu2尾$ Next Generation Observatory) aims to set the technological grounds for future bolometric $0\nu2尾$ experiments. It is based… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14161v1-abstract-full').style.display = 'inline'; document.getElementById('2204.14161v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14161v1-abstract-full" style="display: none;"> Neutrinoless double-beta decay ($0\nu2尾$) is a hypothetical rare nuclear transition. Its observation would provide an important insight about the nature of neutrinos (Dirac or Majorana particle) demonstrating that the lepton number is not conserved. BINGO (Bi-Isotope $0\nu2尾$ Next Generation Observatory) aims to set the technological grounds for future bolometric $0\nu2尾$ experiments. It is based on a dual heat-light readout, i.e. a main scintillating absorber embedding the double-beta decay isotope accompanied by a cryogenic light detector. BINGO will study two of the most promising isotopes: $^{100}$Mo embedded in Li$_2$MoO$_4$ (LMO) crystals and $^{130}$Te embedded in TeO$_2$. BINGO technology will reduce dramatically the background in the region of interest, thus boosting the discovery sensitivity of $0\nu2尾$. The proposed solutions will have a high impact on next-generation bolometric tonne-scale experiments, like CUPID. In this contribution, we present the results obtained during the first tests performed in the framework of BINGO R&D. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14161v1-abstract-full').style.display = 'none'; document.getElementById('2204.14161v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures. Contribution to the proceedings of 32nd Rencontres de Blois, Blois, France, 17-22 October 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10164">arXiv:2203.10164</a> <span> [<a href="https://arxiv.org/pdf/2203.10164">pdf</a>, <a href="https://arxiv.org/format/2203.10164">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6587/ac89ee">10.1088/1361-6587/ac89ee <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stochastic and a posteriori optimization to mitigate coil manufacturing errors in stellarator design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wechsung%2C+F">Florian Wechsung</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a>, <a href="/search/physics?searchtype=author&query=Landreman%2C+M">Matt Landreman</a>, <a href="/search/physics?searchtype=author&query=Cerfon%2C+A">Antoine Cerfon</a>, <a href="/search/physics?searchtype=author&query=Stadler%2C+G">Georg Stadler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10164v2-abstract-short" style="display: inline;"> It was recently shown in [Wechsung et. al., Proc. Natl. Acad. Sci. USA, 2022] that there exist electromagnetic coils that generate magnetic fields which are excellent approximations to quasi-symmetric fields and have very good particle confinement properties. Using a Gaussian process based model for coil perturbations, we investigate the impact of manufacturing errors on the performance of these c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10164v2-abstract-full').style.display = 'inline'; document.getElementById('2203.10164v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10164v2-abstract-full" style="display: none;"> It was recently shown in [Wechsung et. al., Proc. Natl. Acad. Sci. USA, 2022] that there exist electromagnetic coils that generate magnetic fields which are excellent approximations to quasi-symmetric fields and have very good particle confinement properties. Using a Gaussian process based model for coil perturbations, we investigate the impact of manufacturing errors on the performance of these coils. We show that even fairly small errors result in noticeable performance degradation. While stochastic optimization yields minor improvements, it is not able to mitigate these errors significantly. As an alternative to stochastic optimization, we then formulate a new optimization problem for computing optimal adjustments of the coil positions and currents without changing the shapes of the coil. These a-posteriori adjustments are able to reduce the impact of coil errors by an order of magnitude, providing a new perspective for dealing with manufacturing tolerances in stellarator design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10164v2-abstract-full').style.display = 'none'; document.getElementById('2203.10164v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.03753">arXiv:2203.03753</a> <span> [<a href="https://arxiv.org/pdf/2203.03753">pdf</a>, <a href="https://arxiv.org/format/2203.03753">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377822000563">10.1017/S0022377822000563 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Direct computation of magnetic surfaces in Boozer coordinates and coil optimization for quasi-symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a>, <a href="/search/physics?searchtype=author&query=Wechsung%2C+F">Florian Wechsung</a>, <a href="/search/physics?searchtype=author&query=Landreman%2C+M">Matt Landreman</a>, <a href="/search/physics?searchtype=author&query=Stadler%2C+G">Georg Stadler</a>, <a href="/search/physics?searchtype=author&query=Cerfon%2C+A">Antoine Cerfon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.03753v2-abstract-short" style="display: inline;"> We propose a new method to compute magnetic surfaces that are parametrized in Boozer coordinates for vacuum magnetic fields. We also propose a measure for quasi-symmetry on the computed surfaces and use it to design coils that generate a magnetic field that is quasi-symmetric on those surfaces. The rotational transform of the field and complexity measures for the coils are also controlled in the d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03753v2-abstract-full').style.display = 'inline'; document.getElementById('2203.03753v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.03753v2-abstract-full" style="display: none;"> We propose a new method to compute magnetic surfaces that are parametrized in Boozer coordinates for vacuum magnetic fields. We also propose a measure for quasi-symmetry on the computed surfaces and use it to design coils that generate a magnetic field that is quasi-symmetric on those surfaces. The rotational transform of the field and complexity measures for the coils are also controlled in the design problem. Using an adjoint approach, we are able to obtain analytic derivatives for this optimization problem, yielding an efficient gradient-based algorithm. Starting from an initial coil set that presents nested magnetic surfaces for a large fraction of the volume, our method converges rapidly to coil systems generating fields with excellent quasi-symmetry and low particle losses. In particular for low complexity coils, we are able to significantly improve the performance compared to coils obtained from the standard two-stage approach, e.g.~reduce losses of fusion-produced alpha particles born at half-radius from $17.7\%$ to $6.6\%$. We also demonstrate 16-coil configurations with alpha loss < $1\%$ and neoclassical transport magnitude $蔚_{\mathrm{eff}}^{3/2}$ less than approximately $5\times 10^{-9}.$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.03753v2-abstract-full').style.display = 'none'; document.getElementById('2203.03753v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08716">arXiv:2202.08716</a> <span> [<a href="https://arxiv.org/pdf/2202.08716">pdf</a>, <a href="https://arxiv.org/format/2202.08716">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10942-5">10.1140/epjc/s10052-022-10942-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final results on the $0谓尾尾$ decay half-life limit of $^{100}$Mo from the CUPID-Mo experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Fujikawa%2C+B+K">B. K. Fujikawa</a>, <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a> , et al. (54 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08716v2-abstract-short" style="display: inline;"> The CUPID-Mo experiment to search for 0$谓尾尾$ decay in $^{100}$Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0$谓尾尾$ decay experiment. CUPID-Mo was comprised of 20 enriched Li$_2$$^{100}$MoO$_4$ scintillating calorimeters, each with a mass of $\sim$ 0.2 kg, operated at $\sim$20… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08716v2-abstract-full').style.display = 'inline'; document.getElementById('2202.08716v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08716v2-abstract-full" style="display: none;"> The CUPID-Mo experiment to search for 0$谓尾尾$ decay in $^{100}$Mo has been recently completed after about 1.5 years of operation at Laboratoire Souterrain de Modane (France). It served as a demonstrator for CUPID, a next generation 0$谓尾尾$ decay experiment. CUPID-Mo was comprised of 20 enriched Li$_2$$^{100}$MoO$_4$ scintillating calorimeters, each with a mass of $\sim$ 0.2 kg, operated at $\sim$20 mK. We present here the final analysis with the full exposure of CUPID-Mo ($^{100}$Mo exposure of 1.47 kg$\times$yr) used to search for lepton number violation via 0$谓尾尾$ decay. We report on various analysis improvements since the previous result on a subset of data, reprocessing all data with these new techniques. We observe zero events in the region of interest and set a new limit on the $^{100}$Mo 0$谓尾尾$ decay half-life of $T^{0谓}_{1/2} > 1.8 \times 10^{24}$ year (stat.+syst.) at 90% CI. Under the light Majorana neutrino exchange mechanism this corresponds to an effective Majorana neutrino mass of $\left<m_{尾尾}\right> < (0.28$--$0.49)$ eV, dependent upon the nuclear matrix element utilized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08716v2-abstract-full').style.display = 'none'; document.getElementById('2202.08716v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 82, 1033 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06279">arXiv:2202.06279</a> <span> [<a href="https://arxiv.org/pdf/2202.06279">pdf</a>, <a href="https://arxiv.org/format/2202.06279">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Optimization of the first CUPID detector module </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUPID+collaboration"> CUPID collaboration</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Ballen%2C+K">K. Ballen</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bettelli%2C+M">M. Bettelli</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a> , et al. (153 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06279v1-abstract-short" style="display: inline;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'inline'; document.getElementById('2202.06279v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06279v1-abstract-full" style="display: none;"> CUPID will be a next generation experiment searching for the neutrinoless double $尾$ decay, whose discovery would establish the Majorana nature of the neutrino. Based on the experience achieved with the CUORE experiment, presently taking data at LNGS, CUPID aims to reach a background free environment by means of scintillating Li$_{2}$$^{100}$MoO$_4$ crystals coupled to light detectors. Indeed, the simultaneous heat and light detection allows us to reject the dominant background of $伪$ particles, as proven by the CUPID-0 and CUPID-Mo demonstrators. In this work we present the results of the first test of the CUPID baseline module. In particular, we propose a new optimized detector structure and light sensors design to enhance the engineering and the light collection, respectively. We characterized the heat detectors, achieving an energy resolution of (5.9 $\pm$ 0.2) keV FWHM at the $Q$-value of $^{100}$Mo (about 3034 keV). We studied the light collection of the baseline CUPID design with respect to an alternative configuration which features gravity-assisted light detectors' mounting. In both cases we obtained an improvement in the light collection with respect to past measures and we validated the particle identification capability of the detector, which ensures an $伪$ particle rejection higher than 99.9%, fully satisfying the requirements for CUPID. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06279v1-abstract-full').style.display = 'none'; document.getElementById('2202.06279v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05097">arXiv:2202.05097</a> <span> [<a href="https://arxiv.org/pdf/2202.05097">pdf</a>, <a href="https://arxiv.org/format/2202.05097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhysProc.9.001">10.21468/SciPostPhysProc.9.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EXCESS workshop: Descriptions of rising low-energy spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adari%2C+P">P. Adari</a>, <a href="/search/physics?searchtype=author&query=Aguilar-Arevalo%2C+A">A. Aguilar-Arevalo</a>, <a href="/search/physics?searchtype=author&query=Amidei%2C+D">D. Amidei</a>, <a href="/search/physics?searchtype=author&query=Angloher%2C+G">G. Angloher</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Balogh%2C+L">L. Balogh</a>, <a href="/search/physics?searchtype=author&query=Banik%2C+S">S. Banik</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+D">D. Baxter</a>, <a href="/search/physics?searchtype=author&query=Beaufort%2C+C">C. Beaufort</a>, <a href="/search/physics?searchtype=author&query=Beaulieu%2C+G">G. Beaulieu</a>, <a href="/search/physics?searchtype=author&query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&query=Gal%2C+Y+B">Y. Ben Gal</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&query=Bento%2C+A">A. Bento</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Bertolini%2C+A">A. Bertolini</a>, <a href="/search/physics?searchtype=author&query=Bhattacharyya%2C+R">R. Bhattacharyya</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Bloch%2C+I+M">I. M. Bloch</a>, <a href="/search/physics?searchtype=author&query=Botti%2C+A">A. Botti</a>, <a href="/search/physics?searchtype=author&query=Breier%2C+R">R. Breier</a>, <a href="/search/physics?searchtype=author&query=Bres%2C+G">G. Bres</a>, <a href="/search/physics?searchtype=author&query=Bret%2C+J+L">J-. L. Bret</a> , et al. (281 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05097v2-abstract-short" style="display: inline;"> Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05097v2-abstract-full').style.display = 'inline'; document.getElementById('2202.05097v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05097v2-abstract-full" style="display: none;"> Many low-threshold experiments observe sharply rising event rates of yet unknown origins below a few hundred eV, and larger than expected from known backgrounds. Due to the significant impact of this excess on the dark matter or neutrino sensitivity of these experiments, a collective effort has been started to share the knowledge about the individual observations. For this, the EXCESS Workshop was initiated. In its first iteration in June 2021, ten rare event search collaborations contributed to this initiative via talks and discussions. The contributing collaborations were CONNIE, CRESST, DAMIC, EDELWEISS, MINER, NEWS-G, NUCLEUS, RICOCHET, SENSEI and SuperCDMS. They presented data about their observed energy spectra and known backgrounds together with details about the respective measurements. In this paper, we summarize the presented information and give a comprehensive overview of the similarities and differences between the distinct measurements. The provided data is furthermore publicly available on the workshop's data repository together with a plotting tool for visualization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05097v2-abstract-full').style.display = 'none'; document.getElementById('2202.05097v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">44 pages, 20 figures; Editors: A. Fuss, M. Kaznacheeva, F. Reindl, F. Wagner; updated copyright statements and funding information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. Proc. 9, 001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01639">arXiv:2201.01639</a> <span> [<a href="https://arxiv.org/pdf/2201.01639">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02899-2">10.1007/s10909-022-02899-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High impedance TES bolometers for EDELWEISS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Arnaud%2C+Q">Q. Arnaud</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&query=De+J%C3%A9sus%2C+M">M. De J茅sus</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&query=Fillipini%2C+J+-">J. -B. Fillipini</a>, <a href="/search/physics?searchtype=author&query=Filosofov%2C+D">D. Filosofov</a>, <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Y. Jin</a>, <a href="/search/physics?searchtype=author&query=Juillard%2C+A">A. Juillard</a>, <a href="/search/physics?searchtype=author&query=Kleifges%2C+M">M. Kleifges</a>, <a href="/search/physics?searchtype=author&query=Lattaud%2C+H">H. Lattaud</a>, <a href="/search/physics?searchtype=author&query=Misiak%2C+D">D. Misiak</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01639v1-abstract-short" style="display: inline;"> The EDELWEISS collaboration aims for direct detection of light dark matter using germanium cryogenic detectors with low threshold phonon sensor technologies and efficient charge readout designs. We describe here the development of Ge bolometers equipped with high impedance thermistors based on a NbxSi1-x TES alloy. High aspect ratio spiral designs allow the TES impedance to match with JFET or HEMT… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01639v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01639v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01639v1-abstract-full" style="display: none;"> The EDELWEISS collaboration aims for direct detection of light dark matter using germanium cryogenic detectors with low threshold phonon sensor technologies and efficient charge readout designs. We describe here the development of Ge bolometers equipped with high impedance thermistors based on a NbxSi1-x TES alloy. High aspect ratio spiral designs allow the TES impedance to match with JFET or HEMT front-end amplifiers. We detail the behavior of the superconducting transition properties of these sensors and the detector optimization in terms of sensitivity to out-of-equilibrium phonons. We report preliminary results of a 200 g Ge detector that was calibrated using 71Ge activation by neutrons at the LSM underground laboratory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01639v1-abstract-full').style.display = 'none'; document.getElementById('2201.01639v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Journal of Low Temperature Physics, Special Issue for the 19th International Workshop on Low Temperature Detectors 19-29 July 2021 (Virtual event hold by NIST)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05467">arXiv:2112.05467</a> <span> [<a href="https://arxiv.org/pdf/2112.05467">pdf</a>, <a href="https://arxiv.org/format/2112.05467">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Low-mass Dark Matter searches with EDELWEISS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gascon%2C+J">J. Gascon</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Arnaud%2C+Q">Q. Arnaud</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Benoit%2C+A">A. Benoit</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&query=De+J%C3%A9sus%2C+M">M. De J茅sus</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&query=Filippini%2C+J+-">J. -B. Filippini</a>, <a href="/search/physics?searchtype=author&query=Filosofov%2C+D">D. Filosofov</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gros%2C+M">M. Gros</a>, <a href="/search/physics?searchtype=author&query=Jin%2C+Y">Y. Jin</a>, <a href="/search/physics?searchtype=author&query=Juillard%2C+A">A. Juillard</a>, <a href="/search/physics?searchtype=author&query=Kleifges%2C+M">M. Kleifges</a>, <a href="/search/physics?searchtype=author&query=Lattaud%2C+H">H. Lattaud</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Misiak%2C+D">D. Misiak</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05467v2-abstract-short" style="display: inline;"> The EDELWEISS collaboration searches for light Dark Matter (DM) particles using germanium detectors equipped with a charge and phonon signal readout. Using the Neganov-Trofimov-Luke effect, an rms resolution of 0.53 electron-hole pair was obtained on a massive (33.4 g) Ge detector operated underground at the Laboratoire Souterrain de Modane. This record sensitivity made possible a search for Dark… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05467v2-abstract-full').style.display = 'inline'; document.getElementById('2112.05467v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05467v2-abstract-full" style="display: none;"> The EDELWEISS collaboration searches for light Dark Matter (DM) particles using germanium detectors equipped with a charge and phonon signal readout. Using the Neganov-Trofimov-Luke effect, an rms resolution of 0.53 electron-hole pair was obtained on a massive (33.4 g) Ge detector operated underground at the Laboratoire Souterrain de Modane. This record sensitivity made possible a search for Dark Photon DM down to 1 eV/c2 and to DM-electron interactions below 1 MeV/c2. This demonstrates for the first time the high relevance of cryogenic Ge detectors in searches at low thresholds and is an important step of the development of Ge detectors with improved performance in the context of the EDELWEISS-SubGeV program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05467v2-abstract-full').style.display = 'none'; document.getElementById('2112.05467v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Journal of Low Temperature Physics, Special Issue for the 19th International Workshop on Low Temperature Detectors 19-29 July 2021 (Virtual event hold by NIST)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.06745">arXiv:2111.06745</a> <span> [<a href="https://arxiv.org/pdf/2111.06745">pdf</a>, <a href="https://arxiv.org/format/2111.06745">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Ricochet Progress and Status </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ricochet+Collaboration"> Ricochet Collaboration</a>, <a href="/search/physics?searchtype=author&query=Beaulieu%2C+G">G. Beaulieu</a>, <a href="/search/physics?searchtype=author&query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&query=Berge%2C+L">L. Berge</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Bres%2C+G">G. Bres</a>, <a href="/search/physics?searchtype=author&query=Bret%2C+J+L">J-. L. Bret</a>, <a href="/search/physics?searchtype=author&query=Broniatowski%2C+A">A. Broniatowski</a>, <a href="/search/physics?searchtype=author&query=Calvo%2C+M">M. Calvo</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chaize%2C+D">D. Chaize</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Chaplinsky%2C+L">L. Chaplinsky</a>, <a href="/search/physics?searchtype=author&query=Chemin%2C+G">G. Chemin</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+R">R. Chen</a>, <a href="/search/physics?searchtype=author&query=Colas%2C+J">J. Colas</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Exshaw%2C+O">O. Exshaw</a>, <a href="/search/physics?searchtype=author&query=Ferriol%2C+S">S. Ferriol</a>, <a href="/search/physics?searchtype=author&query=Figueroa-Feliciano%2C+E">E. Figueroa-Feliciano</a>, <a href="/search/physics?searchtype=author&query=Filippini%2C+J+B">J. B. Filippini</a>, <a href="/search/physics?searchtype=author&query=Formaggio%2C+J+A">J. A. Formaggio</a>, <a href="/search/physics?searchtype=author&query=Fuard%2C+S">S. Fuard</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.06745v1-abstract-short" style="display: inline;"> We present an overview of recent progress towards the Ricochet coherent elastic neutrino nucleus scattering CE$谓$NS experiment. The ILL research reactor in Grenoble, France has been selected as the experiment site, after in situ studies of vibration and particle backgrounds. We present background rate estimates specific to that site, along with descriptions of the planned CryoCube and Q-Array dete… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06745v1-abstract-full').style.display = 'inline'; document.getElementById('2111.06745v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.06745v1-abstract-full" style="display: none;"> We present an overview of recent progress towards the Ricochet coherent elastic neutrino nucleus scattering CE$谓$NS experiment. The ILL research reactor in Grenoble, France has been selected as the experiment site, after in situ studies of vibration and particle backgrounds. We present background rate estimates specific to that site, along with descriptions of the planned CryoCube and Q-Array detector payloads. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.06745v1-abstract-full').style.display = 'none'; document.getElementById('2111.06745v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for the 19th International Workshop on Low Temperature Detectors (LTD19)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.07883">arXiv:2108.07883</a> <span> [<a href="https://arxiv.org/pdf/2108.07883">pdf</a>, <a href="https://arxiv.org/format/2108.07883">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ppnp.2021.103902">10.1016/j.ppnp.2021.103902 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUORE Opens the Door to Tonne-scale Cryogenics Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CUORE+Collaboration"> CUORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alessandria%2C+F">F. Alessandria</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Andreotti%2C+E">E. Andreotti</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I">I. Bandac</a>, <a href="/search/physics?searchtype=author&query=Banks%2C+T+I">T. I. Banks</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barucci%2C+M">M. Barucci</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Bersani%2C+A">A. Bersani</a>, <a href="/search/physics?searchtype=author&query=Biare%2C+D">D. Biare</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Bragazzi%2C+F">F. Bragazzi</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bryant%2C+A">A. Bryant</a>, <a href="/search/physics?searchtype=author&query=Buccheri%2C+A">A. Buccheri</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.07883v2-abstract-short" style="display: inline;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require eve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'inline'; document.getElementById('2108.07883v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.07883v2-abstract-full" style="display: none;"> The past few decades have seen major developments in the design and operation of cryogenic particle detectors. This technology offers an extremely good energy resolution - comparable to semiconductor detectors - and a wide choice of target materials, making low temperature calorimetric detectors ideal for a variety of particle physics applications. Rare event searches have continued to require ever greater exposures, which has driven them to ever larger cryogenic detectors, with the CUORE experiment being the first to reach a tonne-scale, mK-cooled, experimental mass. CUORE, designed to search for neutrinoless double beta decay, has been operational since 2017 at a temperature of about 10 mK. This result has been attained by the use of an unprecedentedly large cryogenic infrastructure called the CUORE cryostat: conceived, designed and commissioned for this purpose. In this article the main characteristics and features of the cryogenic facility developed for the CUORE experiment are highlighted. A brief introduction of the evolution of the field and of the past cryogenic facilities are given. The motivation behind the design and development of the CUORE cryogenic facility is detailed as are the steps taken toward realization, commissioning, and operation of the CUORE cryostat. The major challenges overcome by the collaboration and the solutions implemented throughout the building of the cryogenic facility will be discussed along with the potential improvements for future facilities. The success of CUORE has opened the door to a new generation of large-scale cryogenic facilities in numerous fields of science. Broader implications of the incredible feat achieved by the CUORE collaboration on the future cryogenic facilities in various fields ranging from neutrino and dark matter experiments to quantum computing will be examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.07883v2-abstract-full').style.display = 'none'; document.getElementById('2108.07883v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog. Part. Nucl. Phys., 122 (2021), Article 103902 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12396">arXiv:2106.12396</a> <span> [<a href="https://arxiv.org/pdf/2106.12396">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Evanescent Wave Dynamic Light Scattering of Turbid Media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Antonio Giuliani</a>, <a href="/search/physics?searchtype=author&query=Loppinet%2C+B">Benoit Loppinet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12396v1-abstract-short" style="display: inline;"> Dynamics light scattering (DLS) is a widely used techniques to characterize dynamics in soft phases. Evanescent Wave DLS refers to the case of total internal reflection DLS that probes near interface dynamics. We here investigate the use of EWDLS for turbid sample. Using combination of ray-tracing simulation and experiments, we show that a significant fraction of the detected photons are scattered… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12396v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12396v1-abstract-full" style="display: none;"> Dynamics light scattering (DLS) is a widely used techniques to characterize dynamics in soft phases. Evanescent Wave DLS refers to the case of total internal reflection DLS that probes near interface dynamics. We here investigate the use of EWDLS for turbid sample. Using combination of ray-tracing simulation and experiments, we show that a significant fraction of the detected photons are scattered once and has phase shifts distinct from the multiple scattering fraction. It follows that the measured correlation can be separated into two contributions: a single scattering one arising from the evanescent wave scattering, providing information on motion of the "scatterers" and the associated near wall dynamics and a multiple scattering contribution originating from scattering within the bulk of the sample. In case of turbid enough samples, the latter provides diffusive wave spectroscopy (DWS) -like correlation contribution. The validity of the approach is validated using turbid colloidal dispersion at rest and under shear. At rest we used depolarized scattering to distinguish both contributions. Under shear, the two contributions can easily be distinguished as the near wall dynamics and the bulk one are well separated. Information of both the near wall flow and the bulk flow can be retrieved from a single experiment. The simple structure of the measured correlation is opening the use of EWDLS for a large range of samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12396v1-abstract-full').style.display = 'none'; document.getElementById('2106.12396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.12137">arXiv:2106.12137</a> <span> [<a href="https://arxiv.org/pdf/2106.12137">pdf</a>, <a href="https://arxiv.org/format/2106.12137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1741-4326/ac45f3">10.1088/1741-4326/ac45f3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single-stage gradient-based stellarator coil design: stochastic optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wechsung%2C+F">Florian Wechsung</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a>, <a href="/search/physics?searchtype=author&query=Landreman%2C+M">Matt Landreman</a>, <a href="/search/physics?searchtype=author&query=Cerfon%2C+A">Antoine Cerfon</a>, <a href="/search/physics?searchtype=author&query=Stadler%2C+G">Georg Stadler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.12137v1-abstract-short" style="display: inline;"> We extend the single-stage stellarator coil design approach for quasi-symmetry on axis from [Giuliani et al, 2020] to additionally take into account coil manufacturing errors. By modeling coil errors independently from the coil discretization, we have the flexibility to consider realistic forms of coil errors. The corresponding stochastic optimization problems are formulated using a risk-neutral a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12137v1-abstract-full').style.display = 'inline'; document.getElementById('2106.12137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.12137v1-abstract-full" style="display: none;"> We extend the single-stage stellarator coil design approach for quasi-symmetry on axis from [Giuliani et al, 2020] to additionally take into account coil manufacturing errors. By modeling coil errors independently from the coil discretization, we have the flexibility to consider realistic forms of coil errors. The corresponding stochastic optimization problems are formulated using a risk-neutral approach and risk-averse approaches. We present an efficient, gradient-based descent algorithm which relies on analytical derivatives to solve these problems. In a comprehensive numerical study, we compare the coil designs resulting from deterministic and risk-neutral stochastic optimization and find that the risk-neutral formulation results in more robust configurations and reduces the number of local minima of the optimization problem. We also compare deterministic and risk-neutral approaches in terms of quasi-symmetry on and away from the magnetic axis, and in terms of the confinement of particles released close to the axis. Finally, we show that for the optimization problems we consider, a risk-averse objective using the Conditional Value-at-Risk leads to results which are similar to the risk-neutral objective. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.12137v1-abstract-full').style.display = 'none'; document.getElementById('2106.12137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.04409">arXiv:2105.04409</a> <span> [<a href="https://arxiv.org/pdf/2105.04409">pdf</a>, <a href="https://arxiv.org/format/2105.04409">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09476-z">10.1140/epjc/s10052-021-09476-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Background identification in cryogenic calorimeters through $伪-伪$ delayed coincidences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Keppel%2C+G">G. Keppel</a>, <a href="/search/physics?searchtype=author&query=Martinez%2C+M">M. Martinez</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.04409v2-abstract-short" style="display: inline;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to inv… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'inline'; document.getElementById('2105.04409v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.04409v2-abstract-full" style="display: none;"> Localization and modeling of radioactive contaminations is a challenge that ultra-low background experiments are constantly facing. These are fundamental steps both to extract scientific results and to further reduce the background of the detectors. Here we present an innovative technique based on the analysis of $伪-伪$ delayed coincidences in $^{232}$Th and $^{238}$U decay chains, developed to investigate the contaminations of the ZnSe crystals in the CUPID-0 experiment. This method allows to disentangle surface and bulk contaminations of the detectors relying on the different probability to tag delayed coincidences as function of the $伪$ decay position. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.04409v2-abstract-full').style.display = 'none'; document.getElementById('2105.04409v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 722 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03329">arXiv:2105.03329</a> <span> [<a href="https://arxiv.org/pdf/2105.03329">pdf</a>, <a href="https://arxiv.org/format/2105.03329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2021.136642">10.1016/j.physletb.2021.136642 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of $^{216}$Po half-life with the CUPID-0 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Beeman%2C+J+W">J. W. Beeman</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Caracciolo%2C+V">V. Caracciolo</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a>, <a href="/search/physics?searchtype=author&query=Clemenza%2C+M">M. Clemenza</a>, <a href="/search/physics?searchtype=author&query=Colantoni%2C+I">I. Colantoni</a>, <a href="/search/physics?searchtype=author&query=Cremonesi%2C+O">O. Cremonesi</a>, <a href="/search/physics?searchtype=author&query=Cruciani%2C+A">A. Cruciani</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=D%27Addabbo%2C+A">A. D'Addabbo</a>, <a href="/search/physics?searchtype=author&query=Di+Domizio%2C+S">S. Di Domizio</a>, <a href="/search/physics?searchtype=author&query=Ferroni%2C+F">F. Ferroni</a>, <a href="/search/physics?searchtype=author&query=Gironi%2C+L">L. Gironi</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gorla%2C+P">P. Gorla</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03329v2-abstract-short" style="display: inline;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited ex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'inline'; document.getElementById('2105.03329v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03329v2-abstract-full" style="display: none;"> Rare event physics demands very detailed background control, high-performance detectors, and custom analysis strategies. Cryogenic calorimeters combine all these ingredients very effectively, representing a promising tool for next-generation experiments. CUPID-0 is one of the most advanced examples of such a technique, having demonstrated its potential with several results obtained with limited exposure. In this paper, we present a further application. Exploiting the analysis of delayed coincidence, we can identify the signals caused by the $^{220}$Rn-$^{216}$Po decay sequence on an event-by-event basis. The analysis of these events allows us to extract the time differences between the two decays, leading to a new evaluation of $^{216}$ half-life, estimated as (143.3 $\pm$ 2.8) ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03329v2-abstract-full').style.display = 'none'; document.getElementById('2105.03329v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07181">arXiv:2103.07181</a> <span> [<a href="https://arxiv.org/pdf/2103.07181">pdf</a>, <a href="https://arxiv.org/format/2103.07181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0050124">10.1063/5.0050124 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon-mediated crystal detectors with metallic film coating capable of rejecting $伪$ and $尾$ events induced by surface radioactivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a>, <a href="/search/physics?searchtype=author&query=Ferri%2C+F">F. Ferri</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gotti%2C+C">C. Gotti</a>, <a href="/search/physics?searchtype=author&query=Gras%2C+P">Ph. Gras</a>, <a href="/search/physics?searchtype=author&query=Guerard%2C+E">E. Guerard</a>, <a href="/search/physics?searchtype=author&query=Ianni%2C+A">A. Ianni</a>, <a href="/search/physics?searchtype=author&query=Khalife%2C+H">H. Khalife</a>, <a href="/search/physics?searchtype=author&query=Konovalov%2C+S+I">S. I. Konovalov</a>, <a href="/search/physics?searchtype=author&query=Loaiza%2C+P">P. Loaiza</a>, <a href="/search/physics?searchtype=author&query=Madhukuttan%2C+M">M. Madhukuttan</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Mariam%2C+R">R. Mariam</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Marrache-Kikuchi%2C+C+A">C. A. Marrache-Kikuchi</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07181v3-abstract-short" style="display: inline;"> Phonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact point, especially if the detection is mediated by thermal phonons. In this Letter, we demonstrate that excellent discrimination between interior and s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07181v3-abstract-full').style.display = 'inline'; document.getElementById('2103.07181v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07181v3-abstract-full" style="display: none;"> Phonon-mediated particle detectors based on single crystals and operated at millikelvin temperatures are used in rare-event experiments for neutrino physics and dark-matter searches. In general, these devices are not sensitive to the particle impact point, especially if the detection is mediated by thermal phonons. In this Letter, we demonstrate that excellent discrimination between interior and surface $尾$ and $伪$ events can be achieved by coating a crystal face with a thin metallic film, either continuous or in the form of a grid. The coating affects the phonon energy down-conversion cascade that follows the particle interaction, leading to a modified signal shape for close-to-film events. An efficient identification of surface events was demonstrated with detectors based on a rectangular $20 \times 20 \times 10$ mm$^3$ Li$_2$MoO$_4$ crystal coated with a Pd normal-metal film (10~nm thick) and with Al-Pd superconductive bi-layers (100~nm-10~nm thick) on a $20 \times 20$ mm$^2$ face. Discrimination capabilities were tested with $^{238}$U sources emitting both $伪$ and $尾$ particles. Surface events are identified for energy depositions down to millimeter-scale depths from the coated surface. With this technology, a substantial improvement of the background figure can be achieved in experiments searching for neutrinoless double-beta decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07181v3-abstract-full').style.display = 'none'; document.getElementById('2103.07181v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl. Phys. Lett. 118 (2021) 184105 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13806">arXiv:2011.13806</a> <span> [<a href="https://arxiv.org/pdf/2011.13806">pdf</a>, <a href="https://arxiv.org/format/2011.13806">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/02/P02037">10.1088/1748-0221/16/02/P02037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A CUPID Li$_{2}$$^{100}$MoO$_4$ scintillating bolometer tested in the CROSS underground facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=The+CUPID+Interest+Group"> The CUPID Interest Group</a>, <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Bandac%2C+I+C">I. C. Bandac</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Calvo-Mozota%2C+J+M">J. M. Calvo-Mozota</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a> , et al. (156 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13806v1-abstract-short" style="display: inline;"> A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2尾$ experiment CUPID. The measurements were performed at 18 an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13806v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13806v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13806v1-abstract-full" style="display: none;"> A scintillating bolometer based on a large cubic Li$_{2}$$^{100}$MoO$_4$ crystal (45 mm side) and a Ge wafer (scintillation detector) has been operated in the CROSS cryogenic facility at the Canfranc underground laboratory in Spain. The dual-readout detector is a prototype of the technology that will be used in the next-generation $0\nu2尾$ experiment CUPID. The measurements were performed at 18 and 12 mK temperature in a pulse tube dilution refrigerator. This setup utilizes the same technology as the CUORE cryostat that will host CUPID and so represents an accurate estimation of the expected performance. The Li$_{2}$$^{100}$MoO$_4$ bolometer shows a high energy resolution of 6 keV FWHM at the 2615 keV $纬$ line. The detection of scintillation light for each event triggered by the Li$_{2}$$^{100}$MoO$_4$ bolometer allowed for a full separation ($\sim$8$蟽$) between $纬$($尾$) and $伪$ events above 2 MeV. The Li$_{2}$$^{100}$MoO$_4$ crystal also shows a high internal radiopurity with $^{228}$Th and $^{226}$Ra activities of less than 3 and 8 $渭$Bq/kg, respectively. Taking also into account the advantage of a more compact and massive detector array, which can be made of cubic-shaped crystals (compared to the cylindrical ones), this test demonstrates the great potential of cubic Li$_{2}$$^{100}$MoO$_4$ scintillating bolometers for high-sensitivity searches for the $^{100}$Mo $0\nu2尾$ decay in CROSS and CUPID projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13806v1-abstract-full').style.display = 'none'; document.getElementById('2011.13806v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13803">arXiv:2011.13803</a> <span> [<a href="https://arxiv.org/pdf/2011.13803">pdf</a>, <a href="https://arxiv.org/format/2011.13803">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/07/P07032">10.1088/1748-0221/16/07/P07032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of nuclear recoils at the 100 eV scale using neutron capture </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Thulliez%2C+L">L. Thulliez</a>, <a href="/search/physics?searchtype=author&query=Lhuillier%2C+D">D. Lhuillier</a>, <a href="/search/physics?searchtype=author&query=Cappella%2C+F">F. Cappella</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cerulli%2C+R">R. Cerulli</a>, <a href="/search/physics?searchtype=author&query=Chalil%2C+A">A. Chalil</a>, <a href="/search/physics?searchtype=author&query=Chebboubi%2C+A">A. Chebboubi</a>, <a href="/search/physics?searchtype=author&query=Dumonteil%2C+E">E. Dumonteil</a>, <a href="/search/physics?searchtype=author&query=Erhart%2C+A">A. Erhart</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">A. Giuliani</a>, <a href="/search/physics?searchtype=author&query=Gunsing%2C+F">F. Gunsing</a>, <a href="/search/physics?searchtype=author&query=Jericha%2C+E">E. Jericha</a>, <a href="/search/physics?searchtype=author&query=Kaznacheeva%2C+M">M. Kaznacheeva</a>, <a href="/search/physics?searchtype=author&query=Kinast%2C+A">A. Kinast</a>, <a href="/search/physics?searchtype=author&query=Langenk%C3%A4mper%2C+A">A. Langenk盲mper</a>, <a href="/search/physics?searchtype=author&query=Lasserre%2C+T">T. Lasserre</a>, <a href="/search/physics?searchtype=author&query=Letourneau%2C+A">A. Letourneau</a>, <a href="/search/physics?searchtype=author&query=Litaize%2C+O">O. Litaize</a>, <a href="/search/physics?searchtype=author&query=de+Marcillac%2C+P">P. de Marcillac</a>, <a href="/search/physics?searchtype=author&query=Marnieros%2C+S">S. Marnieros</a>, <a href="/search/physics?searchtype=author&query=Materna%2C+T">T. Materna</a>, <a href="/search/physics?searchtype=author&query=Mauri%2C+B">B. Mauri</a>, <a href="/search/physics?searchtype=author&query=Mazzucato%2C+E">E. Mazzucato</a>, <a href="/search/physics?searchtype=author&query=Nones%2C+C">C. Nones</a>, <a href="/search/physics?searchtype=author&query=Ortmann%2C+T">T. Ortmann</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13803v3-abstract-short" style="display: inline;"> The development of low-threshold detectors for the study of coherent elastic neutrino-nucleus scattering and for the search for light dark matter necessitates methods of low-energy calibration. We suggest this can be provided by the nuclear recoils resulting from the $纬$ emission following thermal neutron capture. In particular, several MeV-scale single-$纬$ transitions induce well-defined nuclear… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13803v3-abstract-full').style.display = 'inline'; document.getElementById('2011.13803v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13803v3-abstract-full" style="display: none;"> The development of low-threshold detectors for the study of coherent elastic neutrino-nucleus scattering and for the search for light dark matter necessitates methods of low-energy calibration. We suggest this can be provided by the nuclear recoils resulting from the $纬$ emission following thermal neutron capture. In particular, several MeV-scale single-$纬$ transitions induce well-defined nuclear recoil peaks in the 100 eV range. Using the FIFRELIN code, complete schemes of $纬$-cascades for various isotopes can be predicted with high accuracy to determine the continuous background of nuclear recoils below the calibration peaks. We present a comprehensive experimental concept for the calibration of CaWO$_4$ and Ge cryogenic detectors at a research reactor. For CaWO$_4$ the simulations show that two nuclear recoil peaks at 112.5 eV and 160.3 eV should be visible above background simply in the spectrum of the cryogenic detector. Then we discuss how the additional tagging for the associated $纬$ increases the sensitivity of the method and extends its application to a wider energy range and to Ge cryogenic detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13803v3-abstract-full').style.display = 'none'; document.getElementById('2011.13803v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.13656">arXiv:2011.13656</a> <span> [<a href="https://arxiv.org/pdf/2011.13656">pdf</a>, <a href="https://arxiv.org/format/2011.13656">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Characterization of cubic Li$_{2}$$^{100}$MoO$_4$ crystals for the CUPID experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A">A. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A8%2C+L">L. Berg猫</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.13656v1-abstract-short" style="display: inline;"> The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13656v1-abstract-full').style.display = 'inline'; document.getElementById('2011.13656v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.13656v1-abstract-full" style="display: none;"> The CUPID Collaboration is designing a tonne-scale, background-free detector to search for double beta decay with sufficient sensitivity to fully explore the parameter space corresponding to the inverted neutrino mass hierarchy scenario. One of the CUPID demonstrators, CUPID-Mo, has proved the potential of enriched Li$_{2}$$^{100}$MoO$_4$ crystals as suitable detectors for neutrinoless double beta decay search. In this work, we characterised cubic crystals that, compared to the cylindrical crystals used by CUPID-Mo, are more appealing for the construction of tightly packed arrays. We measured an average energy resolution of (6.7$\pm$0.6) keV FWHM in the region of interest, approaching the CUPID target of 5 keV FWHM. We assessed the identification of $伪$ particles with and without a reflecting foil that enhances the scintillation light collection efficiency, proving that the baseline design of CUPID already ensures a complete suppression of this $伪$-induced background contribution. We also used the collected data to validate a Monte Carlo simulation modelling the light collection efficiency, which will enable further optimisations of the detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.13656v1-abstract-full').style.display = 'none'; document.getElementById('2011.13656v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.11726">arXiv:2011.11726</a> <span> [<a href="https://arxiv.org/pdf/2011.11726">pdf</a>, <a href="https://arxiv.org/format/2011.11726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.104.015501">10.1103/PhysRevC.104.015501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Novel technique for the study of pile-up events in cryogenic bolometers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Armatol%2C+A">A. Armatol</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+W">W. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A">A. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Barresi%2C+A">A. Barresi</a>, <a href="/search/physics?searchtype=author&query=Baudin%2C+D">D. Baudin</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Boldrini%2C+V">V. Boldrini</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a> , et al. (144 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.11726v2-abstract-short" style="display: inline;"> Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our ap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11726v2-abstract-full').style.display = 'inline'; document.getElementById('2011.11726v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.11726v2-abstract-full" style="display: none;"> Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15ms down to time separation between the individual events of about 2ms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.11726v2-abstract-full').style.display = 'none'; document.getElementById('2011.11726v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 104, 015501 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.09295">arXiv:2011.09295</a> <span> [<a href="https://arxiv.org/pdf/2011.09295">pdf</a>, <a href="https://arxiv.org/format/2011.09295">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> New results from the CUORE experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giachero%2C+A">A. Giachero</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+D+Q">D. Q. Adams</a>, <a href="/search/physics?searchtype=author&query=Alduino%2C+C">C. Alduino</a>, <a href="/search/physics?searchtype=author&query=Alfonso%2C+K">K. Alfonso</a>, <a href="/search/physics?searchtype=author&query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&query=Azzolini%2C+O">O. Azzolini</a>, <a href="/search/physics?searchtype=author&query=Bari%2C+G">G. Bari</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Biassoni%2C+M">M. Biassoni</a>, <a href="/search/physics?searchtype=author&query=Branca%2C+A">A. Branca</a>, <a href="/search/physics?searchtype=author&query=Brofferio%2C+C">C. Brofferio</a>, <a href="/search/physics?searchtype=author&query=Bucci%2C+C">C. Bucci</a>, <a href="/search/physics?searchtype=author&query=Camilleri%2C+J">J. Camilleri</a>, <a href="/search/physics?searchtype=author&query=Caminata%2C+A">A. Caminata</a>, <a href="/search/physics?searchtype=author&query=Campani%2C+A">A. Campani</a>, <a href="/search/physics?searchtype=author&query=Canonica%2C+L">L. Canonica</a>, <a href="/search/physics?searchtype=author&query=Cao%2C+X+G">X. G. Cao</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+S">S. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cappelli%2C+L">L. Cappelli</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Carniti%2C+P">P. Carniti</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Celi%2C+E">E. Celi</a>, <a href="/search/physics?searchtype=author&query=Chiesa%2C+D">D. Chiesa</a> , et al. (88 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.09295v2-abstract-short" style="display: inline;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0谓尾尾$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09295v2-abstract-full').style.display = 'inline'; document.getElementById('2011.09295v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.09295v2-abstract-full" style="display: none;"> The Cryogenic Underground Observatory for Rare Events (CUORE) is the first cryogenic experiment searching for neutrinoless double-beta ($0谓尾尾$) decay that has been able to reach the one-ton scale. The detector, located at the Laboratori Nazionali del Gran Sasso in Italy, consists of an array of 988 TeO$_2$ crystals arranged in a compact cylindrical structure of 19 towers. Following the completion of the detector construction in August 2016, CUORE began its first physics data run in 2017 at a base temperature of about 10 mK. Following multiple optimization campaigns in 2018, CUORE is currently in stable operating mode. In 2019, CUORE released its 2\textsuperscript{nd} result of the search for $0谓尾尾$ with a TeO$_2$ exposure of 372.5 kg$\cdot$yr and a median exclusion sensitivity to a $^{130}$Te $0谓尾尾$ decay half-life of $1.7\cdot 10^{25}$ yr. We find no evidence for $0谓尾尾$ decay and set a 90\% C.I. (credibility interval) Bayesian lower limit of $3.2\cdot 10^{25}$ yr on the $^{130}$Te $0谓尾尾$ decay half-life. In this work, we present the current status of CUORE's search for $0谓尾尾$, as well as review the detector performance. Finally, we give an update of the CUORE background model and the measurement of the $^{130}$Te two neutrino double-beta ($2谓尾尾$) decay half-life. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.09295v2-abstract-full').style.display = 'none'; document.getElementById('2011.09295v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceeding of 40th International Conference on High Energy physics (ICHEP2020), July 28 - August 6, 2020, Prague, Czech Republic (virtual meeting). arXiv admin note: text overlap with arXiv:1905.07667</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12076">arXiv:2010.12076</a> <span> [<a href="https://arxiv.org/pdf/2010.12076">pdf</a>, <a href="https://arxiv.org/format/2010.12076">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of BabyIAXO, the intermediate stage towards the International Axion Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Abeln%2C+A">A. Abeln</a>, <a href="/search/physics?searchtype=author&query=Altenm%C3%BCller%2C+K">K. Altenm眉ller</a>, <a href="/search/physics?searchtype=author&query=Cuendis%2C+S+A">S. Arguedas Cuendis</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Atti%C3%A9%2C+D">D. Atti茅</a>, <a href="/search/physics?searchtype=author&query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&query=Basso%2C+S">S. Basso</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Biasuzzi%2C+B">B. Biasuzzi</a>, <a href="/search/physics?searchtype=author&query=De+Sousa%2C+P+T+C+B">P. T. C. Borges De Sousa</a>, <a href="/search/physics?searchtype=author&query=Brun%2C+P">P. Brun</a>, <a href="/search/physics?searchtype=author&query=Bykovskiy%2C+N">N. Bykovskiy</a>, <a href="/search/physics?searchtype=author&query=Calvet%2C+D">D. Calvet</a>, <a href="/search/physics?searchtype=author&query=Carmona%2C+J+M">J. M. Carmona</a>, <a href="/search/physics?searchtype=author&query=Castel%2C+J+F">J. F. Castel</a>, <a href="/search/physics?searchtype=author&query=Cebri%C3%A1n%2C+S">S. Cebri谩n</a>, <a href="/search/physics?searchtype=author&query=Chernov%2C+V">V. Chernov</a>, <a href="/search/physics?searchtype=author&query=Christensen%2C+F+E">F. E. Christensen</a>, <a href="/search/physics?searchtype=author&query=Civitani%2C+M+M">M. M. Civitani</a>, <a href="/search/physics?searchtype=author&query=Cogollos%2C+C">C. Cogollos</a>, <a href="/search/physics?searchtype=author&query=Dafn%C3%AD%2C+T">T. Dafn铆</a>, <a href="/search/physics?searchtype=author&query=Derbin%2C+A">A. Derbin</a>, <a href="/search/physics?searchtype=author&query=Desch%2C+K">K. Desch</a>, <a href="/search/physics?searchtype=author&query=D%C3%ADez%2C+D">D. D铆ez</a>, <a href="/search/physics?searchtype=author&query=Dinter%2C+M">M. Dinter</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12076v3-abstract-short" style="display: inline;"> This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12076v3-abstract-full').style.display = 'inline'; document.getElementById('2010.12076v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12076v3-abstract-full" style="display: none;"> This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for the final system and thus serve as prototype for IAXO, but at the same time as a fully-fledged helioscope with relevant physics reach itself, and with potential for discovery. The BabyIAXO magnet will feature two 10 m long, 70 cm diameter bores, and will host two detection lines (optics and detector) of dimensions similar to the final ones foreseen for IAXO. BabyIAXO will detect or reject solar axions or ALPs with axion-photon couplings down to $g_{a纬} \sim 1.5 \times 10^{-11}$ GeV$^{-1}$, and masses up to $m_a\sim 0.25$ eV. BabyIAXO will offer additional opportunities for axion research in view of IAXO, like the development of precision x-ray detectors to identify particular spectral features in the solar axion spectrum, and the implementation of radiofrequency-cavity-based axion dark matter setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12076v3-abstract-full').style.display = 'none'; document.getElementById('2010.12076v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 49 figures. Prepared for submission to JHEP. Third version after referees comments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.04033">arXiv:2010.04033</a> <span> [<a href="https://arxiv.org/pdf/2010.04033">pdf</a>, <a href="https://arxiv.org/format/2010.04033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/03/P03032">10.1088/1748-0221/16/03/P03032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse Shape Discrimination in CUPID-Mo using Principal Component Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Huang%2C+R">R. Huang</a>, <a href="/search/physics?searchtype=author&query=Armengaud%2C+E">E. Armengaud</a>, <a href="/search/physics?searchtype=author&query=Augier%2C+C">C. Augier</a>, <a href="/search/physics?searchtype=author&query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&query=Bellini%2C+F">F. Bellini</a>, <a href="/search/physics?searchtype=author&query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&query=Beno%C3%AEt%2C+A">A. Beno卯t</a>, <a href="/search/physics?searchtype=author&query=Beretta%2C+M">M. Beretta</a>, <a href="/search/physics?searchtype=author&query=Berg%C3%A9%2C+L">L. Berg茅</a>, <a href="/search/physics?searchtype=author&query=Billard%2C+J">J. Billard</a>, <a href="/search/physics?searchtype=author&query=Borovlev%2C+Y+A">Yu. A. Borovlev</a>, <a href="/search/physics?searchtype=author&query=Bourgeois%2C+C">Ch. Bourgeois</a>, <a href="/search/physics?searchtype=author&query=Brudanin%2C+V+B">V. B. Brudanin</a>, <a href="/search/physics?searchtype=author&query=Camus%2C+P">P. Camus</a>, <a href="/search/physics?searchtype=author&query=Cardani%2C+L">L. Cardani</a>, <a href="/search/physics?searchtype=author&query=Casali%2C+N">N. Casali</a>, <a href="/search/physics?searchtype=author&query=Cazes%2C+A">A. Cazes</a>, <a href="/search/physics?searchtype=author&query=Chapellier%2C+M">M. Chapellier</a>, <a href="/search/physics?searchtype=author&query=Charlieux%2C+F">F. Charlieux</a>, <a href="/search/physics?searchtype=author&query=de+Combarieu%2C+M">M. de Combarieu</a>, <a href="/search/physics?searchtype=author&query=Dafinei%2C+I">I. Dafinei</a>, <a href="/search/physics?searchtype=author&query=Danevich%2C+F+A">F. A. Danevich</a>, <a href="/search/physics?searchtype=author&query=De+Jesus%2C+M">M. De Jesus</a>, <a href="/search/physics?searchtype=author&query=Dixon%2C+T">T. Dixon</a>, <a href="/search/physics?searchtype=author&query=Dumoulin%2C+L">L. Dumoulin</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.04033v2-abstract-short" style="display: inline;"> CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay ($0谓尾尾$) of $^{100}$Mo. It uses 20 scintillating $^{100}$Mo-enriched Li$_2$MoO$_4$ bolometers instrumented with Ge light detectors to perform active suppression of $伪$ backgrounds, drastically reducing the expected background in the $0谓尾尾$ signal region. As a result, pileup events and small detector instab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04033v2-abstract-full').style.display = 'inline'; document.getElementById('2010.04033v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.04033v2-abstract-full" style="display: none;"> CUPID-Mo is a cryogenic detector array designed to search for neutrinoless double-beta decay ($0谓尾尾$) of $^{100}$Mo. It uses 20 scintillating $^{100}$Mo-enriched Li$_2$MoO$_4$ bolometers instrumented with Ge light detectors to perform active suppression of $伪$ backgrounds, drastically reducing the expected background in the $0谓尾尾$ signal region. As a result, pileup events and small detector instabilities that mimic normal signals become non-negligible potential backgrounds. These types of events can in principle be eliminated based on their signal shapes, which are different from those of regular bolometric pulses. We show that a purely data-driven principal component analysis based approach is able to filter out these anomalous events, without the aid of detector response simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.04033v2-abstract-full').style.display = 'none'; document.getElementById('2010.04033v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 (2021) P03032 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.02033">arXiv:2010.02033</a> <span> [<a href="https://arxiv.org/pdf/2010.02033">pdf</a>, <a href="https://arxiv.org/format/2010.02033">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Single-stage gradient-based stellarator coil design: Optimization for near-axis quasi-symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Andrew Giuliani</a>, <a href="/search/physics?searchtype=author&query=Wechsung%2C+F">Florian Wechsung</a>, <a href="/search/physics?searchtype=author&query=Cerfon%2C+A">Antoine Cerfon</a>, <a href="/search/physics?searchtype=author&query=Stadler%2C+G">Georg Stadler</a>, <a href="/search/physics?searchtype=author&query=Landreman%2C+M">Matt Landreman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.02033v2-abstract-short" style="display: inline;"> We present a new coil design paradigm for magnetic confinement in stellarators. Our approach directly optimizes coil shapes and coil currents to produce a vacuum quasi-symmetric magnetic field with a target rotational transform on the magnetic axis. This approach differs from the traditional two-stage approach in which first a magnetic configuration with desirable physics properties is found, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02033v2-abstract-full').style.display = 'inline'; document.getElementById('2010.02033v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.02033v2-abstract-full" style="display: none;"> We present a new coil design paradigm for magnetic confinement in stellarators. Our approach directly optimizes coil shapes and coil currents to produce a vacuum quasi-symmetric magnetic field with a target rotational transform on the magnetic axis. This approach differs from the traditional two-stage approach in which first a magnetic configuration with desirable physics properties is found, and then coils to approximately realize this magnetic configuration are designed. The proposed single-stage approach allows us to find a compromise between confinement and engineering requirements, i.e., find easy-to-build coils with good confinement properties. Using forward and adjoint sensitivities, we derive derivatives of the physical quantities in the objective, which is constrained by a nonlinear periodic differential equation. In two numerical examples, we compare different gradient-based descent algorithms and find that incorporating approximate second-order derivative information through a quasi-Newton method is crucial for convergence. We also explore the optimization landscape in the neighborhood of a minimizer and find many directions in which the objective is mostly flat, indicating ample freedom to find simple and thus easy-to-build coils. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.02033v2-abstract-full').style.display = 'none'; document.getElementById('2010.02033v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02103">arXiv:2005.02103</a> <span> [<a href="https://arxiv.org/pdf/2005.02103">pdf</a>, <a href="https://arxiv.org/format/2005.02103">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202038139">10.1051/0004-6361/202038139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Astrochemical relevance of VUV ionization of large PAH cations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Wenzel%2C+G">Gabi Wenzel</a>, <a href="/search/physics?searchtype=author&query=Joblin%2C+C">Christine Joblin</a>, <a href="/search/physics?searchtype=author&query=Giuliani%2C+A">Alexandre Giuliani</a>, <a href="/search/physics?searchtype=author&query=Castillo%2C+S+R">Sarah Rodriguez Castillo</a>, <a href="/search/physics?searchtype=author&query=Mulas%2C+G">Giacomo Mulas</a>, <a href="/search/physics?searchtype=author&query=Ji%2C+M">Mingchao Ji</a>, <a href="/search/physics?searchtype=author&query=Sabbah%2C+H">Hassan Sabbah</a>, <a href="/search/physics?searchtype=author&query=Quiroga%2C+S">Sabela Quiroga</a>, <a href="/search/physics?searchtype=author&query=Pe%C3%B1a%2C+D">Diego Pe帽a</a>, <a href="/search/physics?searchtype=author&query=Nahon%2C+L">Laurent Nahon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02103v2-abstract-short" style="display: inline;"> As a part of interstellar dust, polycyclic aromatic hydrocarbons (PAHs) are processed by the interaction with vacuum ultraviolet (VUV) photons that are emitted by hot young stars. This interaction leads to the emission of the well-known aromatic infrared bands but also of electrons, which can significantly contribute to the heating of the interstellar gas.Our aim is to investigate the impact of mo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02103v2-abstract-full').style.display = 'inline'; document.getElementById('2005.02103v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02103v2-abstract-full" style="display: none;"> As a part of interstellar dust, polycyclic aromatic hydrocarbons (PAHs) are processed by the interaction with vacuum ultraviolet (VUV) photons that are emitted by hot young stars. This interaction leads to the emission of the well-known aromatic infrared bands but also of electrons, which can significantly contribute to the heating of the interstellar gas.Our aim is to investigate the impact of molecular size on the photoionization properties of cationic PAHs.Methods. Trapped PAH cations of sizes between 30 and 48 carbon atoms were submitted to VUV photons in the range of 9 to 20 eV from the DESIRS beamline at the synchrotron SOLEIL. All resulting photoproducts including dications and fragment cations were mass-analyzed and recorded as a function of photon energy.Photoionization is found to be predominant over dissociation at all energies, which differs from an earlier study on smaller PAHs. The photoionization branching ratio reaches 0.98 at 20 eV for the largest studied PAH. The photoionization threshold is observed to be between 9.1 and 10.2 eV, in agreement with the evolution of the ionization potential with size. Ionization cross sections were indirectly obtained and photoionization yields extracted from their ratio with theoretical photoabsorption cross sections, which were calculated using time-dependent density functional theory. An analytical function was derived to calculate this yield for a given molecular size.Large PAH cations could be efficiently ionized in H i regions and provide a contribution to the heating of the gas by photoelectric effect. Also, at the border of or in H ii regions, PAHs could be exposed to photons of energy higher than 13.6 eV. Our work provides recipes to be used in astronomical models to quantify these points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02103v2-abstract-full').style.display = 'none'; document.getElementById('2005.02103v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Astronomy and Astrophysics - A\&A, EDP Sciences, In press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 641, A98 (2020) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Giuliani%2C+A&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>