CINXE.COM
Search results for: APDL
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: APDL</title> <meta name="description" content="Search results for: APDL"> <meta name="keywords" content="APDL"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="APDL" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="APDL"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: APDL</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Finite Element and Experimental Investigation on Vibration Analysis of Laminated Composite Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azad%20Mohammed%20Ali%20Saber">Azad Mohammed Ali Saber</a>, <a href="https://publications.waset.org/abstracts/search?q=Lanja%20Saeed%20Omer"> Lanja Saeed Omer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with numerical method (FE) and experimental investigations on the vibration behavior of carbon fiber-polyester laminated plates. Finite element simulation is done using APDL (Ansys Parametric Design Language) macro codes software version 19. Solid185 layered structural element, including eight nodes, is adopted in this analysis. The experimental work is carried out using (Hand Layup method) to fabricate different layers and orientation angles of composite laminate plates. Symmetric samples include four layers (00/900)s and six layers (00/900/00)s, (00/00/900)s. Antisymmetric samples include one layer (00), (450), two layers (00/900), (-450/450), three layers (00/900/00), four layers (00/900)2, (-450/450)2, five layers (00/900)2.5, and six layers (00/900)3, (-450/450)3. An experimental investigation is carried out using a modal analysis technique with a Fast Fourier Transform Analyzer (FFT), Pulse platform, impact hammer, and accelerometer to obtain the frequency response functions. The influences of different parameters such as the number of layers, aspect ratio, modulus ratio, ply orientation, and different boundary conditions on the dynamic behavior of the CFRPs are studied, where the 1st, 2nd, and 3rd natural frequencies are observed to be the minimum for cantilever boundary condition (CFFF) and the maximum for full clamped boundary condition (CCCC). Experimental results show that the natural frequencies of laminated plates are significantly reliant on the type of boundary conditions due to the restraint effect at the edges. Good agreement is achieved among the finite element and experimental results. All results indicate that any increase in aspect ratio causes a decrease in the natural frequency of the CFRPs plate, while any increase in the modulus ratio or number of layers causes an increase in the fundamental natural frequency of vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title=" composite materials"> composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL%20ANSYS" title=" APDL ANSYS"> APDL ANSYS</a> </p> <a href="https://publications.waset.org/abstracts/185996/finite-element-and-experimental-investigation-on-vibration-analysis-of-laminated-composite-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185996.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Finite Element Analysis of Debonding Propagation in FM73 Joint under Static Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fracture Mechanics is used to predict crack propagation in the adhesive joining aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore, 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joint" title="adhesive joint">adhesive joint</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=LEFM" title=" LEFM"> LEFM</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a> </p> <a href="https://publications.waset.org/abstracts/23767/finite-element-analysis-of-debonding-propagation-in-fm73-joint-under-static-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Prediction of Crack Propagation in Bonded Joints Using Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, Fracture Mechanics is used to predict crack propagation in the adhesive jointing aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture" title="fracture">fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joint" title=" adhesive joint"> adhesive joint</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=LEFM" title=" LEFM"> LEFM</a> </p> <a href="https://publications.waset.org/abstracts/23770/prediction-of-crack-propagation-in-bonded-joints-using-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Fatigue-Induced Debonding Propagation in FM300 Adhesive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with 位=0 the ends of the debonding front propagates forward more than its middle, while in cases with 位=0.5 or 位=1 it is vice versa. Moreover, regardless of value of 位, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases 位=0.5 and 位=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20joint" title="adhesive joint">adhesive joint</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=LEFM" title=" LEFM"> LEFM</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a> </p> <a href="https://publications.waset.org/abstracts/23751/fatigue-induced-debonding-propagation-in-fm300-adhesive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Prediction of Fatigue Crack Propagation in Bonded Joints Using Fracture Mechanics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Hedayati">Reza Hedayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Meysam%20Jahanbakhshi"> Meysam Jahanbakhshi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fracture Mechanics is used to predict debonding propagation in adhesive joint between aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate and their results are compared. It was seen that generally the cases with stacking sequence of [0/45/-45/90]s have much shorter lives than cases with [0/90]2s. It was also seen that in cases with 位=0 the ends of the debonding front propagates forward more than its middle, while in cases with 位=0.5 or 位=1 it is vice versa. Moreover, regardless of value of 位, the difference between the debonding propagations of the ends and the middle of the debonding front is very close in cases 位=0.5 and 位=1. Another main conclusion was the non-dimensionalized debonding front profile is almost independent of sequence type or the applied load value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=debonding" title=" debonding"> debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=Paris%20law" title=" Paris law"> Paris law</a>, <a href="https://publications.waset.org/abstracts/search?q=APDL" title=" APDL"> APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=adhesive" title=" adhesive"> adhesive</a> </p> <a href="https://publications.waset.org/abstracts/23771/prediction-of-fatigue-crack-propagation-in-bonded-joints-using-fracture-mechanics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Modeling and Computational Validation of Dispersion Curves of Guide Waves in a Pipe Using ANSYS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Perdomo">A. Perdomo</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Bacca"> J. R. Bacca</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20E.%20Jabid"> Q. E. Jabid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, technological and investigative progress has been achieved in the area of monitoring of equipment and installation as a result of a deeper understanding of physical phenomenon associated with the non-destructive tests (NDT). The modal analysis proposes an efficient solution to determine the dispersion curves of an arbitrary waveguide cross-sectional. Dispersion curves are essential in the discontinuity localization based on guided waves. In this work, an isotropic hollow cylinder is dynamically analyzed in ANSYS to obtain resonant frequencies and mode shapes all of them associated with the dispersion curves. The numerical results provide the relation between frequency and wavelength which is the foundation of the dispersion curves. Results of the simulation process are validated with the software GUIGW. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ansys%20APDL" title="ansys APDL">ansys APDL</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion%20curves" title=" dispersion curves"> dispersion curves</a>, <a href="https://publications.waset.org/abstracts/search?q=guide%20waves" title=" guide waves"> guide waves</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20analysis" title=" modal analysis"> modal analysis</a> </p> <a href="https://publications.waset.org/abstracts/108272/modeling-and-computational-validation-of-dispersion-curves-of-guide-waves-in-a-pipe-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Piezoelectric based Passive Vibration Control of Composite Turbine Blade using Shunt Circuit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kouider%20Bendine">Kouider Bendine</a>, <a href="https://publications.waset.org/abstracts/search?q=Zouaoui%20Satla"> Zouaoui Satla</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukhoulda%20Farouk%20Benallel"> Boukhoulda Farouk Benallel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang"> Shun-Qi Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Turbine blades are subjected to a variety of loads, lead to an undesirable vibration. Such vibration can cause serious damages or even lead to a total failure of the blade. The present paper addresses the vibration control of turbine blade. The study aims to propose a passive vibration control using piezoelectric material. the passive control is effectuated by shunting an RL circuit to the piezoelectric patch in a parallel configuration. To this end, a Finite element model for the blade with the piezoelectric patch is implemented in ANSYS APDL. The model is then subjected to a harmonic frequency-based analysis for the case of control on and off. The results show that the proposed methodology was able to reduce blade vibration by 18%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blade" title="blade">blade</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20piezoelectric%20vibration%20control" title=" active piezoelectric vibration control"> active piezoelectric vibration control</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element." title=" finite element."> finite element.</a>, <a href="https://publications.waset.org/abstracts/search?q=shunt%20circuit" title=" shunt circuit"> shunt circuit</a> </p> <a href="https://publications.waset.org/abstracts/165603/piezoelectric-based-passive-vibration-control-of-composite-turbine-blade-using-shunt-circuit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> The Optimization Process of Aortic Heart Valve Stent Geometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arkadiusz%20Mezyk">Arkadiusz Mezyk</a>, <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20Klein"> Wojciech Klein</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariusz%20Pawlak"> Mariusz Pawlak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacek%20Gnilka"> Jacek Gnilka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aortic heart valve stents should fulfill many criterions. These criteria have a strong impact on the geometrical shape of the stent. Usually, the final construction of stent is a result of many year experience and knowledge. Depending on patents claims, different stent shapes are produced by different companies. This causes difficulties for biomechanics engineers narrowing the domain of feasible solutions. The paper present optimization method for stent geometry defining by a specific analytical equation based on various mathematical functions. This formula was implemented as APDL script language in ANSYS finite element environment. For the purpose of simulation tests, a few parameters were separated from developed equation. The application of the genetic algorithms allows finding the best solution due to selected objective function. Obtained solution takes into account parameters such as radial force, compression ratio and coefficient of expansion on the transverse axial. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aortic%20stent" title="aortic stent">aortic stent</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20process" title=" optimization process"> optimization process</a>, <a href="https://publications.waset.org/abstracts/search?q=geometry" title=" geometry"> geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/47096/the-optimization-process-of-aortic-heart-valve-stent-geometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> A Simulation Study of E-Glass Reinforced Polyurethane Footbed and Investigation of Parameters Effecting Elastic Behaviour of Footbed Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berkay%20Ergene">Berkay Ergene</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87a%C4%9F%C4%B1n%20Bolat"> 脟a臒谋n Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we mainly focused on a simulation study regarding composite footbed in order to contribute to shoe industry. As a footbed, e-glass fiber reinforced polyurethane was determined since polyurethane based materials are already used for footbed in shoe manufacturing frequently. Flat, elliptical and rectangular grooved shoe soles were modeled and analyzed separately as TPU, 10% glass fiber reinforced, 30% glass fiber reinforced and 50% glass fiber reinforced materials according to their properties under three point bending and compression situations to determine the relationship between model, material type and mechanical behaviours of composite model. ANSYS 14.0 APDL mechanical structural module is utilized in all simulations and analyzed stress and strain distributions for different footbed models and materials. Furthermore, materials constants like young modulus, shear modulus, Poisson ratio and density of the composites were calculated theoretically by using composite mixture rule and interpreted for mechanical aspects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20behaviour" title=" elastic behaviour"> elastic behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=footbed" title=" footbed"> footbed</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/68124/a-simulation-study-of-e-glass-reinforced-polyurethane-footbed-and-investigation-of-parameters-effecting-elastic-behaviour-of-footbed-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Numerical Investigation of Cold Formed C-Section-Purlins with Different Opening Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20El-heweity">Mohamed M. El-heweity</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Shamel%20Fahmy"> Ahmed Shamel Fahmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Shawky"> Mostafa Shawky</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sherif"> Ahmed Sherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold-formed steel (CFS) lipped channel sections are popular as load-bearing members in building structures. These sections are used in the construction industry because of their high strength-to-weight ratio, lightweight, quick production, and ease of construction, fabrication, transportation, and handling. When those cold formed sections with high slenderness ratios are subjected to compression bending, they do not reach failure when reaching their ultimate bending stress, however, they sustain much higher loads due stress re-distribution. Hence, there is a need to study the sectional nominal capacity of CFS lipped channel beams with different web openings subjected to pure bending and uniformly distributed loads. By using finite element (FE) simulations using ANSYS APDL for numerical analysis. The results were verified and compared to previous experimental results. Then a parametric study was conducted and validated FE model to investigate the effect of different openings shapes on their nominal capacities. The results have revealed that CFS sections with hexagonal openings and intermediate notch can resist higher nominal capacities when compared to other sectional openings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold-formed%20steel" title="cold-formed steel">cold-formed steel</a>, <a href="https://publications.waset.org/abstracts/search?q=nominal%20capacity" title=" nominal capacity"> nominal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=lipped%20channel%20beam" title=" lipped channel beam"> lipped channel beam</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title=" numerical study"> numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20opening" title=" web opening"> web opening</a> </p> <a href="https://publications.waset.org/abstracts/155701/numerical-investigation-of-cold-formed-c-section-purlins-with-different-opening-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Simulation of Laser Structuring by Three Dimensional Heat Transfer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassim%20Shaheen%20Bachy">Bassim Shaheen Bachy</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Franke"> J枚rg Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20structuring" title="laser structuring">laser structuring</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modeling" title=" thermal modeling"> thermal modeling</a> </p> <a href="https://publications.waset.org/abstracts/12614/simulation-of-laser-structuring-by-three-dimensional-heat-transfer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Monitorization of Junction Temperature Using a Thermal-Test-Device</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Arzhanov">B. Arzhanov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Correia"> A. Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Delgado"> P. Delgado</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Meireles"> J. Meireles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quad%20flat%20no-Lead%20packages" title="quad flat no-Lead packages">quad flat no-Lead packages</a>, <a href="https://publications.waset.org/abstracts/search?q=exposed%20pads" title=" exposed pads"> exposed pads</a>, <a href="https://publications.waset.org/abstracts/search?q=junction%20temperature" title=" junction temperature"> junction temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20management%20and%20measurements" title=" thermal management and measurements"> thermal management and measurements</a> </p> <a href="https://publications.waset.org/abstracts/39505/monitorization-of-junction-temperature-using-a-thermal-test-device" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39505.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Sensitivity Parameter Analysis of Negative Moment Dynamic Load Allowance of Continuous T-Girder Bridge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fan%20Yang">Fan Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye-Lu%20Wang"> Ye-Lu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dynamic load allowance, as an application result of the vehicle-bridge coupled vibration theory, is an important parameter for bridge design and evaluation. Based on the coupled vehicle-bridge vibration theory, the current work establishes a full girder model of a dynamic load allowance, selects a planar five-degree-of-freedom three-axis vehicle model, solves the coupled vehicle-bridge dynamic response using the APDL language in the spatial finite element program ANSYS, selects the pivot point 2 sections as the representative of the negative moment section, and analyzes the effects of parameters such as travel speed, unevenness, vehicle frequency, span diameter, span number and forced displacement of the support on the negative moment dynamic load allowance through orthogonal tests. The influence of parameters such as vehicle speed, unevenness, vehicle frequency, span diameter, span number, and forced displacement of the support on the negative moment dynamic load allowance is analyzed by orthogonal tests, and the influence law of each influencing parameter is summarized. It is found that the effects of vehicle frequency, unevenness, and speed on the negative moment dynamic load allowance are significant, among which vehicle frequency has the greatest effect on the negative moment dynamic load allowance; the effects of span number and span diameter on the negative moment dynamic load allowance are relatively small; the effects of forced displacement of the support on the negative moment dynamic load allowance are negligible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20T-girder%20bridge" title="continuous T-girder bridge">continuous T-girder bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20load%20allowance" title=" dynamic load allowance"> dynamic load allowance</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-bridge%20coupling" title=" vehicle-bridge coupling"> vehicle-bridge coupling</a> </p> <a href="https://publications.waset.org/abstracts/152547/sensitivity-parameter-analysis-of-negative-moment-dynamic-load-allowance-of-continuous-t-girder-bridge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Le莽a da Palmeira Revisited: Sixty-Seven Years of Recurring Work by 脕lvaro Siza</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Jorge%20Cabral%20dos%20Santos%20Fernandes">Eduardo Jorge Cabral dos Santos Fernandes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last sixty-seven years, Portuguese architect 脕lvaro Siza Vieira designed several interventions for the Le莽a da Palmeira waterfront. With this paper, we aim to analyze the history of this set of projects in a chronological approach, seeking to understand the connections that can be established between them. Born in Matosinhos, a fishing and industrial village located near Porto, 脕lvaro Siza built a remarkable relationship with Le莽a da Palmeira (a neighboring village located to the north) from a personal and professional point of view throughout his life: it was there that he got married (in the small chapel located next to the Boa Nova lighthouse) and it was there that he designed his first works of great impact, the Boa Nova Tea House and the Ocean Swimming Pool, today classified as national monuments. These two works were the subject of several projects spaced over time, including recent restoration interventions designed by the same author. However, the marks of Siza's intervention in this territory are not limited to these two cases; there were other projects designed for this territory, which we also intend to analyze: the monument to the poet Ant贸nio Nobre (1967-80), the unbuilt project for a restaurant next to Piscina das Mar茅s (presented in 1966 and redesigned in 1993), the reorganization of the Avenida da Liberdade (with a first project, not carried out, in 1965-74, and a reformulation carried out between 1998 and 2006) and, finally, the project for the new APDL facilities, which completes Avenida da Liberdade to the south (1995). Altogether, these interventions are so striking in this territory, from a landscape, formal, functional, and tectonic point of view, that it is difficult to imagine this waterfront without their presence. In all cases, the relationship with the site explains many of the design options. Time after time, the conditions of the pre-existing territory (also affected by the previous interventions of Siza) were considered, so each project created a new circumstance, conditioning the following interventions. This paper is part of a more comprehensive project, which aims to analyze the work of 脕lvaro Siza in its fundamental relationship with the site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Siza" title="脕lvaro Siza">脕lvaro Siza</a>, <a href="https://publications.waset.org/abstracts/search?q=contextualism" title=" contextualism"> contextualism</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%C3%A7a%20da%20Palmeira" title=" Le莽a da Palmeira"> Le莽a da Palmeira</a>, <a href="https://publications.waset.org/abstracts/search?q=landscape" title=" landscape"> landscape</a> </p> <a href="https://publications.waset.org/abstracts/188406/leca-da-palmeira-revisited-sixty-seven-years-of-recurring-work-by-alvaro-siza" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">31</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Maier">Nadine Maier</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Mensinger"> Martin Mensinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Enea%20Tallushi"> Enea Tallushi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20behavior" title="buckling behavior">buckling behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=eccentric%20load%20introduction" title=" eccentric load introduction"> eccentric load introduction</a>, <a href="https://publications.waset.org/abstracts/search?q=incremental%20launching" title=" incremental launching"> incremental launching</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20scale%20buckling%20tests" title=" large scale buckling tests"> large scale buckling tests</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20axial%20stress%20states" title=" multi axial stress states"> multi axial stress states</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20numerical%20modelling" title=" parametric numerical modelling"> parametric numerical modelling</a> </p> <a href="https://publications.waset.org/abstracts/128311/numerical-investigation-of-the-influence-on-buckling-behaviour-due-to-different-launching-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Annulus Pulley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bijit%20Kalita">Bijit Kalita</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20N.%20Surendra"> K. V. N. Surendra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pulley works under both compressive loading due to contacting belt in tension and central torque due to cause rotation. In a power transmission system, the belt pulley assemblies offer a contact problem in the form of two mating cylindrical parts. In this work, we modeled a pulley as a heavy two-dimensional circular disk. Stress analysis due to contact loading in the pulley mechanism is performed. Finite element analysis (FEA) is conducted for a pulley to investigate the stresses experienced on its inner and outer periphery. In most of the heavy-duty applications, most frequently used mechanisms to transmit power in applications such as automotive engines, industrial machines, etc. is Belt Drive. Usually, very heavy circular disks are used as pulleys. A pulley could be entitled as a drum and may have a groove between two flanges around the circumference. A rope, belt, cable or chain can be the driving element of a pulley system that runs over the pulley inside the groove. A pulley is experienced by normal and shear tractions on its contact region in the process of motion transmission. The region may be belt-pulley contact surface or pulley-shaft contact surface. In 1895, Hertz solved the elastic contact problem for point contact and line contact of an ideal smooth object. Afterward, this hypothesis is generally utilized for computing the actual contact zone. Detailed stress analysis in such contact region of such pulleys is quite necessary to prevent early failure. In this paper, the results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. Based on the literature on contact stress problem induced in the wide field of applications, generated stress distribution on the shaft-pulley and belt-pulley interfaces due to the application of high-tension and torque was evaluated in this study using FEA concepts. Finally, the results obtained from ANSYS (APDL) were compared with the Hertzian contact theory. The study is mainly focused on the fatigue life estimation of a rotating part as a component of an engine assembly using the most famous Paris equation. Digital Image Correlation (DIC) analyses have been performed using the open-source software. From the displacement computed using the images acquired at a minimum and maximum force, displacement field amplitude is computed. From these fields, the crack path is defined and stress intensity factors and crack tip position are extracted. A non-linear least-squares projection is used for the purpose of the estimation of fatigue crack growth. Further study will be extended for the various application of rotating machinery such as rotating flywheel disk, jet engine, compressor disk, roller disk cutter etc., where Stress Intensity Factor (SIF) calculation plays a significant role on the accuracy and reliability of a safe design. Additionally, this study will be progressed to predict crack propagation in the pulley using maximum tangential stress (MTS) criteria for mixed mode fracture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack-tip%20deformations" title="crack-tip deformations">crack-tip deformations</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20stress" title=" contact stress"> contact stress</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/109631/mixed-mode-fracture-analyses-using-finite-element-method-of-edge-cracked-heavy-annulus-pulley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>