CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 103 results for author: <span class="mathjax">Brown, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Brown%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brown, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brown%2C+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brown, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17703">arXiv:2411.17703</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17703">pdf</a>, <a href="https://arxiv.org/format/2411.17703">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Probabilistic Forecasting of Radiation Exposure for Spaceflight </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gurav%2C+R">Rutuja Gurav</a>, <a href="/search/physics?searchtype=author&amp;query=Massara%2C+E">Elena Massara</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+X">Xiaomei Song</a>, <a href="/search/physics?searchtype=author&amp;query=Sinclair%2C+K">Kimberly Sinclair</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Edward Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Kusner%2C+M">Matt Kusner</a>, <a href="/search/physics?searchtype=author&amp;query=Poduval%2C+B">Bala Poduval</a>, <a href="/search/physics?searchtype=author&amp;query=Baydin%2C+A+G">Atilim Gunes Baydin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17703v1-abstract-short" style="display: inline;"> Extended human presence beyond low-Earth orbit (BLEO) during missions to the Moon and Mars will pose significant challenges in the near future. A primary health risk associated with these missions is radiation exposure, primarily from galatic cosmic rays (GCRs) and solar proton events (SPEs). While GCRs present a more consistent, albeit modulated threat, SPEs are harder to predict and can deliver&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17703v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17703v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17703v1-abstract-full" style="display: none;"> Extended human presence beyond low-Earth orbit (BLEO) during missions to the Moon and Mars will pose significant challenges in the near future. A primary health risk associated with these missions is radiation exposure, primarily from galatic cosmic rays (GCRs) and solar proton events (SPEs). While GCRs present a more consistent, albeit modulated threat, SPEs are harder to predict and can deliver acute doses over short periods. Currently NASA utilizes analytical tools for monitoring the space radiation environment in order to make decisions of immediate action to shelter astronauts. However this reactive approach could be significantly enhanced by predictive models that can forecast radiation exposure in advance, ideally hours ahead of major events, while providing estimates of prediction uncertainty to improve decision-making. In this work we present a machine learning approach for forecasting radiation exposure in BLEO using multimodal time-series data including direct solar imagery from Solar Dynamics Observatory, X-ray flux measurements from GOES missions, and radiation dose measurements from the BioSentinel satellite that was launched as part of Artemis~1 mission. To our knowledge, this is the first time full-disk solar imagery has been used to forecast radiation exposure. We demonstrate that our model can predict the onset of increased radiation due to an SPE event, as well as the radiation decay profile after an event has occurred. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17703v1-abstract-full').style.display = 'none'; document.getElementById('2411.17703v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03963">arXiv:2410.03963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.03963">pdf</a>, <a href="https://arxiv.org/format/2410.03963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> dZiner: Rational Inverse Design of Materials with AI Agents </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ansari%2C+M">Mehrad Ansari</a>, <a href="/search/physics?searchtype=author&amp;query=Watchorn%2C+J">Jeffrey Watchorn</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+C+E">Carla E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+J+S">Joseph S. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03963v1-abstract-short" style="display: inline;"> Recent breakthroughs in machine learning and artificial intelligence, fueled by scientific data, are revolutionizing the discovery of new materials. Despite the wealth of existing scientific literature, the availability of both structured experimental data and chemical domain knowledge that can be easily integrated into data-driven workflows is limited. The motivation to integrate this information&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03963v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03963v1-abstract-full" style="display: none;"> Recent breakthroughs in machine learning and artificial intelligence, fueled by scientific data, are revolutionizing the discovery of new materials. Despite the wealth of existing scientific literature, the availability of both structured experimental data and chemical domain knowledge that can be easily integrated into data-driven workflows is limited. The motivation to integrate this information, as well as additional context from first-principle calculations and physics-informed deep learning surrogate models, is to enable efficient exploration of the relevant chemical space and to predict structure-property relationships of new materials a priori. Ultimately, such a framework could replicate the expertise of human subject-matter experts. In this work, we present dZiner, a chemist AI agent, powered by large language models (LLMs), that discovers new compounds with desired properties via inverse design (property-to-structure). In specific, the agent leverages domain-specific insights from foundational scientific literature to propose new materials with enhanced chemical properties, iteratively evaluating them using relevant surrogate models in a rational design process, while accounting for design constraints. The model supports both closed-loop and human-in-the-loop feedback cycles, enabling human-AI collaboration in molecular design with real-time property inference, and uncertainty and chemical feasibility assessment. We demonstrate the flexibility of this agent by applying it to various materials target properties, including surfactants, ligand and drug candidates, and metal-organic frameworks. Our approach holds promise to both accelerate the discovery of new materials and enable the targeted design of materials with desired functionalities. The methodology is available as an open-source software on https://github.com/mehradans92/dZiner. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03963v1-abstract-full').style.display = 'none'; document.getElementById('2410.03963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00285">arXiv:2407.00285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00285">pdf</a>, <a href="https://arxiv.org/format/2407.00285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Imaging of single barium atoms in a second matrix site in solid xenon for barium tagging in a $^{136}$Xe double beta decay experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yvaine%2C+M">M. Yvaine</a>, <a href="/search/physics?searchtype=author&amp;query=Fairbank%2C+D">D. Fairbank</a>, <a href="/search/physics?searchtype=author&amp;query=Soderstrom%2C+J">J. Soderstrom</a>, <a href="/search/physics?searchtype=author&amp;query=Taylor%2C+C">C. Taylor</a>, <a href="/search/physics?searchtype=author&amp;query=Stanley%2C+J">J. Stanley</a>, <a href="/search/physics?searchtype=author&amp;query=Walton%2C+T">T. Walton</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Iverson%2C+A">A. Iverson</a>, <a href="/search/physics?searchtype=author&amp;query=Fairbank%2C+W">W. Fairbank</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Amy%2C+A">A. Amy</a>, <a href="/search/physics?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&amp;query=Anker%2C+A">A. Anker</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Atencio%2C+A">A. Atencio</a>, <a href="/search/physics?searchtype=author&amp;query=Bane%2C+J">J. Bane</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Breslin%2C+J">J. Breslin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a> , et al. (112 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00285v1-abstract-short" style="display: inline;"> Neutrinoless double beta decay is one of the most sensitive probes for new physics beyond the Standard Model of particle physics. One of the isotopes under investigation is $^{136}$Xe, which would double beta decay into $^{136}$Ba. Detecting the single $^{136}$Ba daughter provides a sort of ultimate tool in the discrimination against backgrounds. Previous work demonstrated the ability to perform s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00285v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00285v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00285v1-abstract-full" style="display: none;"> Neutrinoless double beta decay is one of the most sensitive probes for new physics beyond the Standard Model of particle physics. One of the isotopes under investigation is $^{136}$Xe, which would double beta decay into $^{136}$Ba. Detecting the single $^{136}$Ba daughter provides a sort of ultimate tool in the discrimination against backgrounds. Previous work demonstrated the ability to perform single atom imaging of Ba atoms in a single-vacancy site of a solid xenon matrix. In this paper, the effort to identify signal from individual barium atoms is extended to Ba atoms in a hexa-vacancy site in the matrix and is achieved despite increased photobleaching in this site. Abrupt fluorescence turn-off of a single Ba atom is also observed. Significant recovery of fluorescence signal lost through photobleaching is demonstrated upon annealing of Ba deposits in the Xe ice. Following annealing, it is observed that Ba atoms in the hexa-vacancy site exhibit antibleaching while Ba atoms in the tetra-vacancy site exhibit bleaching. This may be evidence for a matrix site transfer upon laser excitation. Our findings offer a path of continued research toward tagging of Ba daughters in all significant sites in solid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00285v1-abstract-full').style.display = 'none'; document.getElementById('2407.00285v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.01773">arXiv:2401.01773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.01773">pdf</a>, <a href="https://arxiv.org/format/2401.01773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> A Global Analysis of Pre-Earthquake Ionospheric Anomalies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Cullen%2C+L">Luke Cullen</a>, <a href="/search/physics?searchtype=author&amp;query=Smith%2C+A+W">Andy W Smith</a>, <a href="/search/physics?searchtype=author&amp;query=Galib%2C+A+H">Asadullah H Galib</a>, <a href="/search/physics?searchtype=author&amp;query=Varshney%2C+D">Debvrat Varshney</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E+J+E">Edward J E Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Chi%2C+P+J">Peter J Chi</a>, <a href="/search/physics?searchtype=author&amp;query=Chu%2C+X">Xiangning Chu</a>, <a href="/search/physics?searchtype=author&amp;query=Svoboda%2C+F">Filip Svoboda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.01773v1-abstract-short" style="display: inline;"> Local ionospheric density anomalies have been reported in the days prior to major earthquakes. This global study statistically investigates whether consistent ionospheric anomalies occur in the 24 hours prior to earthquakes across different regions, magnitudes, temporal and spatial scales. We match earthquake data to Total Electron Content (TEC) data from 2000-2020 at a higher resolution and caden&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01773v1-abstract-full').style.display = 'inline'; document.getElementById('2401.01773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.01773v1-abstract-full" style="display: none;"> Local ionospheric density anomalies have been reported in the days prior to major earthquakes. This global study statistically investigates whether consistent ionospheric anomalies occur in the 24 hours prior to earthquakes across different regions, magnitudes, temporal and spatial scales. We match earthquake data to Total Electron Content (TEC) data from 2000-2020 at a higher resolution and cadence than previous assessed. Globally, no significant, consistent anomaly is found. Regionally, statistically significant ionospheric anomalies arise in the 12 hours prior to earthquakes with $p \leq 0.01$ following Wilcoxon tests. For the Japanese region we find a median negative ionospheric anomaly of around 0.5 TECU between 3 and 8 hours before earthquakes. For the South American region, the median TEC is enhanced by up to ~ 2 TECU, between 7 and 10 hours before an event. We show that the results are robust to different definitions of the &#39;&#39;local&#39;&#39; region and earthquake magnitude. This demonstrates the promise of monitoring the ionosphere as part of a multimodal earthquake forecasting system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.01773v1-abstract-full').style.display = 'none'; document.getElementById('2401.01773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures. Presented at AGU fall meeting 2022 (https://agu.confex.com/agu/fm22/meetingapp.cgi/Paper/1142329)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06180">arXiv:2304.06180</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06180">pdf</a>, <a href="https://arxiv.org/format/2304.06180">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> An integrated online radioassay data storage and analytics tool for nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+R+H+M">R. H. M. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=Piepke%2C+A">A. Piepke</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Atencio%2C+A">A. Atencio</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Bane%2C+J">J. Bane</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L+Q">L. Q. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cesmecioglu%2C+D">D. Cesmecioglu</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+E">E. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a> , et al. (135 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06180v2-abstract-short" style="display: inline;"> Large-scale low-background detectors are increasingly used in rare-event searches as experimental collaborations push for enhanced sensitivity. However, building such detectors, in practice, creates an abundance of radioassay data especially during the conceptual phase of an experiment when hundreds of materials are screened for radiopurity. A tool is needed to manage and make use of the radioassa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06180v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06180v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06180v2-abstract-full" style="display: none;"> Large-scale low-background detectors are increasingly used in rare-event searches as experimental collaborations push for enhanced sensitivity. However, building such detectors, in practice, creates an abundance of radioassay data especially during the conceptual phase of an experiment when hundreds of materials are screened for radiopurity. A tool is needed to manage and make use of the radioassay screening data to quantitatively assess detector design options. We have developed a Materials Database Application for the nEXO experiment to serve this purpose. This paper describes this database, explains how it functions, and discusses how it streamlines the design of the experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06180v2-abstract-full').style.display = 'none'; document.getElementById('2304.06180v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14917">arXiv:2303.14917</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14917">pdf</a>, <a href="https://arxiv.org/ps/2303.14917">ps</a>, <a href="https://arxiv.org/format/2303.14917">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.pss.2023.105744">10.1016/j.pss.2023.105744 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science opportunities with solar sailing smallsats </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Turyshev%2C+S+G">Slava G. Turyshev</a>, <a href="/search/physics?searchtype=author&amp;query=Garber%2C+D">Darren Garber</a>, <a href="/search/physics?searchtype=author&amp;query=Friedman%2C+L+D">Louis D. Friedman</a>, <a href="/search/physics?searchtype=author&amp;query=Hein%2C+A+M">Andreas M. Hein</a>, <a href="/search/physics?searchtype=author&amp;query=Barnes%2C+N">Nathan Barnes</a>, <a href="/search/physics?searchtype=author&amp;query=Batygin%2C+K">Konstantin Batygin</a>, <a href="/search/physics?searchtype=author&amp;query=Brin%2C+G+D">G. David Brin</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+M+E">Michael E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Cronin%2C+L">Leroy Cronin</a>, <a href="/search/physics?searchtype=author&amp;query=Davoyan%2C+A">Artur Davoyan</a>, <a href="/search/physics?searchtype=author&amp;query=Dubill%2C+A">Amber Dubill</a>, <a href="/search/physics?searchtype=author&amp;query=Eubanks%2C+T+M">T. Marshall Eubanks</a>, <a href="/search/physics?searchtype=author&amp;query=Gibson%2C+S">Sarah Gibson</a>, <a href="/search/physics?searchtype=author&amp;query=Hassler%2C+D+M">Donald M. Hassler</a>, <a href="/search/physics?searchtype=author&amp;query=Izenberg%2C+N+R">Noam R. Izenberg</a>, <a href="/search/physics?searchtype=author&amp;query=Kervella%2C+P">Pierre Kervella</a>, <a href="/search/physics?searchtype=author&amp;query=Mauskopf%2C+P+D">Philip D. Mauskopf</a>, <a href="/search/physics?searchtype=author&amp;query=Murphy%2C+N">Neil Murphy</a>, <a href="/search/physics?searchtype=author&amp;query=Nutter%2C+A">Andrew Nutter</a>, <a href="/search/physics?searchtype=author&amp;query=Porco%2C+C">Carolyn Porco</a>, <a href="/search/physics?searchtype=author&amp;query=Riccobono%2C+D">Dario Riccobono</a>, <a href="/search/physics?searchtype=author&amp;query=Schalkwyk%2C+J">James Schalkwyk</a>, <a href="/search/physics?searchtype=author&amp;query=Stevenson%2C+K+B">Kevin B. Stevenson</a>, <a href="/search/physics?searchtype=author&amp;query=Sykes%2C+M+V">Mark V. Sykes</a>, <a href="/search/physics?searchtype=author&amp;query=Sultana%2C+M">Mahmooda Sultana</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14917v4-abstract-short" style="display: inline;"> Recently, we witnessed how the synergy of small satellite technology and solar sailing propulsion enables new missions. Together, small satellites with lightweight instruments and solar sails offer affordable access to deep regions of the solar system, also making it possible to realize hard-to-reach trajectories that are not constrained to the ecliptic plane. Combining these two technologies can&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14917v4-abstract-full').style.display = 'inline'; document.getElementById('2303.14917v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14917v4-abstract-full" style="display: none;"> Recently, we witnessed how the synergy of small satellite technology and solar sailing propulsion enables new missions. Together, small satellites with lightweight instruments and solar sails offer affordable access to deep regions of the solar system, also making it possible to realize hard-to-reach trajectories that are not constrained to the ecliptic plane. Combining these two technologies can drastically reduce travel times within the solar system, while delivering robust science. With solar sailing propulsion capable of reaching the velocities of ~5-10 AU/yr, missions using a rideshare launch may reach the Jovian system in two years, Saturn in three. The same technologies could allow reaching solar polar orbits in less than two years. Fast, cost-effective, and maneuverable sailcraft that may travel outside the ecliptic plane open new opportunities for affordable solar system exploration, with great promise for heliophysics, planetary science, and astrophysics. Such missions could be modularized to reach different destinations with different sets of instruments. Benefiting from this progress, we present the &#34;Sundiver&#34; concept, offering novel possibilities for the science community. We discuss some of the key technologies, the current design of the Sundiver sailcraft vehicle and innovative instruments, along with unique science opportunities that these technologies enable, especially as this exploration paradigm evolves. We formulate policy recommendations to allow national space agencies, industry, and other stakeholders to establish a strong scientific, programmatic, and commercial focus, enrich and deepen the space enterprise and broaden its advocacy base by including the Sundiver paradigm as a part of broader space exploration efforts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14917v4-abstract-full').style.display = 'none'; document.getElementById('2303.14917v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Planetary and Space Science 235 (2023) 105744 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13200">arXiv:2302.13200</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13200">pdf</a>, <a href="https://arxiv.org/format/2302.13200">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Interactions between two adjacent convection rolls in turbulent Rayleigh-Benard convection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Eric Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Ji%2C+D">Dandan Ji</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13200v2-abstract-short" style="display: inline;"> Rayleigh-B{茅}nard convection experiments were done with two adjacent cubic cells with a partial wall in between to force the generation of two interacting convection rolls. Observed stable states include both counter-rotating and co-rotating states. The stability of each of these states and their dynamics were modeled by stochastic ordinary differential equations of motion in terms of the orientat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13200v2-abstract-full').style.display = 'inline'; document.getElementById('2302.13200v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13200v2-abstract-full" style="display: none;"> Rayleigh-B{茅}nard convection experiments were done with two adjacent cubic cells with a partial wall in between to force the generation of two interacting convection rolls. Observed stable states include both counter-rotating and co-rotating states. The stability of each of these states and their dynamics were modeled by stochastic ordinary differential equations of motion in terms of the orientation, amplitude, and mean temperature of each convection roll. The form of the interaction terms is predicted based on an effective turbulent diffusion of temperature between the adjacent rolls. Predictions are made for stable fixed points of the co- and counter-rotating states. This suggests that the same turbulent thermal diffusivity that describes macroscopically averaged heat transport also controls the interactions between neighboring convection rolls. The surprising stability of co-rotating states is due to the temperature difference between the neighboring rolls becoming large enough that the heat flux between the rolls stabilizes the temperature profile of aligned co-rotating states. This temperature difference can be driven by heating the plates of the two cells to different mean temperatures. This shifts the orientations of the rolls of counter-rotating states in opposite directions, and for large temperature differences only co-rotating states are stable Spontaneous switching between co-rotating and counter-rotating states is also observed. Switching to counter-rotating states occurs mainly due to cessation (a significant weakening of a convection roll), which reduces damping on changes in orientation, allowing the orientation to change rapidly due to diffusive fluctuations. Switching to co-rotating states is mainly driven by smaller diffusive fluctuations, which have a positive feedback that destabilizes the counter-rotating state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13200v2-abstract-full').style.display = 'none'; document.getElementById('2302.13200v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 17 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 8, 064608 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10726">arXiv:2211.10726</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10726">pdf</a>, <a href="https://arxiv.org/format/2211.10726">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fdest.2024.1480975">10.3389/fdest.2024.1480975 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Review of NEST Models for Liquid Xenon and Exhaustive Comparison to Other Approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Szydagis%2C+M">M. Szydagis</a>, <a href="/search/physics?searchtype=author&amp;query=Balajthy%2C+J">J. Balajthy</a>, <a href="/search/physics?searchtype=author&amp;query=Block%2C+G+A">G. A. Block</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Cutter%2C+J+E">J. E. Cutter</a>, <a href="/search/physics?searchtype=author&amp;query=Farrell%2C+S+J">S. J. Farrell</a>, <a href="/search/physics?searchtype=author&amp;query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&amp;query=Kamaha%2C+A+C">A. C. Kamaha</a>, <a href="/search/physics?searchtype=author&amp;query=Kozlova%2C+E+S">E. S. Kozlova</a>, <a href="/search/physics?searchtype=author&amp;query=Liebenthal%2C+C+S">C. S. Liebenthal</a>, <a href="/search/physics?searchtype=author&amp;query=McKinsey%2C+D+N">D. N. McKinsey</a>, <a href="/search/physics?searchtype=author&amp;query=McMichael%2C+K">K. McMichael</a>, <a href="/search/physics?searchtype=author&amp;query=McMonigle%2C+R">R. McMonigle</a>, <a href="/search/physics?searchtype=author&amp;query=Mooney%2C+M">M. Mooney</a>, <a href="/search/physics?searchtype=author&amp;query=Mueller%2C+J">J. Mueller</a>, <a href="/search/physics?searchtype=author&amp;query=Ni%2C+K">K. Ni</a>, <a href="/search/physics?searchtype=author&amp;query=Rischbieter%2C+G+R+C">G. R. C. Rischbieter</a>, <a href="/search/physics?searchtype=author&amp;query=Trengove%2C+K">K. Trengove</a>, <a href="/search/physics?searchtype=author&amp;query=Tripathi%2C+M">M. Tripathi</a>, <a href="/search/physics?searchtype=author&amp;query=Tunnell%2C+C+D">C. D. Tunnell</a>, <a href="/search/physics?searchtype=author&amp;query=Velan%2C+V">V. Velan</a>, <a href="/search/physics?searchtype=author&amp;query=Westerdale%2C+S">S. Westerdale</a>, <a href="/search/physics?searchtype=author&amp;query=Wyman%2C+M+D">M. D. Wyman</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Z">Z. Zhao</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10726v4-abstract-short" style="display: inline;"> This paper will discuss the microphysical simulation of interactions in liquid xenon, the active detector medium in many leading rare-event searches for new physics, and describe experimental observables useful for understanding detector performance. The scintillation and ionization yield distributions for signal and background will be presented using the Noble Element Simulation Technique (NEST),&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10726v4-abstract-full').style.display = 'inline'; document.getElementById('2211.10726v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10726v4-abstract-full" style="display: none;"> This paper will discuss the microphysical simulation of interactions in liquid xenon, the active detector medium in many leading rare-event searches for new physics, and describe experimental observables useful for understanding detector performance. The scintillation and ionization yield distributions for signal and background will be presented using the Noble Element Simulation Technique (NEST), which is a toolkit based on experimental data and simple, empirical formulae, which mimic previous microphysics modeling, but are guided by data. The NEST models for light and charge production as a function of the particle type, energy, and electric field will be reviewed, as well as models for energy resolution and final pulse areas. NEST will be compared to other models or sets of models, and vetted against real data, with several specific examples pulled from XENON, ZEPLIN, LUX, LZ, PandaX, and table-top experiments used for calibrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10726v4-abstract-full').style.display = 'none'; document.getElementById('2211.10726v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 Pages, 4 Tables, 7 Figures, 21 Equations, and 131 References</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Detect. Sci. Technol. Sec. Detector Physics, Volume 2 - 2024 (special issue: Fundamentals of luminescence and electroluminescence in particle detection technologies relying on noble-gas media) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.07765">arXiv:2209.07765</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.07765">pdf</a>, <a href="https://arxiv.org/format/2209.07765">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11072-8">10.1140/epjc/s10052-022-11072-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gallina%2C+G">G. Gallina</a>, <a href="/search/physics?searchtype=author&amp;query=Guan%2C+Y">Y. Guan</a>, <a href="/search/physics?searchtype=author&amp;query=Retiere%2C+F">F. Retiere</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G">G. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Kotov%2C+I">I. Kotov</a>, <a href="/search/physics?searchtype=author&amp;query=Rescia%2C+S">S. Rescia</a>, <a href="/search/physics?searchtype=author&amp;query=Soma%2C+A+K">A. K. Soma</a>, <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+T">T. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=Darroch%2C+L">L. Darroch</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Bolster%2C+J">J. Bolster</a>, <a href="/search/physics?searchtype=author&amp;query=Cohen%2C+J+R">J. R. Cohen</a>, <a href="/search/physics?searchtype=author&amp;query=Franco%2C+T+P">T. Pinto Franco</a>, <a href="/search/physics?searchtype=author&amp;query=Gillis%2C+W+C">W. C. Gillis</a>, <a href="/search/physics?searchtype=author&amp;query=Smalley%2C+H+P">H. Peltz Smalley</a>, <a href="/search/physics?searchtype=author&amp;query=Thibado%2C+S">S. Thibado</a>, <a href="/search/physics?searchtype=author&amp;query=Pocar%2C+A">A. Pocar</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Jamil%2C+A">A. Jamil</a>, <a href="/search/physics?searchtype=author&amp;query=Moore%2C+D+C">D. C. Moore</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.07765v2-abstract-short" style="display: inline;"> Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0$谓尾尾$), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0$谓尾尾$ of \ce{^{136}Xe} with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07765v2-abstract-full').style.display = 'inline'; document.getElementById('2209.07765v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.07765v2-abstract-full" style="display: none;"> Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0$谓尾尾$), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0$谓尾尾$ of \ce{^{136}Xe} with projected half-life sensitivity of $1.35\times 10^{28}$~yr. To reach this sensitivity, the design goal for nEXO is $\leq$1\% energy resolution at the decay $Q$-value ($2458.07\pm 0.31$~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay $Q$-value for the nEXO design. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.07765v2-abstract-full').style.display = 'none'; document.getElementById('2209.07765v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.12697">arXiv:2206.12697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.12697">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TTHZ.2022.3221367">10.1109/TTHZ.2022.3221367 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Submillimeter-wave cornea phantom sensing over an extended depth of field with an axicon-generated Bessel beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baggio%2C+M">Mariangela Baggio</a>, <a href="/search/physics?searchtype=author&amp;query=Tamminen%2C+A">Aleksi Tamminen</a>, <a href="/search/physics?searchtype=author&amp;query=Lamberg%2C+J">Joel Lamberg</a>, <a href="/search/physics?searchtype=author&amp;query=Grigorev%2C+R">Roman Grigorev</a>, <a href="/search/physics?searchtype=author&amp;query=P%C3%A4lli%2C+S">Samu-Ville P盲lli</a>, <a href="/search/physics?searchtype=author&amp;query=Ala-Laurinaho%2C+J">Juha Ala-Laurinaho</a>, <a href="/search/physics?searchtype=author&amp;query=Nefedova%2C+I">Irina Nefedova</a>, <a href="/search/physics?searchtype=author&amp;query=Bourges%2C+J">Jean-Louis Bourges</a>, <a href="/search/physics?searchtype=author&amp;query=Deng%2C+S+X">Sophie X. Deng</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E+R">Elliott R. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Wallace%2C+V+P">Vincent P. Wallace</a>, <a href="/search/physics?searchtype=author&amp;query=Taylor%2C+Z+D">Zachary D. Taylor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.12697v2-abstract-short" style="display: inline;"> The feasibility of a 220 - 330 GHz zero order axicon generated Bessel beam for corneal water content was explored. Simulation and experimental data from the 25-degree cone angle hyperbolic-axicon lens illuminating metallic spherical targets demonstrate a monotonically decreasing, band integrated, backscatter intensity for increasing radius of curvature from 7 - 11 mm, when lens reflector and optic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.12697v2-abstract-full').style.display = 'inline'; document.getElementById('2206.12697v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.12697v2-abstract-full" style="display: none;"> The feasibility of a 220 - 330 GHz zero order axicon generated Bessel beam for corneal water content was explored. Simulation and experimental data from the 25-degree cone angle hyperbolic-axicon lens illuminating metallic spherical targets demonstrate a monotonically decreasing, band integrated, backscatter intensity for increasing radius of curvature from 7 - 11 mm, when lens reflector and optical axis are aligned. Further, for radii &gt;= 9.5 mm, maximum signal was obtained with a 1 mm transverse displacement between lens and reflector optical axes arising from spatial correlation between main lobe and out of phase side lobes. Thickness and permittivity parameter estimation experiments were performed on an 8 mm radius of curvature, 1 mm thick fused quartz dome over a 10 mm axial span. Extracted thickness and permittivity varied by less than ~ 25 $渭$m and 0.2 respectively after correction for superluminal velocity. Estimated water permittivity and thickness of water backed gelatin phantoms showed significantly more variation due to a time varying radius of curvature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.12697v2-abstract-full').style.display = 'none'; document.getElementById('2206.12697v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages; submitted to IEEE Transactions on Terahertz Science and Technology</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Aerne%2C+V">V. Aerne</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&amp;query=Akshat%2C+J">J. Akshat</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04681">arXiv:2201.04681</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.04681">pdf</a>, <a href="https://arxiv.org/format/2201.04681">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/07/P07028">10.1088/1748-0221/17/07/P07028 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Development of a $^{127}$Xe calibration source for nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lenardo%2C+B+G">B. G. Lenardo</a>, <a href="/search/physics?searchtype=author&amp;query=Hardy%2C+C+A">C. A. Hardy</a>, <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+R+H+M">R. H. M. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=Ondze%2C+J+C+N">J. C. Nzobadila Ondze</a>, <a href="/search/physics?searchtype=author&amp;query=Piepke%2C+A">A. Piepke</a>, <a href="/search/physics?searchtype=author&amp;query=Triambak%2C+S">S. Triambak</a>, <a href="/search/physics?searchtype=author&amp;query=Jamil%2C+A">A. Jamil</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bhat%2C+A">A. Bhat</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04681v1-abstract-short" style="display: inline;"> We study a possible calibration technique for the nEXO experiment using a $^{127}$Xe electron capture source. nEXO is a next-generation search for neutrinoless double beta decay ($0谓尾尾$) that will use a 5-tonne, monolithic liquid xenon time projection chamber (TPC). The xenon, used both as source and detection medium, will be enriched to 90% in $^{136}$Xe. To optimize the event reconstruction and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04681v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04681v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04681v1-abstract-full" style="display: none;"> We study a possible calibration technique for the nEXO experiment using a $^{127}$Xe electron capture source. nEXO is a next-generation search for neutrinoless double beta decay ($0谓尾尾$) that will use a 5-tonne, monolithic liquid xenon time projection chamber (TPC). The xenon, used both as source and detection medium, will be enriched to 90% in $^{136}$Xe. To optimize the event reconstruction and energy resolution, calibrations are needed to map the position- and time-dependent detector response. The 36.3 day half-life of $^{127}$Xe and its small $Q$-value compared to that of $^{136}$Xe $0谓尾尾$ would allow a small activity to be maintained continuously in the detector during normal operations without introducing additional backgrounds, thereby enabling in-situ calibration and monitoring of the detector response. In this work we describe a process for producing the source and preliminary experimental tests. We then use simulations to project the precision with which such a source could calibrate spatial corrections to the light and charge response of the nEXO TPC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04681v1-abstract-full').style.display = 'none'; document.getElementById('2201.04681v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01335">arXiv:2201.01335</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01335">pdf</a>, <a href="https://arxiv.org/format/2201.01335">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> The mid-UV spectrum of irradiated NaCl at Europa-like conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+M+E">Michael E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Denman%2C+W+T+P">William T. P. Denman</a>, <a href="/search/physics?searchtype=author&amp;query=Trumbo%2C+S+K">Samantha K. Trumbo</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01335v1-abstract-short" style="display: inline;"> Recent observations from the Hubble Space Telescope show a mid-UV absorption feature localized to leading hemisphere chaos regions on Europa. The same regions were previously found to have a visible absorption at 450 nm that was attributed to the presence of irradiated NaCl. The lack of any additional diagnostic absorptions for NaCl in the visible spectrum of these terrains made confirmation of th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01335v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01335v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01335v1-abstract-full" style="display: none;"> Recent observations from the Hubble Space Telescope show a mid-UV absorption feature localized to leading hemisphere chaos regions on Europa. The same regions were previously found to have a visible absorption at 450 nm that was attributed to the presence of irradiated NaCl. The lack of any additional diagnostic absorptions for NaCl in the visible spectrum of these terrains made confirmation of this identification difficult. Here we use laboratory experiments to show that NaCl irradiated at Europa&#39;s surface temperatures develops an absorption at $\sim$220 nm consistent with the new detection in Europa&#39;s mid-UV spectrum, strongly supporting the NaCl identification. Irradiated NaCl in leading-hemisphere chaos terrain would suggest that sodium and chlorine are important components of Europa&#39;s subsurface ocean. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01335v1-abstract-full').style.display = 'none'; document.getElementById('2201.01335v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Planetary Science Journal, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01332">arXiv:2201.01332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01332">pdf</a>, <a href="https://arxiv.org/format/2201.01332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> The Influence of Temperature and Photobleaching on Irradiated Sodium Chloride at Europa-like Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Denman%2C+W+T+P">William T. P. Denman</a>, <a href="/search/physics?searchtype=author&amp;query=Trumbo%2C+S+K">Samantha K. Trumbo</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+M+E">Michael E. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01332v1-abstract-short" style="display: inline;"> Europa&#39;s leading hemisphere chaos regions have a spectral feature at 450 nm that has been attributed to absorption by crystal defects in irradiated sodium chloride, known as F-centers. Some discrepancies exist between the laboratory data of irradiated sodium chloride and the observations, including a $\sim$10 nm shift in central wavelength of the F-center band and the lack of the prominent 720 nm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01332v1-abstract-full').style.display = 'inline'; document.getElementById('2201.01332v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01332v1-abstract-full" style="display: none;"> Europa&#39;s leading hemisphere chaos regions have a spectral feature at 450 nm that has been attributed to absorption by crystal defects in irradiated sodium chloride, known as F-centers. Some discrepancies exist between the laboratory data of irradiated sodium chloride and the observations, including a $\sim$10 nm shift in central wavelength of the F-center band and the lack of the prominent 720 nm absorption on Europa from M-centers, which result from the coalescence of pairs of F-centers. Here, we perform irradiation experiments on sodium chloride in an attempt to understand these discrepancies. We show that careful control of the temperature of the sample at a temperature of 120 K yields F-centers with an absorption wavelength comparable to that of Europa. In addition, we measure the effect of photobleaching -- the destruction of F-centers by photons -- and show that at the energetic particle and photon flux on Europa, an equilibrium will be reached where only a modest F-center absorption develops. The density of F-centers never reaches high enough values for the creation of secondary M-centers. Our experiments predict that F-centers grow during the night on Europa in the absence of photobleaching and then partially decay during the daytime. We show observations from the Hubble Space Telescope consistent with this prediction. All observations of the 450 nm F-center on Europa are now consistent with laboratory measurements of sodium chloride, confirming the presence of this salt on Europa. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01332v1-abstract-full').style.display = 'none'; document.getElementById('2201.01332v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures, Published in conjunction with two other manuscripts, Planetary Science Journal, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.16243">arXiv:2106.16243</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.16243">pdf</a>, <a href="https://arxiv.org/format/2106.16243">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac3631">10.1088/1361-6471/ac3631 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NEXO: Neutrinoless double beta decay search beyond $10^{28}$ year half-life sensitivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=nEXO+Collaboration"> nEXO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Bane%2C+J">J. Bane</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+E+P">E. P. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a>, <a href="/search/physics?searchtype=author&amp;query=Chernyak%2C+D">D. Chernyak</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+M">M. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a> , et al. (136 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.16243v2-abstract-short" style="display: inline;"> The nEXO neutrinoless double beta decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in $^{136}$Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16243v2-abstract-full').style.display = 'inline'; document.getElementById('2106.16243v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.16243v2-abstract-full" style="display: none;"> The nEXO neutrinoless double beta decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in $^{136}$Xe. Progress in the detector design, paired with higher fidelity in its simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of $10^{28}$ years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector. The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of $1.35\times 10^{28}$ yr at 90% confidence level in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.16243v2-abstract-full').style.display = 'none'; document.getElementById('2106.16243v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 19 figures, version accepted by Journal of Phys. G</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.07997">arXiv:2104.07997</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.07997">pdf</a>, <a href="https://arxiv.org/format/2104.07997">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08002">10.1088/1748-0221/16/08/P08002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reflectivity of VUV-sensitive Silicon Photomultipliers in Liquid Xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wagenpfeil%2C+M">M. Wagenpfeil</a>, <a href="/search/physics?searchtype=author&amp;query=Ziegler%2C+T">T. Ziegler</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+J">J. Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Fieguth%2C+A">A. Fieguth</a>, <a href="/search/physics?searchtype=author&amp;query=Murra%2C+M">M. Murra</a>, <a href="/search/physics?searchtype=author&amp;query=Schulte%2C+D">D. Schulte</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Huhmann%2C+C">C. Huhmann</a>, <a href="/search/physics?searchtype=author&amp;query=Weinheimer%2C+C">C. Weinheimer</a>, <a href="/search/physics?searchtype=author&amp;query=Michel%2C+T">T. Michel</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Adhikari%2C+G">G. Adhikari</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelico%2C+E">E. Angelico</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Bane%2C+J">J. Bane</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.07997v2-abstract-short" style="display: inline;"> Silicon photomultipliers are regarded as a very promising technology for next-generation, cutting-edge detectors for low-background experiments in particle physics. This work presents systematic reflectivity studies of Silicon Photomultipliers (SiPM) and other samples in liquid xenon at vacuum ultraviolet (VUV) wavelengths. A dedicated setup at the University of M眉nster has been used that allows t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07997v2-abstract-full').style.display = 'inline'; document.getElementById('2104.07997v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.07997v2-abstract-full" style="display: none;"> Silicon photomultipliers are regarded as a very promising technology for next-generation, cutting-edge detectors for low-background experiments in particle physics. This work presents systematic reflectivity studies of Silicon Photomultipliers (SiPM) and other samples in liquid xenon at vacuum ultraviolet (VUV) wavelengths. A dedicated setup at the University of M眉nster has been used that allows to acquire angle-resolved reflection measurements of various samples immersed in liquid xenon with 0.45掳 angular resolution. Four samples are investigated in this work: one Hamamatsu VUV4 SiPM, one FBK VUV-HD SiPM, one FBK wafer sample and one Large-Area Avalanche Photodiode (LA-APD) from EXO-200. The reflectivity is determined to be 25-36% at an angle of incidence of 20掳 for the four samples and increases to up to 65% at 70掳 for the LA-APD and the FBK samples. The Hamamatsu VUV4 SiPM shows a decline with increasing angle of incidence. The reflectivity results will be incorporated in upcoming light response simulations of the nEXO detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.07997v2-abstract-full').style.display = 'none'; document.getElementById('2104.07997v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.09206">arXiv:2103.09206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.09206">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Human Brain Mapping with Multi-Thousand Channel PtNRGrids Resolves Novel Spatiotemporal Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tchoe%2C+Y">Youngbin Tchoe</a>, <a href="/search/physics?searchtype=author&amp;query=Bourhis%2C+A+M">Andrew M. Bourhis</a>, <a href="/search/physics?searchtype=author&amp;query=Cleary%2C+D+R">Daniel R. Cleary</a>, <a href="/search/physics?searchtype=author&amp;query=Stedelin%2C+B">Brittany Stedelin</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+J">Jihwan Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Tonsfeldt%2C+K+J">Karen J. Tonsfeldt</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E+C">Erik C. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Siler%2C+D">Dominic Siler</a>, <a href="/search/physics?searchtype=author&amp;query=Paulk%2C+A+C">Angelique C. Paulk</a>, <a href="/search/physics?searchtype=author&amp;query=Yang%2C+J+C">Jimmy C. Yang</a>, <a href="/search/physics?searchtype=author&amp;query=Oh%2C+H">Hongseok Oh</a>, <a href="/search/physics?searchtype=author&amp;query=Ro%2C+Y+G">Yun Goo Ro</a>, <a href="/search/physics?searchtype=author&amp;query=Choi%2C+W">Woojin Choi</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+K">Keundong Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Russman%2C+S">Samantha Russman</a>, <a href="/search/physics?searchtype=author&amp;query=Ganji%2C+M">Mehran Ganji</a>, <a href="/search/physics?searchtype=author&amp;query=Galton%2C+I">Ian Galton</a>, <a href="/search/physics?searchtype=author&amp;query=Ben-Haim%2C+S">Sharona Ben-Haim</a>, <a href="/search/physics?searchtype=author&amp;query=Raslan%2C+A+M">Ahmed M. Raslan</a>, <a href="/search/physics?searchtype=author&amp;query=Dayeh%2C+S+A">Shadi A. Dayeh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.09206v3-abstract-short" style="display: inline;"> Electrophysiological devices are critical for mapping eloquent and diseased brain regions and for therapeutic neuromodulation in clinical settings and are extensively utilized for research in brain-machine interfaces. However, the existing devices are often limited in either spatial resolution or cortical coverage, even including those with thousands of channels used in animal experiments. Here, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09206v3-abstract-full').style.display = 'inline'; document.getElementById('2103.09206v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.09206v3-abstract-full" style="display: none;"> Electrophysiological devices are critical for mapping eloquent and diseased brain regions and for therapeutic neuromodulation in clinical settings and are extensively utilized for research in brain-machine interfaces. However, the existing devices are often limited in either spatial resolution or cortical coverage, even including those with thousands of channels used in animal experiments. Here, we developed scalable manufacturing processes and dense connectorization to achieve reconfigurable thin-film, multi-thousand channel neurophysiological recording grids using platinum-nanorods (PtNRGrids). With PtNRGrids, we have achieved a multi-thousand channel array of small (30 渭m) contacts with low impedance, providing unparalleled spatial and temporal resolution over a large cortical area. We demonstrate that PtNRGrids can resolve sub-millimeter functional organization of the barrel cortex in anesthetized rats that captured the histochemically-demonstrated structure. In the clinical setting, PtNRGrids resolved fine, complex temporal dynamics from the cortical surface in an awake human patient performing grasping tasks. Additionally, the PtNRGrids identified the spatial spread and dynamics of epileptic discharges in a patient undergoing epilepsy surgery at 1 mm spatial resolution, including activity induced by direct electrical stimulation. Collectively, these findings demonstrate the power of the PtNRGrids to transform clinical mapping and research with brain-machine interfaces and highlights a path toward novel therapeutics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.09206v3-abstract-full').style.display = 'none'; document.getElementById('2103.09206v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main manuscript: 28 pages, 5 figures, Supporting information: 63 pages, 41 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05714">arXiv:2103.05714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.05714">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> The Trinity High Explosive Implosion System: The Foundation for Precision Explosive Applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E+N">E. N. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Borovina%2C+D+L">D. L. Borovina</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05714v1-abstract-short" style="display: inline;"> This article is set during the 1944 and 1945 final push to complete Project Y -- the Manhattan Project at Los Alamos -- and focuses primarily on overcoming the challenge of creating and demonstrating a successful convergent explosive implosion to turn a subcritical quantity of plutonium into a critical mass. The critical mass would then efficiently yield kilotons of trinitrotoluene (TNT)-equivalen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05714v1-abstract-full').style.display = 'inline'; document.getElementById('2103.05714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05714v1-abstract-full" style="display: none;"> This article is set during the 1944 and 1945 final push to complete Project Y -- the Manhattan Project at Los Alamos -- and focuses primarily on overcoming the challenge of creating and demonstrating a successful convergent explosive implosion to turn a subcritical quantity of plutonium into a critical mass. The critical mass would then efficiently yield kilotons of trinitrotoluene (TNT)-equivalent energy in about a microsecond, demonstrating the implosion atomic bomb concept. This work culminated in the Trinity atomic test near Alamogordo on July 16, 1945. This implosion effect demarcated the approach to explosive science and technology the Laboratory has followed ever since, including development of high-explosive synthesis and formulation, small and large test and diagnostic facilities, shock dynamics theory, high-explosive system design engineering, and three-dimensional implosion modeling and simulation using some of the fastest computers in the world. This work also ushered in a period of broader application of precision high explosives in conventional munitions, demolition, mining and oil exploration, and space travel. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05714v1-abstract-full').style.display = 'none'; document.getElementById('2103.05714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LA-UR-21-20794 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13981">arXiv:2009.13981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13981">pdf</a>, <a href="https://arxiv.org/format/2009.13981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08777-z">10.1140/epjc/s10052-020-08777-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{222}$Rn emanation measurements for the XENON1T experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13981v3-abstract-short" style="display: inline;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'inline'; document.getElementById('2009.13981v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13981v3-abstract-full" style="display: none;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $渭$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $\pm$ 0.1) $渭$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'none'; document.getElementById('2009.13981v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 337 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.10231">arXiv:2009.10231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.10231">pdf</a>, <a href="https://arxiv.org/format/2009.10231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2021.165239">10.1016/j.nima.2021.165239 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Event Reconstruction in a Liquid Xenon Time Projection Chamber with an Optically-Open Field Cage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Stiegler%2C+T">T. Stiegler</a>, <a href="/search/physics?searchtype=author&amp;query=Sangiorgio%2C+S">S. Sangiorgio</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Heffner%2C+M">M. Heffner</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bolotnikov%2C+A">A. Bolotnikov</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+M">M. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Coon%2C+M">M. Coon</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.10231v2-abstract-short" style="display: inline;"> nEXO is a proposed tonne-scale neutrinoless double beta decay ($0谓尾尾$) experiment using liquid ${}^{136}Xe$ (LXe) in a Time Projection Chamber (TPC) to read out ionization and scintillation signals. Between the field cage and the LXe vessel, a layer of LXe (&#34;skin&#34; LXe) is present, where no ionization signal is collected. Only scintillation photons are detected, owing to the lack of optical barrier&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10231v2-abstract-full').style.display = 'inline'; document.getElementById('2009.10231v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.10231v2-abstract-full" style="display: none;"> nEXO is a proposed tonne-scale neutrinoless double beta decay ($0谓尾尾$) experiment using liquid ${}^{136}Xe$ (LXe) in a Time Projection Chamber (TPC) to read out ionization and scintillation signals. Between the field cage and the LXe vessel, a layer of LXe (&#34;skin&#34; LXe) is present, where no ionization signal is collected. Only scintillation photons are detected, owing to the lack of optical barrier around the field cage. In this work, we show that the light originating in the skin LXe region can be used to improve background discrimination by 5% over previous published estimates. This improvement comes from two elements. First, a fraction of the $纬$-ray background is removed by identifying light from interactions with an energy deposition in the skin LXe. Second, background from ${}^{222}Rn$ dissolved in the skin LXe can be efficiently rejected by tagging the $伪$ decay in the ${}^{214}Bi-{}^{214}Po$ chain in the skin LXe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.10231v2-abstract-full').style.display = 'none'; document.getElementById('2009.10231v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-814563 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nuclear Inst. and Methods in Physics Research, A 1000 (2021) 165239 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08796">arXiv:2007.08796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08796">pdf</a>, <a href="https://arxiv.org/format/2007.08796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/11/031">10.1088/1475-7516/2020/11/031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP Sensitivity of the XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08796v2-abstract-short" style="display: inline;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08796v2-abstract-full" style="display: none;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$蟽$ (5$蟽$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'none'; document.getElementById('2007.08796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP11(2020)031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.06817">arXiv:2006.06817</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.06817">pdf</a>, <a href="https://arxiv.org/ps/2006.06817">ps</a>, <a href="https://arxiv.org/format/2006.06817">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0018051">10.1063/5.0018051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of tilt on the orientation dynamics of the large-scale circulation in turbulent Rayleigh-B{茅}nard convection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ji%2C+D">Dandan Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Bai%2C+K">Kunlun Bai</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Eric Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.06817v2-abstract-short" style="display: inline;"> We experimentally test the effects of tilting a turbulent Rayleigh-B{茅}nard convection cell on the dynamics of the large-scale circulation (LSC) orientation $胃_0$. The probability distribution of $胃_0$ is measured, and used to obtain a tilt-induced potential acting on $胃_0$, which is used in a low-dimensional model of diffusion of $胃_0$ in a potential. The form of the potential is sinusoidal in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06817v2-abstract-full').style.display = 'inline'; document.getElementById('2006.06817v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.06817v2-abstract-full" style="display: none;"> We experimentally test the effects of tilting a turbulent Rayleigh-B{茅}nard convection cell on the dynamics of the large-scale circulation (LSC) orientation $胃_0$. The probability distribution of $胃_0$ is measured, and used to obtain a tilt-induced potential acting on $胃_0$, which is used in a low-dimensional model of diffusion of $胃_0$ in a potential. The form of the potential is sinusoidal in $胃_0$, and linear in tilt angle for small tilt angles, which is explained by a simple geometric model of the vector direction of the mean buoyancy force acting on the LSC. However, the magnitude of the tilt-induced forcing is found to be two orders of magnitude larger than previously predicted. When this parameter is adjusted to match values obtained from the probability distribution of $胃_0$, the diffusive model can quantitatively predict effects of tilt on $胃_0$. In particular, tilt causes a change in potential barrier height between neighboring corners of a cubic cell, and changes in the barrier-crossing rate for $胃_0$ to escape a corner are predicted with an accuracy of $\pm30\%$. As a cylindrical cell is tilted, the tilt-induced potential provides a restoring force which induces oscillations when it exceeds the strength of damping; this critical tilt angle is predicted within 20\%, and the prediction is consistent with measured oscillation frequencies. These observations show that a self-consistent low-dimensional model can be extended to include the dynamics of $胃_0$ due to tilt. However, the underprediction of the effect of tilt on $胃_0$ warrants revisiting the predicted magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.06817v2-abstract-full').style.display = 'none'; document.getElementById('2006.06817v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, submitted to Physics of Fluids</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 32 (7), 075118 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03114">arXiv:2006.03114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.03114">pdf</a>, <a href="https://arxiv.org/format/2006.03114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+E+M+A">S. E. M. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F">F. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baur%2C+D">D. Baur</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">C. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%BCnner%2C+S">S. Br眉nner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a> , et al. (141 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03114v2-abstract-short" style="display: inline;"> We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would ben&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03114v2-abstract-full').style.display = 'inline'; document.getElementById('2006.03114v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03114v2-abstract-full" style="display: none;"> We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would benefit from a depleted target. A high-statistics observation of $pp$ neutrinos would allow us to infer the values of the weak mixing angle, $\sin^2胃_w$, and the electron-type neutrino survival probability, $P_e$, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, at an exposure of 300 ty. An observation of $pp$ and $^7$Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high (GS98) and low metallicity (AGS09) solar models with 2.1-2.5$蟽$ significance, independent of external measurements from other experiments or a measurement of $^8$B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $^{131}$Xe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03114v2-abstract-full').style.display = 'none'; document.getElementById('2006.03114v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; for associated data files, see https://github.com/Physik-Institut-UZH/DARWIN-Sensitivity-Studies/tree/master/solar_neutrinos_electron_scattering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03825">arXiv:2003.03825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03825">pdf</a>, <a href="https://arxiv.org/format/2003.03825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8284-0">10.1140/epjc/s10052-020-8284-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy resolution and linearity of XENON1T in the MeV energy range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03825v2-abstract-short" style="display: inline;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XEN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'inline'; document.getElementById('2003.03825v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03825v2-abstract-full" style="display: none;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 $蟽/渭$ is as low as (0.80$\pm$0.02) % in its one-ton fiducial mass, and for single-site interactions at $Q_{尾尾}$. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'none'; document.getElementById('2003.03825v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 785 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.00067">arXiv:2003.00067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.00067">pdf</a>, <a href="https://arxiv.org/ps/2003.00067">ps</a>, <a href="https://arxiv.org/format/2003.00067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Oscillation in the temperature profile of the large-scale circulation of turbulent convection induced by a cubic container </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ji%2C+D">Dandan Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Eric Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.00067v2-abstract-short" style="display: inline;"> We present observations of oscillations in the shape of the temperature profile of the large-scale circulation (LSC) of turbulent Rayleigh-B{茅}nard convection. Temperature measurements are broken down into Fourier moments as a function of $胃-胃_0$, where $胃$ is the azimuthal angle in a horizontal plane at mid-height, and $胃_0$ is the LSC orientation. The oscillation structure is dominated by a 3rd&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00067v2-abstract-full').style.display = 'inline'; document.getElementById('2003.00067v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.00067v2-abstract-full" style="display: none;"> We present observations of oscillations in the shape of the temperature profile of the large-scale circulation (LSC) of turbulent Rayleigh-B{茅}nard convection. Temperature measurements are broken down into Fourier moments as a function of $胃-胃_0$, where $胃$ is the azimuthal angle in a horizontal plane at mid-height, and $胃_0$ is the LSC orientation. The oscillation structure is dominated by a 3rd order sine moment and 3rd order cosine moment in a cubic cell. In contrast, these moments are not found to oscillate in a cylindrical cell. This geometry-dependent behavior can be explained by a model that assumes that the heat transported by the LSC is conducted from the thermal boundary layers, and is proportional to pathlength of the LSC along boundary layers at the top and bottom plates. In a non-circular cross-section cell, oscillations of the LSC orientation $胃_0$ result in an oscillation in the container shape in the reference frame of the LSC, resulting in an oscillation in the pathlength of the LSC at a given $胃-胃_0$. In a square-cross-section cell, this model predicts the dominant 3rd order sine moment and 3rd order cosine moment with magnitudes within 50\% of measured values, when using the amplitude of the oscillation of $胃_0$ as input. A cylindrical cell is special in that the pathlength is independent of $胃_0$, and so these oscillating moments are not induced. In a cylindrical cell, the model reproduces the sinusoidal mean temperature profile with a sloshing oscillation dominated by the 2nd order sine moment, consistent with previous observations in that geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.00067v2-abstract-full').style.display = 'none'; document.getElementById('2003.00067v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 figures, 18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review FLUIDS 5, 063501 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11724">arXiv:1912.11724</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.11724">pdf</a>, <a href="https://arxiv.org/format/1912.11724">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.5.064606">10.1103/PhysRevFluids.5.064606 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-dimensional model of the large-scale circulation of turbulent Rayleigh-B{茅}nard convection in a cubic container </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ji%2C+D">Dandan Ji</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Eric Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11724v2-abstract-short" style="display: inline;"> We test the ability of a low-dimensional turbulence model to predict how dynamics of large-scale coherent structures such as convection rolls change in different cell geometries. We performed Rayleigh-B茅nard convection experiments in a cubic container, in which there is a single convection roll known as the large-scale circulation (LSC). The model describes the motion of the orientation $胃_0$ of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11724v2-abstract-full').style.display = 'inline'; document.getElementById('1912.11724v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11724v2-abstract-full" style="display: none;"> We test the ability of a low-dimensional turbulence model to predict how dynamics of large-scale coherent structures such as convection rolls change in different cell geometries. We performed Rayleigh-B茅nard convection experiments in a cubic container, in which there is a single convection roll known as the large-scale circulation (LSC). The model describes the motion of the orientation $胃_0$ of the LSC as diffusion in a potential which is predicted as a function of the shape of the cell from an approximate solutions of the Navier-Stokes equations. The model predicts advected oscillation modes, driven by a restoring force created by the non-circular cell cross-section. We observe the predicted lowest-wavenumber mode in which the LSC orientation $胃_0$ oscillates around a corner, and a slosh angle $伪$ rocks back and forth, which is distinct from the higher-wavenumber advected twisting and sloshing oscillations found in cylindrical cells. The potential has quadratic minima near each corner with the same curvature in both the LSC orientation $胃_0$ and slosh angle $伪$, as predicted. The new oscillation mode around corners is found above a critical Ra $=4\times10^8$, which appears in the model as a crossing of an underdamped-overdamped transition. The natural frequency of the potential, oscillation period, power spectrum, and critical Ra for oscillations are all within a factor of 3 of model predictions for the Rayleigh number range $8\times10^7 \le Ra \le 3\times 10^9$. However, these uncertainties in model parameters are too large to correctly predict whether the system is in the underdamped or overdamped state at a given Ra. The success of the model at predicting the potential and flow modes for a cubic cell suggests that such a modeling approach could be applied more generally to different cell geometries that support a single convection roll. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11724v2-abstract-full').style.display = 'none'; document.getElementById('1912.11724v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 27 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 5, 064606 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01999">arXiv:1912.01999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01999">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> </div> <p class="title is-5 mathjax"> To beer or not to beer: does tapping beer cans prevent beer loss? A randomised controlled trial </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sopina%2C+E">Elizaveta Sopina</a>, <a href="/search/physics?searchtype=author&amp;query=Antonescu%2C+I+E">Irina E. Antonescu</a>, <a href="/search/physics?searchtype=author&amp;query=Hansen%2C+T">Thomas Hansen</a>, <a href="/search/physics?searchtype=author&amp;query=Hoejland%2C+T">Torben Hoejland</a>, <a href="/search/physics?searchtype=author&amp;query=Jensen%2C+M+M">Morten M. Jensen</a>, <a href="/search/physics?searchtype=author&amp;query=Pedersen%2C+S+V">Simon V. Pedersen</a>, <a href="/search/physics?searchtype=author&amp;query=Thompson%2C+W">Wade Thompson</a>, <a href="/search/physics?searchtype=author&amp;query=Weber%2C+P">Philipp Weber</a>, <a href="/search/physics?searchtype=author&amp;query=Halloran%2C+J+O">Jamie O Halloran</a>, <a href="/search/physics?searchtype=author&amp;query=Beach%2C+M+G">Melissa G. Beach</a>, <a href="/search/physics?searchtype=author&amp;query=Pulleyblank%2C+R">Ryan Pulleyblank</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E+J">Elliot J. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01999v2-abstract-short" style="display: inline;"> Objective: Preventing or minimising beer loss when opening a can of beer is socially and economically desirable. One theoretically grounded approach is tapping the can prior to opening, although this has never been rigorously evaluated. We aimed to evaluate the effect of tapping a can of beer on beer loss. Methods: Single centre parallel-group randomised controlled trial. 1031 cans of cans of beer&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01999v2-abstract-full').style.display = 'inline'; document.getElementById('1912.01999v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01999v2-abstract-full" style="display: none;"> Objective: Preventing or minimising beer loss when opening a can of beer is socially and economically desirable. One theoretically grounded approach is tapping the can prior to opening, although this has never been rigorously evaluated. We aimed to evaluate the effect of tapping a can of beer on beer loss. Methods: Single centre parallel-group randomised controlled trial. 1031 cans of cans of beer of 330mL were randomised into one of four groups before the experiment: unshaken/untapped (n=256), unshaken/tapped (n=251), shaken/untapped (n=249), or shaken/tapped (n=244). The intervention was tapping the can of beer three times on its side with a single finger. We compared tapping versus non-tapping for cans that had been shaken for 2 minutes or were unshaken. Three teams weighed, tapped or did not tap, opened cans, absorbed any beer loss using paper towels, then re-weighed cans. The teams recorded the mass of each can before and after opening with an accuracy of +/-0.01 grams. Main outcome measure: The main outcome measure was beer loss (in grams). This was calculated as the difference in the mass of the beer after the can was opened compared to before the can was opened. Results: For shaken cans, there was no statistically significant difference in the mass of beer lost when tapping compared to not tapping (mean difference of -0.159g beer lost with tapping, 95% CI -0.36 to 0.04). For unshaken cans, there was also no statistically significant difference between tapping and not tapping. Conclusion: These findings suggest that tapping shaken beer cans does not prevent beer loss when the container is opened. Thus, the practice of tapping a beer prior to opening is unsupported. The only apparent remedy to avoid liquid loss is to wait for bubbles to settle before opening the can. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01999v2-abstract-full').style.display = 'none'; document.getElementById('1912.01999v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01841">arXiv:1912.01841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01841">pdf</a>, <a href="https://arxiv.org/format/1912.01841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2020.3035172">10.1109/TNS.2020.3035172 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reflectance of Silicon Photomultipliers at Vacuum Ultraviolet Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lv%2C+P">P. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L+J">L. J. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Mamahit%2C+S+B">S. Byrne Mamahit</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+M">M. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Coon%2C+M">M. Coon</a>, <a href="/search/physics?searchtype=author&amp;query=Craycraft%2C+A">A. Craycraft</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01841v1-abstract-short" style="display: inline;"> Characterization of the vacuum ultraviolet (VUV) reflectance of silicon photomultipliers (SiPMs) is important for large-scale SiPM-based photodetector systems. We report the angular dependence of the specular reflectance in a vacuum of SiPMs manufactured by Fondazionc Bruno Kessler (FBK) and Hamamatsu Photonics K.K. (HPK) over wavelengths ranging from 120 nm to 280 nm. Refractive index and extinct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01841v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01841v1-abstract-full" style="display: none;"> Characterization of the vacuum ultraviolet (VUV) reflectance of silicon photomultipliers (SiPMs) is important for large-scale SiPM-based photodetector systems. We report the angular dependence of the specular reflectance in a vacuum of SiPMs manufactured by Fondazionc Bruno Kessler (FBK) and Hamamatsu Photonics K.K. (HPK) over wavelengths ranging from 120 nm to 280 nm. Refractive index and extinction coefficient of the thin silicon-dioxide film deposited on the surface of the FBK SiPMs are derived from reflectance data of a FBK silicon wafer with the same deposited oxide film as SiPMs. The diffuse reflectance of SiPMs is also measured at 193 nm. We use the VUV spectral dependence of the optical constants to predict the reflectance of the FBK silicon wafer and FBK SiPMs in liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01841v1-abstract-full').style.display = 'none'; document.getElementById('1912.01841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1911.11580">arXiv:1911.11580</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1911.11580">pdf</a>, <a href="https://arxiv.org/format/1911.11580">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2020.163965">10.1016/j.nima.2020.163965 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Njoya%2C+O">O. Njoya</a>, <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+T">T. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=Tarka%2C+M">M. Tarka</a>, <a href="/search/physics?searchtype=author&amp;query=Fairbank%2C+W">W. Fairbank</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+K+S">K. S. Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Rao%2C+T">T. Rao</a>, <a href="/search/physics?searchtype=author&amp;query=Wager%2C+T">T. Wager</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a> , et al. (131 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1911.11580v1-abstract-short" style="display: inline;"> Measurements of electron drift properties in liquid and gaseous xenon are reported. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11580v1-abstract-full').style.display = 'inline'; document.getElementById('1911.11580v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1911.11580v1-abstract-full" style="display: none;"> Measurements of electron drift properties in liquid and gaseous xenon are reported. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are $1.97 \pm 0.04$ mm/$渭$s and $(-0.69\pm0.05)$\%/K for liquid xenon, and $1.42 \pm 0.03$ mm/$渭$s and $(+0.11\pm0.01)$\%/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of $25.7 \pm 4.6$ cm$^2$/s and $149 \pm 23$ cm$^2$/s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1911.11580v1-abstract-full').style.display = 'none'; document.getElementById('1911.11580v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.08164">arXiv:1910.08164</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.08164">pdf</a>, <a href="https://arxiv.org/format/1910.08164">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Nano-tracking detector for neutrinoless double beta decay characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Ethan Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Odgers%2C+K">Kelly Odgers</a>, <a href="/search/physics?searchtype=author&amp;query=Tidball%2C+A">Adam Tidball</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.08164v1-abstract-short" style="display: inline;"> Of the many extensions to the standard model that could possibly generate neutrino mass, most necessitate the neutrino being a Majorana fermion. If this is the case, the rare process of neutrinoless double beta decay is predicted with half lives greater than about $10^{25}$ years. Many current and future experiments look for this decay by identifying a summed double beta energy at the Q value of t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08164v1-abstract-full').style.display = 'inline'; document.getElementById('1910.08164v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.08164v1-abstract-full" style="display: none;"> Of the many extensions to the standard model that could possibly generate neutrino mass, most necessitate the neutrino being a Majorana fermion. If this is the case, the rare process of neutrinoless double beta decay is predicted with half lives greater than about $10^{25}$ years. Many current and future experiments look for this decay by identifying a summed double beta energy at the Q value of the decay, but adding energy and angular measurements of the individual betas allows the underlying decay mechanism to be probed. A novel nano-tracking detector based on a clever combination of thin film CdTe devices will be presented here. This tracker will have order 100 nm spatial resolution in one dimension while measuring the energy deposition across the track length of electron recoils in the detector. This allows energy and angular correlation measurements of a potential neutrinoless double beta decay signal, as well as a unique background suppression capability. Deep learning algorithms will be used to reconstruct the electron paths, the double beta signals and perform the correlation analyses, and will simultaneously allow clear distinction between double betas and single beta or gamma-induced electronic recoils. The detector concept will be presented, along with preliminary studies, to demonstrate its operation and the physics reach for neutrinoless double beta decay. By exploiting recoil discrimination, an array of these detectors can potentially probe beyond the inverted hierarchy to either follow the next generation of neutrinoless double beta decay experiments or to serve as a post-discovery characterization experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.08164v1-abstract-full').style.display = 'none'; document.getElementById('1910.08164v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Talk presented at the 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29 - August 2, 2019, Northeastern University, Boston, C1907293 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07119">arXiv:1910.07119</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.07119">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantitative Methods">q-bio.QM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/mrm.27954">10.1002/mrm.27954 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Automatic In-line Quantitative Myocardial Perfusion Mapping: processing algorithm and implementation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Xue%2C+H">Hui Xue</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+L+A+E">Louise A. E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Nielles-Vallespin%2C+S">Sonia Nielles-Vallespin</a>, <a href="/search/physics?searchtype=author&amp;query=Plein%2C+S">Sven Plein</a>, <a href="/search/physics?searchtype=author&amp;query=Kellman%2C+P">Peter Kellman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07119v1-abstract-short" style="display: inline;"> Quantitative myocardial perfusion mapping has advantages over qualitative assessment, including the ability to detect global flow reduction. However, it is not clinically available and remains as a research tool. Building upon the previously described imaging sequence, this paper presents algorithm and implementation of an automated solution for inline perfusion flow mapping with step by step perf&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07119v1-abstract-full').style.display = 'inline'; document.getElementById('1910.07119v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07119v1-abstract-full" style="display: none;"> Quantitative myocardial perfusion mapping has advantages over qualitative assessment, including the ability to detect global flow reduction. However, it is not clinically available and remains as a research tool. Building upon the previously described imaging sequence, this paper presents algorithm and implementation of an automated solution for inline perfusion flow mapping with step by step performance characterization. An inline perfusion flow mapping workflow is proposed and demonstrated on normal volunteers. Initial evaluation demonstrates the fully automated proposed solution for the respiratory motion correction, AIF LV mask detection and pixel-wise mapping, from free-breathing myocardial perfusion imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07119v1-abstract-full').style.display = 'none'; document.getElementById('1910.07119v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Magnetic Resonance in Medicine. 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.06438">arXiv:1910.06438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1910.06438">pdf</a>, <a href="https://arxiv.org/format/1910.06438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/15/01/P01019">10.1088/1748-0221/15/01/P01019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Reflectivity and PDE of VUV4 Hamamatsu SiPMs in Liquid Xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Nakarmi%2C+P">P. Nakarmi</a>, <a href="/search/physics?searchtype=author&amp;query=Ostrovskiy%2C+I">I. Ostrovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Soma%2C+A+K">A. K. Soma</a>, <a href="/search/physics?searchtype=author&amp;query=Retiere%2C+F">F. Retiere</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Alfaris%2C+M">M. Alfaris</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Blatchford%2C+J">J. Blatchford</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Mamahit%2C+S+B">S. Byrne Mamahit</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.06438v2-abstract-short" style="display: inline;"> Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE. Little information is currently a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06438v2-abstract-full').style.display = 'inline'; document.getElementById('1910.06438v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.06438v2-abstract-full" style="display: none;"> Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter, and neutrino oscillation experiments that will use noble liquid gases, such as nEXO, DARWIN, DarkSide-20k, and DUNE. Little information is currently available about reflectivity and PDE in liquid noble gases, because such measurements are difficult to conduct in a cryogenic environment and at short enough wavelengths. Here we report a measurement of specular reflectivity and relative PDE of Hamamatsu VUV4 silicon photomultipliers (SiPMs) with 50 micrometer micro-cells conducted with xenon scintillation light (~175 nm) in liquid xenon. The specular reflectivity at 15 deg. incidence of three samples of VUV4 SiPMs is found to be 30.4+/-1.4%, 28.6+/-1.3%, and 28.0+/-1.3%, respectively. The PDE at normal incidence differs by +/-8% (standard deviation) among the three devices. The angular dependence of the reflectivity and PDE was also measured for one of the SiPMs. Both the reflectivity and PDE decrease as the angle of incidence increases. This is the first measurement of an angular dependence of PDE and reflectivity of a SiPM in liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.06438v2-abstract-full').style.display = 'none'; document.getElementById('1910.06438v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures, 6 tables. As accepted by JINST</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.12771">arXiv:1907.12771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.12771">pdf</a>, <a href="https://arxiv.org/format/1907.12771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.241803">10.1103/PhysRevLett.123.241803 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Light Dark Matter Interactions Enhanced by the Migdal effect or Bremsstrahlung in XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (109 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.12771v4-abstract-short" style="display: inline;"> Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, whic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12771v4-abstract-full').style.display = 'inline'; document.getElementById('1907.12771v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.12771v4-abstract-full" style="display: none;"> Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above $\sim$ 5 GeV/c$^2$, but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a Bremsstrahlung photon. In this letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c$^2$ by looking for electronic recoils induced by the Migdal effect and Bremsstrahlung, using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.12771v4-abstract-full').style.display = 'none'; document.getElementById('1907.12771v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 241803 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.07512">arXiv:1907.07512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.07512">pdf</a>, <a href="https://arxiv.org/format/1907.07512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/09/P09020">10.1088/1748-0221/14/09/P09020 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulation of charge readout with segmented tiles in nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Li%2C+Z">Z. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+A">A. Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Moore%2C+D+C">D. C. Moore</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L+J">L. J. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Odian%2C+A">A. Odian</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Caden%2C+E">E. Caden</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Chana%2C+B">B. Chana</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+M">M. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a> , et al. (128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.07512v2-abstract-short" style="display: inline;"> nEXO is a proposed experiment to search for the neutrino-less double beta decay ($0谓尾尾$) of $^{136}$Xe in a tonne-scale liquid xenon time projection chamber (TPC). The nEXO TPC will be equipped with charge collection tiles to form the anode. In this work, the charge reconstruction performance of this anode design is studied with a dedicated simulation package. A multi-variate method and a deep neu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07512v2-abstract-full').style.display = 'inline'; document.getElementById('1907.07512v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.07512v2-abstract-full" style="display: none;"> nEXO is a proposed experiment to search for the neutrino-less double beta decay ($0谓尾尾$) of $^{136}$Xe in a tonne-scale liquid xenon time projection chamber (TPC). The nEXO TPC will be equipped with charge collection tiles to form the anode. In this work, the charge reconstruction performance of this anode design is studied with a dedicated simulation package. A multi-variate method and a deep neural network are developed to distinguish simulated $0谓尾尾$ signals from backgrounds arising from trace levels of natural radioactivity in the detector materials. These simulations indicate that the nEXO TPC with charge-collection tiles shows promising capability to discriminate the $0谓尾尾$ signal from backgrounds. The estimated half-life sensitivity for $0谓尾尾$ decay is improved by $\sim$20$~(32)\%$ with the multi-variate~(deep neural network) methods considered here, relative to the sensitivity estimated in the nEXO pre-conceptual design report. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.07512v2-abstract-full').style.display = 'none'; document.getElementById('1907.07512v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 (2019) no.09, P09020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04717">arXiv:1906.04717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04717">pdf</a>, <a href="https://arxiv.org/format/1906.04717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.100.052014">10.1103/PhysRevD.100.052014 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (103 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04717v2-abstract-short" style="display: inline;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04717v2-abstract-full').style.display = 'inline'; document.getElementById('1906.04717v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04717v2-abstract-full" style="display: none;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6\,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $\mathrm{ton}\times\mathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In particular, signal reconstruction, event selection and calibration of the detector response to nuclear and electronic recoils in XENON1T are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04717v2-abstract-full').style.display = 'none'; document.getElementById('1906.04717v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 100, 052014 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.00819">arXiv:1906.00819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.00819">pdf</a>, <a href="https://arxiv.org/format/1906.00819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/07/P07016">10.1088/1748-0221/14/07/P07016 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XENON1T Data Acquisition System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a> , et al. (108 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.00819v2-abstract-short" style="display: inline;"> The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extrem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00819v2-abstract-full').style.display = 'inline'; document.getElementById('1906.00819v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.00819v2-abstract-full" style="display: none;"> The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold below a tenth of a photoelectron using a parallelized readout with the global trigger deferred to a later, software stage. The event identification is based on MongoDB database queries and has over 97% efficiency at recognizing interactions at the analysis energy threshold. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.00819v2-abstract-full').style.display = 'none'; document.getElementById('1906.00819v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, submitted to JINST; Version 2 with minor updates to text</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 14 (2019) no.07, P07016 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03663">arXiv:1903.03663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.03663">pdf</a>, <a href="https://arxiv.org/format/1903.03663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2019.05.096">10.1016/j.nima.2019.05.096 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of the Hamamatsu VUV4 MPPCs for nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gallina%2C+G">G. Gallina</a>, <a href="/search/physics?searchtype=author&amp;query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&amp;query=Retiere%2C+F">F. Retiere</a>, <a href="/search/physics?searchtype=author&amp;query=Kroeger%2C+J">J. Kroeger</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+G">G. Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Ward%2C+M">M. Ward</a>, <a href="/search/physics?searchtype=author&amp;query=Margetak%2C+P">P. Margetak</a>, <a href="/search/physics?searchtype=author&amp;query=Lic%2C+G">G. Lic</a>, <a href="/search/physics?searchtype=author&amp;query=Tsang%2C+T">T. Tsang</a>, <a href="/search/physics?searchtype=author&amp;query=Doria%2C+L">L. Doria</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Alfaris%2C+M">M. Alfaris</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Blatchford%2C+J">J. Blatchford</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03663v3-abstract-short" style="display: inline;"> In this paper we report on the characterization of the Hamamatsu VUV4 (S/N: S13370-6152) Vacuum Ultra-Violet (VUV) sensitive Silicon Photo-Multipliers (SiPMs) as part of the development of a solution for the detection of liquid xenon scintillation light for the nEXO experiment. Various SiPM features, such as: dark noise, gain, correlated avalanches, direct crosstalk and Photon Detection Efficiency&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03663v3-abstract-full').style.display = 'inline'; document.getElementById('1903.03663v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03663v3-abstract-full" style="display: none;"> In this paper we report on the characterization of the Hamamatsu VUV4 (S/N: S13370-6152) Vacuum Ultra-Violet (VUV) sensitive Silicon Photo-Multipliers (SiPMs) as part of the development of a solution for the detection of liquid xenon scintillation light for the nEXO experiment. Various SiPM features, such as: dark noise, gain, correlated avalanches, direct crosstalk and Photon Detection Efficiency (PDE) were measured in a dedicated setup at TRIUMF. SiPMs were characterized in the range $163 \text{ } \text{K} \leq \text{T}\leq 233 \text{ } \text{K}$. At an over voltage of $3.1\pm0.2$ V and at $\text{T}=163 \text{ }\text{K}$ we report a number of Correlated Avalanches (CAs) per pulse in the $1 \upmu\text{s}$ interval following the trigger pulse of $0.161\pm0.005$. At the same settings the Dark-Noise (DN) rate is $0.137\pm0.002 \text{ Hz/mm}^{2}$. Both the number of CAs and the DN rate are within nEXO specifications. The PDE of the Hamamatsu VUV4 was measured for two different devices at $\text{T}=233 \text{ }\text{K}$ for a mean wavelength of $189\pm7\text{ nm}$. At $3.6\pm0.2$ V and $3.5\pm0.2$ V of over voltage we report a PDE of $13.4\pm2.6\text{ }\%$ and $11\pm2\%$, corresponding to a saturation PDE of $14.8\pm2.8\text{ }\%$ and $12.2\pm2.3\%$, respectively. Both values are well below the $24\text{ }\%$ saturation PDE advertised by Hamamatsu. More generally, the second device tested at $3.5\pm0.2$ V of over voltage is below the nEXO PDE requirement. The first one instead yields a PDE that is marginally close to meeting the nEXO specifications. This suggests that with modest improvements the Hamamatsu VUV4 MPPCs could be considered as an alternative to the FBK-LF SiPMs for the final design of the nEXO detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03663v3-abstract-full').style.display = 'none'; document.getElementById('1903.03663v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.03594">arXiv:1903.03594</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.03594">pdf</a>, <a href="https://arxiv.org/format/1903.03594">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/14/05/P05005">10.1088/1748-0221/14/05/P05005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cylindrical Films for Electronics in Low Background Physics Searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Odgers%2C+K">K. Odgers</a>, <a href="/search/physics?searchtype=author&amp;query=Giordano%2C+M">M. Giordano</a>, <a href="/search/physics?searchtype=author&amp;query=Lewis%2C+K">K. Lewis</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Freedberg%2C+J">J. Freedberg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.03594v3-abstract-short" style="display: inline;"> A technique for manufacturing thin-film resistors on cylindrical substrates is demonstrated. These devices are aimed for application in rare-event detectors that must minimize radioactive backgrounds from trace impurities in electronic components inside the detector. Cylindrical, conducting Ni films were created via Electron Beam Deposition, using a mechanism that rotates the substrate, to demonst&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03594v3-abstract-full').style.display = 'inline'; document.getElementById('1903.03594v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.03594v3-abstract-full" style="display: none;"> A technique for manufacturing thin-film resistors on cylindrical substrates is demonstrated. These devices are aimed for application in rare-event detectors that must minimize radioactive backgrounds from trace impurities in electronic components inside the detector. Cylindrical, conducting Ni films were created via Electron Beam Deposition, using a mechanism that rotates the substrate, to demonstrate proof of principle and measure the resistivity on axis and in azimuth. These films are characterized by measurements using a facsimile of the Van Der Pauw method combined with electrostatic simulations. In the two cylindrical samples made we observe anisotropic electrical behavior with resistivities of 1392.5, 888.5 $n 惟m$ around the azimuth and of 81.9, 72.8 $n 惟m$ along the axis of the sample. We show that this anisotropy is not caused just by the electron beam evaporation by measuring a planar rectangle sample made in the same process but without spinning which has estimated resistivities of 66.5, and 71.9 $n 惟m$ in both directions, and calculated resistivity using the standard Van der Pauw equation of $66.1\pm2.8$ $n 惟m$. In spite of the anisotropy in the cylindrical samples, we show that these films can be used as resistors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.03594v3-abstract-full').style.display = 'none'; document.getElementById('1903.03594v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1902.11297">arXiv:1902.11297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1902.11297">pdf</a>, <a href="https://arxiv.org/format/1902.11297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.99.112009">10.1103/PhysRevD.99.112009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> XENON1T Dark Matter Data Analysis: Signal &amp; Background Models, and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cussonneau%2C+J+P">J. P. Cussonneau</a> , et al. (101 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1902.11297v2-abstract-short" style="display: inline;"> The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.11297v2-abstract-full').style.display = 'inline'; document.getElementById('1902.11297v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1902.11297v2-abstract-full" style="display: none;"> The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 tonne$\times$year exposure of XENON1T data, that leaded to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1902.11297v2-abstract-full').style.display = 'none'; document.getElementById('1902.11297v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 99, 112009 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08877">arXiv:1810.08877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08877">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> The Critical Effect of Hydration on the Resonant Signatures of THz Biospectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E+R">E. R. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+W">W-D. Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08877v1-abstract-short" style="display: inline;"> Here we present an original study of the effect of hydration on Terahertz absorption signatures in biomolecular (lactose monohydrate and biotin) and bioparticles( Bacillus thuringiensis and Bacillus cereus spores). We observe &#34;read-shift&#34; in center frequency with increasing hydration in all samples, consistent with Lorentzian-oscillator behavior. But the effect of hydration on linewidth is ambiguo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08877v1-abstract-full').style.display = 'inline'; document.getElementById('1810.08877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08877v1-abstract-full" style="display: none;"> Here we present an original study of the effect of hydration on Terahertz absorption signatures in biomolecular (lactose monohydrate and biotin) and bioparticles( Bacillus thuringiensis and Bacillus cereus spores). We observe &#34;read-shift&#34; in center frequency with increasing hydration in all samples, consistent with Lorentzian-oscillator behavior. But the effect of hydration on linewidth is ambiguous, sometimes increasing the linewdith (consistent with Lorentzian behaviour) and sometimes decreasing the linewidth. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08877v1-abstract-full').style.display = 'none'; document.getElementById('1810.08877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.03007">arXiv:1807.03007</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1807.03007">pdf</a>, <a href="https://arxiv.org/format/1807.03007">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/09/T09006">10.1088/1748-0221/13/09/T09006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Study of Silicon Photomultiplier Performance in External Electric Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sun%2C+X+L">X. L. Sun</a>, <a href="/search/physics?searchtype=author&amp;query=Tolba%2C+T">T. Tolba</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Lv%2C+P">P. Lv</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L+J">L. J. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Odian%2C+A">A. Odian</a>, <a href="/search/physics?searchtype=author&amp;query=Vachon%2C+F">F. Vachon</a>, <a href="/search/physics?searchtype=author&amp;query=Alamre%2C+A">A. Alamre</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bourque%2C+F">F. Bourque</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a> , et al. (127 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.03007v1-abstract-short" style="display: inline;"> We report on the performance of silicon photomultiplier (SiPM) light sensors operating in electric field strength up to 30 kV/cm and at a temperature of 149K, relative to their performance in the absence of an external electric field. The SiPM devices used in this study show stable gain, photon detection efficiency, and rates of correlated pulses, when exposed to external fields, within the estima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03007v1-abstract-full').style.display = 'inline'; document.getElementById('1807.03007v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.03007v1-abstract-full" style="display: none;"> We report on the performance of silicon photomultiplier (SiPM) light sensors operating in electric field strength up to 30 kV/cm and at a temperature of 149K, relative to their performance in the absence of an external electric field. The SiPM devices used in this study show stable gain, photon detection efficiency, and rates of correlated pulses, when exposed to external fields, within the estimated uncertainties. No observable physical damage to the bulk or surface of the devices was caused by the exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.03007v1-abstract-full').style.display = 'none'; document.getElementById('1807.03007v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, 2 tables and two conferences (INPC2016 and TIPP2017)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.10694">arXiv:1806.10694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.10694">pdf</a>, <a href="https://arxiv.org/ps/1806.10694">ps</a>, <a href="https://arxiv.org/format/1806.10694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Imaging individual barium atoms in solid xenon for barium tagging in nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Walton%2C+T">T. Walton</a>, <a href="/search/physics?searchtype=author&amp;query=Fairbank%2C+D">D. Fairbank</a>, <a href="/search/physics?searchtype=author&amp;query=Craycraft%2C+A">A. Craycraft</a>, <a href="/search/physics?searchtype=author&amp;query=Yahne%2C+D+R">D. R. Yahne</a>, <a href="/search/physics?searchtype=author&amp;query=Todd%2C+J">J. Todd</a>, <a href="/search/physics?searchtype=author&amp;query=Iverson%2C+A">A. Iverson</a>, <a href="/search/physics?searchtype=author&amp;query=Fairbank%2C+W">W. Fairbank</a>, <a href="/search/physics?searchtype=author&amp;query=Alamare%2C+A">A. Alamare</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bourque%2C+F">F. Bourque</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a> , et al. (126 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.10694v2-abstract-short" style="display: inline;"> The search for neutrinoless double beta decay probes the fundamental properties of neutrinos, including whether or not the neutrino and antineutrino are distinct. Double beta detectors are large and expensive, so background reduction is essential for extracting the highest sensitivity. The identification, or &#39;tagging&#39;, of the $^{136}$Ba daughter atom from double beta decay of $^{136}$Xe provides a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10694v2-abstract-full').style.display = 'inline'; document.getElementById('1806.10694v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.10694v2-abstract-full" style="display: none;"> The search for neutrinoless double beta decay probes the fundamental properties of neutrinos, including whether or not the neutrino and antineutrino are distinct. Double beta detectors are large and expensive, so background reduction is essential for extracting the highest sensitivity. The identification, or &#39;tagging&#39;, of the $^{136}$Ba daughter atom from double beta decay of $^{136}$Xe provides a technique for eliminating backgrounds in the nEXO neutrinoless double beta decay experiment. The tagging scheme studied in this work utilizes a cryogenic probe to trap the barium atom in solid xenon, where the barium atom is tagged via fluorescence imaging in the solid xenon matrix. Here we demonstrate imaging and counting of individual atoms of barium in solid xenon by scanning a focused laser across a solid xenon matrix deposited on a sapphire window. When the laser sits on an individual atom, the fluorescence persists for $\sim$30~s before dropping abruptly to the background level, a clear confirmation of one-atom imaging. No barium fluorescence persists following evaporation of a barium deposit to a limit of $\leq$0.16\%. This is the first time that single atoms have been imaged in solid noble element. It establishes the basic principle of a barium tagging technique for nEXO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.10694v2-abstract-full').style.display = 'none'; document.getElementById('1806.10694v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02220">arXiv:1806.02220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02220">pdf</a>, <a href="https://arxiv.org/format/1806.02220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNS.2018.2875668">10.1109/TNS.2018.2875668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> VUV-sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Jamil%2C+A">A. Jamil</a>, <a href="/search/physics?searchtype=author&amp;query=Ziegler%2C+T">T. Ziegler</a>, <a href="/search/physics?searchtype=author&amp;query=Hufschmidt%2C+P">P. Hufschmidt</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Lupin-Jimenez%2C+L">L. Lupin-Jimenez</a>, <a href="/search/physics?searchtype=author&amp;query=Michel%2C+T">T. Michel</a>, <a href="/search/physics?searchtype=author&amp;query=Ostrovskiy%2C+I">I. Ostrovskiy</a>, <a href="/search/physics?searchtype=author&amp;query=Reti%C3%A8re%2C+F">F. Reti猫re</a>, <a href="/search/physics?searchtype=author&amp;query=Schneider%2C+J">J. Schneider</a>, <a href="/search/physics?searchtype=author&amp;query=Wagenpfeil%2C+M">M. Wagenpfeil</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P">P. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02220v3-abstract-short" style="display: inline;"> Future tonne-scale liquefied noble gas detectors depend on efficient light detection in the VUV range. In the past years Silicon Photomultipliers (SiPMs) have emerged as a valid alternative to standard photomultiplier tubes or large area avalanche photodiodes. The next generation double beta decay experiment, nEXO, with a 5 tonne liquid xenon time projection chamber, will use SiPMs for detecting t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02220v3-abstract-full').style.display = 'inline'; document.getElementById('1806.02220v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02220v3-abstract-full" style="display: none;"> Future tonne-scale liquefied noble gas detectors depend on efficient light detection in the VUV range. In the past years Silicon Photomultipliers (SiPMs) have emerged as a valid alternative to standard photomultiplier tubes or large area avalanche photodiodes. The next generation double beta decay experiment, nEXO, with a 5 tonne liquid xenon time projection chamber, will use SiPMs for detecting the $178\,\text{nm}$ xenon scintillation light, in order to achieve an energy resolution of $蟽/ Q_{尾尾} = 1\, \%$. This paper presents recent measurements of the VUV-HD generation SiPMs from Fondazione Bruno Kessler in two complementary setups. It includes measurements of the photon detection efficiency with gaseous xenon scintillation light in a vacuum setup and dark measurements in a dry nitrogen gas setup. We report improved photon detection efficiency at $175\,\text{nm}$ compared to previous generation devices, that would meet the criteria of nEXO. Furthermore, we present the projected nEXO detector light collection and energy resolution that could be achieved by using these SiPMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02220v3-abstract-full').style.display = 'none'; document.getElementById('1806.02220v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 13 figures, 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Trans.Nucl.Sci. 65 (2018) no.11 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.12562">arXiv:1805.12562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.12562">pdf</a>, <a href="https://arxiv.org/format/1805.12562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.121.111302">10.1103/PhysRevLett.121.111302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Search Results from a One Tonne$\times$Year Exposure of XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (95 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.12562v2-abstract-short" style="display: inline;"> We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12562v2-abstract-full').style.display = 'inline'; document.getElementById('1805.12562v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.12562v2-abstract-full" style="display: none;"> We report on a search for Weakly Interacting Massive Particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of $(1.30 \pm 0.01)$ t, resulting in a 1.0 t$\times$yr exposure. The energy region of interest, [1.4, 10.6] $\mathrm{keV_{ee}}$ ([4.9, 40.9] $\mathrm{keV_{nr}}$), exhibits an ultra-low electron recoil background rate of $(82\substack{+5 \\ -3}\textrm{ (sys)}\pm3\textrm{ (stat)})$ events/$(\mathrm{t}\times\mathrm{yr}\times\mathrm{keV_{ee}})$. No significant excess over background is found and a profile likelihood analysis parameterized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c${}^2$, with a minimum of $4.1\times10^{-47}$ cm$^2$ at 30 GeV/c${}^2$ and 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.12562v2-abstract-full').style.display = 'none'; document.getElementById('1805.12562v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, v2 limit points as csv</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 121, 111302 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.11142">arXiv:1805.11142</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1805.11142">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> nEXO Pre-Conceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=nEXO+Collaboration"> nEXO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Kharusi%2C+S+A">S. Al Kharusi</a>, <a href="/search/physics?searchtype=author&amp;query=Alamre%2C+A">A. Alamre</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Alfaris%2C+M">M. Alfaris</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhatta%2C+T">T. Bhatta</a>, <a href="/search/physics?searchtype=author&amp;query=Bourque%2C+F">F. Bourque</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+M">M. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Conley%2C+R">R. Conley</a> , et al. (149 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.11142v2-abstract-short" style="display: inline;"> The projected performance and detector configuration of nEXO are described in this pre-Conceptual Design Report (pCDR). nEXO is a tonne-scale neutrinoless double beta ($0谓尾尾$) decay search in $^{136}$Xe, based on the ultra-low background liquid xenon technology validated by EXO-200. With $\simeq$ 5000 kg of xenon enriched to 90% in the isotope 136, nEXO has a projected half-life sensitivity of app&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11142v2-abstract-full').style.display = 'inline'; document.getElementById('1805.11142v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.11142v2-abstract-full" style="display: none;"> The projected performance and detector configuration of nEXO are described in this pre-Conceptual Design Report (pCDR). nEXO is a tonne-scale neutrinoless double beta ($0谓尾尾$) decay search in $^{136}$Xe, based on the ultra-low background liquid xenon technology validated by EXO-200. With $\simeq$ 5000 kg of xenon enriched to 90% in the isotope 136, nEXO has a projected half-life sensitivity of approximately $10^{28}$ years. This represents an improvement in sensitivity of about two orders of magnitude with respect to current results. Based on the experience gained from EXO-200 and the effectiveness of xenon purification techniques, we expect the background to be dominated by external sources of radiation. The sensitivity increase is, therefore, entirely derived from the increase of active mass in a monolithic and homogeneous detector, along with some technical advances perfected in the course of a dedicated R&amp;D program. Hence the risk which is inherent to the construction of a large, ultra-low background detector is reduced, as the intrinsic radioactive contamination requirements are generally not beyond those demonstrated with the present generation $0谓尾尾$ decay experiments. Indeed, most of the required materials have been already assayed or reasonable estimates of their properties are at hand. The details described herein represent the base design of the detector configuration as of early 2018. Where potential design improvements are possible, alternatives are discussed. This design for nEXO presents a compelling path towards a next generation search for $0谓尾尾$, with a substantial possibility to discover physics beyond the Standard Model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.11142v2-abstract-full').style.display = 'none'; document.getElementById('1805.11142v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">182 pages, minor revisions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.08498">arXiv:1803.08498</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.08498">pdf</a>, <a href="https://arxiv.org/format/1803.08498">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-6062-z">10.1140/epjc/s10052-018-6062-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetically-coupled piston pump for high-purity gas applications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">Ethan Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Buss%2C+A">Axel Buss</a>, <a href="/search/physics?searchtype=author&amp;query=Fieguth%2C+A">Alexander Fieguth</a>, <a href="/search/physics?searchtype=author&amp;query=Huhmann%2C+C">Christian Huhmann</a>, <a href="/search/physics?searchtype=author&amp;query=Murra%2C+M">Michael Murra</a>, <a href="/search/physics?searchtype=author&amp;query=Ortjohann%2C+H">Hans-Werner Ortjohann</a>, <a href="/search/physics?searchtype=author&amp;query=Rosendahl%2C+S">Stephan Rosendahl</a>, <a href="/search/physics?searchtype=author&amp;query=Schubert%2C+A">Alexis Schubert</a>, <a href="/search/physics?searchtype=author&amp;query=Schulte%2C+D">Denny Schulte</a>, <a href="/search/physics?searchtype=author&amp;query=Tosi%2C+D">Delia Tosi</a>, <a href="/search/physics?searchtype=author&amp;query=Gratta%2C+G">Giorgio Gratta</a>, <a href="/search/physics?searchtype=author&amp;query=Weinheimer%2C+C">Christian Weinheimer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.08498v2-abstract-short" style="display: inline;"> Experiments based on noble elements such as gaseous or liquid argon or xenon utilize the ionization and scintillation properties of the target materials to detect radiation-induced recoils. A requirement for high light and charge yields is to reduce electronegative impurities well below the ppb level. To achieve this, the target material is continuously circulated in the gas phase through a purifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08498v2-abstract-full').style.display = 'inline'; document.getElementById('1803.08498v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.08498v2-abstract-full" style="display: none;"> Experiments based on noble elements such as gaseous or liquid argon or xenon utilize the ionization and scintillation properties of the target materials to detect radiation-induced recoils. A requirement for high light and charge yields is to reduce electronegative impurities well below the ppb level. To achieve this, the target material is continuously circulated in the gas phase through a purifier and returned to the detector. Additionally, the low backgrounds necessary dictate low-Rn-emanation rates from all components that contact the gas. Since commercial pumps often introduce electronegative impurities from lubricants on internal components or through small air leaks, and are not designed to meet the radiopurity requirements, custom-built pumps are an advantageous alternative. A new pump has been developed in Muenster in cooperation with the nEXO group at Stanford University and the nEXO/XENON group at Rensselaer Polytechnic Institute based on a magnetically-coupled piston in a hermetically sealed low-Rn-emanating vessel. This pump delivers high performance for noble gases, reaching more than 210 standard liters per minute (slpm) with argon and more than 170 slpm with xenon while maintaining a compression of up to 1.9 bar, demonstrating its capability for noble gas detectors and other applications requiring high standards of gas purity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.08498v2-abstract-full').style.display = 'none'; document.getElementById('1803.08498v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05109">arXiv:1710.05109</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05109">pdf</a>, <a href="https://arxiv.org/format/1710.05109">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/13/01/P01006">10.1088/1748-0221/13/01/P01006 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of an Ionization Readout Tile for nEXO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=nEXO+Collaboration"> nEXO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Jewell%2C+M">M. Jewell</a>, <a href="/search/physics?searchtype=author&amp;query=Schubert%2C+A">A. Schubert</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Dalmasson%2C+J">J. Dalmasson</a>, <a href="/search/physics?searchtype=author&amp;query=DeVoe%2C+R">R. DeVoe</a>, <a href="/search/physics?searchtype=author&amp;query=Fabris%2C+L">L. Fabris</a>, <a href="/search/physics?searchtype=author&amp;query=Gratta%2C+G">G. Gratta</a>, <a href="/search/physics?searchtype=author&amp;query=Jamil%2C+A">A. Jamil</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+G">G. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Odian%2C+A">A. Odian</a>, <a href="/search/physics?searchtype=author&amp;query=Patel%2C+M">M. Patel</a>, <a href="/search/physics?searchtype=author&amp;query=Pocar%2C+A">A. Pocar</a>, <a href="/search/physics?searchtype=author&amp;query=Qiu%2C+D">D. Qiu</a>, <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Q">Q. Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+L+J">L. J. Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P">P. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bourque%2C+F">F. Bourque</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05109v2-abstract-short" style="display: inline;"> A new design for the anode of a time projection chamber, consisting of a charge-detecting &#34;tile&#34;, is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} $\times$ 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05109v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05109v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05109v2-abstract-full" style="display: none;"> A new design for the anode of a time projection chamber, consisting of a charge-detecting &#34;tile&#34;, is investigated for use in large scale liquid xenon detectors. The tile is produced by depositing 60 orthogonal metal charge-collecting strips, 3~mm wide, on a 10~\si{\cm} $\times$ 10~\si{\cm} fused-silica wafer. These charge tiles may be employed by large detectors, such as the proposed tonne-scale nEXO experiment to search for neutrinoless double-beta decay. Modular by design, an array of tiles can cover a sizable area. The width of each strip is small compared to the size of the tile, so a Frisch grid is not required. A grid-less, tiled anode design is beneficial for an experiment such as nEXO, where a wire tensioning support structure and Frisch grid might contribute radioactive backgrounds and would have to be designed to accommodate cycling to cryogenic temperatures. The segmented anode also reduces some degeneracies in signal reconstruction that arise in large-area crossed-wire time projection chambers. A prototype tile was tested in a cell containing liquid xenon. Very good agreement is achieved between the measured ionization spectrum of a $^{207}$Bi source and simulations that include the microphysics of recombination in xenon and a detailed modeling of the electrostatic field of the detector. An energy resolution $蟽/E$=5.5\% is observed at 570~\si{keV}, comparable to the best intrinsic ionization-only resolution reported in literature for liquid xenon at 936~V/\si{cm}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05109v2-abstract-full').style.display = 'none'; document.getElementById('1710.05109v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 13 figures, as published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2018 JINST 13 P01006 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05075">arXiv:1710.05075</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05075">pdf</a>, <a href="https://arxiv.org/format/1710.05075">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.97.065503">10.1103/PhysRevC.97.065503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=nEXO+Collaboration"> nEXO Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Albert%2C+J+B">J. B. Albert</a>, <a href="/search/physics?searchtype=author&amp;query=Anton%2C+G">G. Anton</a>, <a href="/search/physics?searchtype=author&amp;query=Arnquist%2C+I+J">I. J. Arnquist</a>, <a href="/search/physics?searchtype=author&amp;query=Badhrees%2C+I">I. Badhrees</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Beck%2C+D">D. Beck</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+V">V. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Bourque%2C+F">F. Bourque</a>, <a href="/search/physics?searchtype=author&amp;query=Brodsky%2C+J+P">J. P. Brodsky</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brunner%2C+T">T. Brunner</a>, <a href="/search/physics?searchtype=author&amp;query=Burenkov%2C+A">A. Burenkov</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+G+F">G. F. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cao%2C+L">L. Cao</a>, <a href="/search/physics?searchtype=author&amp;query=Cen%2C+W+R">W. R. Cen</a>, <a href="/search/physics?searchtype=author&amp;query=Chambers%2C+C">C. Chambers</a>, <a href="/search/physics?searchtype=author&amp;query=Charlebois%2C+S+A">S. A. Charlebois</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+M">M. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Cleveland%2C+B">B. Cleveland</a>, <a href="/search/physics?searchtype=author&amp;query=Coon%2C+M">M. Coon</a>, <a href="/search/physics?searchtype=author&amp;query=C%C3%B4t%C3%A9%2C+M">M. C么t茅</a>, <a href="/search/physics?searchtype=author&amp;query=Craycraft%2C+A">A. Craycraft</a>, <a href="/search/physics?searchtype=author&amp;query=Cree%2C+W">W. Cree</a>, <a href="/search/physics?searchtype=author&amp;query=Dalmasson%2C+J">J. Dalmasson</a> , et al. (121 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05075v2-abstract-short" style="display: inline;"> The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta ($0谓尾尾$) decay in $^{136}$Xe with a target half-life sensitivity of approximately $10^{28}$ years using $5\times10^3$ kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05075v2-abstract-full').style.display = 'inline'; document.getElementById('1710.05075v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05075v2-abstract-full" style="display: none;"> The next-generation Enriched Xenon Observatory (nEXO) is a proposed experiment to search for neutrinoless double beta ($0谓尾尾$) decay in $^{136}$Xe with a target half-life sensitivity of approximately $10^{28}$ years using $5\times10^3$ kg of isotopically enriched liquid-xenon in a time projection chamber. This improvement of two orders of magnitude in sensitivity over current limits is obtained by a significant increase of the $^{136}$Xe mass, the monolithic and homogeneous configuration of the active medium, and the multi-parameter measurements of the interactions enabled by the time projection chamber. The detector concept and anticipated performance are presented based upon demonstrated realizable background rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05075v2-abstract-full').style.display = 'none'; document.getElementById('1710.05075v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2 as published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LLNL-JRNL-737682 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 97, 065503 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.10149">arXiv:1709.10149</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.10149">pdf</a>, <a href="https://arxiv.org/format/1709.10149">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.97.092007">10.1103/PhysRevD.97.092007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signal Yields of keV Electronic Recoils and Their Discrimination from Nuclear Recoils in Liquid Xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+M">M. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Coderre%2C+D">D. Coderre</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.10149v2-abstract-short" style="display: inline;"> We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two l&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10149v2-abstract-full').style.display = 'inline'; document.getElementById('1709.10149v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.10149v2-abstract-full" style="display: none;"> We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.10149v2-abstract-full').style.display = 'none'; document.getElementById('1709.10149v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 97, 092007 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.07051">arXiv:1708.07051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.07051">pdf</a>, <a href="https://arxiv.org/format/1708.07051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-017-5326-3">10.1140/epjc/s10052-017-5326-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The XENON1T Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Anthony%2C+M">M. Anthony</a>, <a href="/search/physics?searchtype=author&amp;query=Antunes%2C+B">B. Antunes</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barrow%2C+P">P. Barrow</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=B%C3%BCtikofer%2C+L">L. B眉tikofer</a>, <a href="/search/physics?searchtype=author&amp;query=Calv%C3%A9n%2C+J">J. Calv茅n</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.07051v1-abstract-short" style="display: inline;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07051v1-abstract-full').style.display = 'inline'; document.getElementById('1708.07051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.07051v1-abstract-full" style="display: none;"> The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.07051v1-abstract-full').style.display = 'none'; document.getElementById('1708.07051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 25 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Brown%2C+E&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10