CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 207 results for author: <span class="mathjax">Brown, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Brown%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Brown, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Brown%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Brown, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Brown%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04209">arXiv:2502.04209</a> <span> [<a href="https://arxiv.org/pdf/2502.04209">pdf</a>, <a href="https://arxiv.org/format/2502.04209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Radon Removal in XENONnT down to the Solar Neutrino Level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04209v1-abstract-short" style="display: inline;"> The XENONnT experiment has achieved an unprecedented reduction of the $^\text{222}$Rn activity concentration within its liquid xenon dual-phase time projection chamber to a level of (0.90$\,\pm\,$0.01$\,$stat.$\,\pm\,$0.07 sys.)$\,渭$Bq/kg, equivalent to about 1200 $^\text{222}$Rn atoms per cubic meter of liquid xenon. This represents a 15-fold improvement over the $^\text{222}$Rn levels encountere… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04209v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04209v1-abstract-full" style="display: none;"> The XENONnT experiment has achieved an unprecedented reduction of the $^\text{222}$Rn activity concentration within its liquid xenon dual-phase time projection chamber to a level of (0.90$\,\pm\,$0.01$\,$stat.$\,\pm\,$0.07 sys.)$\,渭$Bq/kg, equivalent to about 1200 $^\text{222}$Rn atoms per cubic meter of liquid xenon. This represents a 15-fold improvement over the $^\text{222}$Rn levels encountered during XENON1T's main science runs and is a factor five lower compared to other currently operational multi-tonne liquid xenon detectors engaged in dark matter searches. This breakthrough enables the pursuit of various rare event searches that lie beyond the confines of the standard model of particle physics, with world-leading sensitivity. The ultra-low $^\text{222}$Rn levels have diminished the radon-induced background rate in the detector to a point where it is for the first time lower than the solar neutrino-induced background, which is poised to become the primary irreducible background in liquid xenon-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04209v1-abstract-full').style.display = 'none'; document.getElementById('2502.04209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02503">arXiv:2501.02503</a> <span> [<a href="https://arxiv.org/pdf/2501.02503">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Materials Discovery in Combinatorial and High-throughput Synthesis and Processing: A New Frontier for SPM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Slautin%2C+B+N">Boris N. Slautin</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yongtao Liu</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+Y">Yu Liu</a>, <a href="/search/physics?searchtype=author&query=Emery%2C+R">Reece Emery</a>, <a href="/search/physics?searchtype=author&query=Hong%2C+S">Seungbum Hong</a>, <a href="/search/physics?searchtype=author&query=Dubey%2C+A">Astita Dubey</a>, <a href="/search/physics?searchtype=author&query=Shvartsman%2C+V+V">Vladimir V. Shvartsman</a>, <a href="/search/physics?searchtype=author&query=Lupascu%2C+D+C">Doru C. Lupascu</a>, <a href="/search/physics?searchtype=author&query=Sanchez%2C+S+L">Sheryl L. Sanchez</a>, <a href="/search/physics?searchtype=author&query=Ahmadi%2C+M">Mahshid Ahmadi</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+Y">Yunseok Kim</a>, <a href="/search/physics?searchtype=author&query=Strelcov%2C+E">Evgheni Strelcov</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+A">Keith A. Brown</a>, <a href="/search/physics?searchtype=author&query=Rack%2C+P+D">Philip D. Rack</a>, <a href="/search/physics?searchtype=author&query=Kalinin%2C+S+V">Sergei V. Kalinin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02503v1-abstract-short" style="display: inline;"> For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02503v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02503v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02503v1-abstract-full" style="display: none;"> For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have predominantly been downstream, with images and spectra serving as a qualitative source of data on the microstructure and properties of materials, and in rare cases of fundamental physical knowledge. However, the fast growing developments in accelerated material synthesis via self-driving labs and established applications such as combinatorial spread libraries are poised to change this paradigm. Rapid synthesis demands matching capabilities to probe structure and functionalities of materials on small scales and with high throughput, which are characteristically inherent to SPM. Here, we overview SPM methods applicable to these emerging applications and emphasize their quantitativeness, focusing on piezoresponse force microscopy, electrochemical strain microscopy, conductive, and surface photovoltage measurements. We discuss the challenges and opportunities ahead, asserting that SPM will play a crucial role in closing the loop from material prediction and synthesis to characterization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02503v1-abstract-full').style.display = 'none'; document.getElementById('2501.02503v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">64 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10451">arXiv:2412.10451</a> <span> [<a href="https://arxiv.org/pdf/2412.10451">pdf</a>, <a href="https://arxiv.org/format/2412.10451">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy Nuclear Recoil Calibration of XENONnT with a $^{88}$YBe Photoneutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Ant%2C+D">D. Ant</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%2C+A+P+C">A. P. Cimental Ch</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10451v1-abstract-short" style="display: inline;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 even… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10451v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10451v1-abstract-full" style="display: none;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 events from 183 hours of exposure with this source. The expected background was $55 \pm 12$ accidental coincidence events, estimated using a dedicated 152 hour background calibration run with a Yttrium-PVC gamma-only source and data-driven modeling. From these calibrations, we extracted the light yield and charge yield for liquid xenon at our field strength of 23 V/cm between 0.5 keV$_{\rm NR}$ and 5.0 keV$_{\rm NR}$ (nuclear recoil energy in keV). This calibration is crucial for accurately measuring the solar $^8$B neutrino coherent elastic neutrino-nucleus scattering and searching for light dark matter particles with masses below 12 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'none'; document.getElementById('2412.10451v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08811">arXiv:2412.08811</a> <span> [<a href="https://arxiv.org/pdf/2412.08811">pdf</a>, <a href="https://arxiv.org/format/2412.08811">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Evidence of enhanced two-level system loss suppression in high-Q, thin film aluminum microwave resonators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Volpert%2C+C+G">Carolyn G. Volpert</a>, <a href="/search/physics?searchtype=author&query=Barrentine%2C+E+M">Emily M. Barrentine</a>, <a href="/search/physics?searchtype=author&query=Bolatto%2C+A+D">Alberto D. Bolatto</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">Ari Brown</a>, <a href="/search/physics?searchtype=author&query=Connors%2C+J+A">Jake A. Connors</a>, <a href="/search/physics?searchtype=author&query=Essinger-Hileman%2C+T">Thomas Essinger-Hileman</a>, <a href="/search/physics?searchtype=author&query=Hess%2C+L+A">Larry A. Hess</a>, <a href="/search/physics?searchtype=author&query=Mikula%2C+V">Vilem Mikula</a>, <a href="/search/physics?searchtype=author&query=Stevenson%2C+T+R">Thomas R. Stevenson</a>, <a href="/search/physics?searchtype=author&query=Switzer%2C+E+R">Eric R. Switzer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08811v1-abstract-short" style="display: inline;"> As superconducting kinetic inductance detectors (KIDs) continue to grow in popularity for sensitive sub-mm detection and other applications, there is a drive to advance toward lower loss devices. We present measurements of diagnostic thin film aluminum coplanar waveguide (CPW) resonators designed to inform ongoing KID development at NASA Goddard Space Flight Center. The resonators span… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08811v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08811v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08811v1-abstract-full" style="display: none;"> As superconducting kinetic inductance detectors (KIDs) continue to grow in popularity for sensitive sub-mm detection and other applications, there is a drive to advance toward lower loss devices. We present measurements of diagnostic thin film aluminum coplanar waveguide (CPW) resonators designed to inform ongoing KID development at NASA Goddard Space Flight Center. The resonators span $\rm f_0 = 3.5 - 4$\,GHz and include both quarter-wave and half-wave resonators with varying coupling capacitor designs. We present measurements of the device film properties and an analysis of the dominant mechanisms of loss in the resonators measured in a dark environment. We demonstrate quality factors of $\rm Q_i^{-1} \approx 3.64 - 8.57 \times10^{-8}$, and observe enhanced suppression of two-level system (TLS) loss in our devices at high internal microwave power levels before the onset of quasiparticle dissipation from microwave heating. We observe deviations from the standard TLS loss model at low powers and temperatures below 60 mK, and use a modified model to describe this behavior. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08811v1-abstract-full').style.display = 'none'; document.getElementById('2412.08811v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, submitted to Physical Review Applied Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05264">arXiv:2412.05264</a> <span> [<a href="https://arxiv.org/pdf/2412.05264">pdf</a>, <a href="https://arxiv.org/format/2412.05264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The neutron veto of the XENONnT experiment: Results with demineralized water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (145 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05264v3-abstract-short" style="display: inline;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'inline'; document.getElementById('2412.05264v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05264v3-abstract-full" style="display: none;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) tags neutrons via their capture on gadolinium or hydrogen, which release $纬$-rays that are subsequently detected as Cherenkov light. In this work, we present the key features and the first results of the XENONnT NV when operated with demineralized water in the initial phase of the experiment. Its efficiency for detecting neutrons is $(82\pm 1)\,\%$, the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of $(53\pm 3)\,\%$ for the tagging of WIMP-like neutron signals, inside a tagging time window of $250\,\mathrm{渭s}$ between TPC and NV, leading to a livetime loss of $1.6\,\%$ during the first science run of XENONnT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'none'; document.getElementById('2412.05264v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11822">arXiv:2411.11822</a> <span> [<a href="https://arxiv.org/pdf/2411.11822">pdf</a>, <a href="https://arxiv.org/format/2411.11822">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Logical computation demonstrated with a neutral atom quantum processor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Reichardt%2C+B+W">Ben W. Reichardt</a>, <a href="/search/physics?searchtype=author&query=Paetznick%2C+A">Adam Paetznick</a>, <a href="/search/physics?searchtype=author&query=Aasen%2C+D">David Aasen</a>, <a href="/search/physics?searchtype=author&query=Basov%2C+I">Ivan Basov</a>, <a href="/search/physics?searchtype=author&query=Bello-Rivas%2C+J+M">Juan M. Bello-Rivas</a>, <a href="/search/physics?searchtype=author&query=Bonderson%2C+P">Parsa Bonderson</a>, <a href="/search/physics?searchtype=author&query=Chao%2C+R">Rui Chao</a>, <a href="/search/physics?searchtype=author&query=van+Dam%2C+W">Wim van Dam</a>, <a href="/search/physics?searchtype=author&query=Hastings%2C+M+B">Matthew B. Hastings</a>, <a href="/search/physics?searchtype=author&query=Paz%2C+A">Andres Paz</a>, <a href="/search/physics?searchtype=author&query=da+Silva%2C+M+P">Marcus P. da Silva</a>, <a href="/search/physics?searchtype=author&query=Sundaram%2C+A">Aarthi Sundaram</a>, <a href="/search/physics?searchtype=author&query=Svore%2C+K+M">Krysta M. Svore</a>, <a href="/search/physics?searchtype=author&query=Vaschillo%2C+A">Alexander Vaschillo</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+Z">Zhenghan Wang</a>, <a href="/search/physics?searchtype=author&query=Zanner%2C+M">Matt Zanner</a>, <a href="/search/physics?searchtype=author&query=Cairncross%2C+W+B">William B. Cairncross</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Cheng-An Chen</a>, <a href="/search/physics?searchtype=author&query=Crow%2C+D">Daniel Crow</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">Hyosub Kim</a>, <a href="/search/physics?searchtype=author&query=Kindem%2C+J+M">Jonathan M. Kindem</a>, <a href="/search/physics?searchtype=author&query=King%2C+J">Jonathan King</a>, <a href="/search/physics?searchtype=author&query=McDonald%2C+M">Michael McDonald</a>, <a href="/search/physics?searchtype=author&query=Norcia%2C+M+A">Matthew A. Norcia</a>, <a href="/search/physics?searchtype=author&query=Ryou%2C+A">Albert Ryou</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11822v2-abstract-short" style="display: inline;"> Transitioning from quantum computation on physical qubits to quantum computation on encoded, logical qubits can improve the error rate of operations, and will be essential for realizing valuable quantum computational advantages. Using a neutral atom quantum processor with 256 qubits, each an individual Ytterbium atom, we demonstrate the entanglement of 24 logical qubits using the distance-two [[4,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11822v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11822v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11822v2-abstract-full" style="display: none;"> Transitioning from quantum computation on physical qubits to quantum computation on encoded, logical qubits can improve the error rate of operations, and will be essential for realizing valuable quantum computational advantages. Using a neutral atom quantum processor with 256 qubits, each an individual Ytterbium atom, we demonstrate the entanglement of 24 logical qubits using the distance-two [[4,2,2]] code, simultaneously detecting errors and correcting for lost qubits. We also implement the Bernstein-Vazirani algorithm with up to 28 logical qubits encoded in the [[4,1,2]] code, showing better-than-physical error rates. We demonstrate fault-tolerant quantum computation in our approach, guided by the proposal of Gottesman (2016), by performing repeated loss correction for both structured and random circuits encoded in the [[4,2,2]] code. Finally, since distance-two codes can correct qubit loss, but not other errors, we show repeated loss and error correction using the distance-three [[9,1,3]] Bacon-Shor code. These results begin to clear a path for achieving scientific quantum advantage with a programmable neutral atom quantum processor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11822v2-abstract-full').style.display = 'none'; document.getElementById('2411.11822v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11708">arXiv:2411.11708</a> <span> [<a href="https://arxiv.org/pdf/2411.11708">pdf</a>, <a href="https://arxiv.org/format/2411.11708">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> High-fidelity universal gates in the $^{171}$Yb ground state nuclear spin qubit </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Muniz%2C+J+A">J. A. Muniz</a>, <a href="/search/physics?searchtype=author&query=Stone%2C+M">M. Stone</a>, <a href="/search/physics?searchtype=author&query=Stack%2C+D+T">D. T. Stack</a>, <a href="/search/physics?searchtype=author&query=Jaffe%2C+M">M. Jaffe</a>, <a href="/search/physics?searchtype=author&query=Kindem%2C+J+M">J. M. Kindem</a>, <a href="/search/physics?searchtype=author&query=Wadleigh%2C+L">L. Wadleigh</a>, <a href="/search/physics?searchtype=author&query=Zalys-Geller%2C+E">E. Zalys-Geller</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">X. Zhang</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C+-">C. -A. Chen</a>, <a href="/search/physics?searchtype=author&query=Norcia%2C+M+A">M. A. Norcia</a>, <a href="/search/physics?searchtype=author&query=Epstein%2C+J">J. Epstein</a>, <a href="/search/physics?searchtype=author&query=Halperin%2C+E">E. Halperin</a>, <a href="/search/physics?searchtype=author&query=Hummel%2C+F">F. Hummel</a>, <a href="/search/physics?searchtype=author&query=Wilkason%2C+T">T. Wilkason</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">M. Li</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+K">K. Barnes</a>, <a href="/search/physics?searchtype=author&query=Battaglino%2C+P">P. Battaglino</a>, <a href="/search/physics?searchtype=author&query=Bohdanowicz%2C+T+C">T. C. Bohdanowicz</a>, <a href="/search/physics?searchtype=author&query=Booth%2C+G">G. Booth</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+M+O">M. O. Brown</a>, <a href="/search/physics?searchtype=author&query=Cairncross%2C+W+B">W. B. Cairncross</a>, <a href="/search/physics?searchtype=author&query=Cassella%2C+K">K. Cassella</a>, <a href="/search/physics?searchtype=author&query=Coxe%2C+R">R. Coxe</a>, <a href="/search/physics?searchtype=author&query=Crow%2C+D">D. Crow</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11708v2-abstract-short" style="display: inline;"> Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we demonstrate a universal high-fidelity gate-set with individually controlled and parallel application… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11708v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11708v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11708v2-abstract-full" style="display: none;"> Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we demonstrate a universal high-fidelity gate-set with individually controlled and parallel application of single-qubit gates and two-qubit gates operating on the ground-state nuclear spin qubit in arrays of tweezer-trapped $^{171}$Yb atoms. We utilize the long lifetime, flexible control, and high physical fidelity of our system to characterize native gates using single and two-qubit Clifford and symmetric subspace randomized benchmarking circuits with more than 200 CZ gates applied to one or two pairs of atoms. We measure our two-qubit entangling gate fidelity to be 99.72(3)% (99.40(3)%) with (without) post-selection. In addition, we introduce a simple and optimized method for calibration of multi-parameter quantum gates. These results represent important milestones towards executing complex and general quantum computation with neutral atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11708v2-abstract-full').style.display = 'none'; document.getElementById('2411.11708v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19016">arXiv:2410.19016</a> <span> [<a href="https://arxiv.org/pdf/2410.19016">pdf</a>, <a href="https://arxiv.org/format/2410.19016">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19016v1-abstract-short" style="display: inline;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19016v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19016v1-abstract-full" style="display: none;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$蟽$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'none'; document.getElementById('2410.19016v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17137">arXiv:2410.17137</a> <span> [<a href="https://arxiv.org/pdf/2410.17137">pdf</a>, <a href="https://arxiv.org/format/2410.17137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17137v1-abstract-short" style="display: inline;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17137v1-abstract-full" style="display: none;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$蟽$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$蟽$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'none'; document.getElementById('2410.17137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16446">arXiv:2410.16446</a> <span> [<a href="https://arxiv.org/pdf/2410.16446">pdf</a>, <a href="https://arxiv.org/ps/2410.16446">ps</a>, <a href="https://arxiv.org/format/2410.16446">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Lifetimes and Branching Ratios Apparatus (LIBRA) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sun%2C+L+J">L. J. Sun</a>, <a href="/search/physics?searchtype=author&query=Dopfer%2C+J">J. Dopfer</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+A">A. Adams</a>, <a href="/search/physics?searchtype=author&query=Wrede%2C+C">C. Wrede</a>, <a href="/search/physics?searchtype=author&query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+B+A">B. A. Brown</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+J">J. Chen</a>, <a href="/search/physics?searchtype=author&query=Jensen%2C+E+A+M">E. A. M. Jensen</a>, <a href="/search/physics?searchtype=author&query=Mahajan%2C+R">R. Mahajan</a>, <a href="/search/physics?searchtype=author&query=Rauscher%2C+T">T. Rauscher</a>, <a href="/search/physics?searchtype=author&query=Sumithrarachchi%2C+C">C. Sumithrarachchi</a>, <a href="/search/physics?searchtype=author&query=Weghorn%2C+L+E">L. E. Weghorn</a>, <a href="/search/physics?searchtype=author&query=Weisshaar%2C+D">D. Weisshaar</a>, <a href="/search/physics?searchtype=author&query=Wheeler%2C+T">T. Wheeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16446v1-abstract-short" style="display: inline;"> The Particle X-ray Coincidence Technique (PXCT) was originally developed to measure average lifetimes in the $10^{-17}-10^{-15}$~s range for proton-unbound states populated by electron capture (EC). We have designed and built the Lifetimes and Branching Ratios Apparatus (LIBRA) to be used in the stopped-beam area at the Facility for Rare Isotope Beams that extends PXCT to measure both lifetimes an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16446v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16446v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16446v1-abstract-full" style="display: none;"> The Particle X-ray Coincidence Technique (PXCT) was originally developed to measure average lifetimes in the $10^{-17}-10^{-15}$~s range for proton-unbound states populated by electron capture (EC). We have designed and built the Lifetimes and Branching Ratios Apparatus (LIBRA) to be used in the stopped-beam area at the Facility for Rare Isotope Beams that extends PXCT to measure both lifetimes and decay branching ratios of resonances populated by EC/$尾^+$ decay. The first application of LIBRA aims to obtain essential nuclear data from $^{60}$Ga EC/$尾^+$ decay to constrain the thermonuclear rates of the $^{59}$Cu$(p,纬)^{60}$Zn and $^{59}$Cu$(p,伪)^{56}$Ni reactions, and in turn, the strength of the NiCu nucleosynthesis cycle, which is predicted to significantly impact the modeling of Type I X-ray burst light curves and the composition of the burst ashes. Detailed theoretical calculations, Monte Carlo simulations, and performance tests with radioactive sources have been conducted to validate the feasibility of employing LIBRA for the $^{60}$Ga experiment. The method introduced with LIBRA has the potential to measure nearly all essential ingredients for thermonuclear reaction rate calculations in a single experiment, in the absence of direct measurements, which are often impractical for radioactive reactants. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16446v1-abstract-full').style.display = 'none'; document.getElementById('2410.16446v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00755">arXiv:2410.00755</a> <span> [<a href="https://arxiv.org/pdf/2410.00755">pdf</a>, <a href="https://arxiv.org/format/2410.00755">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+N+F">N. F. Bell</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boehm%2C+C">C. Boehm</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Braun%2C+R">R. Braun</a> , et al. (209 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00755v1-abstract-short" style="display: inline;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and cons… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00755v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00755v1-abstract-full" style="display: none;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and construct a one-dimensional anomaly score optimised to reject the background only hypothesis in the presence of an excess of non-background-like events. We benchmark the procedure with a sensitivity study that determines its power to reject the background-only hypothesis in the presence of an injected WIMP dark matter signal, outperforming the classical, likelihood-based background rejection test. We show that our neural networks learn relevant energy features of the events from low-level, high-dimensional detector outputs, without the need to compress this data into lower-dimensional observables, thus reducing computational effort and information loss. For the future, our approach lays the foundation for an efficient end-to-end pipeline that eliminates the need for many of the corrections and cuts that are traditionally part of the analysis chain, with the potential of achieving higher accuracy and significant reduction of analysis time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'none'; document.getElementById('2410.00755v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 Figures, 3 Tables, 23 Pages (incl. references)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08778">arXiv:2409.08778</a> <span> [<a href="https://arxiv.org/pdf/2409.08778">pdf</a>, <a href="https://arxiv.org/format/2409.08778">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (143 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08778v1-abstract-short" style="display: inline;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08778v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08778v1-abstract-full" style="display: none;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(tonne$\cdot$year$\cdot$keV) in the (1, 30) keV region is reached in the inner part of the TPC. XENONnT is thus sensitive to a wide range of rare phenomena related to Dark Matter and Neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of Dark Matter in the form of weakly interacting massive particles (WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne $\cdot$ year. This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the `blind analysis' methodology we are using when reporting XENONnT physics results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'none'; document.getElementById('2409.08778v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00153">arXiv:2409.00153</a> <span> [<a href="https://arxiv.org/pdf/2409.00153">pdf</a>, <a href="https://arxiv.org/format/2409.00153">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> A Broadband Multipole Method for Accelerated Mutual Coupling Analysis of Large Irregular Arrays Including Rotated Antennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gueuning%2C+Q">Quentin Gueuning</a>, <a href="/search/physics?searchtype=author&query=Acedo%2C+E+d+L">Eloy de Lera Acedo</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+K">Anthony Keith Brown</a>, <a href="/search/physics?searchtype=author&query=Craeye%2C+C">Christophe Craeye</a>, <a href="/search/physics?searchtype=author&query=O%27Hara%2C+O">Oscar O'Hara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00153v1-abstract-short" style="display: inline;"> We present a numerical method for the analysis of mutual coupling effects in large, dense and irregular arrays with identical antennas. Building on the Method of Moments (MoM), our technique employs a Macro Basis Function (MBF) approach for rapid direct inversion of the MoM impedance matrix. To expedite the reduced matrix filling, we propose an extension of the Steepest-Descent Multipole expansion… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00153v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00153v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00153v1-abstract-full" style="display: none;"> We present a numerical method for the analysis of mutual coupling effects in large, dense and irregular arrays with identical antennas. Building on the Method of Moments (MoM), our technique employs a Macro Basis Function (MBF) approach for rapid direct inversion of the MoM impedance matrix. To expedite the reduced matrix filling, we propose an extension of the Steepest-Descent Multipole expansion which remains numerically stable and efficient across a wide bandwidth. This broadband multipole-based approach is well suited to quasi-planar problems and requires only the pre-computation of each MBF's complex patterns, resulting in low antenna-dependent pre-processing costs. The method also supports arrays with arbitrarily rotated antennas at low additional cost. A simulation of all embedded element patterns of irregular arrays of 256 complex log-periodic antennas completes in just 10 minutes per frequency point on a current laptop, with an additional minute per new layout. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00153v1-abstract-full').style.display = 'none'; document.getElementById('2409.00153v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02877">arXiv:2408.02877</a> <span> [<a href="https://arxiv.org/pdf/2408.02877">pdf</a>, <a href="https://arxiv.org/format/2408.02877">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.191002">10.1103/PhysRevLett.133.191002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Indication of Solar $^8$B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02877v2-abstract-short" style="display: inline;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'inline'; document.getElementById('2408.02877v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02877v2-abstract-full" style="display: none;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV, with ($26.4^{+1.4}_{-1.3}$) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 $蟽$. The measured $^8$B solar neutrino flux of $(4.7_{-2.3}^{+3.6})\times 10^6 \mathrm{cm}^{-2}\mathrm{s}^{-1}$ is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE$谓$NS cross section on Xe of $(1.1^{+0.8}_{-0.5})\times10^{-39} \mathrm{cm}^2$ is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'none'; document.getElementById('2408.02877v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 191002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.17725">arXiv:2406.17725</a> <span> [<a href="https://arxiv.org/pdf/2406.17725">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> PANDA: A self-driving lab for studying electrodeposited polymer films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Quinn%2C+H">Harley Quinn</a>, <a href="/search/physics?searchtype=author&query=Robben%2C+G+A">Gregory A. Robben</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+Z">Zhaoyi Zheng</a>, <a href="/search/physics?searchtype=author&query=Gardner%2C+A+L">Alan L. Gardner</a>, <a href="/search/physics?searchtype=author&query=Werner%2C+J+G">J枚rg G. Werner</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+A">Keith A. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.17725v1-abstract-short" style="display: inline;"> We introduce the polymer analysis and discovery array (PANDA), an automated system for high-throughput electrodeposition and functional characterization of polymer films. The PANDA is a custom, modular, and low-cost system based on a CNC gantry that we have modified to include a syringe pump, potentiostat, and camera with a telecentric lens. This system can perform fluid handling, electrochemistry… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17725v1-abstract-full').style.display = 'inline'; document.getElementById('2406.17725v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.17725v1-abstract-full" style="display: none;"> We introduce the polymer analysis and discovery array (PANDA), an automated system for high-throughput electrodeposition and functional characterization of polymer films. The PANDA is a custom, modular, and low-cost system based on a CNC gantry that we have modified to include a syringe pump, potentiostat, and camera with a telecentric lens. This system can perform fluid handling, electrochemistry, and transmission optical measurements on samples in custom 96-well plates that feature transparent and conducting bottoms. We begin by validating this platform through a series of control fluid handling and electrochemistry experiments to quantify the repeatability, lack of cross-contamination, and accuracy of the system. As a proof-of-concept experimental campaign to study the functional properties of a model polymer film, we optimize the electrochromic switching of electrodeposited poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films. In particular, we explore the monomer concentration, deposition time, and deposition voltage using an array of experiments selected by Latin hypercube sampling. Subsequently, we run an active learning campaign based upon Bayesian optimization to find the processing conditions that lead to the highest electrochromic switching of PEDOT:PSS. This self-driving lab integrates optical and electrochemical characterization to constitute a novel, automated approach for studying functional polymer films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.17725v1-abstract-full').style.display = 'none'; document.getElementById('2406.17725v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.15730">arXiv:2406.15730</a> <span> [<a href="https://arxiv.org/pdf/2406.15730">pdf</a>, <a href="https://arxiv.org/format/2406.15730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2024.169859">10.1016/j.nima.2024.169859 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Proton discrimination in CLYC for fast neutron spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brown%2C+J+A">J. A. Brown</a>, <a href="/search/physics?searchtype=author&query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/physics?searchtype=author&query=Gordon%2C+J+M">J. M. Gordon</a>, <a href="/search/physics?searchtype=author&query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/physics?searchtype=author&query=Nagel%2C+T+S">T. S. Nagel</a>, <a href="/search/physics?searchtype=author&query=Venkatraman%2C+A">A. Venkatraman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.15730v2-abstract-short" style="display: inline;"> The Cs$_2$LiYCl$_6$:Ce (CLYC) elpasolite scintillator is known for its response to fast and thermal neutrons along with good $纬$-ray energy resolution. While the $^{35}$Cl($n,p$) reaction has been identified as a potential means for CLYC-based fast neutron spectroscopy in the absence of time-of-flight (TOF), previous efforts to functionalize CLYC as a fast neutron spectrometer have been thwarted b… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15730v2-abstract-full').style.display = 'inline'; document.getElementById('2406.15730v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.15730v2-abstract-full" style="display: none;"> The Cs$_2$LiYCl$_6$:Ce (CLYC) elpasolite scintillator is known for its response to fast and thermal neutrons along with good $纬$-ray energy resolution. While the $^{35}$Cl($n,p$) reaction has been identified as a potential means for CLYC-based fast neutron spectroscopy in the absence of time-of-flight (TOF), previous efforts to functionalize CLYC as a fast neutron spectrometer have been thwarted by the inability to isolate proton interactions from $^{6}$Li($n,伪$) and $^{35}$Cl($n,伪$) signals. This work introduces a new approach to particle discrimination in CLYC for fission spectrum neutrons using a multi-gate charge integration algorithm that provides excellent separation between protons and heavier charged particles. Neutron TOF data were collected using a $^{252}$Cf source, an array of EJ-309 organic liquid scintillators, and a $^6$Li-enriched CLYC scintillator outfitted with fast electronics. Modal waveforms were constructed corresponding to the different reaction channels, revealing significant differences in the pulse characteristics of protons and heavier charged particles at ultrafast, fast, and intermediate time scales. These findings informed the design of a pulse shape discrimination algorithm, which was validated using the TOF data. This study also proposes an iterative subtraction method to mitigate contributions from confounding reaction channels in proton and heavier charged particle pulse height spectra, opening the door for CLYC-based fast neutron and $纬$-ray spectroscopy while preserving sensitivity to thermal neutron capture signals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.15730v2-abstract-full').style.display = 'none'; document.getElementById('2406.15730v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Instrum. Meth. A 1069 (2024), 169859 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13638">arXiv:2406.13638</a> <span> [<a href="https://arxiv.org/pdf/2406.13638">pdf</a>, <a href="https://arxiv.org/format/2406.13638">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> XENONnT WIMP Search: Signal & Background Modeling and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&query=D%27Andrea%2C+V">V. D'Andrea</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13638v1-abstract-short" style="display: inline;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13638v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13638v1-abstract-full" style="display: none;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 tonne-years yielded no signal excess over background expectations, from which competitive exclusion limits were derived on WIMP-nucleon elastic scatter cross sections, for WIMP masses ranging from 6 GeV/$c^2$ up to the TeV/$c^2$ scale. This work details the modeling and statistical methods employed in this search. By means of calibration data, we model the detector response, which is then used to derive background and signal models. The construction and validation of these models is discussed, alongside additional purely data-driven backgrounds. We also describe the statistical inference framework, including the definition of the likelihood function and the construction of confidence intervals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'none'; document.getElementById('2406.13638v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13003">arXiv:2406.13003</a> <span> [<a href="https://arxiv.org/pdf/2406.13003">pdf</a>, <a href="https://arxiv.org/format/2406.13003">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/S0022377824001326">10.1017/S0022377824001326 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulating nonlinear optical processes on a superconducting quantum device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shi%2C+Y">Yuan Shi</a>, <a href="/search/physics?searchtype=author&query=Evert%2C+B">Bram Evert</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+F">Amy F. Brown</a>, <a href="/search/physics?searchtype=author&query=Tripathi%2C+V">Vinay Tripathi</a>, <a href="/search/physics?searchtype=author&query=Sete%2C+E+A">Eyob A. Sete</a>, <a href="/search/physics?searchtype=author&query=Geyko%2C+V">Vasily Geyko</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+Y">Yujin Cho</a>, <a href="/search/physics?searchtype=author&query=DuBois%2C+J+L">Jonathan L DuBois</a>, <a href="/search/physics?searchtype=author&query=Lidar%2C+D">Daniel Lidar</a>, <a href="/search/physics?searchtype=author&query=Joseph%2C+I">Ilon Joseph</a>, <a href="/search/physics?searchtype=author&query=Reagor%2C+M">Matt Reagor</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13003v2-abstract-short" style="display: inline;"> Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13003v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13003v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13003v2-abstract-full" style="display: none;"> Simulating plasma physics on quantum computers is difficult because most problems of interest are nonlinear, but quantum computers are not naturally suitable for nonlinear operations. In weakly nonlinear regimes, plasma problems can be modeled as wave-wave interactions. In this paper, we develop a quantization approach to convert nonlinear wave-wave interaction problems to Hamiltonian simulation problems. We demonstrate our approach using two qubits on a superconducting device. Unlike a photonic device, a superconducting device does not naturally have the desired interactions in its native Hamiltonian. Nevertheless, Hamiltonian simulations can still be performed by decomposing required unitary operations into native gates. To improve experimental results, we employ a range of error mitigation techniques. Apart from readout error mitigation, we use randomized compilation to transform undiagnosed coherent errors into well-behaved stochastic Pauli channels. Moreover, to compensate for stochastic noise, we rescale exponentially decaying probability amplitudes using rates measured from cycle benchmarking. We carefully consider how different choices of product-formula algorithms affect the overall error and show how a trade-off can be made to best utilize limited quantum resources. This study provides an example of how plasma problems may be solved on near-term quantum computing platforms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13003v2-abstract-full').style.display = 'none'; document.getElementById('2406.13003v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Plasma Phys. 90 (2024) 805900602 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01465">arXiv:2406.01465</a> <span> [<a href="https://arxiv.org/pdf/2406.01465">pdf</a>, <a href="https://arxiv.org/format/2406.01465">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> AIFS -- ECMWF's data-driven forecasting system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lang%2C+S">Simon Lang</a>, <a href="/search/physics?searchtype=author&query=Alexe%2C+M">Mihai Alexe</a>, <a href="/search/physics?searchtype=author&query=Chantry%2C+M">Matthew Chantry</a>, <a href="/search/physics?searchtype=author&query=Dramsch%2C+J">Jesper Dramsch</a>, <a href="/search/physics?searchtype=author&query=Pinault%2C+F">Florian Pinault</a>, <a href="/search/physics?searchtype=author&query=Raoult%2C+B">Baudouin Raoult</a>, <a href="/search/physics?searchtype=author&query=Clare%2C+M+C+A">Mariana C. A. Clare</a>, <a href="/search/physics?searchtype=author&query=Lessig%2C+C">Christian Lessig</a>, <a href="/search/physics?searchtype=author&query=Maier-Gerber%2C+M">Michael Maier-Gerber</a>, <a href="/search/physics?searchtype=author&query=Magnusson%2C+L">Linus Magnusson</a>, <a href="/search/physics?searchtype=author&query=Bouall%C3%A8gue%2C+Z+B">Zied Ben Bouall猫gue</a>, <a href="/search/physics?searchtype=author&query=Nemesio%2C+A+P">Ana Prieto Nemesio</a>, <a href="/search/physics?searchtype=author&query=Dueben%2C+P+D">Peter D. Dueben</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">Andrew Brown</a>, <a href="/search/physics?searchtype=author&query=Pappenberger%2C+F">Florian Pappenberger</a>, <a href="/search/physics?searchtype=author&query=Rabier%2C+F">Florence Rabier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01465v2-abstract-short" style="display: inline;"> Machine learning-based weather forecasting models have quickly emerged as a promising methodology for accurate medium-range global weather forecasting. Here, we introduce the Artificial Intelligence Forecasting System (AIFS), a data driven forecast model developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). AIFS is based on a graph neural network (GNN) encoder and decoder, a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01465v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01465v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01465v2-abstract-full" style="display: none;"> Machine learning-based weather forecasting models have quickly emerged as a promising methodology for accurate medium-range global weather forecasting. Here, we introduce the Artificial Intelligence Forecasting System (AIFS), a data driven forecast model developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). AIFS is based on a graph neural network (GNN) encoder and decoder, and a sliding window transformer processor, and is trained on ECMWF's ERA5 re-analysis and ECMWF's operational numerical weather prediction (NWP) analyses. It has a flexible and modular design and supports several levels of parallelism to enable training on high-resolution input data. AIFS forecast skill is assessed by comparing its forecasts to NWP analyses and direct observational data. We show that AIFS produces highly skilled forecasts for upper-air variables, surface weather parameters and tropical cyclone tracks. AIFS is run four times daily alongside ECMWF's physics-based NWP model and forecasts are available to the public under ECMWF's open data policy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01465v2-abstract-full').style.display = 'none'; document.getElementById('2406.01465v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10687">arXiv:2405.10687</a> <span> [<a href="https://arxiv.org/pdf/2405.10687">pdf</a>, <a href="https://arxiv.org/format/2405.10687">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Proportional scintillation in liquid xenon: demonstration in a single-phase liquid-only time projection chamber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=T%C3%B6nnies%2C+F">Florian T枚nnies</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">Adam Brown</a>, <a href="/search/physics?searchtype=author&query=Kiyim%2C+B">Baris Kiyim</a>, <a href="/search/physics?searchtype=author&query=Kuger%2C+F">Fabian Kuger</a>, <a href="/search/physics?searchtype=author&query=Lindemann%2C+S">Sebastian Lindemann</a>, <a href="/search/physics?searchtype=author&query=Meinhardt%2C+P">Patrick Meinhardt</a>, <a href="/search/physics?searchtype=author&query=Schumann%2C+M">Marc Schumann</a>, <a href="/search/physics?searchtype=author&query=Stevens%2C+A">Andrew Stevens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10687v2-abstract-short" style="display: inline;"> The largest direct dark matter search experiments to date employ dual-phase time projection chambers (TPCs) with liquid noble gas targets. These detect both the primary photons generated by particle interactions in the liquid target, as well as proportional secondary scintillation light created by the ionization electrons in a strong electric field in the gas phase between the liquid-gas interface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10687v2-abstract-full').style.display = 'inline'; document.getElementById('2405.10687v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10687v2-abstract-full" style="display: none;"> The largest direct dark matter search experiments to date employ dual-phase time projection chambers (TPCs) with liquid noble gas targets. These detect both the primary photons generated by particle interactions in the liquid target, as well as proportional secondary scintillation light created by the ionization electrons in a strong electric field in the gas phase between the liquid-gas interface and the anode. In this work, we describe the detection of charge signals in a small-scale single-phase liquid-xenon-only TPC, that features the well-established TPC geometry with light readout above and below a cylindrical target. In the single-phase TPC, the proportional scintillation light (S2) is generated in liquid xenon in close proximity to 10 渭m diameter anode wires. The detector was characterized and the proportional scintillation process was studied using the 32.1 keV and 9.4 keV signals from 83mKr decays. A charge gain factor g2 of up to (1.9 $\pm$ 0.3) PE/electron was reached at an anode voltage 4.4 kV higher than the gate electrode 5 mm below it, corresponding to (29 $\pm$ 6) photons emitted per ionization electron. The duration of S2 signals is dominated by electron diffusion and approaches the xenon de-excitation timescale for very short electron drift times. The electron drift velocity and the longitudinal diffusion constant were measured at a drift field of 470 V/cm. The results agree with the literature and demonstrate that a single-phase TPC can be operated successfully. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10687v2-abstract-full').style.display = 'none'; document.getElementById('2405.10687v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14878">arXiv:2403.14878</a> <span> [<a href="https://arxiv.org/pdf/2403.14878">pdf</a>, <a href="https://arxiv.org/format/2403.14878">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.012011">10.1103/PhysRevD.110.012011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Chavez%2C+A+P+C">A. P. Cimental Chavez</a>, <a href="/search/physics?searchtype=author&query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&query=Conrad%2C+J">J. Conrad</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14878v2-abstract-short" style="display: inline;"> This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using $^{222}\text{Rn}$ and $^{218}\text{Po}$ events, and the root-mean-square convection speed was measured to be $0.30 \pm 0.01$ cm/s. Given this velocity… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14878v2-abstract-full').style.display = 'inline'; document.getElementById('2403.14878v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14878v2-abstract-full" style="display: none;"> This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using $^{222}\text{Rn}$ and $^{218}\text{Po}$ events, and the root-mean-square convection speed was measured to be $0.30 \pm 0.01$ cm/s. Given this velocity field, $^{214}\text{Pb}$ background events can be tagged when they are followed by $^{214}\text{Bi}$ and $^{214}\text{Po}$ decays, or preceded by $^{218}\text{Po}$ decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for $^{214}\text{Bi}$ and $^{214}\text{Po}$ decays or $^{218}\text{Po}$ decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a $^{214}\text{Pb}$ background reduction of $6.2^{+0.4}_{-0.9}\%$ with an exposure loss of $1.8\pm 0.2 \%$, despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic $^{137}\text{Xe}$ background, which is relevant to the search for neutrinoless double-beta decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14878v2-abstract-full').style.display = 'none'; document.getElementById('2403.14878v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 110 (2024) 012011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10446">arXiv:2402.10446</a> <span> [<a href="https://arxiv.org/pdf/2402.10446">pdf</a>, <a href="https://arxiv.org/format/2402.10446">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10446v1-abstract-short" style="display: inline;"> The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10446v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10446v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10446v1-abstract-full" style="display: none;"> The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10446v1-abstract-full').style.display = 'none'; document.getElementById('2402.10446v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.03059">arXiv:2402.03059</a> <span> [<a href="https://arxiv.org/pdf/2402.03059">pdf</a>, <a href="https://arxiv.org/ps/2402.03059">ps</a>, <a href="https://arxiv.org/format/2402.03059">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> </div> </div> <p class="title is-5 mathjax"> Geometry controls diffusive target encounters and escape in tubular structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kim%2C+J+L">Junyeong L. Kim</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+I">Aidan I. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.03059v1-abstract-short" style="display: inline;"> The endoplasmic reticulum (ER) is a network of sheet-like and tubular structures that spans much of a cell and contains molecules undergoing diffusive searches for targets, such as unfolded proteins searching for chaperones and recently-folded proteins searching for export sites. By applying a Brownian dynamics algorithm to simulate molecule diffusion, we describe how ER tube geometry influences w… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03059v1-abstract-full').style.display = 'inline'; document.getElementById('2402.03059v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.03059v1-abstract-full" style="display: none;"> The endoplasmic reticulum (ER) is a network of sheet-like and tubular structures that spans much of a cell and contains molecules undergoing diffusive searches for targets, such as unfolded proteins searching for chaperones and recently-folded proteins searching for export sites. By applying a Brownian dynamics algorithm to simulate molecule diffusion, we describe how ER tube geometry influences whether a searcher will encounter a nearby target or instead diffuse away to a region near to a distinct target, as well as the timescale of successful searches. We find that targets are more likely to be found for longer and narrower tubes, and larger targets, and that search in the tube volume is more sensitive to the search geometry compared to search on the tube surface. Our results suggest ER proteins searching for low-density targets in the membrane and the lumen are very likely to encounter the nearest target before diffusing to the vicinity of another target. Our results have implications for the design of target search simulations and calculations and interpretation of molecular trajectories on the ER network, as well as other organelles with tubular geometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.03059v1-abstract-full').style.display = 'none'; document.getElementById('2402.03059v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16177">arXiv:2401.16177</a> <span> [<a href="https://arxiv.org/pdf/2401.16177">pdf</a>, <a href="https://arxiv.org/format/2401.16177">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Iterative assembly of $^{171}$Yb atom arrays with cavity-enhanced optical lattices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Norcia%2C+M+A">M. A. Norcia</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">H. Kim</a>, <a href="/search/physics?searchtype=author&query=Cairncross%2C+W+B">W. B. Cairncross</a>, <a href="/search/physics?searchtype=author&query=Stone%2C+M">M. Stone</a>, <a href="/search/physics?searchtype=author&query=Ryou%2C+A">A. Ryou</a>, <a href="/search/physics?searchtype=author&query=Jaffe%2C+M">M. Jaffe</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+M+O">M. O. Brown</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+K">K. Barnes</a>, <a href="/search/physics?searchtype=author&query=Battaglino%2C+P">P. Battaglino</a>, <a href="/search/physics?searchtype=author&query=Bohdanowicz%2C+T+C">T. C. Bohdanowicz</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Cassella%2C+K">K. Cassella</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C+-">C. -A. Chen</a>, <a href="/search/physics?searchtype=author&query=Coxe%2C+R">R. Coxe</a>, <a href="/search/physics?searchtype=author&query=Crow%2C+D">D. Crow</a>, <a href="/search/physics?searchtype=author&query=Epstein%2C+J">J. Epstein</a>, <a href="/search/physics?searchtype=author&query=Griger%2C+C">C. Griger</a>, <a href="/search/physics?searchtype=author&query=Halperin%2C+E">E. Halperin</a>, <a href="/search/physics?searchtype=author&query=Hummel%2C+F">F. Hummel</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+A+M+W">A. M. W. Jones</a>, <a href="/search/physics?searchtype=author&query=Kindem%2C+J+M">J. M. Kindem</a>, <a href="/search/physics?searchtype=author&query=King%2C+J">J. King</a>, <a href="/search/physics?searchtype=author&query=Kotru%2C+K">K. Kotru</a>, <a href="/search/physics?searchtype=author&query=Lauigan%2C+J">J. Lauigan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">M. Li</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16177v3-abstract-short" style="display: inline;"> Assembling and maintaining large arrays of individually addressable atoms is a key requirement for continued scaling of neutral-atom-based quantum computers and simulators. In this work, we demonstrate a new paradigm for assembly of atomic arrays, based on a synergistic combination of optical tweezers and cavity-enhanced optical lattices, and the incremental filling of a target array from a repeti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16177v3-abstract-full').style.display = 'inline'; document.getElementById('2401.16177v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16177v3-abstract-full" style="display: none;"> Assembling and maintaining large arrays of individually addressable atoms is a key requirement for continued scaling of neutral-atom-based quantum computers and simulators. In this work, we demonstrate a new paradigm for assembly of atomic arrays, based on a synergistic combination of optical tweezers and cavity-enhanced optical lattices, and the incremental filling of a target array from a repetitively filled reservoir. In this protocol, the tweezers provide microscopic rearrangement of atoms, while the cavity-enhanced lattices enable the creation of large numbers of optical traps with sufficient depth for rapid low-loss imaging of atoms. We apply this protocol to demonstrate near-deterministic filling (99% per-site occupancy) of 1225-site arrays of optical traps. Because the reservoir is repeatedly filled with fresh atoms, the array can be maintained in a filled state indefinitely. We anticipate that this protocol will be compatible with mid-circuit reloading of atoms into a quantum processor, which will be a key capability for running large-scale error-corrected quantum computations whose durations exceed the lifetime of a single atom in the system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16177v3-abstract-full').style.display = 'none'; document.getElementById('2401.16177v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.11066">arXiv:2401.11066</a> <span> [<a href="https://arxiv.org/pdf/2401.11066">pdf</a>, <a href="https://arxiv.org/format/2401.11066">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> </div> <p class="title is-5 mathjax"> Formation and Study of a Spherical Plasma Liner for Plasma-Jet-Driven Magneto-Inertial Fusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=LaJoie%2C+A+L">A. L. LaJoie</a>, <a href="/search/physics?searchtype=author&query=Chu%2C+F">F. Chu</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Langendorf%2C+S">S. Langendorf</a>, <a href="/search/physics?searchtype=author&query=Dunn%2C+J+P">J. P. Dunn</a>, <a href="/search/physics?searchtype=author&query=Wurden%2C+G+A">G. A. Wurden</a>, <a href="/search/physics?searchtype=author&query=Witherspoon%2C+F+D">F. D. Witherspoon</a>, <a href="/search/physics?searchtype=author&query=Case%2C+A">A. Case</a>, <a href="/search/physics?searchtype=author&query=Luna%2C+M">M. Luna</a>, <a href="/search/physics?searchtype=author&query=Cassibry%2C+J">J. Cassibry</a>, <a href="/search/physics?searchtype=author&query=Vyas%2C+A">A. Vyas</a>, <a href="/search/physics?searchtype=author&query=Gilmore%2C+M">M. Gilmore</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.11066v2-abstract-short" style="display: inline;"> Plasma-jet-driven magneto-inertial fusion (PJMIF) is an alternative approach to controlled nuclear fusion which aims to utilize a line-replaceable dense plasma liner as a repetitive spherical compression driver. In this experiment, first measurements of the formation of a spherical Argon plasma liner formed from 36 discrete pulsed plasma jets are obtained on the Plasma Liner Experiment (PLX). Prop… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11066v2-abstract-full').style.display = 'inline'; document.getElementById('2401.11066v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.11066v2-abstract-full" style="display: none;"> Plasma-jet-driven magneto-inertial fusion (PJMIF) is an alternative approach to controlled nuclear fusion which aims to utilize a line-replaceable dense plasma liner as a repetitive spherical compression driver. In this experiment, first measurements of the formation of a spherical Argon plasma liner formed from 36 discrete pulsed plasma jets are obtained on the Plasma Liner Experiment (PLX). Properties including liner uniformity and morphology, plasma density, temperature, and ram pressure are assessed as a function of time throughout the implosion process and indicate an apparent transition from initial kinetic inter-jet interpenetration to collisional regime near stagnation times, in accordance with theoretical expectation. A lack of primary shock structures between adjacent jets during flight implies that arbitrarily smooth liners may be formed by way of corresponding improvements in jet parameters and control. The measurements facilitate the benchmarking of computational models and understanding the scaling of plasma liners towards fusion-relevant energy density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.11066v2-abstract-full').style.display = 'none'; document.getElementById('2401.11066v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04623">arXiv:2401.04623</a> <span> [<a href="https://arxiv.org/pdf/2401.04623">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> AstroInformatics: Recommendations for Global Cooperation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Mahabal%2C+A">Ashish Mahabal</a>, <a href="/search/physics?searchtype=author&query=Sharma%2C+P">Pranav Sharma</a>, <a href="/search/physics?searchtype=author&query=Adhikari%2C+R">Rana Adhikari</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+M">Mark Allen</a>, <a href="/search/physics?searchtype=author&query=Andreon%2C+S">Stefano Andreon</a>, <a href="/search/physics?searchtype=author&query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/physics?searchtype=author&query=Bianco%2C+F">Federica Bianco</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">Anthony Brown</a>, <a href="/search/physics?searchtype=author&query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/physics?searchtype=author&query=Coehlo%2C+P">Paula Coehlo</a>, <a href="/search/physics?searchtype=author&query=Cooke%2C+J">Jeffery Cooke</a>, <a href="/search/physics?searchtype=author&query=Crichton%2C+D">Daniel Crichton</a>, <a href="/search/physics?searchtype=author&query=Cui%2C+C">Chenzhou Cui</a>, <a href="/search/physics?searchtype=author&query=de+Carvalho%2C+R">Reinaldo de Carvalho</a>, <a href="/search/physics?searchtype=author&query=Doyle%2C+R">Richard Doyle</a>, <a href="/search/physics?searchtype=author&query=Eyer%2C+L">Laurent Eyer</a>, <a href="/search/physics?searchtype=author&query=Fanaroff%2C+B">Bernard Fanaroff</a>, <a href="/search/physics?searchtype=author&query=Fluke%2C+C">Christopher Fluke</a>, <a href="/search/physics?searchtype=author&query=Forster%2C+F">Francisco Forster</a>, <a href="/search/physics?searchtype=author&query=Govender%2C+K">Kevin Govender</a>, <a href="/search/physics?searchtype=author&query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/physics?searchtype=author&query=Hlo%C5%BEek%2C+R">Ren茅e Hlo啪ek</a>, <a href="/search/physics?searchtype=author&query=Irawati%2C+P">Puji Irawati</a>, <a href="/search/physics?searchtype=author&query=Kembhavi%2C+A">Ajit Kembhavi</a>, <a href="/search/physics?searchtype=author&query=Kollmeier%2C+J">Juna Kollmeier</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04623v1-abstract-short" style="display: inline;"> Policy Brief on "AstroInformatics, Recommendations for Global Collaboration", distilled from panel discussions during S20 Policy Webinar on Astroinformatics for Sustainable Development held on 6-7 July 2023. The deliberations encompassed a wide array of topics, including broad astroinformatics, sky surveys, large-scale international initiatives, global data repositories, space-related data, regi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04623v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04623v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04623v1-abstract-full" style="display: none;"> Policy Brief on "AstroInformatics, Recommendations for Global Collaboration", distilled from panel discussions during S20 Policy Webinar on Astroinformatics for Sustainable Development held on 6-7 July 2023. The deliberations encompassed a wide array of topics, including broad astroinformatics, sky surveys, large-scale international initiatives, global data repositories, space-related data, regional and international collaborative efforts, as well as workforce development within the field. These discussions comprehensively addressed the current status, notable achievements, and the manifold challenges that the field of astroinformatics currently confronts. The G20 nations present a unique opportunity due to their abundant human and technological capabilities, coupled with their widespread geographical representation. Leveraging these strengths, significant strides can be made in various domains. These include, but are not limited to, the advancement of STEM education and workforce development, the promotion of equitable resource utilization, and contributions to fields such as Earth Science and Climate Science. We present a concise overview, followed by specific recommendations that pertain to both ground-based and space data initiatives. Our team remains readily available to furnish further elaboration on any of these proposals as required. Furthermore, we anticipate further engagement during the upcoming G20 presidencies in Brazil (2024) and South Africa (2025) to ensure the continued discussion and realization of these objectives. The policy webinar took place during the G20 presidency in India (2023). Notes based on the seven panels will be separately published. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04623v1-abstract-full').style.display = 'none'; document.getElementById('2401.04623v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.14785">arXiv:2312.14785</a> <span> [<a href="https://arxiv.org/pdf/2312.14785">pdf</a>, <a href="https://arxiv.org/format/2312.14785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/19/05/P05018">10.1088/1748-0221/19/05/P05018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PANCAKE: a large-diameter cryogenic test platform with a flat floor for next generation multi-tonne liquid xenon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brown%2C+A">Adam Brown</a>, <a href="/search/physics?searchtype=author&query=Fischer%2C+H">Horst Fischer</a>, <a href="/search/physics?searchtype=author&query=Glade-Beucke%2C+R">Robin Glade-Beucke</a>, <a href="/search/physics?searchtype=author&query=Grigat%2C+J">Jaron Grigat</a>, <a href="/search/physics?searchtype=author&query=Kuger%2C+F">Fabian Kuger</a>, <a href="/search/physics?searchtype=author&query=Lindemann%2C+S">Sebastian Lindemann</a>, <a href="/search/physics?searchtype=author&query=Luce%2C+T">Tiffany Luce</a>, <a href="/search/physics?searchtype=author&query=Masson%2C+D">Darryl Masson</a>, <a href="/search/physics?searchtype=author&query=M%C3%BCller%2C+J">Julia M眉ller</a>, <a href="/search/physics?searchtype=author&query=Reininghaus%2C+J">Jens Reininghaus</a>, <a href="/search/physics?searchtype=author&query=Schumann%2C+M">Marc Schumann</a>, <a href="/search/physics?searchtype=author&query=Stevens%2C+A">Andrew Stevens</a>, <a href="/search/physics?searchtype=author&query=T%C3%B6nnies%2C+F">Florian T枚nnies</a>, <a href="/search/physics?searchtype=author&query=Toschi%2C+F">Francesco Toschi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.14785v2-abstract-short" style="display: inline;"> The PANCAKE facility is the world's largest liquid xenon test platform. Inside its cryostat with an internal diameter of 2.75 m, components for the next generation of liquid xenon experiments, such as DARWIN or XLZD, will be tested at their full scale. This is essential to ensure their successful operation. This work describes the facility, including its cryostat, cooling systems, xenon handling i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14785v2-abstract-full').style.display = 'inline'; document.getElementById('2312.14785v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.14785v2-abstract-full" style="display: none;"> The PANCAKE facility is the world's largest liquid xenon test platform. Inside its cryostat with an internal diameter of 2.75 m, components for the next generation of liquid xenon experiments, such as DARWIN or XLZD, will be tested at their full scale. This is essential to ensure their successful operation. This work describes the facility, including its cryostat, cooling systems, xenon handling infrastructure, and its monitoring and instrumentation. The inner vessel has a flat floor, which allows the full diameter to be used with a modest amount of xenon. This is a novel approach for such a large cryostat and is of interest for future large-scale experiments, where a standard torispherical head would require tonnes of additional xenon. Our current xenon inventory of 400 kg allows a liquid depth of about 2 cm in the inner cryostat vessel. We also describe the commissioning of the facility, which is now ready for component testing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.14785v2-abstract-full').style.display = 'none'; document.getElementById('2312.14785v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 19 (2024) P05018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.08602">arXiv:2311.08602</a> <span> [<a href="https://arxiv.org/pdf/2311.08602">pdf</a>, <a href="https://arxiv.org/format/2311.08602">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/aerospace10110960">10.3390/aerospace10110960 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Data downloaded via parachute from a NASA super-pressure balloon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sirks%2C+E+L">Ellen L. Sirks</a>, <a href="/search/physics?searchtype=author&query=Massey%2C+R">Richard Massey</a>, <a href="/search/physics?searchtype=author&query=Gill%2C+A+S">Ajay S. Gill</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+J">Jason Anderson</a>, <a href="/search/physics?searchtype=author&query=Benton%2C+S+J">Steven J. Benton</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+M">Anthony M. Brown</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+P">Paul Clark</a>, <a href="/search/physics?searchtype=author&query=English%2C+J">Joshua English</a>, <a href="/search/physics?searchtype=author&query=Everett%2C+S+W">Spencer W. Everett</a>, <a href="/search/physics?searchtype=author&query=Fraisse%2C+A+A">Aurelien A. Fraisse</a>, <a href="/search/physics?searchtype=author&query=Franco%2C+H">Hugo Franco</a>, <a href="/search/physics?searchtype=author&query=Hartley%2C+J+W">John W. Hartley</a>, <a href="/search/physics?searchtype=author&query=Harvey%2C+D">David Harvey</a>, <a href="/search/physics?searchtype=author&query=Holder%2C+B">Bradley Holder</a>, <a href="/search/physics?searchtype=author&query=Hunter%2C+A">Andrew Hunter</a>, <a href="/search/physics?searchtype=author&query=Huff%2C+E+M">Eric M. Huff</a>, <a href="/search/physics?searchtype=author&query=Hynous%2C+A">Andrew Hynous</a>, <a href="/search/physics?searchtype=author&query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+W+C">William C. Jones</a>, <a href="/search/physics?searchtype=author&query=Joyce%2C+N">Nikky Joyce</a>, <a href="/search/physics?searchtype=author&query=Kennedy%2C+D">Duncan Kennedy</a>, <a href="/search/physics?searchtype=author&query=Lagattuta%2C+D">David Lagattuta</a>, <a href="/search/physics?searchtype=author&query=Leung%2C+J+S+-">Jason S. -Y. Leung</a>, <a href="/search/physics?searchtype=author&query=Li%2C+L">Lun Li</a>, <a href="/search/physics?searchtype=author&query=Lishman%2C+S">Stephen Lishman</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.08602v1-abstract-short" style="display: inline;"> In April to May 2023, the superBIT telescope was lifted to the Earth's stratosphere by a helium-filled super-pressure balloon, to acquire astronomical imaging from above (99.5% of) the Earth's atmosphere. It was launched from New Zealand then, for 40 days, circumnavigated the globe five times at a latitude 40 to 50 degrees South. Attached to the telescope were four 'DRS' (Data Recovery System) cap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08602v1-abstract-full').style.display = 'inline'; document.getElementById('2311.08602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.08602v1-abstract-full" style="display: none;"> In April to May 2023, the superBIT telescope was lifted to the Earth's stratosphere by a helium-filled super-pressure balloon, to acquire astronomical imaging from above (99.5% of) the Earth's atmosphere. It was launched from New Zealand then, for 40 days, circumnavigated the globe five times at a latitude 40 to 50 degrees South. Attached to the telescope were four 'DRS' (Data Recovery System) capsules containing 5 TB solid state data storage, plus a GNSS receiver, Iridium transmitter, and parachute. Data from the telescope were copied to these, and two were dropped over Argentina. They drifted 61 km horizontally while they descended 32 km, but we predicted their descent vectors within 2.4 km: in this location, the discrepancy appears irreducible below 2 km because of high speed, gusty winds and local topography. The capsules then reported their own locations to within a few metres. We recovered the capsules and successfully retrieved all of superBIT's data - despite the telescope itself being later destroyed on landing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.08602v1-abstract-full').style.display = 'none'; document.getElementById('2311.08602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Aerospace 2023, 10, 960 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13780">arXiv:2310.13780</a> <span> [<a href="https://arxiv.org/pdf/2310.13780">pdf</a>, <a href="https://arxiv.org/format/2310.13780">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> A Modular Framework for Implicit 3D-0D Coupling in Cardiac Mechanics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brown%2C+A+L">Aaron L. Brown</a>, <a href="/search/physics?searchtype=author&query=Salvador%2C+M">Matteo Salvador</a>, <a href="/search/physics?searchtype=author&query=Shi%2C+L">Lei Shi</a>, <a href="/search/physics?searchtype=author&query=Pfaller%2C+M+R">Martin R. Pfaller</a>, <a href="/search/physics?searchtype=author&query=Hu%2C+Z">Zinan Hu</a>, <a href="/search/physics?searchtype=author&query=Harold%2C+K+E">Kaitlin E. Harold</a>, <a href="/search/physics?searchtype=author&query=Hsiai%2C+T">Tzung Hsiai</a>, <a href="/search/physics?searchtype=author&query=Vedula%2C+V">Vijay Vedula</a>, <a href="/search/physics?searchtype=author&query=Marsden%2C+A+L">Alison L. Marsden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13780v1-abstract-short" style="display: inline;"> In numerical simulations of cardiac mechanics, coupling the heart to a model of the circulatory system is essential for capturing physiological cardiac behavior. A popular and efficient technique is to use an electrical circuit analogy, known as a lumped parameter network or zero-dimensional (0D) fluid model, to represent blood flow throughout the cardiovascular system. Due to the strong physical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13780v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13780v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13780v1-abstract-full" style="display: none;"> In numerical simulations of cardiac mechanics, coupling the heart to a model of the circulatory system is essential for capturing physiological cardiac behavior. A popular and efficient technique is to use an electrical circuit analogy, known as a lumped parameter network or zero-dimensional (0D) fluid model, to represent blood flow throughout the cardiovascular system. Due to the strong physical interaction between the heart and the blood circulation, developing accurate and efficient numerical coupling methods remains an active area of research. In this work, we present a modular framework for implicitly coupling three-dimensional (3D) finite element simulations of cardiac mechanics to 0D models of blood circulation. The framework is modular in that the circulation model can be modified independently of the 3D finite element solver, and vice versa. The numerical scheme builds upon a previous work that combines 3D blood flow models with 0D circulation models (3D fluid - 0D fluid). Here, we extend it to couple 3D cardiac tissue mechanics models with 0D circulation models (3D structure - 0D fluid), showing that both mathematical problems can be solved within a unified coupling scheme. The effectiveness, temporal convergence, and computational cost of the algorithm are assessed through multiple examples relevant to the cardiovascular modeling community. Importantly, in an idealized left ventricle example, we show that the coupled model yields physiological pressure-volume loops and naturally recapitulates the isovolumic contraction and relaxation phases of the cardiac cycle without any additional numerical techniques. Furthermore, we provide a new derivation of the scheme inspired by the Approximate Newton Method of Chan (1985), explaining how the proposed numerical scheme combines the stability of monolithic approaches with the modularity and flexibility of partitioned approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13780v1-abstract-full').style.display = 'none'; document.getElementById('2310.13780v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.01255">arXiv:2310.01255</a> <span> [<a href="https://arxiv.org/pdf/2310.01255">pdf</a>, <a href="https://arxiv.org/format/2310.01255">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Numerical Analysis">math.NA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Physics-Dynamics-Chemistry Coupling Across Different Meshes in LFRic-Atmosphere: Formulation and Idealised Tests </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brown%2C+A">Alex Brown</a>, <a href="/search/physics?searchtype=author&query=Bendall%2C+T+M">Thomas M. Bendall</a>, <a href="/search/physics?searchtype=author&query=Boutle%2C+I">Ian Boutle</a>, <a href="/search/physics?searchtype=author&query=Melvin%2C+T">Thomas Melvin</a>, <a href="/search/physics?searchtype=author&query=Shipway%2C+B">Ben Shipway</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.01255v1-abstract-short" style="display: inline;"> The main components of an atmospheric model for numerical weather prediction are the dynamical core, which describes the resolved flow, and the physical parametrisations, which capture the effects of unresolved processes. Additionally, models used for air quality or climate applications may include a component that represents the evolution of chemicals and aerosols within the atmosphere. While tra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01255v1-abstract-full').style.display = 'inline'; document.getElementById('2310.01255v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.01255v1-abstract-full" style="display: none;"> The main components of an atmospheric model for numerical weather prediction are the dynamical core, which describes the resolved flow, and the physical parametrisations, which capture the effects of unresolved processes. Additionally, models used for air quality or climate applications may include a component that represents the evolution of chemicals and aerosols within the atmosphere. While traditionally all these components use the same mesh with the same resolution, we present a formulation for the different components to use a series of nested meshes, with different horizontal resolutions. This gives the model greater flexibility in the allocation of computational resources, so that resolution can be targeted to those parts which provide the greatest benefits in accuracy. The formulation presented here concerns the methods for mapping fields between meshes, and is designed for the compatible finite element discretisation used by LFRic-Atmosphere, the Met Office's next-generation atmosphere model. Key properties of the formulation include the consistent and conservative transport of tracers on a mesh that is coarser than the dynamical core, and the handling of moisture to ensure mass conservation without generation of unphysical negative values. Having presented the formulation, it is then demonstrated through a series of idealised test cases which show the feasibility of this approach. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.01255v1-abstract-full').style.display = 'none'; document.getElementById('2310.01255v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.15202">arXiv:2309.15202</a> <span> [<a href="https://arxiv.org/pdf/2309.15202">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Tensor-valued and frequency-dependent diffusion MRI and magnetization transfer saturation MRI evolution during adult mouse brain maturation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Rahman%2C+N">Naila Rahman</a>, <a href="/search/physics?searchtype=author&query=Hamilton%2C+J">Jake Hamilton</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">Kathy Xu</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">Arthur Brown</a>, <a href="/search/physics?searchtype=author&query=Baron%2C+C+A">Corey A. Baron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.15202v1-abstract-short" style="display: inline;"> Although rodent models are a predominant study model in neuroscience research, research investigating healthy rodent brain maturation remains limited. This motivates further study of normal brain maturation in rodents to exclude confounds of developmental changes from interpretations of disease mechanisms. 11 C57Bl/6 mice (6 males) were scanned longitudinally at 3, 4, 5, and 8 months of age using… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15202v1-abstract-full').style.display = 'inline'; document.getElementById('2309.15202v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.15202v1-abstract-full" style="display: none;"> Although rodent models are a predominant study model in neuroscience research, research investigating healthy rodent brain maturation remains limited. This motivates further study of normal brain maturation in rodents to exclude confounds of developmental changes from interpretations of disease mechanisms. 11 C57Bl/6 mice (6 males) were scanned longitudinally at 3, 4, 5, and 8 months of age using frequency-dependent and tensor-valued diffusion MRI (dMRI), and Magnetization Transfer saturation (MTsat) MRI. Total kurtosis showed significant increases over time in all regions, which was driven by increases in isotropic kurtosis while anisotropic kurtosis remained stable. Increases in total and isotropic kurtosis with age were matched with increases in MTsat. Quadratic fits revealed that most metrics show a maximum/minimum around 5-6 months of age. Most dMRI metrics revealed significantly different trajectories between males and females, while the MT metrics did not. Linear fits between kurtosis and MT metrics highlighted that changes in total kurtosis found throughout normal brain development are driven by isotropic kurtosis, while differences in total kurtosis between brain regions are driven by anisotropic kurtosis. Overall, the trends observed in conventional dMRI and MT metrics are comparable to previous studies on normal brain development, while the trajectories of our more advanced dMRI metrics provide novel insight. Based on the developmental trajectories of tensor-valued dMRI and MT metrics, our results suggest myelination during brain maturation is not a main contributor to microscopic diffusion anisotropy and anisotropic kurtosis in axons. For studies that only calculate total kurtosis, we suggest caution in attributing neurobiological changes to changes in total kurtosis as we show here constant anisotropic kurtosis in the presence of increasing myelin content. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.15202v1-abstract-full').style.display = 'none'; document.getElementById('2309.15202v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Naila Rahman and Jake Hamilton contributed equally as co-first authors. 41 pages, 6 figure, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11996">arXiv:2309.11996</a> <span> [<a href="https://arxiv.org/pdf/2309.11996">pdf</a>, <a href="https://arxiv.org/format/2309.11996">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-12296-y">10.1140/epjc/s10052-023-12296-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of the field cage for the XENONnT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Cichon%2C+D">D. Cichon</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11996v1-abstract-short" style="display: inline;"> The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11996v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11996v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11996v1-abstract-full" style="display: none;"> The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to ${}^{83m}\mathrm{Kr}$ calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11996v1-abstract-full').style.display = 'none'; document.getElementById('2309.11996v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84, 138 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02319">arXiv:2309.02319</a> <span> [<a href="https://arxiv.org/pdf/2309.02319">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1162/imag_a_00055">10.1162/imag_a_00055 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Robust frequency-dependent diffusion kurtosis computation using an efficient direction scheme, axisymmetric modelling, and spatial regularization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hamilton%2C+J">J. Hamilton</a>, <a href="/search/physics?searchtype=author&query=Xu%2C+K">K. Xu</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Baron%2C+C+A">C. A. Baron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02319v1-abstract-short" style="display: inline;"> Frequency-dependent diffusion MRI (dMRI) using oscillating gradient encoding and diffusion kurtosis imaging (DKI) techniques have been shown to provide additional insight into tissue microstructure compared to conventional dMRI. However, a technical challenge when combining these techniques is that the generation of the large b-values required for DKI is difficult when using oscillating gradient d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02319v1-abstract-full').style.display = 'inline'; document.getElementById('2309.02319v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02319v1-abstract-full" style="display: none;"> Frequency-dependent diffusion MRI (dMRI) using oscillating gradient encoding and diffusion kurtosis imaging (DKI) techniques have been shown to provide additional insight into tissue microstructure compared to conventional dMRI. However, a technical challenge when combining these techniques is that the generation of the large b-values required for DKI is difficult when using oscillating gradient diffusion encoding. While efficient encoding schemes can enable larger b-values by maximizing multiple gradient channels simultaneously, they do not have sufficient directions to enable fitting of the full kurtosis tensor. Accordingly, we investigate a DKI fitting algorithm that combines axisymmetric DKI fitting, a prior that enforces the same axis of symmetry for all oscillating gradient frequencies, and spatial regularization, which together enable robust DKI fitting for a 10-direction scheme that offers double the b-value compared to traditional direction schemes. Using data from mice (oscillating frequencies of 0, 60, and 120 Hz) and humans (0 Hz only), we first show that axisymmetric modelling is advantageous over full kurtosis tensor fitting in terms of preserving contrast and reducing noise in DKI maps, and improved DKI map quality when using an efficient encoding scheme with averaging as compared to a traditional scheme with more encoding directions. We also demonstrate how spatial regularization during fitting preserves spatial features better than using Gaussian filtering prior to fitting, which is an oft-reported preprocessing step for DKI, and that enforcing consistent axes of symmetries across frequencies improves fitting quality. Thus, the use of an efficient 10-direction scheme combined with the proposed DKI fitting algorithm provides robust maps of frequency-dependent directional kurtosis parameters that can be used to explore novel biomarkers for various pathologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02319v1-abstract-full').style.display = 'none'; document.getElementById('2309.02319v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 9 figures, 2 supplementary figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Imaging Neuroscience 2 (2024) 1-22 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.05108">arXiv:2308.05108</a> <span> [<a href="https://arxiv.org/pdf/2308.05108">pdf</a>, <a href="https://arxiv.org/format/2308.05108">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Pulse Sequences to Observe NMR Coupled Relaxation in AX$_n$ Spin Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brown%2C+R+A">Russell A. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.05108v12-abstract-short" style="display: inline;"> NMR pulse sequences that are modifications of the HSQC experiment are proposed to observe ${}^{13}\textrm{C}$-coupled relaxation in AX, AX$_2$, and AX$_3$ spin systems. ${}^{13}\textrm{CH}$ and ${}^{13}{\textrm{CH}}_2$ moieties are discussed as exemplary AX and AX$_2$ spin systems. The pulse sequences may be used to produce 1D or 2D proton NMR spectra. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.05108v12-abstract-full" style="display: none;"> NMR pulse sequences that are modifications of the HSQC experiment are proposed to observe ${}^{13}\textrm{C}$-coupled relaxation in AX, AX$_2$, and AX$_3$ spin systems. ${}^{13}\textrm{CH}$ and ${}^{13}{\textrm{CH}}_2$ moieties are discussed as exemplary AX and AX$_2$ spin systems. The pulse sequences may be used to produce 1D or 2D proton NMR spectra. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.05108v12-abstract-full').style.display = 'none'; document.getElementById('2308.05108v12-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.02315">arXiv:2308.02315</a> <span> [<a href="https://arxiv.org/pdf/2308.02315">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Autonomous Discovery of Tough Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Snapp%2C+K+L">Kelsey L. Snapp</a>, <a href="/search/physics?searchtype=author&query=Verdier%2C+B">Benjamin Verdier</a>, <a href="/search/physics?searchtype=author&query=Gongora%2C+A">Aldair Gongora</a>, <a href="/search/physics?searchtype=author&query=Silverman%2C+S">Samuel Silverman</a>, <a href="/search/physics?searchtype=author&query=Adesiji%2C+A+D">Adedire D. Adesiji</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+E+F">Elise F. Morgan</a>, <a href="/search/physics?searchtype=author&query=Lawton%2C+T+J">Timothy J. Lawton</a>, <a href="/search/physics?searchtype=author&query=Whiting%2C+E">Emily Whiting</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+A">Keith A. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.02315v1-abstract-short" style="display: inline;"> A key feature of mechanical structures ranging from crumple zones in cars to padding in packaging is their ability to provide protection by absorbing mechanical energy. Designing structures to efficiently meet these needs has profound implications on safety, weight, efficiency, and cost. Despite the wide varieties of systems that must be protected, a unifying design principle is that protective st… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02315v1-abstract-full').style.display = 'inline'; document.getElementById('2308.02315v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.02315v1-abstract-full" style="display: none;"> A key feature of mechanical structures ranging from crumple zones in cars to padding in packaging is their ability to provide protection by absorbing mechanical energy. Designing structures to efficiently meet these needs has profound implications on safety, weight, efficiency, and cost. Despite the wide varieties of systems that must be protected, a unifying design principle is that protective structures should exhibit a high energy-absorbing efficiency, or that they should absorb as much energy as possible without mechanical stresses rising to levels that damage the system. However, progress in increasing the efficiency of such structures has been slow due to the need to test using tedious and manual physical experiments. Here, we overcome this bottleneck through the use of a self-driving lab to perform >25,000 machine learning-guided experiments in a parameter space with at minimum trillions of possible designs. Through these experiments, we realized the highest mechanical energy absorbing efficiency recorded to date. Furthermore, these experiments uncover principles that can guide design for both elastic and plastic classes of materials by incorporating both geometry and material into a single model. This work shows the potential for sustained operation of self-driving labs with a strong human-machine collaboration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.02315v1-abstract-full').style.display = 'none'; document.getElementById('2308.02315v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16340">arXiv:2306.16340</a> <span> [<a href="https://arxiv.org/pdf/2306.16340">pdf</a>, <a href="https://arxiv.org/format/2306.16340">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-12298-w">10.1140/epjc/s10052-023-12298-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmogenic background simulations for the DARWIN observatory at different underground locations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+N">N. Bell</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Boehm%2C+C">C. Boehm</a>, <a href="/search/physics?searchtype=author&query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16340v1-abstract-short" style="display: inline;"> Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($0谓尾尾$), and axion-like particles (ALPs). Although cosmic muons are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16340v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16340v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16340v1-abstract-full" style="display: none;"> Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($0谓尾尾$), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We determine the production rates of unstable xenon isotopes and tritium due to muon-included neutron fluxes and muon-induced spallation. These are expected to represent the dominant contributions to cosmogenic backgrounds and thus the most relevant for site selection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16340v1-abstract-full').style.display = 'none'; document.getElementById('2306.16340v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11871">arXiv:2306.11871</a> <span> [<a href="https://arxiv.org/pdf/2306.11871">pdf</a>, <a href="https://arxiv.org/format/2306.11871">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for events in XENON1T associated with Gravitational Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Anto艅 Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11871v2-abstract-short" style="display: inline;"> We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil, electronic recoil, CE$谓$NS, and S2-only channels within $\pm$ 500 seconds of observations of the gravitational wave signals GW170104, GW170729, GW170817, GW170818, and GW1… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11871v2-abstract-full').style.display = 'inline'; document.getElementById('2306.11871v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11871v2-abstract-full" style="display: none;"> We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil, electronic recoil, CE$谓$NS, and S2-only channels within $\pm$ 500 seconds of observations of the gravitational wave signals GW170104, GW170729, GW170817, GW170818, and GW170823. We use this null result to constrain mono-energetic neutrinos and Beyond Standard Model particles emitted in the closest coalescence GW170817, a binary neutron star merger. We set new upper limits on the fluence (time-integrated flux) of coincident neutrinos down to 17 keV at 90% confidence level. Furthermore, we constrain the product of coincident fluence and cross section of Beyond Standard Model particles to be less than $10^{-29}$ cm$^2$/cm$^2$ in the [5.5-210] keV energy range at 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11871v2-abstract-full').style.display = 'none'; document.getElementById('2306.11871v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.03614">arXiv:2306.03614</a> <span> [<a href="https://arxiv.org/pdf/2306.03614">pdf</a>, <a href="https://arxiv.org/format/2306.03614">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5194/egusphere-2023-647">10.5194/egusphere-2023-647 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sergeev%2C+D+E">Denis E. Sergeev</a>, <a href="/search/physics?searchtype=author&query=Mayne%2C+N+J">Nathan J. Mayne</a>, <a href="/search/physics?searchtype=author&query=Bendall%2C+T">Thomas Bendall</a>, <a href="/search/physics?searchtype=author&query=Boutle%2C+I+A">Ian A. Boutle</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">Alex Brown</a>, <a href="/search/physics?searchtype=author&query=Kavcic%2C+I">Iva Kavcic</a>, <a href="/search/physics?searchtype=author&query=Kent%2C+J">James Kent</a>, <a href="/search/physics?searchtype=author&query=Kohary%2C+K">Krisztian Kohary</a>, <a href="/search/physics?searchtype=author&query=Manners%2C+J">James Manners</a>, <a href="/search/physics?searchtype=author&query=Melvin%2C+T">Thomas Melvin</a>, <a href="/search/physics?searchtype=author&query=Olivier%2C+E">Enrico Olivier</a>, <a href="/search/physics?searchtype=author&query=Ragta%2C+L+K">Lokesh K. Ragta</a>, <a href="/search/physics?searchtype=author&query=Shipway%2C+B+J">Ben J. Shipway</a>, <a href="/search/physics?searchtype=author&query=Wakelin%2C+J">Jon Wakelin</a>, <a href="/search/physics?searchtype=author&query=Wood%2C+N">Nigel Wood</a>, <a href="/search/physics?searchtype=author&query=Zerroukat%2C+M">Mohamed Zerroukat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.03614v1-abstract-short" style="display: inline;"> We demonstrate that LFRic-Atmosphere, a model built using the Met Office's GungHo dynamical core, is able to reproduce idealised large-scale atmospheric circulation patterns specified by several widely-used benchmark recipes. This is motivated by the rapid rate of exoplanet discovery and the ever-growing need for numerical modelling and characterisation of their atmospheres. Here we present LFRic-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03614v1-abstract-full').style.display = 'inline'; document.getElementById('2306.03614v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.03614v1-abstract-full" style="display: none;"> We demonstrate that LFRic-Atmosphere, a model built using the Met Office's GungHo dynamical core, is able to reproduce idealised large-scale atmospheric circulation patterns specified by several widely-used benchmark recipes. This is motivated by the rapid rate of exoplanet discovery and the ever-growing need for numerical modelling and characterisation of their atmospheres. Here we present LFRic-Atmosphere's results for the idealised tests imitating circulation regimes commonly used in the exoplanet modelling community. The benchmarks include three analytic forcing cases: the standard Held-Suarez test, the Menou-Rauscher Earth-like test, and the Merlis-Schneider Tidally Locked Earth test. Qualitatively, LFRic-Atmosphere agrees well with other numerical models and shows excellent conservation properties in terms of total mass, angular momentum and kinetic energy. We then use LFRic-Atmosphere with a more realistic representation of physical processes (radiation, subgrid-scale mixing, convection, clouds) by configuring it for the four TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI) scenarios. This is the first application of LFRic-Atmosphere to a possible climate of a confirmed terrestrial exoplanet. LFRic-Atmosphere reproduces the THAI scenarios within the spread of the existing models across a range of key climatic variables. Our work shows that LFRic-Atmosphere performs well in the seven benchmark tests for terrestrial atmospheres, justifying its use in future exoplanet climate studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.03614v1-abstract-full').style.display = 'none'; document.getElementById('2306.03614v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 9(12) figures; Submitted to Geoscientific Model Development; Comments are welcome (see Discussion tab on the journal's website: https://egusphere.copernicus.org/preprints/2023/egusphere-2023-647)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.19119">arXiv:2305.19119</a> <span> [<a href="https://arxiv.org/pdf/2305.19119">pdf</a>, <a href="https://arxiv.org/format/2305.19119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.041034">10.1103/PhysRevX.13.041034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mid-circuit qubit measurement and rearrangement in a $^{171}$Yb atomic array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Norcia%2C+M+A">M. A. Norcia</a>, <a href="/search/physics?searchtype=author&query=Cairncross%2C+W+B">W. B. Cairncross</a>, <a href="/search/physics?searchtype=author&query=Barnes%2C+K">K. Barnes</a>, <a href="/search/physics?searchtype=author&query=Battaglino%2C+P">P. Battaglino</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+M+O">M. O. Brown</a>, <a href="/search/physics?searchtype=author&query=Cassella%2C+K">K. Cassella</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C+-">C. -A. Chen</a>, <a href="/search/physics?searchtype=author&query=Coxe%2C+R">R. Coxe</a>, <a href="/search/physics?searchtype=author&query=Crow%2C+D">D. Crow</a>, <a href="/search/physics?searchtype=author&query=Epstein%2C+J">J. Epstein</a>, <a href="/search/physics?searchtype=author&query=Griger%2C+C">C. Griger</a>, <a href="/search/physics?searchtype=author&query=Jones%2C+A+M+W">A. M. W. Jones</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+H">H. Kim</a>, <a href="/search/physics?searchtype=author&query=Kindem%2C+J+M">J. M. Kindem</a>, <a href="/search/physics?searchtype=author&query=King%2C+J">J. King</a>, <a href="/search/physics?searchtype=author&query=Kondov%2C+S+S">S. S. Kondov</a>, <a href="/search/physics?searchtype=author&query=Kotru%2C+K">K. Kotru</a>, <a href="/search/physics?searchtype=author&query=Lauigan%2C+J">J. Lauigan</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">M. Li</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+M">M. Lu</a>, <a href="/search/physics?searchtype=author&query=Megidish%2C+E">E. Megidish</a>, <a href="/search/physics?searchtype=author&query=Marjanovic%2C+J">J. Marjanovic</a>, <a href="/search/physics?searchtype=author&query=McDonald%2C+M">M. McDonald</a>, <a href="/search/physics?searchtype=author&query=Mittiga%2C+T">T. Mittiga</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.19119v3-abstract-short" style="display: inline;"> Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillae) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom based platforms, a scalable, high-fidelity approach to mid-circuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19119v3-abstract-full').style.display = 'inline'; document.getElementById('2305.19119v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.19119v3-abstract-full" style="display: none;"> Measurement-based quantum error correction relies on the ability to determine the state of a subset of qubits (ancillae) within a processor without revealing or disturbing the state of the remaining qubits. Among neutral-atom based platforms, a scalable, high-fidelity approach to mid-circuit measurement that retains the ancilla qubits in a state suitable for future operations has not yet been demonstrated. In this work, we perform imaging using a narrow-linewidth transition in an array of tweezer-confined $^{171}$Yb atoms to demonstrate nondestructive state-selective and site-selective detection. By applying site-specific light shifts, selected atoms within the array can be hidden from imaging light, which allows a subset of qubits to be measured while causing only percent-level errors on the remaining qubits. As a proof-of-principle demonstration of conditional operations based on the results of the mid-circuit measurements, and of our ability to reuse ancilla qubits, we perform conditional refilling of ancilla sites to correct for occasional atom loss, while maintaining the coherence of data qubits. Looking towards true continuous operation, we demonstrate loading of a magneto-optical trap with a minimal degree of qubit decoherence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.19119v3-abstract-full').style.display = 'none'; document.getElementById('2305.19119v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.17839">arXiv:2305.17839</a> <span> [<a href="https://arxiv.org/pdf/2305.17839">pdf</a>, <a href="https://arxiv.org/format/2305.17839">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168397">10.1016/j.nima.2023.168397 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absolute light yield of the EJ-204 plastic scintillator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Brown%2C+J+A">J. A. Brown</a>, <a href="/search/physics?searchtype=author&query=Laplace%2C+T+A">T. A. Laplace</a>, <a href="/search/physics?searchtype=author&query=Goldblum%2C+B+L">B. L. Goldblum</a>, <a href="/search/physics?searchtype=author&query=Manfredi%2C+J+J">J. J. Manfredi</a>, <a href="/search/physics?searchtype=author&query=Johnson%2C+T+S">T. S. Johnson</a>, <a href="/search/physics?searchtype=author&query=Moretti%2C+F">F. Moretti</a>, <a href="/search/physics?searchtype=author&query=Venkatraman%2C+A">A. Venkatraman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.17839v1-abstract-short" style="display: inline;"> The absolute light yield of a scintillator, defined as the number of scintillation photons produced per unit energy deposited, is a useful quantity for scintillator development, research, and applications. Yet, literature data on the absolute light yield of organic scintillators are limited. The goal of this work is to assess the suitability of the EJ-204 plastic scintillator from Eljen Technology… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17839v1-abstract-full').style.display = 'inline'; document.getElementById('2305.17839v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.17839v1-abstract-full" style="display: none;"> The absolute light yield of a scintillator, defined as the number of scintillation photons produced per unit energy deposited, is a useful quantity for scintillator development, research, and applications. Yet, literature data on the absolute light yield of organic scintillators are limited. The goal of this work is to assess the suitability of the EJ-204 plastic scintillator from Eljen Technology to serve as a reference standard for measurements of the absolute light yield of organic scintillators. Four EJ-204 samples were examined: two manufactured approximately four months prior and stored in high-purity nitrogen, and two aged approximately eleven years and stored in ambient air. The scintillator response was measured using a large-area avalanche photodiode calibrated using low energy $纬$-ray and X-ray sources. The product of the quantum efficiency of the photodetector and light collection efficiency of the housing was characterized using an experimentally-benchmarked optical photon simulation. The average absolute light yield of the fresh samples, 9100 $\pm$ 400 photons per MeV, is lower than the manufacturer-reported value of 10400 photons per MeV. Moreover, the aged samples demonstrated significantly lower light yields, deviating from the manufacturer specification by as much as 26\%. These results are consistent with recent work showcasing environmental aging in plastic scintillators and suggest that experimenters should use caution when deploying plastic scintillators in photon counting applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.17839v1-abstract-full').style.display = 'none'; document.getElementById('2305.17839v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00971">arXiv:2305.00971</a> <span> [<a href="https://arxiv.org/pdf/2305.00971">pdf</a>, <a href="https://arxiv.org/format/2305.00971">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Subcellular Processes">q-bio.SC</span> </div> </div> <p class="title is-5 mathjax"> Tube geometry controls protein cluster conformation and stability on the endoplasmic reticulum surface </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kischuck%2C+L+T">Liam T Kischuck</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+I">Aidan I Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00971v1-abstract-short" style="display: inline;"> The endoplasmic reticulum (ER), a cellular organelle that forms a cell-spanning network of tubes and sheets, is an important location of protein synthesis and folding. When the ER experiences sustained unfolded protein stress, IRE1 proteins embedded in the ER membrane activate and assemble into clusters as part of the unfolded protein response (UPR). We use kinetic Monte Carlo simulations to explo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00971v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00971v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00971v1-abstract-full" style="display: none;"> The endoplasmic reticulum (ER), a cellular organelle that forms a cell-spanning network of tubes and sheets, is an important location of protein synthesis and folding. When the ER experiences sustained unfolded protein stress, IRE1 proteins embedded in the ER membrane activate and assemble into clusters as part of the unfolded protein response (UPR). We use kinetic Monte Carlo simulations to explore IRE1 clustering dynamics on the surface of ER tubes. While initially growing clusters are approximately round, once a cluster is sufficiently large a shorter interface length can be achieved by `wrapping' around the ER tube. A wrapped cluster can grow without further interface length increases. Relative to wide tubes, narrower tubes enable cluster wrapping at smaller cluster sizes. Our simulations show that wrapped clusters on narrower tubes grow more rapidly, evaporate more slowly, and require a lower protein concentration to grow compared to equal-area round clusters on wider tubes. These results suggest that cluster wrapping, facilitated by narrower tubes, could be an important factor in the growth and stability of IRE1 clusters and thus impact the persistence of the UPR, connecting geometry to signaling behavior. This work is consistent with recent experimental observations of IRE1 clusters wrapped around narrow tubes in the ER network. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00971v1-abstract-full').style.display = 'none'; document.getElementById('2305.00971v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10931">arXiv:2304.10931</a> <span> [<a href="https://arxiv.org/pdf/2304.10931">pdf</a>, <a href="https://arxiv.org/format/2304.10931">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.261002">10.1103/PhysRevLett.130.261002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Heavy Dark Matter near the Planck Mass with XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Cichon%2C+D">D. Cichon</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10931v1-abstract-short" style="display: inline;"> Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10931v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10931v1-abstract-full" style="display: none;"> Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This work places strong constraints on spin-independent interactions of dark matter particles with a mass between 1$\times$10$^{12}\,$GeV/c$^2$ and 2$\times$10$^{17}\,$GeV/c$^2$. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross-sections for dark matter particles with masses close to the Planck scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10931v1-abstract-full').style.display = 'none'; document.getElementById('2304.10931v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 261002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.15580">arXiv:2303.15580</a> <span> [<a href="https://arxiv.org/pdf/2303.15580">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D3AY00687E">10.1039/D3AY00687E <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Screening for electrically conductive defects in thin functional films using electrochemiluminescence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Quinn%2C+H">Harley Quinn</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+W">Wenlu Wang</a>, <a href="/search/physics?searchtype=author&query=Werner%2C+J+G">J枚rg G. Werner</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+A">Keith A. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.15580v1-abstract-short" style="display: inline;"> Multifunctional thin films in energy-related devices often must be electrically insulating where a single nanoscale defect can result in complete device-scale failure. Locating and characterizing such defects presents a fundamental problem where high-resolution imaging methods are needed to find defects, but imaging with high spatial resolution limits the field of view and thus the measurement thr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15580v1-abstract-full').style.display = 'inline'; document.getElementById('2303.15580v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.15580v1-abstract-full" style="display: none;"> Multifunctional thin films in energy-related devices often must be electrically insulating where a single nanoscale defect can result in complete device-scale failure. Locating and characterizing such defects presents a fundamental problem where high-resolution imaging methods are needed to find defects, but imaging with high spatial resolution limits the field of view and thus the measurement throughput. Here, we present a novel high-throughput method for detecting sub-micron defects in insulating thin films by leveraging the electrochemiluminescence (ECL) of luminol. Through a systematic study of reagent concentrations, buffers, voltage, and excitation time, we identify optimized conditions at which it is possible to detect features with areas ~500 times smaller than the area interrogated by a single pixel of the camera, showing high-throughput detection of sub-micron defects. In particular, we estimate the minimum detectable features to be lines as narrow as 2.5 nm in width and pinholes as small as 35 nm in radius. We further explore this method by using it to characterize a nominally insulating phenol film and find conductive defects that are cross-correlated with high-resolution atomic force microscopy to provide feedback to synthesis. Given the inherent parallelizability and scalability of this assay, it is expected to have a major impact on the automated discovery of multifunctional films. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.15580v1-abstract-full').style.display = 'none'; document.getElementById('2303.15580v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 5 figures, submitted to Langmuir</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14729">arXiv:2303.14729</a> <span> [<a href="https://arxiv.org/pdf/2303.14729">pdf</a>, <a href="https://arxiv.org/format/2303.14729">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.041003">10.1103/PhysRevLett.131.041003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a> , et al. (141 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14729v2-abstract-short" style="display: inline;"> We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of $5.9$ t. During the approximately 1.1 tonne-year exposure used for this search, the intrinsic $^{85}$Kr and $^{222}$Rn concentrations in the liquid targe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14729v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14729v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14729v2-abstract-full" style="display: none;"> We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of $5.9$ t. During the approximately 1.1 tonne-year exposure used for this search, the intrinsic $^{85}$Kr and $^{222}$Rn concentrations in the liquid target were reduced to unprecedentedly low levels, giving an electronic recoil background rate of $(15.8\pm1.3)~\mathrm{events}/(\mathrm{t\cdot y \cdot keV})$ in the region of interest. A blind analysis of nuclear recoil events with energies between $3.3$ keV and $60.5$ keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of $2.58\times 10^{-47}~\mathrm{cm}^2$ for a WIMP mass of $28~\mathrm{GeV}/c^2$ at $90\%$ confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14729v2-abstract-full').style.display = 'none'; document.getElementById('2303.14729v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Limit points are included in the submission file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 041003 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13700">arXiv:2303.13700</a> <span> [<a href="https://arxiv.org/pdf/2303.13700">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> </div> </div> <p class="title is-5 mathjax"> Bayesian Reconstruction of Magnetic Resonance Images using Gaussian Processes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Xu%2C+Y">Yihong Xu</a>, <a href="/search/physics?searchtype=author&query=Farris%2C+C+W">Chad W. Farris</a>, <a href="/search/physics?searchtype=author&query=Anderson%2C+S+W">Stephan W. Anderson</a>, <a href="/search/physics?searchtype=author&query=Zhang%2C+X">Xin Zhang</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+A">Keith A. Brown</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13700v1-abstract-short" style="display: inline;"> A central goal of modern magnetic resonance imaging (MRI) is to reduce the time required to produce high-quality images. Efforts have included hardware and software innovations such as parallel imaging, compressed sensing, and deep learning-based reconstruction. Here, we propose and demonstrate a Bayesian method to build statistical libraries of magnetic resonance (MR) images in k-space and use th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13700v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13700v1-abstract-full" style="display: none;"> A central goal of modern magnetic resonance imaging (MRI) is to reduce the time required to produce high-quality images. Efforts have included hardware and software innovations such as parallel imaging, compressed sensing, and deep learning-based reconstruction. Here, we propose and demonstrate a Bayesian method to build statistical libraries of magnetic resonance (MR) images in k-space and use these libraries to identify optimal subsampling paths and reconstruction processes. Specifically, we compute a multivariate normal distribution based upon Gaussian processes using a publicly available library of T1-weighted images of healthy brains. We combine this library with physics-informed envelope functions to only retain meaningful correlations in k-space. This covariance function is then used to select a series of ring-shaped subsampling paths using Bayesian optimization such that they optimally explore space while remaining practically realizable in commercial MRI systems. Combining optimized subsampling paths found for a range of images, we compute a generalized sampling path that, when used for novel images, produces superlative structural similarity and error in comparison to previously reported reconstruction processes (i.e. 96.3% structural similarity and <0.003 normalized mean squared error from sampling only 12.5% of the k-space data). Finally, we use this reconstruction process on pathological data without retraining to show that reconstructed images are clinically useful for stroke identification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13700v1-abstract-full').style.display = 'none'; document.getElementById('2303.13700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.05776">arXiv:2303.05776</a> <span> [<a href="https://arxiv.org/pdf/2303.05776">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-648X/ab1f3d">10.1088/1361-648X/ab1f3d <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon Diffusion in Microscale Solids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Das%2C+A">Avijit Das</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A+K">Andrew K. Brown</a>, <a href="/search/physics?searchtype=author&query=Mah%2C+M+L">Merlin L. Mah</a>, <a href="/search/physics?searchtype=author&query=Talghader%2C+J+J">Joseph J. Talghader</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.05776v1-abstract-short" style="display: inline;"> This paper presents a theoretical and experimental investigation of photon diffusion in highly absorbing microscale graphite. An Nd:YAG continuous wave (CW) laser is used to heat the graphite samples with thicknesses of 40 microns and 100 microns. Optical intensities of 10 kW/cm^2 and 20 kW/cm^2 are used in laser heating. The graphite samples are heated to temperatures of thousands of kelvins with… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05776v1-abstract-full').style.display = 'inline'; document.getElementById('2303.05776v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.05776v1-abstract-full" style="display: none;"> This paper presents a theoretical and experimental investigation of photon diffusion in highly absorbing microscale graphite. An Nd:YAG continuous wave (CW) laser is used to heat the graphite samples with thicknesses of 40 microns and 100 microns. Optical intensities of 10 kW/cm^2 and 20 kW/cm^2 are used in laser heating. The graphite samples are heated to temperatures of thousands of kelvins within milliseconds, which are recorded by a 2-color, high-speed pyrometer. To compare the observed temperatures, the differential equation of heat conduction is solved across the samples with proper initial and boundary conditions. In addition to lattice vibrations, photon diffusion is incorporated into the analytical model of thermal conductivity for solving the heat equation. The numerical simulations showed close matching between experiment and theory only when including the photon diffusion equations and existing material properties data found in the previously published works with no fitting constants. The results indicate that the commonly-overlooked mechanism of photon diffusion dominates the heat transfer of many microscale structures near their evaporation temperatures. In addition, the treatment explains the discrepancies between thermal conductivity measurements and theory that were previously described in the scientific literature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.05776v1-abstract-full').style.display = 'none'; document.getElementById('2303.05776v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 7 figures, (N.B. there is a typo and minor correction in Table 1 and References in the online version of the journal, corrected and highlighted in this PDF)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys.: Condens. Matter 31 (2019) 335703 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11032">arXiv:2212.11032</a> <span> [<a href="https://arxiv.org/pdf/2212.11032">pdf</a>, <a href="https://arxiv.org/format/2212.11032">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/07/P07054">10.1088/1748-0221/18/07/P07054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Triggerless Data Acquisition System of the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11032v1-abstract-short" style="display: inline;"> The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commerc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11032v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11032v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11032v1-abstract-full" style="display: none;"> The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at $\times10$ and $\times0.5$ gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within $\mathcal{O}\left(10\text{ s}\right)$ for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed $\sim500$ MB/s during calibration. Livetime during normal operation exceeds $99\%$ and is $\sim90\%$ during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11032v1-abstract-full').style.display = 'none'; document.getElementById('2212.11032v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.00218">arXiv:2212.00218</a> <span> [<a href="https://arxiv.org/pdf/2212.00218">pdf</a>, <a href="https://arxiv.org/format/2212.00218">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> Secondary Neutron Production from Thick Target Deuteron Breakup </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Morrell%2C+J+T">Jonathan T. Morrell</a>, <a href="/search/physics?searchtype=author&query=Voyles%2C+A+S">Andrew S. Voyles</a>, <a href="/search/physics?searchtype=author&query=Batchelder%2C+J+C">Jon C. Batchelder</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+J+A">Joshua A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bernstein%2C+L+A">Lee A. Bernstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.00218v1-abstract-short" style="display: inline;"> Thick target deuteron breakup is a variable-energy accelerator-based source of high-energy neutrons, with applications in fundamental and applied nuclear science and engineering. However, the breakup mechanism remains poorly understood, and data on neutron yields from thick target breakup remains relatively scarce. In this work, the double-differential neutron yields from deuteron breakup have bee… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00218v1-abstract-full').style.display = 'inline'; document.getElementById('2212.00218v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.00218v1-abstract-full" style="display: none;"> Thick target deuteron breakup is a variable-energy accelerator-based source of high-energy neutrons, with applications in fundamental and applied nuclear science and engineering. However, the breakup mechanism remains poorly understood, and data on neutron yields from thick target breakup remains relatively scarce. In this work, the double-differential neutron yields from deuteron breakup have been measured on a thick beryllium target at $蔚_d=33$ and 40 MeV, using both time-of-flight and activation techniques. We have also introduced a simple hybrid model for the double-differential deuteron breakup cross section, applicable in the $蔚_d=10$--$100$ MeV energy range on light ($Z\leq 6$) targets. This model features four empirical parameters that have been fit to reproduce experimental breakup measurements on beryllium targets, using the method of least-squares. It was shown that these parameters extrapolate well to higher energies, and to other low-Z target materials. We also include optimization of the parameters that modify the Kalbach systematics for compound and pre-equilibrium reactions, in order to better reproduce the experimental data for beryllium targets at large angles. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.00218v1-abstract-full').style.display = 'none'; document.getElementById('2212.00218v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14191">arXiv:2211.14191</a> <span> [<a href="https://arxiv.org/pdf/2211.14191">pdf</a>, <a href="https://arxiv.org/format/2211.14191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11512-z">10.1140/epjc/s10052-023-11512-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Calibration of XENON1T with an Internal $^{37}$Ar Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14191v3-abstract-short" style="display: inline;"> A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $^{37}$Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3$\pm$0.3) photons/keV and (40.6$\pm$0.5) electrons/keV, respecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14191v3-abstract-full').style.display = 'inline'; document.getElementById('2211.14191v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14191v3-abstract-full" style="display: none;"> A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $^{37}$Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3$\pm$0.3) photons/keV and (40.6$\pm$0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0$^{+6.3}_{-3.7}$) electrons/keV. The $^{37}$Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83$\pm$0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that $^{37}$Ar can be considered as a regular calibration source for multi-tonne xenon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14191v3-abstract-full').style.display = 'none'; document.getElementById('2211.14191v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07231">arXiv:2210.07231</a> <span> [<a href="https://arxiv.org/pdf/2210.07231">pdf</a>, <a href="https://arxiv.org/format/2210.07231">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10913-w">10.1140/epjc/s10052-022-10913-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An approximate likelihood for nuclear recoil searches with XENON1T data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&query=Cimmino%2C+B">B. Cimmino</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07231v1-abstract-short" style="display: inline;"> The XENON collaboration has published stringent limits on specific dark matter -nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 tonne-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07231v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07231v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07231v1-abstract-full" style="display: none;"> The XENON collaboration has published stringent limits on specific dark matter -nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 tonne-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 tonne-year exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07231v1-abstract-full').style.display = 'none'; document.getElementById('2210.07231v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by European Physical Journal C</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Brown%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Brown%2C+A&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>