CINXE.COM
Search results for: meagre
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: meagre</title> <meta name="description" content="Search results for: meagre"> <meta name="keywords" content="meagre"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="meagre" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="meagre"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: meagre</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Investigation of Some Sperm Quality Parameters of Farmed and Wild-Caught Meagre (Argyrosomus regius Asso, 1801)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eefik%20Surhan%20Tabako%C4%9Flu">Şefik Surhan Tabakoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hipolito%20Fern%C3%A1ndez-Palacios"> Hipolito Fernández-Palacios</a>, <a href="https://publications.waset.org/abstracts/search?q=Dominique%20Schuchardt"> Dominique Schuchardt</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmut%20Ali%20G%C3%B6k%C3%A7e"> Mahmut Ali Gökçe</a>, <a href="https://publications.waset.org/abstracts/search?q=Celal%20Erba%C5%9F"> Celal Erbaş</a>, <a href="https://publications.waset.org/abstracts/search?q=O%C4%9Fuz%20Ta%C5%9Fbozan"> Oğuz Taşbozan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to clarify some sperm quality parameters such as volumetric sperm quantity, motility, motility duration, sperm density, total number of spermatozoa and pH of meagre (Argyrosomus regius ASSO, 1801) individuals kept in farming conditions and caught from wild (las palmas, gran canary). The sperm was collected in glass tubes graded in millimetres and sperm volume registered immediately following collection by abdominal massage. The sperm quality parameters including motility, total number of spermatozoa and spermatozoa density were determined with computer assisted sperm analysis (CASA) program. The duration of spermatozoa movement was assessed using a sensitive chronometer (1/100s) that was started simultaneously with the addition of activation solution into the sample. Sperm pH was measured with standard pH electrodes within five minutes of sampling. At the end of the study, while amount of sperm (5.20±0.33 ml), duration of motility (7.23±0.7 m) and total number of spermatozoa (131.40±12.22 x10^9) were different statistically (p < 0,05), motility (% 81.03±6.59), pH (7.30±0.08), sperm density (25.27±9.42 x10^9/ml) and morphologic parameters were not significantly different between the two groups. According to our results, amount of sperm, duration of motility and total number of spermatozoa were better in farmed group than that of the other group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seriola%20rivoliana" title="Seriola rivoliana">Seriola rivoliana</a>, <a href="https://publications.waset.org/abstracts/search?q=meagre" title=" meagre"> meagre</a>, <a href="https://publications.waset.org/abstracts/search?q=sperm%20quality" title=" sperm quality"> sperm quality</a>, <a href="https://publications.waset.org/abstracts/search?q=motility" title=" motility"> motility</a>, <a href="https://publications.waset.org/abstracts/search?q=motility%20duration" title=" motility duration"> motility duration</a> </p> <a href="https://publications.waset.org/abstracts/67842/investigation-of-some-sperm-quality-parameters-of-farmed-and-wild-caught-meagre-argyrosomus-regius-asso-1801" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Qualitative and Quantitative Traits of Processed Farmed Fish in N. W. Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cosmas%20Nathanailides">Cosmas Nathanailides</a>, <a href="https://publications.waset.org/abstracts/search?q=Fotini%20Kakali"> Fotini Kakali</a>, <a href="https://publications.waset.org/abstracts/search?q=Kostas%20Karipoglou"> Kostas Karipoglou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The filleting yield and the chemical composition of farmed sea bass (Dicentrarchus labrax); rainbow trout (Oncorynchus mykiss) and meagre (Argyrosomus regius) was investigated in farmed fish in NW Greece. The results provide an estimate of the quantity of fish required to produce one kilogram of fillet weight, an estimation which is required for the operational management of fish processing companies. Furthermore in this work, the ratio of feed input required to produce one kilogram of fish fillet (FFCR) is presented for the first time as a useful indicator of the ecological footprint of consuming farmed fish. The lowest lipid content appeared in meagre (1,7%) and the highest in trout (4,91%). The lowest fillet yield and fillet yield feed conversion ratio (FYFCR) was in meagre (FY=42,17%, FFCR=2,48), the best fillet yield (FY=53,8%) and FYFCR (2,10) was exhibited in farmed rainbow trout. This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARCHIMEDES III. Investing in knowledge society through the European Social Fund. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=farmed%20fish" title="farmed fish">farmed fish</a>, <a href="https://publications.waset.org/abstracts/search?q=flesh%20quality" title=" flesh quality"> flesh quality</a>, <a href="https://publications.waset.org/abstracts/search?q=filleting%20yield" title=" filleting yield"> filleting yield</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid" title=" lipid"> lipid</a> </p> <a href="https://publications.waset.org/abstracts/5472/qualitative-and-quantitative-traits-of-processed-farmed-fish-in-n-w-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Illumina MiSeq Sequencing for Bacteria Identification on Audio-Visual Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tereza%20Brany%C5%A1ov%C3%A1">Tereza Branyšová</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Kra%C4%8Dmarov%C3%A1"> Martina Kračmarová</a>, <a href="https://publications.waset.org/abstracts/search?q=Kate%C5%99ina%20Demnerov%C3%A1"> Kateřina Demnerová</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20%C4%8Eurovi%C4%8D"> Michal Ďurovič</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Stiborov%C3%A1"> Hana Stiborová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial deterioration threatens all objects of cultural heritage, including audio-visual materials. Fungi are commonly known to be the main factor in audio-visual material deterioration. However, although being neglected, bacteria also play a significant role. In addition to microbial contamination of materials, it is also essential to analyse air as a possible contamination source. This work aims to identify bacterial species in the archives of the Czech Republic that occur on audio-visual materials as well as in the air in the archives. For sampling purposes, the smears from the materials were taken by sterile polyurethane sponges, and the air was collected using a MAS-100 aeroscope. Metagenomic DNA from all collected samples was immediately isolated and stored at -20 °C. DNA library for the 16S rRNA gene was prepared using two-step PCR and specific primers and the concentration step was included due to meagre yields of the DNA. After that, the samples were sent to the University of Fairbanks, Alaska, for Illumina MiSeq sequencing. Subsequently, the analysis of the sequences was conducted in R software. The obtained sequences were assigned to the corresponding bacterial species using the DADA2 package. The impact of air contamination and the impact of different photosensitive layers that audio-visual materials were made of, such as gelatine, albumen, and collodion, were evaluated. As a next step, we will take a deeper focus on air contamination. We will select an appropriate culture-dependent approach along with a culture-independent approach to observe a metabolically active species in the air. Acknowledgment: This project is supported by grant no. DG18P02OVV062 of the Ministry of Culture of the Czech Republic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultural%20heritage" title="cultural heritage">cultural heritage</a>, <a href="https://publications.waset.org/abstracts/search?q=Illumina%20MiSeq" title=" Illumina MiSeq"> Illumina MiSeq</a>, <a href="https://publications.waset.org/abstracts/search?q=metagenomics" title=" metagenomics"> metagenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20identification" title=" microbial identification"> microbial identification</a> </p> <a href="https://publications.waset.org/abstracts/136677/illumina-miseq-sequencing-for-bacteria-identification-on-audio-visual-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> A Suggestive Framework for Measuring the Effectiveness of Social Media: An Irish Tourism Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Colm%20Barcoe">Colm Barcoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Garvan%20Whelan"> Garvan Whelan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past five years, visitations of American holidaymakers to Ireland have grown exponentially owing to the online strategies of Tourism Ireland, a Destination Marketer (DMO) with a meagre budget which is extended by their understanding of best practices to maximise their monetary allowance. This suggested framework incorporates a range of Key Performance Indicators (KPI’s) such as financial, marketing, and operational that offer a scale of measurement from which the Irish DMO can monitor the success of each promotional campaign when targeting the US and Canada. These are presented not as final solutions but rather as suggestions based on empirical evidence obtained from both primary and secondary sources. This research combines the wisdom extracted through qualitative methodologies with the objective of understanding the processes that drive both emergent and agile strategies. The Study extends the work relative to performance and examines the role of social media in the context of promoting Ireland to North America. There are two main themes that are identified and analysed in this investigation, these are the approach of the DMO when advocating Ireland as a brand and the benefits of digital platforms set against a proposed scale of KPIs, such as destination marketing, brand positioning, and identity development. The key narrative of this analysis is to focus on the power of social media when capitalising upon marketing opportunities, operating on a relatively small budget. This will always be a relevant theme of discussion due to the responsibility of an organisation like Tourism Ireland operating under the restraints imposed by government funding. The overall conclusions of this research may help inform those concerned with the implementing of social media strategies develop clearer models of measurement when promoting a destination to North America. The suggestions of this study will benefit small and medium enterprises particularly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=destination%20marketing" title="destination marketing">destination marketing</a>, <a href="https://publications.waset.org/abstracts/search?q=framework" title=" framework"> framework</a>, <a href="https://publications.waset.org/abstracts/search?q=measure" title=" measure"> measure</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/89183/a-suggestive-framework-for-measuring-the-effectiveness-of-social-media-an-irish-tourism-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> BI- And Tri-Metallic Catalysts for Hydrogen Production from Hydrogen Iodide Decomposition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sony">Sony</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20N.%20Bhaskarwar"> Ashok N. Bhaskarwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Production of hydrogen from a renewable raw material without any co-synthesis of harmful greenhouse gases is the current need for sustainable energy solutions. The sulfur-iodine (SI) thermochemical cycle, using intermediate chemicals, is an efficient process for producing hydrogen at a much lower temperature than that required for the direct splitting of water. No net byproduct forms in the cycle. Hydrogen iodide (HI) decomposition is a crucial reaction in this cycle, as the product, hydrogen, forms only in this step. It is an endothermic, reversible, and equilibrium-limited reaction. The theoretical equilibrium conversion at 550°C is just a meagre of 24%. There is a growing interest, therefore, in enhancing the HI conversion to near-equilibrium values at lower reaction temperatures and by possibly improving the rate. The reaction is relatively slow without a catalyst, and hence catalytic decomposition of HI has gained much significance. Bi-metallic Ni-Co, Ni-Mn, Co-Mn, and tri-metallic Ni-Co-Mn catalysts over zirconia support were tested for HI decomposition reaction. The catalysts were synthesized via a sol-gel process wherein Ni was 3wt% in all the samples, and Co and Mn had equal weight ratios in the Co-Mn catalyst. Powdered X-ray diffraction and Brunauer-Emmett-Teller surface area characterizations indicated the polycrystalline nature and well-developed mesoporous structure of all the samples. The experiments were performed in a vertical laboratory-scale packed bed reactor made of quartz, and HI (55 wt%) was fed along with nitrogen at a WHSV of 12.9 hr⁻¹. Blank experiments at 500°C for HI decomposition suggested conversion of less than 5%. The activities of all the different catalysts were checked at 550°C, and the highest conversion of 23.9% was obtained with the tri-metallic 3Ni-Co-Mn-ZrO₂ catalyst. The decreasing order of the performance of catalysts could be expressed as: 3Ni-Co-Mn-ZrO₂ > 3Ni-2Co-ZrO₂ > 3Ni-2Mn-ZrO₂ > 2.5Co-2.5Mn-ZrO₂. The tri-metallic catalyst remained active till 360 mins at 550°C without any observable drop in its activity/stability. Among the explored catalyst compositions, the tri-metallic catalyst certainly has a better performance for HI conversion when compared to the bi-metallic ones. Owing to their low costs and ease of preparation, these trimetallic catalysts could be used for large-scale hydrogen production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sulfur-iodine%20cycle" title="sulfur-iodine cycle">sulfur-iodine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title=" hydrogen production"> hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20iodide%20decomposition" title=" hydrogen iodide decomposition"> hydrogen iodide decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-" title=" bi-"> bi-</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20tri-metallic%20catalysts" title=" and tri-metallic catalysts"> and tri-metallic catalysts</a> </p> <a href="https://publications.waset.org/abstracts/141522/bi-and-tri-metallic-catalysts-for-hydrogen-production-from-hydrogen-iodide-decomposition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Mucoadhesive Chitosan-Coated Nanostructured Lipid Carriers for Oral Delivery of Amphotericin B</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20J.%20Tan">S. L. J. Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Billa"> N. Billa</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20J.%20Roberts"> C. J. Roberts</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral delivery of amphotericin B (AmpB) potentially eliminates constraints and side effects associated with intravenous administration, but remains challenging due to the physicochemical properties of the drug such that it results in meagre bioavailability (0.3%). In an advanced formulation, 1) nanostructured lipid carriers (NLC) were formulated as they can accommodate higher levels of cargoes and restrict drug expulsion and 2) a mucoadhesion feature was incorporated so as to impart sluggish transit of the NLC along the gastrointestinal tract and hence, maximize uptake and improve bioavailability of AmpB. The AmpB-loaded NLC formulation was successfully formulated via high shear homogenisation and ultrasonication. A chitosan coating was adsorbed onto the formed NLC. Physical properties of the formulations; particle size, zeta potential, encapsulation efficiency (%EE), aggregation states and mucoadhesion as well as the effect of the variable pH on the integrity of the formulations were examined. The particle size of the freshly prepared AmpB-loaded NLC was 163.1 ± 0.7 nm, with a negative surface charge and remained essentially stable over 120 days. Adsorption of chitosan caused a significant increase in particle size to 348.0 ± 12 nm with the zeta potential change towards positivity. Interestingly, the chitosan-coated AmpB-loaded NLC (ChiAmpB NLC) showed significant decrease in particle size upon storage, suggesting 'anti-Ostwald' ripening effect. AmpB-loaded NLC formulation showed %EE of 94.3 ± 0.02 % and incorporation of chitosan increased the %EE significantly, to 99.3 ± 0.15 %. This suggests that the addition of chitosan renders stability to the NLC formulation, interacting with the anionic segment of the NLC and preventing the drug leakage. AmpB in both NLC and ChiAmpB NLC showed polyaggregation which is the non-toxic conformation. The mucoadhesiveness of the ChiAmpB NLC formulation was observed in both acidic pH (pH 5.8) and near-neutral pH (pH 6.8) conditions as opposed to AmpB-loaded NLC formulation. Hence, the incorporation of chitosan into the NLC formulation did not only impart mucoadhesive property but also protected against the expulsion of AmpB which makes it well-primed as a potential oral delivery system for AmpB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amphotericin%20B" title="Amphotericin B">Amphotericin B</a>, <a href="https://publications.waset.org/abstracts/search?q=mucoadhesion" title=" mucoadhesion"> mucoadhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20lipid%20carriers" title=" nanostructured lipid carriers"> nanostructured lipid carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20delivery" title=" oral delivery"> oral delivery</a> </p> <a href="https://publications.waset.org/abstracts/82060/mucoadhesive-chitosan-coated-nanostructured-lipid-carriers-for-oral-delivery-of-amphotericin-b" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Tomar">Swati Tomar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Kumar%20Gupta"> Sunil Kumar Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anammox" title="anammox">anammox</a>, <a href="https://publications.waset.org/abstracts/search?q=filter%20media" title=" filter media"> filter media</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20removal" title=" nitrogen removal"> nitrogen removal</a> </p> <a href="https://publications.waset.org/abstracts/35439/investigating-the-process-kinetics-and-nitrogen-gas-production-in-anammox-hybrid-reactor-with-special-emphasis-on-the-role-of-filter-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>