CINXE.COM

Search results for: construction & demolition waste-C&DW

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: construction &amp; demolition waste-C&amp;DW</title> <meta name="description" content="Search results for: construction &amp; demolition waste-C&amp;DW"> <meta name="keywords" content="construction &amp; demolition waste-C&amp;DW"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="construction &amp; demolition waste-C&amp;DW" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="construction &amp; demolition waste-C&amp;DW"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3924</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: construction &amp; demolition waste-C&amp;DW</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3924</span> Production and Recycling of Construction and Demolition Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimira%20Vytlacilova">Vladimira Vytlacilova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling of construction and demolition waste (C&amp;DW) and their new reuse in structures is one of the solutions of environmental problems. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills all the time. The paper deals with the situation of the recycling of the building and demolition waste in the Czech Republic during the recent years. The paper is dealing with questions of C&amp;D waste recycling, it also characterizes construction and demolition waste in general, furthermore it analyses production of construction waste and subsequent production of recycled materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recycling" title="Recycling">Recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=Construction%20and%20demolition%20waste" title=" Construction and demolition waste"> Construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=Recycled%20rubble" title=" Recycled rubble"> Recycled rubble</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20management" title=" Waste management"> Waste management</a> </p> <a href="https://publications.waset.org/abstracts/9598/production-and-recycling-of-construction-and-demolition-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3923</span> Study on the Demolition Waste Management in Malaysia Construction Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gunalan%20Vasudevan">Gunalan Vasudevan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Malaysia construction industry generates a large quantity of construction and demolition waste nowadays. In the handbook for demolition work only comprised small portion of demolition waste management. It is important to study and determine the ways to provide a practical guide for the professional in the building industry about handling the demolition waste. In general, demolition defined as tearing down or wrecking of structural work or architectural work of the building and other infrastructures work such as road, bridge and etc. It’s a common misconception that demolition is nothing more than taking down a structure and carrying the debris to a landfill. On many projects, 80-90% of the structure is kept for reuse or recycling which help the owner to save cost. Demolition contractors required a lot of knowledge and experience to minimize the impact of demolition work to the existing surrounding area. For data collecting method, postal questionnaires and interviews have been selected to collect data. Questionnaires have distributed to 80 respondents from the construction industry in Klang Valley. 67 of 80 respondents have replied the questionnaire while 4 people have interviewed. Microsoft Excel and Statistical Package for Social Science version 17.0 were used to analyze the data collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demolition" title="demolition">demolition</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20material" title=" construction material"> construction material</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/20260/study-on-the-demolition-waste-management-in-malaysia-construction-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3922</span> Recycled Aggregates from Construction and Demolition Waste Suitable for Concrete Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimira%20Vytlacilova">Vladimira Vytlacilova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the latest research trend in the discipline of construction and demolition (C&D) waste management in Czech Republic. The results of research interest exhibit an increasing research interest in C&D waste management practices in recent years. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills, for reclamation or landscaping all the time. The quality of recycled aggregates for use in concrete construction depends on recycling practices. Classifications, composition and contaminants influence the mechanical-physical properties as well as environmental risks related to its utilization. The second part of contribution describes properties of fibre reinforced concrete with the full replacement of natural aggregate by recycled one (concrete or masonry rubble). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre%20reinforced%20concrete" title=" fibre reinforced concrete"> fibre reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregate" title=" recycled aggregate"> recycled aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/60420/recycled-aggregates-from-construction-and-demolition-waste-suitable-for-concrete-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3921</span> The Utilization of Recycled Construction and Demolition Waste Aggregate in Asphaltic Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inas%20Kamel">Inas Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Z.%20Habib"> Noor Z. Habib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilizing construction and demolition wastes in hotmix asphalt (HMA) pavement construction can reduce the adverse environmental effect of its inadequate disposal and reduce the pressure of extracting and processing mineral aggregates (MA). This study aims to examine the viability of replacing MA by recycled construction and demolition waste aggregates (RCDWA) in the wearing course of asphaltic concrete (AC) pavements without compromising its loadbearing capacity. The Marshall Method was used to evaluate the performance of AC wearing course specimens by replacing MA by 10%, 20% and 30% RCDWA. Grade 60/70 bitumen was used in the range 3.0-5.5%, with 05% increments, to generate the optimum bitumen content (OBC). From the volumetric analysis and test property curves, the mixture containing 20% RCDWA was chosen as the preferred mix at 5.1% OBC. It possessed a 10% increase in Marshall Stability compared to the reference specimen, containing 100% MA, and a 6% increase in Marshall flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate" title="aggregate">aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=asphaltic%20concrete" title=" asphaltic concrete"> asphaltic concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=Marshall%20method" title=" Marshall method"> Marshall method</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20bitumen%20content" title=" optimum bitumen content"> optimum bitumen content</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20construction%20and%20demolition%20waste" title=" recycled construction and demolition waste"> recycled construction and demolition waste</a> </p> <a href="https://publications.waset.org/abstracts/129727/the-utilization-of-recycled-construction-and-demolition-waste-aggregate-in-asphaltic-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3920</span> Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abioye%20A.%20Oyenuga">Abioye A. Oyenuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20Bhamidiarri"> Rao Bhamidiarri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper, and plasterboard. Data obtained from demolition specialist and contractors are considered and evaluated. With the date source, the research paper found that construction material recovery process fully incorporate the 3R’s process and shows how energy recovery by means of 3R's principles can be evaluated. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste%20%28C%26DW%29" title="construction and demolition waste (C&amp;DW)">construction and demolition waste (C&amp;DW)</a>, <a href="https://publications.waset.org/abstracts/search?q=3R%20concept" title=" 3R concept"> 3R concept</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=UK" title=" UK"> UK</a> </p> <a href="https://publications.waset.org/abstracts/26873/reduce-reuse-and-recycle-grand-challenges-in-construction-recovery-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3919</span> Manufacturing Commercial Bricks with Construction and Demolition Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kara">Mustafa Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kilic"> Yasemin Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20Murat%20Demir"> Bahattin Murat Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Cmit%20Ustaoglu"> Ümit Ustaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cavit%20Unal"> Cavit Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20brick" title="commercial brick">commercial brick</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/49267/manufacturing-commercial-bricks-with-construction-and-demolition-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3918</span> Application of the EU Commission Waste Management Methodology Level(s) to a Construction and a Demolition in North-West Romania.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Valean%20Maria">Valean Maria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction and demolition waste management is a timely topic, due to the urgency of its transition to sustainability. This sector is responsible for over a third of the waste generated in the E.U., while the legislation requires a proportion of at least 70% preparation for reuse and recycle, excluding backfilling. To this end, the E.U. Commission has provided the Level(s) methodology, allowing for the standardized planning and reporting of waste quantities across all levels of the construction process, from the architecture, to the demolition, from the estimation stage, to the actual measurements at the end of the operations. We applied Level(s) for the first time to the Romanian context, a developing E.U. country in which illegal dumping of contruction waste in nature and landfills, are still common practice. We performed the desk study of the buildings’ documents, followed by field studies of the sites, and finally the insertion and calculation of statistical data of the construction and demolition waste. We learned that Romania is far from the E.U. average in terms of the initial estimations of waste, with some numbers being higher, others lower, and that the price of evacuation to landfills is significantly lower in the developing country, a possible barrier to adopting the new regulations. Finally, we found that concrete is the predominant type waste, in terms of quantity as well as cost of disposal. Further directions of research are provided, such as mapping out all of the alternative facilities in the region and the calculation of the financial costs and of the CO2 footprint, for preparing and delivering waste sustainably, for a more sound and locally adapted model of waste management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction" title="construction">construction</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=levels" title=" levels"> levels</a>, <a href="https://publications.waset.org/abstracts/search?q=EU" title=" EU"> EU</a> </p> <a href="https://publications.waset.org/abstracts/158761/application-of-the-eu-commission-waste-management-methodology-levels-to-a-construction-and-a-demolition-in-north-west-romania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158761.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3917</span> An Optimization Model for Waste Management in Demolition Works</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eva%20Queheille">Eva Queheille</a>, <a href="https://publications.waset.org/abstracts/search?q=Franck%20Taillandier"> Franck Taillandier</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Saiyouri"> Nadia Saiyouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste management has become a major issue in demolition works, because of its environmental impact (energy consumption, resource consumption, pollution…). However, improving waste management requires to take also into account the overall demolition process and to consider demolition main objectives (e.g. cost, delay). Establishing a strategy with these conflicting objectives (economic and environment) remains complex. In order to provide a decision-support for demolition companies, a multi-objective optimization model was developed. In this model, a demolition strategy is computed from a set of 80 decision variables (worker team composition, machines, treatment for each type of waste, choice of treatment platform…), which impacts the demolition objectives. The model has experimented on a real-case study (demolition of several buildings in France). To process the optimization, different optimization algorithms (NSGA2, MOPSO, DBEA…) were tested. Results allow the engineer in charge of this case, to build a sustainable demolition strategy without affecting cost or delay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deconstruction" title="deconstruction">deconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/98239/an-optimization-model-for-waste-management-in-demolition-works" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98239.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3916</span> Evaluating Environmental Impact of End-of-Life Cycle Cases for Brick Walls and Aerated Autoclave Concrete Walls</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ann%20Mariya%20Jose">Ann Mariya Jose</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashfina%20T."> Ashfina T.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction and demolition waste is one of the rising concerns globally due to the amount of waste generated annually, the area taken up by landfills, and the adverse environmental impacts that follow. One of the primary causes of the rise in construction and demolition waste is a lack of facilities and knowledge for incorporating recycled materials into new construction. Bricks are a conventional material that has been used for construction for centuries, and Autoclave Aerated Concrete (AAC) blocks are a new emergent material in the market. This study evaluates the impact brick walls, and AAC block walls have on the environment using the tool One Click LCA, considering three End of Life (EoL) scenarios: the materials are landfilled, recycled, and reused in a new building. The final objective of the study is to evaluate the environmental impact caused by these two different walls on the environmental factors such as Global Warming Potential (GWP), Acidification Potential (AP), Eutrophication Potential (EP), Ozone Depletion Potential (ODP), and Photochemical Ozone Creation Potential (POCP). The findings revealed that the GWP caused by landfilling is 16 times higher in bricks and 22 times higher in AAC blocks when compared to the reuse of materials. The study recommends the effective use of AAC blocks in construction and reuse of the same to reduce the overall emissions to the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20impact%20assessment" title=" life cycle impact assessment"> life cycle impact assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20recycling" title=" material recycling"> material recycling</a> </p> <a href="https://publications.waset.org/abstracts/156144/evaluating-environmental-impact-of-end-of-life-cycle-cases-for-brick-walls-and-aerated-autoclave-concrete-walls" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3915</span> Evaluating Structural Crack Propagation Induced by Soundless Chemical Demolition Agent Using an Energy Release Rate Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shyaka%20Eugene">Shyaka Eugene</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The efficient and safe demolition of structures is a critical challenge in civil engineering and construction. This study focuses on the development of optimal demolition strategies by investigating the crack propagation behavior in beams induced by soundless cracking agents. It is commonly used in controlled demolition and has gained prominence due to its non-explosive and environmentally friendly nature. This research employs a comprehensive experimental and computational approach to analyze the crack initiation, propagation, and eventual failure in beams subjected to soundless cracking agents. Experimental testing involves the application of various cracking agents under controlled conditions to understand their effects on the structural integrity of beams. High-resolution imaging and strain measurements are used to capture the crack propagation process. In parallel, numerical simulations are conducted using advanced finite element analysis (FEA) techniques to model crack propagation in beams, considering various parameters such as cracking agent composition, loading conditions, and beam properties. The FEA models are validated against experimental results, ensuring their accuracy in predicting crack propagation patterns. The findings of this study provide valuable insights into optimizing demolition strategies, allowing engineers and demolition experts to make informed decisions regarding the selection of cracking agents, their application techniques, and structural reinforcement methods. Ultimately, this research contributes to enhancing the safety, efficiency, and sustainability of demolition practices in the construction industry, reducing environmental impact and ensuring the protection of adjacent structures and the surrounding environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansion%20pressure" title="expansion pressure">expansion pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20release%20rate" title=" energy release rate"> energy release rate</a>, <a href="https://publications.waset.org/abstracts/search?q=soundless%20chemical%20demolition%20agent" title=" soundless chemical demolition agent"> soundless chemical demolition agent</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20propagation" title=" crack propagation"> crack propagation</a> </p> <a href="https://publications.waset.org/abstracts/176208/evaluating-structural-crack-propagation-induced-by-soundless-chemical-demolition-agent-using-an-energy-release-rate-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3914</span> Adsorption Mechanism of Heavy Metals and Organic Pesticide on Industrial Construction and Demolition Waste and Its Runoff Behaviors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheng%20Huang">Sheng Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xin%20Zhao"> Xin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaofeng%20Gao"> Xiaofeng Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Zhou"> Tao Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Shijin%20Dai"> Shijin Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcai%20Zhao"> Youcai Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adsorption of heavy metal pollutants (Zn, Cd, Pb, Cr, Cu) and organic pesticide (phorate, dithiophosphate diethyl, triethyl phosphorothioate), along with their multi-contamination on the surface of industrial construction & demolition waste (C&D waste) was investigated. Brick powder was selected as the appropriate waste while its maximum equilibrium adsorption amount of heavy metal under single controlled contamination matrix reached 5.41, 0.81, 0.45, 1.13 and 0.97 mg/g, respectively. Effects of pH and spiking dose of ICDW was also investigated. Equilibrium adsorption amount of organic pesticide varied from 0.02 to 0.97 mg/g, which was negatively correlated to the size distribution and hydrophilism. Existence of organic pesticide on surface of ICDW caused various effects on the heavy metal adsorption, mainly due to combination of metal ions and the floccule formation along with wrapping behaviors by pesticide pollutants. Adsorption of Zn was sharply decreased from 7.1 to 0.15 mg/g compared with clean ICDW and phorate contaminated ICDW, while that of Pb, Cr and Cd experienced an increase- then decrease procedure. On the other hand, runoff of pesticide contaminants was investigated under 25 mm/h simulated rainfall. Results showed that the cumulative runoff amount fitted well with curve obtained from a power function, of which r2=0.95 and 0.91 for 1DAA (1 day between contamination and runoff) and 7DAA, respectively. This study helps provide evaluation of industrial construction and demolition waste contamination into aquatic systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title="adsorption mechanism">adsorption mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20construction%20waste" title=" industrial construction waste"> industrial construction waste</a>, <a href="https://publications.waset.org/abstracts/search?q=metals" title=" metals"> metals</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide" title=" pesticide"> pesticide</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a> </p> <a href="https://publications.waset.org/abstracts/70934/adsorption-mechanism-of-heavy-metals-and-organic-pesticide-on-industrial-construction-and-demolition-waste-and-its-runoff-behaviors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">467</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3913</span> Instrumentation of Urban Pavements Built with Construction and Demolition Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Figueroa">Sofia Figueroa</a>, <a href="https://publications.waset.org/abstracts/search?q=Efrain%20Bernal"> Efrain Bernal</a>, <a href="https://publications.waset.org/abstracts/search?q=Silvia%20Del%20Pilar%20%20Forero"> Silvia Del Pilar Forero</a>, <a href="https://publications.waset.org/abstracts/search?q=Humberto%20Ramirez"> Humberto Ramirez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work shows a detailed review of the scope of global research on the road infrastructure using materials from Construction and Demolition Waste (C&DW), also called RCD. In the first phase of this research, a segment of road was designed using recycled materials such as Reclaimed Asphalt Pavement (RAP) on the top, the natural coarse base including 30% of RAP and recycled concrete blocks. The second part of this segment was designed using regular materials for each layer of the pavement. Both structures were built next to each other in order to analyze and measure the material properties as well as performance and environmental factors in the pavement under real traffic and weather conditions. Different monitoring devices were installed among the structure, based on the literature revision, such as soil cells, linear potentiometer, moisture sensors, and strain gauges that help us to know the C&DW as a part of the pavement structure. This research includes not only the physical characterization but also the measured parameters in a field such as an asphalt mixture (RAP) strain (ετ), vertical strain (εᵥ) and moisture control in coarse layers (%w), and the applied loads and strain in the subgrade (εᵥ). The results will show us what is happening with these materials in order to obtain not only a sustainable solution but also to know its behavior and lifecycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20pavements" title="sustainable pavements">sustainable pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW" title=" construction &amp; demolition waste-C&amp;DW"> construction &amp; demolition waste-C&amp;DW</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20rigid%20concrete" title=" recycled rigid concrete"> recycled rigid concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement-rap" title=" reclaimed asphalt pavement-rap"> reclaimed asphalt pavement-rap</a> </p> <a href="https://publications.waset.org/abstracts/131436/instrumentation-of-urban-pavements-built-with-construction-and-demolition-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3912</span> Recycled Aggregates from Construction and Demolition Waste in the Production of Concrete Blocks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20A.%20Ferriz-Papi">Juan A. Ferriz-Papi</a>, <a href="https://publications.waset.org/abstracts/search?q=Simon%20Thomas"> Simon Thomas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry generates large amounts of waste, usually mixed, which can be composed of different origin materials, most of them catalogued as non-hazardous. The European Union targets for this waste for 2020 have been already achieved by the UK, but it is mainly developed in downcycling processes (backfilling) whereas upcycling (such as recycle in new concrete batches) still keeps at a low percentage. The aim of this paper is to explore further in the use of recycled aggregates from construction and demolition waste (CDW) in concrete mixes so as to improve upcycling. A review of most recent research and legislation applied in the UK is developed regarding the production of concrete blocks. As a case study, initial tests were developed with a CDW recycled aggregate sample from a CDW plant in Swansea. Composition by visual inspection and sieving tests of two samples were developed and compared to original aggregates. More than 70% was formed by soil waste from excavation, and the rest was a mix of waste from mortar, concrete, and ceramics with small traces of plaster, glass and organic matter. Two concrete mixes were made with 80% replacement of recycled aggregates and different water/cement ratio. Tests were carried out for slump, absorption, density and compression strength. The results were compared to a reference sample and showed a substantial reduction of quality in both mixes. Despite that, the discussion brings to identify different aspects to solve, such as heterogeneity or composition, and analyze them for the successful use of these recycled aggregates in the production of concrete blocks. The conclusions obtained can help increase upcycling processes ratio with mixed CDW as recycled aggregates in concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregates" title="aggregates">aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20block" title=" concrete block"> concrete block</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/79395/recycled-aggregates-from-construction-and-demolition-waste-in-the-production-of-concrete-blocks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3911</span> Economic and Environmental Life Cycle Analysis of Construction and Demolition Waste Management System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanqing%20Yi">Yanqing Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Cristina%20Lavagnolo"> Maria Cristina Lavagnolo</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Manzardo"> Alessandro Manzardo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction and demolition waste (C&DW) is a major challenge in the European Union, emphasizing the urgent need for appropriate waste management processes. Selecting these solutions is challenging, as it requires identifying efficient C&DW management techniques that balance acceptable practices, regulatory compliance, resource conservation, economic viability, and environmental concerns. Techniques for analyzing many kinds of criteria allow for the use of multi-criteria analysis in life cycle assessment (LCA). Although LCA is commonly used to analyze environmental effects, the economic factor has not been fully integrated into the LCA approach in C&DW management. The life cycle costing (LCC) approach was designed to assess economic performance in the C&DW management process. The choice of an effective multi-criteria decision-making (MCDM) technique is critical for the C&DW system. This study seeks to propose a model that employs MCDM by considering LCA and LCC results, thereby augmenting both environmental and economic sustainability. A widely used compensatory MCDM technique, TOPSIS, has been chosen to identify the most effective C&DW management scheme by comparing and ranking various scenarios. Four waste management alternatives were examined in the Lombardy region of Italy, namely, (i) landfill; (ii) recycling for concrete production and road construction, incineration with energy recovery; (iii) recycling for road construction; (iv) recycling for concrete production and road construction. We determine that, with the implementation of various scenarios, the most suitable scenario emerges to be recycled for concrete production and road construction, with a score of 0.711/1; recycling for road construction, with a final score of 0.291/1, ranks second; recycling for concrete production and road construction, incineration with energy recovery scores 0.002/1, ranks third; and landfill (scores: 0/1) is the worst choice, indicating it has the highest environmental impact. Finally, suggestions were developed to improve the system's environmental performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20costing" title=" life cycle costing"> life cycle costing</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-criteria%20decision%20making" title=" multi-criteria decision making"> multi-criteria decision making</a> </p> <a href="https://publications.waset.org/abstracts/182607/economic-and-environmental-life-cycle-analysis-of-construction-and-demolition-waste-management-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182607.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3910</span> Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhongnan%20Ye">Zhongnan Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyi%20Liu"> Xiaoyi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chien%20Hsu"> Shu-Chien Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20construction" title="circular construction">circular construction</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20recycling" title=" material recycling"> material recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20modeling" title=" optimization modeling"> optimization modeling</a> </p> <a href="https://publications.waset.org/abstracts/179268/optimizing-recycling-and-reuse-strategies-for-circular-construction-materials-with-life-cycle-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3909</span> Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhongnan%20Ye">Zhongnan Ye</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyi%20Liu"> Xiaoyi Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Chien%20Hsu"> Shu-Chien Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20construction" title="circular construction">circular construction</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20recycling" title=" material recycling"> material recycling</a> </p> <a href="https://publications.waset.org/abstracts/182451/optimizing-recycling-and-reuse-strategies-for-circular-construction-materials-with-life-cycle-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3908</span> The Eco-Efficient Construction: A Review of Embodied Energy in Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Scalisi">Francesca Scalisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesare%20Sposito"> Cesare Sposito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building construction industry consumes a large amount of resources and energy, both during construction (embodied energy) and during the operational phase (operating energy). This paper presents a review of the literature on low carbon and low embodied energy materials in buildings. The embodied energy comprises the energy consumed during the extraction, processing, transportation, construction, and demolition of building materials. While designing a nearly zero energy building, it is necessary to choose and use materials, components, and technologies that allow to reduce the consumption of energy and also to reduce the emissions in the atmosphere during all the Life Cycle Assessment phases. The appropriate choice of building materials can contribute decisively to reduce the energy consumption of the building sector. The increasing worries for the environmental impact of construction materials are witnessed by a lot of studies. The mentioned worries have brought again the attention towards natural materials. The use of more sustainable construction materials and construction techniques represent a major contribution to the eco-efficiency of the construction industry and thus to a more sustainable development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embodied%20energy" title="embodied energy">embodied energy</a>, <a href="https://publications.waset.org/abstracts/search?q=embodied%20carbon" title=" embodied carbon"> embodied carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title=" life cycle assessment"> life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=architecture" title=" architecture"> architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20construction" title=" material construction"> material construction</a> </p> <a href="https://publications.waset.org/abstracts/77543/the-eco-efficient-construction-a-review-of-embodied-energy-in-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3907</span> Physical, Chemical and Mineralogical Characterization of Construction and Demolition Waste Produced in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Alexandridou">C. Alexandridou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20N.%20Angelopoulos"> G. N. Angelopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Coutelieris"> F. A. Coutelieris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction industry in Greece consumes annually more than 25 million tons of natural aggregates originating mainly from quarries. At the same time, more than 2 million tons of construction and demolition waste are deposited every year, usually without control, therefore increasing the environmental impact of this sector. A potential alternative for saving natural resources and minimize landfilling, could be the recycling and re-use of Concrete and Demolition Waste (CDW) in concrete production. Moreover, in order to conform to the European legislation, Greece is obliged to recycle non-hazardous construction and demolition waste to a minimum of 70% by 2020. In this paper characterization of recycled materials - commercially and laboratory produced, coarse and fine, Recycled Concrete Aggregates (RCA) - has been performed. Namely, X-Ray Fluorescence and X-ray diffraction (XRD) analysis were used for chemical and mineralogical analysis respectively. Physical properties such as particle density, water absorption, sand equivalent and resistance to fragmentation were also determined. This study, first time made in Greece, aims at outlining the differences between RCA and natural aggregates and evaluating their possible influence in concrete performance. Results indicate that RCA’s chemical composition is enriched in Si, Al, and alkali oxides compared to natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, quartz and minor peaks of mica and feldspars. From all the evaluated physical properties of coarse RCA, only water absorption and resistance to fragmentation seem to have a direct influence on the properties of concrete. Low Sand Equivalent and significantly high water absorption values indicate that fine fractions of RCA cannot be used for concrete production unless further processed. Chemical properties of RCA in terms of water soluble ions are similar to those of natural aggregates. Four different concrete mixtures were produced and examined, replacing natural coarse aggregates with RCA by a ratio of 0%, 25%, 50% and 75% respectively. Results indicate that concrete mixtures containing recycled concrete aggregates have a minor deterioration of their properties (3-9% lower compression strength at 28 days) compared to conventional concrete containing the same cement quantity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20and%20physical%20characterization" title="chemical and physical characterization">chemical and physical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mineralogical%20analysis" title=" mineralogical analysis"> mineralogical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates"> recycled concrete aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/9520/physical-chemical-and-mineralogical-characterization-of-construction-and-demolition-waste-produced-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3906</span> Construction and Demolition Waste Management in Indian Cities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Rathi">Vaibhav Rathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumen%20Maity"> Soumen Maity</a>, <a href="https://publications.waset.org/abstracts/search?q=Achu%20R.%20Sekhar"> Achu R. Sekhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Banerjee"> Abhijit Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=cities" title=" cities"> cities</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20pollution" title=" environmental pollution"> environmental pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a> </p> <a href="https://publications.waset.org/abstracts/67321/construction-and-demolition-waste-management-in-indian-cities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3905</span> Integrating Best Practices for Construction Waste in Quality Management Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paola%20Villoria%20S%C3%A1ez">Paola Villoria Sáez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Del%20R%C3%ADo%20Merino"> Mercedes Del Río Merino</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Santa%20Cruz%20Astorqui"> Jaime Santa Cruz Astorqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Rodr%C3%ADguez%20S%C3%A1nchez"> Antonio Rodríguez Sánchez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Spanish construction industry generates large volumes of waste. However, despite the legislative improvements introduced for construction and demolition waste (CDW), construction waste recycling rate remains well below other European countries and also below the target set for 2020. This situation can be due to many difficulties. i.e.: The difficulty of onsite segregation or the estimation in advance of the total amount generated. Despite these difficulties, the proper management of CDW must be one of the main aspects to be considered by the construction companies. In this sense, some large national companies are implementing Integrated Management Systems (IMS) including not only quality and safety aspects, but also environment issues. However, although this fact is a reality for large construction companies still the vast majority of companies need to adopt this trend. In short, it is common to find in small and medium enterprises a decentralized management system: A single system of quality management, another for system safety management and a third one for environmental management system (EMS). In addition, the EMSs currently used address CDW superficially and are mainly focus on other environmental concerns such as carbon emissions. Therefore, this research determines and implements a specific best practice management system for CDW based on eight procedures in a Spanish Construction company. The main advantages and drawbacks of its implementation are highlighted. Results of this study show that establishing and implementing a CDW management system in building works, improve CDW quantification as the company obtains their own CDW generation ratio. This helps construction stakeholders when developing CDW Management Plans and also helps to achieve a higher adjustment of CDW management costs. Finally, integrating this CDW system with the EMS of the company favors the cohesion of the construction process organization at all stages, establishing responsibilities in the field of waste and providing a greater control over the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20practices" title=" best practices"> best practices</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20minimization" title=" waste minimization"> waste minimization</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20management%20systems" title=" quality management systems"> quality management systems</a> </p> <a href="https://publications.waset.org/abstracts/25052/integrating-best-practices-for-construction-waste-in-quality-management-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3904</span> Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Morsli">Mourad Morsli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Tahiri"> Mohamed Tahiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Samdi"> Azzedine Samdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demolition%20and%20construction%20waste" title="demolition and construction waste">demolition and construction waste</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS%20combination%20software" title=" GIS combination software"> GIS combination software</a>, <a href="https://publications.waset.org/abstracts/search?q=inert%20waste%20recovery" title=" inert waste recovery"> inert waste recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20materials" title=" ecological materials"> ecological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Casablanca" title=" Casablanca"> Casablanca</a>, <a href="https://publications.waset.org/abstracts/search?q=Morocco" title=" Morocco"> Morocco</a> </p> <a href="https://publications.waset.org/abstracts/154004/design-and-characterization-of-ecological-materials-based-on-demolition-and-concrete-waste-casablanca-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3903</span> Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Belagraa">Larbi Belagraa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20aggregates" title="recycled aggregates">recycled aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%28RAC%29" title=" concrete(RAC)"> concrete(RAC)</a>, <a href="https://publications.waset.org/abstracts/search?q=superplasticizer" title=" superplasticizer"> superplasticizer</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/129450/improvement-of-the-mechanical-behavior-of-an-environmental-concrete-based-on-demolished" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3902</span> Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Vinayagam">P. Vinayagam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Madhanagopal"> A. Madhanagopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20waste" title="ceramic waste">ceramic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate%20replacement" title=" coarse aggregate replacement"> coarse aggregate replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=glazed%20stoneware%20pipe%20waste" title=" glazed stoneware pipe waste"> glazed stoneware pipe waste</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a> </p> <a href="https://publications.waset.org/abstracts/6951/experimental-investigation-on-high-performance-concrete-with-silica-fume-and-ceramic-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3901</span> Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Farahat%20Hassanein">Omar Farahat Hassanein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Samer%20Ezeldin"> A. Samer Ezeldin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20wastes" title="construction wastes">construction wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20model" title=" financial model"> financial model</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20recycling" title=" concrete recycling"> concrete recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20life%20cycle" title=" concrete life cycle"> concrete life cycle</a> </p> <a href="https://publications.waset.org/abstracts/3051/concrete-recycling-in-egypt-for-construction-applications-a-technical-and-financial-feasibility-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3900</span> Sustainability Assessment of a Deconstructed Residential House</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atiq%20U.%20Zaman">Atiq U. Zaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Juliet%20Arnott"> Juliet Arnott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyses the various benefits and barriers of residential deconstruction in the context of environmental performance and circular economy based on a case study project in Christchurch, New Zealand. The case study project &ldquo;Whole House Deconstruction&rdquo; which aimed, firstly, to harvest materials from a residential house, secondly, to produce new products using the recovered materials, and thirdly, to organize an exhibition for the local public to promote awareness on resource conservation and sustainable deconstruction practices. Through a systematic deconstruction process, the project recovered around 12 tonnes of various construction materials, most of which would otherwise be disposed of to landfill in the traditional demolition approach. It is estimated that the deconstruction of a similar residential house could potentially prevent around 27,029 kg of carbon emission to the atmosphere by recovering and reusing the building materials. In addition, the project involved local designers to produce 400 artefacts using the recovered materials and to exhibit them to accelerate public awareness. The findings from this study suggest that the deconstruction project has significant environmental benefits, as well as social benefits by involving the local community and unemployed youth as a part of their professional skills development opportunities. However, the project faced a number of economic and institutional challenges. The study concludes that with proper economic models and appropriate institutional support a significant amount of construction and demolition waste can be reduced through a systematic deconstruction process. Traditionally, the greatest benefits from such projects are often ignored and remain unreported to wider audiences as most of the external and environmental costs have not been considered in the traditional linear economy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title="circular economy">circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20recovery" title=" resource recovery"> resource recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=systematic%20deconstruction" title=" systematic deconstruction"> systematic deconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20waste%20management" title=" sustainable waste management"> sustainable waste management</a> </p> <a href="https://publications.waset.org/abstracts/76931/sustainability-assessment-of-a-deconstructed-residential-house" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3899</span> Valorization of the Waste Generated in Building Energy-Efficiency Rehabilitation Works as Raw Materials for Gypsum Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paola%20Villoria%20Saez">Paola Villoria Saez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Del%20Rio%20Merino"> Mercedes Del Rio Merino</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Santacruz%20Astorqui"> Jaime Santacruz Astorqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Porras%20Amores"> Cesar Porras Amores</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In construction the Circular Economy covers the whole cycle of the building construction: from production and consumption to waste management and the market for secondary raw materials. The circular economy will definitely contribute to 'closing the loop' of construction product lifecycles through greater recycling and re-use, helping to build a market for reused construction materials salvaged from demolition sites, boosting global competitiveness and fostering sustainable economic growth. In this context, this paper presents the latest research of 'Waste to resources (W2R)' project funded by the Spanish Government, which seeks new solutions to improve energy efficiency in buildings by developing new building materials and products that are less expensive, more durable, with higher quality and more environmentally friendly. This project differs from others as its main objective is to reduce to almost zero the Construction and Demolition Waste (CDW) generated in building rehabilitation works. In order to achieve this objective, the group is looking for new ways of CDW recycling as raw materials for new conglomerate materials. With these new materials, construction elements reducing building energy consumption will be proposed. In this paper, the results obtained in the project are presented. Several tests were performed to gypsum samples containing different percentages of CDW waste generated in Spanish building retroffiting works. Results were further analyzed and one of the gypsum composites was highlighted and discussed. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under 'Waste 2 Resources' Project (BIA2013-43061-R). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20waste" title="building waste">building waste</a>, <a href="https://publications.waset.org/abstracts/search?q=CDW" title=" CDW"> CDW</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a> </p> <a href="https://publications.waset.org/abstracts/52674/valorization-of-the-waste-generated-in-building-energy-efficiency-rehabilitation-works-as-raw-materials-for-gypsum-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3898</span> Value Generation of Construction and Demolition Waste Originated in the Building Rehabilitation to Improve Energy Efficiency; From Waste to Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mercedes%20Del%20Rio%20Merino">Mercedes Del Rio Merino</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Santacruz%20Astorqui"> Jaime Santacruz Astorqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20Villoria%20Saez"> Paola Villoria Saez</a>, <a href="https://publications.waset.org/abstracts/search?q=Carmen%20Vi%C3%B1as%20Arrebola"> Carmen Viñas Arrebola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lack of treatment of the waste from construction and demolition waste (CDW) is a problem that must be solved immediately. It is estimated that in the world not to use CDW generates an increase in the use of new materials close to 20% of the total value of the materials used. The problem is even greater in case these wastes are considered hazardous because the final deposition of them may also generate significant contamination. Therefore, the possibility of including CDW in the manufacturing of building materials, represents an interesting alternative to ensure their use and to reduce their possible risk. In this context and in the last years, many researches are being carried out in order to analyze the viability of using CDW as a substitute for the traditional raw material of high environmental impact. Even though it is true, much remains to be done, because these works generally characterize materials but not specific applications that allow the agents of the construction to have the guarantees required by the projects. Therefore, it is necessary the involvement of all the actors included in the life cycle of these new construction materials, and also to promote its use for, for example, definition of standards, tax advantages or market intervention is necessary. This paper presents the main findings reached in "Waste to resources (W2R)" project since it began in October 2014. The main goal of the project is to develop new materials, elements and construction systems, manufactured from CDW, to be used in improving the energy efficiency of buildings. Other objectives of the project are: to quantify the CDW generated in the energy rehabilitation works, specifically wastes from the building envelope; and to study the traceability of CDW generated and promote CDW reuse and recycle in order to get close to the life cycle of buildings, generating zero waste and reducing the ecological footprint of the construction sector. This paper determines the most important aspects to consider during the design of new constructive solutions, which improve the energy efficiency of buildings and what materials made with CDW would be the most suitable for that. Also, a survey to select best practices for reducing "close to zero waste" in refurbishment was done. Finally, several pilot rehabilitation works conform the parameters analyzed in the project were selected, in order to apply the results and thus compare the theoretical with reality. Acknowledgements: This research was supported by the Spanish State Secretariat for Research, Development and Innovation of the Ministry of Economy and Competitiveness under "Waste 2 Resources" Project (BIA2013-43061-R). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20waste" title="building waste">building waste</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a> </p> <a href="https://publications.waset.org/abstracts/52699/value-generation-of-construction-and-demolition-waste-originated-in-the-building-rehabilitation-to-improve-energy-efficiency-from-waste-to-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52699.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3897</span> Natural and Construction/Demolition Waste Aggregates: A Comparative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debora%20C.%20Mendes">Debora C. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Eckert"> Matthias Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudia%20S.%20Mo%C3%A7o"> Claudia S. Moço</a>, <a href="https://publications.waset.org/abstracts/search?q=Helio%20Martins"> Helio Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20Gon%C3%A7alves"> Jean-Pierre Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Oliveira"> Miguel Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20P.%20Da%20Silva"> Jose P. Da Silva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20preparation" title="concrete preparation">concrete preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a> </p> <a href="https://publications.waset.org/abstracts/23650/natural-and-constructiondemolition-waste-aggregates-a-comparative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3896</span> Towards Sustainable Construction: An Exploratory Study of the Factors Affecting the Investment on Construction and Demolition Waste in Saudi Arabia (KSA)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Alnuwairan">Mohammed Alnuwairan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Abdelrahman"> Mahmoud Abdelrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on the sustainability concept, this paper explores the current situation of construction and demolition waste (C&D) in the Kingdom of Saudi Arabia (KSA) from the source of production to final destinations. The issues that hindered the investment of recycling C&D in the context will be studied in order to identify the challenges and opportunities to improve this sector and put forward a strategic framework to reduce, reuse, recycle and minimize the disposal of this type of waste. The research, which is exploratory in nature, identified four types of organizations that were appropriate case studies. These organizations were drawn from the municipalities, city council, recyclers and manufacturers. Secondary data collection, direct observation, and elite interviewing methods were used in the case studies to facilitate comparisons with existing literature to explore opportunities to improve sustainability practices in the buildings sector. Implementation of C&D waste management and recycling in KSA is in the early stages. Resistance of virgin building material manufacturers, free usage of landfill, culture, surpluses of natural raw material, availability of land and the cost of recycling this material compared with virgin material hinders the adoption of recycled buildings martial. Although the metal material is collected and recycled but it has the lowest percentage of C&D waste in Saudi. The findings indicate that government and industry need to collaborate more closely in order to successfully implement best practices. Economic and environmental benefits can be achieved, particularly through improvements to infrastructure and legislation. Feasible solution framework and recommendations for managing C&D waste under current situation are provided. The findings can be used to extend this framework and to enable it to be applicable in other context with emerging economies similar to that found in KSA. No study of this type has been previously carried out in KSA. The findings should prove useful in creating a future research agenda for C&D waste in KSA and, possibly, other emerging countries within a similar context. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title="construction and demolition waste">construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/40615/towards-sustainable-construction-an-exploratory-study-of-the-factors-affecting-the-investment-on-construction-and-demolition-waste-in-saudi-arabia-ksa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3895</span> Physical, Chemical and Environmental Properties of Natural and Construction/Demolition Recycled Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D%C3%A9bora%20C.%20Mendes">Débora C. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthias%20Eckert"> Matthias Eckert</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A1udia%20S.%20Mo%C3%A7o"> Cláudia S. Moço</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9lio%20Martins"> Hélio Martins</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20P.%20Gon%C3%A7alves"> Jean-Pierre P. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Oliveira"> Miguel Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20P.%20Da%20Silva"> José P. Da Silva </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncontrolled disposal of construction and demolition waste (C & DW) in embankments in the periphery of cities causes both environmental and social problems, namely erosion, deforestation, water contamination and human conflicts. One of the milestones of EU Horizon 2020 Programme is the management of waste as a resource. To achieve this purpose for C & DW, a detailed analysis of the properties of these materials should be done. In this work we report the physical, chemical and environmental properties of C & DW aggregates from 25 different origins. The results are compared with those of common natural aggregates used in construction. Assays were performed according to European Standards. Additional analysis of heavy metals and organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed to evaluate their environmental impact. Finally, properties of concrete prepared with C & DW aggregates are also reported. Physical analyses of C & DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. In conclusion, the characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete%20preparation" title="concrete preparation">concrete preparation</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20pollutants" title=" organic pollutants"> organic pollutants</a> </p> <a href="https://publications.waset.org/abstracts/28314/physical-chemical-and-environmental-properties-of-natural-and-constructiondemolition-recycled-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=130">130</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=131">131</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=construction%20%26%20demolition%20waste-C%26DW&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10