CINXE.COM

Search results for: recycling

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: recycling</title> <meta name="description" content="Search results for: recycling"> <meta name="keywords" content="recycling"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="recycling" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="recycling"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 603</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: recycling</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">603</span> Production and Recycling of Construction and Demolition Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimira%20Vytlacilova">Vladimira Vytlacilova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling of construction and demolition waste (C&amp;DW) and their new reuse in structures is one of the solutions of environmental problems. Construction and demolition waste creates a major portion of total solid waste production in the world and most of it is used in landfills all the time. The paper deals with the situation of the recycling of the building and demolition waste in the Czech Republic during the recent years. The paper is dealing with questions of C&amp;D waste recycling, it also characterizes construction and demolition waste in general, furthermore it analyses production of construction waste and subsequent production of recycled materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Recycling" title="Recycling">Recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=Construction%20and%20demolition%20waste" title=" Construction and demolition waste"> Construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=Recycled%20rubble" title=" Recycled rubble"> Recycled rubble</a>, <a href="https://publications.waset.org/abstracts/search?q=Waste%20management" title=" Waste management"> Waste management</a> </p> <a href="https://publications.waset.org/abstracts/9598/production-and-recycling-of-construction-and-demolition-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">602</span> Survey and Analysis of the Operational Dilemma of the Existing Used Clothes Recycling Model in the Community</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qiaohui%20Zhong">Qiaohui Zhong</a>, <a href="https://publications.waset.org/abstracts/search?q=Yiqi%20Kuang"> Yiqi Kuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanxun%20Cai"> Wanxun Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Libin%20Huang"> Libin Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a community public facility, the popularity and perfection of old clothes recycling products directly affect people's impression of the whole city, which is related to the happiness index of residents' lives and is of great significance to the construction of eco-civilized cities and the realization of sustainable urban development. At present, China's waste clothing is characterized by large production and a high utilization rate, but the current rate of old clothes recycling is low, and the ‘one-size-fits-all’ recycling model makes people's motivation for old clothes recycling low, and old clothes recycling is in a dilemma. Based on the two online and offline recycling modes of old clothes recycling in Chinese communities, this paper conducts an in-depth survey on the public, operators, and regulators from the aspects of activity scene analysis, crowd attributes analysis, and community space analysis summarizes the difficulties of old clothes recycling for the public - nowhere to recycle, inconvenient to recycle and unwilling to recycle, and analyzes the factors that lead to these difficulties, and gives a solution with foreign experience to solve these problems. It also analyzes the factors that lead to these difficulties and gives targeted suggestions in combination with foreign experience, exploring and proposing a set of appropriate modern old-clothes recycling modes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community" title="community">community</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20clothes%20recycling" title=" old clothes recycling"> old clothes recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20mode" title=" recycling mode"> recycling mode</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20urban%20development" title=" sustainable urban development"> sustainable urban development</a> </p> <a href="https://publications.waset.org/abstracts/185863/survey-and-analysis-of-the-operational-dilemma-of-the-existing-used-clothes-recycling-model-in-the-community" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">601</span> Recycling Motivations and Barriers in Kota Kinabalu, Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasmine%20Adela%20Mutang">Jasmine Adela Mutang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosnah%20Ismail"> Rosnah Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Chua%20Bee%20Seok"> Chua Bee Seok</a>, <a href="https://publications.waset.org/abstracts/search?q=Ferlis%20Bahari"> Ferlis Bahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Lailawati%20Madlan"> Lailawati Madlan</a>, <a href="https://publications.waset.org/abstracts/search?q=Walton%20Wider"> Walton Wider</a>, <a href="https://publications.waset.org/abstracts/search?q=Rickless%20Das"> Rickless Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste projection is increasing and most landfills in Malaysia are running out of space. Due to that, waste management is now becoming a major challenge. The most sustainable solution is by practicing sustainable practices such as recycling. Since 1993 the government has launched several recycling campaigns and implemented the National Recycling Policy. However, public participation is still very low. Only 10.5% of solid waste was recycled up to now which is far below than of in developed countries. Nevertheless the government is optimistic that the target of 22% recycling by 2020 will be achieved if there is a positive flow pattern in sustainable practices in particular recycling behavior among Malaysian. Understanding public motivations towards recycling domestic waste are important to improve current recycling rate. Thus this study attempts to identify what are the possible motivations and hindrances for the public to recycle. Open-ended questions format were administered to 484 people in Kota Kinabalu, Sabah, Malaysia. Two specific questions we asked to explore their general determinants and barriers in practicing recycling: “What motivates you to recycle?” and “What are the barriers you encountered in doing recycling activities?” Thematic analysis was conducted on the open-ended questions in which themes were created with the raw comments. It was found that the underlying recycling motivations are awareness’ towards the environment, benefits to the society and individual, and social influence. Non participations are influence by attitudes, commitment, facilities, knowledge, inconvenience, and enforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling%20motivation" title="recycling motivation">recycling motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20barrier" title=" recycling barrier"> recycling barrier</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20waste" title=" household waste"> household waste</a> </p> <a href="https://publications.waset.org/abstracts/34243/recycling-motivations-and-barriers-in-kota-kinabalu-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">553</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">600</span> Assessment of Barriers Preventing Recycling Practices among Bars and Eateries in Central South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Vermaas">Jana Vermaas</a>, <a href="https://publications.waset.org/abstracts/search?q=Carien%20Denner"> Carien Denner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Waste has become a global issue and the management regarding it a priority. Some of the main problems in South Africa (SA) include: (1) the lack of information and education, (2) waste collection services, (3) reusing and recycling is not encouraged, (4) illegal dumping, and the biggest problem of all (5) the lack of waste related regulations and enforcement by the government and municipalities. In SA, there are provinces such as Gauteng and the Western Cape that have some recycling programs in place, but nothing yet in the central part of the country. By identifying the barriers preventing these businesses from recycling, the local municipalities and recycling services could create a solution. Owners or employees of eateries and bars completed a self-administered questionnaire. Information were obtained on knowledge of recycling, participation in recycling and to which extent, barriers that prevent them from recycling and motives that would encourage recycling. The data obtained from the questionnaire indicated that most (98%) participants knew only the basics, that recycling is a process of converting waste materials into new materials and objects. Further knowledge questions indicated that individuals were not educated about recycling as almost half (49%) of the participants believe that they can’t reuse plastic bottles. They do not understand which items of their waste could be re-used or recycled. They had limited knowledge about the recycling opportunities or practices in the area. Only a small number (34%) were involved in recycling or sustainable practices. Many did not even know of any collection services or buy-back centres in their vicinity. Most of the participants (94%) indicated that they would be willing to recycle if it would have a financial benefit. Many also stated that they would be more willing to recycle if the recyclable waste will be collected from their establishment, on a regular basis. The enforcement of recycling by municipalities or government by awarding fines for waste offenders was indicated as a significant motive. It could be concluded that the most significant barrier is knowledge and lack of information. These businesses do not comprehend the impact that they can have with their recycling contributions, not only on the environment, but also on the consumers that they serve. Another barrier is the lack of collection services. There are currently no government or municipal services for the collection of recyclable waste. All waste are taken to landfills. Many of the larger recycling initiatives and companies do not reach as far as central SA. Therefore, the buy-back component of recycling is not present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eateries" title="eateries">eateries</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20practices" title=" sustainable practices"> sustainable practices</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/93821/assessment-of-barriers-preventing-recycling-practices-among-bars-and-eateries-in-central-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">599</span> Understanding Consumer Recycling Behavior: A Literature Review of Motivational and Behavioral Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karin%20Johansson">Karin Johansson</a>, <a href="https://publications.waset.org/abstracts/search?q=Ola%20Johansson"> Ola Johansson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling is an important aspect of a sustainable society and depends to a large extent on consumers’ willingness to provide the voluntary work needed to take the first critical step in many return logistics systems. Based on a systematic review of articles on recycling behavior, this paper presents and discusses the findings in relation to Fogg’s Behavioral Model (FBM). Through the analysis of a corpus of 72 articles, the most important research contributions on recycling behavior are summarized and discussed. The choice of using FBM as a framework provides a new way of viewing previous research findings, and aids in identifying knowledge gaps. Based on the review, this work identifies and discusses four areas of potential interest for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling" title="recycling">recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics" title=" reverse logistics"> reverse logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/95421/understanding-consumer-recycling-behavior-a-literature-review-of-motivational-and-behavioral-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">598</span> Concrete Recycling in Egypt for Construction Applications: A Technical and Financial Feasibility Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omar%20Farahat%20Hassanein">Omar Farahat Hassanein</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Samer%20Ezeldin"> A. Samer Ezeldin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The construction industry is a very dynamic field. Every day new technologies and methods are developing to fasten the process and increase its efficiency. Hence, if a project uses fewer resources, it will be more efficient. This paper examines the recycling of concrete construction and demolition (C&D) waste to reuse it as aggregates in on-site applications for construction projects in Egypt and possibly in the Middle East. The study focuses on a stationary plant setting. The machinery set-up used in the plant is analyzed technically and financially. The findings are gathered and grouped to obtain a comprehensive cost-benefit financial model to demonstrate the feasibility of establishing and operating a concrete recycling plant. Furthermore, a detailed business plan including the time and hierarchy is proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20wastes" title="construction wastes">construction wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20model" title=" financial model"> financial model</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20recycling" title=" concrete recycling"> concrete recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20life%20cycle" title=" concrete life cycle"> concrete life cycle</a> </p> <a href="https://publications.waset.org/abstracts/3051/concrete-recycling-in-egypt-for-construction-applications-a-technical-and-financial-feasibility-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">597</span> Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beena%20Sethi">Beena Sethi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title=" differential scanning calorimetry"> differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=feedstock%20recycling" title=" feedstock recycling"> feedstock recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=thermogravimetric%20analysis" title=" thermogravimetric analysis"> thermogravimetric analysis</a> </p> <a href="https://publications.waset.org/abstracts/44154/recycling-of-polymers-in-the-presence-of-nanocatalysts-a-green-approach-towards-sustainable-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">596</span> Sustainability of Photovoltaic Recycling Planning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Ki%20Choi">Jun-Ki Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The usage of valuable resources and the potential for waste generation at the end of the life cycle of photovoltaic (PV) technologies necessitate a proactive planning for a PV recycling infrastructure. To ensure the sustainability of PV in large scales of deployment, it is vital to develop and institute low-cost recycling technologies and infrastructure for the emerging PV industry in parallel with the rapid commercialization of these new technologies. There are various issues involved in the economics of PV recycling and this research examine those at macro and micro levels, developing a holistic interpretation of the economic viability of the PV recycling systems. This study developed mathematical models to analyze the profitability of recycling technologies and to guide tactical decisions for allocating optimal location of PV take-back centers (PVTBC), necessary for the collection of end of life products. The economic decision is usually based on the level of the marginal capital cost of each PVTBC, cost of reverse logistics, distance traveled, and the amount of PV waste collected from various locations. Results illustrated that the reverse logistics costs comprise a major portion of the cost of PVTBC; PV recycling centers can be constructed in the optimally selected locations to minimize the total reverse logistics cost for transporting the PV wastes from various collection facilities to the recycling center. In the micro- process level, automated recycling processes should be developed to handle the large amount of growing PV wastes economically. The market price of the reclaimed materials are important factors for deciding the profitability of the recycling process and this illustrates the importance of the recovering the glass and expensive metals from PV modules. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20models" title=" mathematical models"> mathematical models</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/48361/sustainability-of-photovoltaic-recycling-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">595</span> Recycling in Bogotá: A SWOT Analysis of Three Associations to Evaluate the Integrating the Informal Sector into Solid Waste Management </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clara%20In%C3%A9s%20Pardo%20Mart%C3%ADnez">Clara Inés Pardo Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In emerging economies, recycling is an opportunity for the cities to increase the lifespan of sanitary landfills, reduce the costs of the solid waste management, decrease the environmental problems of the waste treatment through reincorporate waste in the productive cycle and protect and develop people’s livelihoods of informal waste pickers. However, few studies have analysed the possibilities and strategies to integrate formal and informal sectors in the solid waste management for the benefit of both. This study seek to make a strength, weakness, opportunity, and threat (SWOT) analysis in three recycling associations of Bogotá with the aim to understand and determine the situation of recycling from perspective of informal sector in its transition to enter as authorized waste providers. Data used in the analysis are derived from multiple strategies such as literature review, the Bogota’s recycling database, focus group meetings, governmental reports, national laws and regulations and specific interviews with key stakeholders. Results of this study show as the main stakeholders of formal and informal sector of waste management can identify the internal and internal conditions of recycling in Bogotá. Several strategies were designed based on the SWOTs determined, could be useful for Bogotá to advance and promote recycling as a key strategy for integrated sustainable waste management in the city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bogot%C3%A1" title="Bogotá">Bogotá</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=SWOT%20analysis" title=" SWOT analysis"> SWOT analysis</a> </p> <a href="https://publications.waset.org/abstracts/21042/recycling-in-bogota-a-swot-analysis-of-three-associations-to-evaluate-the-integrating-the-informal-sector-into-solid-waste-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21042.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">594</span> Recycling Strategies of Construction Waste in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Anwar">Hanan Anwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All systems recycle. The construction industry has not only become a major consumer of natural materials along with a source of pollution. Environmental integrated production, reusing and recycling is of great importance in Egypt nowadays. Governments should ensure that the technical, environmental and economic feasibility of alternative systems is considered and is taken into account before construction starts. Hereby this paper focuses on the recycle of building materials as a way for environment protection and sustainable development. Environmental management integrates the requirements of sustainable development. There are many methods used to reduce waste and increase profits through salvage, reuse, and the recycling of construction waste. Sustainable development as a tool to continual improvement cycle processes innovations to save money. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environment" title="environment">environment</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/45858/recycling-strategies-of-construction-waste-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">593</span> A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guannan%20Ren">Guannan Ren</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Mazzuchi"> Thomas Mazzuchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Sarkani"> Shahram Sarkani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=environmental%20engineering" title="environmental engineering">environmental engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling%20and%20simulation" title=" modeling and simulation"> modeling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20science" title=" transportation science"> transportation science</a>, <a href="https://publications.waset.org/abstracts/search?q=policy" title=" policy"> policy</a> </p> <a href="https://publications.waset.org/abstracts/169021/a-system-dynamics-approach-for-assessing-policy-impacts-on-closed-loop-supply-chain-efficiency-a-case-study-on-electric-vehicle-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">592</span> Initiative Strategies on How to Increase Value Add of the Recycling Business </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yananda%20Siraphatthada">Yananda Siraphatthada</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study was the succession of a previous study on value added of recycling business management. Its aims are to 1) explore conditions on how to increasing value add of Thai recycling business, and 2) exam the implementation of the 3-staged plan (short, medium, and long term), suggested by the former study, to increase value added of the recycling business as immediate mechanisms to accelerate government operation. Quantitative and qualitative methods were utilized in this research. A qualitative research consisted of in-depth interviews and focus group discussions. Responses were obtained from owners of the waste separation plants, and recycle shops, as well as officers in relevant governmental agencies. They were randomly selected via Quota Sampling. Data was analyzed via content analysis. The sample used for quantitative method consisted of 1,274 licensed recycling operators in eight provinces. The operators were randomly stratified via sampling method. Data were analyzed via descriptive statistics frequency, percentage, average (mean), and standard deviation. The study recommended three-staged plan: short, medium, and long terms. The plan included the development of logistics, the provision of quality market/plants, the amendment of recycling rules/regulation, the restructuring recycling business, the establishment of green-purchasing recycling center, support for the campaigns run by the International Green Purchasing Network (IGPN), conferences/workshops as a public forum to share insights among experts/concern people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strategies" title="strategies">strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20added" title=" value added"> value added</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a>, <a href="https://publications.waset.org/abstracts/search?q=business" title=" business"> business</a> </p> <a href="https://publications.waset.org/abstracts/4254/initiative-strategies-on-how-to-increase-value-add-of-the-recycling-business" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">591</span> Recycling of Post-Industrial Cotton Wastes: Quality and Rotor Spinning of Reclaimed Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9chir%20Wanassi">Béchir Wanassi</a>, <a href="https://publications.waset.org/abstracts/search?q=B%C3%A9chir%20Azzouz"> Béchir Azzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Taher%20Halimi"> Taher Halimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ben%20Hassen"> Mohamed Ben Hassen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical recycling of post-industrial cotton yarn wastes, as well as the effects of passage number on the properties of reclaimed fibers, have been investigated. A new Modified Fiber Quality Index (MFQI) and Spinning Consistency Index (MSCI) for the characterization of the quality are presented. This index gives the real potential of spinnability according to its physical properties. The best quality of reclaimed fibers (after 7th passage) was used to produce rotor yarns. 100% recycling cotton yarns were produced in open-end spinning system with different rotor speed (i.e. 65000, 70000, and 80000 rpm), opening roller speed (i.e. 7700, 8200, and 8700 rpm) and twist factor (i.e. 137, 165, and 183). The effects of spinning parameters were investigated to evaluate a 100% recycling cotton yarns quality (TQI, hairiness, thin places, and thick places) using DOE method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20wastes" title="cotton wastes">cotton wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=DOE" title=" DOE"> DOE</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20recycling" title=" mechanical recycling"> mechanical recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor%20spinning" title=" rotor spinning "> rotor spinning </a> </p> <a href="https://publications.waset.org/abstracts/32161/recycling-of-post-industrial-cotton-wastes-quality-and-rotor-spinning-of-reclaimed-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">306</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">590</span> Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Thirunavukkarasu">J. Thirunavukkarasu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poulet"> M. Poulet</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Turner"> T. Turner</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pickering"> S. Pickering</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is combined with a proportion of glass fiber, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled without sizing agent was identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20charging" title="electrostatic charging">electrostatic charging</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fiber%20composites" title=" hybrid fiber composites"> hybrid fiber composites</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fiber%20composites" title=" short fiber composites"> short fiber composites</a> </p> <a href="https://publications.waset.org/abstracts/138679/separation-of-composites-for-recycling-measurement-of-electrostatic-charge-of-carbon-and-glass-fiber-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">589</span> Economic and Environmental Benefits of the Indium Recycling from the Waste Liquid Crystal Displays in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wu%20Yufeng">Wu Yufeng</a>, <a href="https://publications.waset.org/abstracts/search?q=Gu%20Yifan"> Gu Yifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Wang%20Hengguang"> Wang Hengguang</a>, <a href="https://publications.waset.org/abstracts/search?q=Gongyu"> Gongyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuo%20Tieyong"> Zuo Tieyong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Indium is one the scarce resources which can be only used less than 30 years, and more than 70% of the indium is used for the production of the LCD. The benefit of recycling Indium from waste LCD is large. Take the LCD-TV for example, the yield of which was close to 90 million units in 2010. If it was available to recycle the indium effectively, the yield of the secondary-indium could reach up to 110 metric ton, which accounted for one third of the primary indium production in China. And compared with the dispersion and long process extraction of the primary indium resources, secondary indium concentrates in the waste LCD, the exploitation has great economic and environmental benefits. However, the potential benefits were indefinite, resulting in China’s government did not pay enough attention to the indium recycling industry. In our study, an estimation model was constructed to analyze the potential of the indium in the waste LCD. The different types of LCD were detected to find out the content of indium. Then, the potential of the indium in the waste LCD was estimated in China. Furthermore, the pollution emissions of the product process of the primary and secondary indium was analyzed respectively to calculate the economic and environmental benefits of the indium recycling from the waste LCD in China. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indium%20recycling" title="indium recycling">indium recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20liquid%20crystal%20displays" title=" waste liquid crystal displays"> waste liquid crystal displays</a>, <a href="https://publications.waset.org/abstracts/search?q=benefits" title=" benefits"> benefits</a>, <a href="https://publications.waset.org/abstracts/search?q=China" title=" China"> China</a> </p> <a href="https://publications.waset.org/abstracts/24720/economic-and-environmental-benefits-of-the-indium-recycling-from-the-waste-liquid-crystal-displays-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">588</span> Preliminary Flow Sheet for Recycling of Spent Lithium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ali%20Rajaeifar">Mohammad Ali Rajaeifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20Heidrich"> Oliver Heidrich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, Li-ion batteries are vastly disseminated and the battery market is expected to experience a huge growth during next decade especially in terms of traction batteries. As the automotive industry moving towards the electrification of the powertrain, more raw/critical materials and energy are extracted while on the other hand, concerns are made regarding the scarcity of the materials as well as environmental issues regarding the destiny of the spent batteries. In this regards, recycling could play a vital role in the supply chain, leading reutilization of key battery materials and also reducing environmental burden related to the use of batteries. The aim of this paper is to review the previous and state-of-the-art treatments for recycling of Li-ion batteries. All the treatments method from mechanical, mild-thermal, pyrometallurgical and hydrometallurgical as well as combined methods for recycling of Li-ion batteries were considered in the study. There are various treatment methods that are economical, but they are not environmentally friendly or vice versa. This is due to the fact that the benefits of the Li-ion batteries recycling could be affected by different factors such as the amount of spent batteries available, the quality of the recovered material, the energy and material consumption by the process itself and environmental burdens caused by required logistics. Finally, a preliminary work sheet of possible route for recycling of spent Li-ion batteries was presented through the course of this study. Overall, it is worth quoting that recycling processes generally consumes a great deal of energy and auxiliary materials. Moreover, the collection of spent products from waste streams represents additional environmental efforts. Therefore, developing and optimizing efficient collection and separation technologies is essential to achieve sustainability goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgical%20treatment" title="hydrometallurgical treatment">hydrometallurgical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-ion%20batteries" title=" Li-ion batteries"> Li-ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=mild-thermal%20treatment" title=" mild-thermal treatment"> mild-thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20treatment" title=" mechanical treatment"> mechanical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrometallurgical%20treatment" title=" pyrometallurgical treatment"> pyrometallurgical treatment</a> </p> <a href="https://publications.waset.org/abstracts/107625/preliminary-flow-sheet-for-recycling-of-spent-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">587</span> Study of Divalent Phosphate Iron-Oxide Precursor Recycling Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinn-Dar%20Wu">Shinn-Dar Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to synthesize lithium iron phosphate cathode material using a recycling technology involving non-protective gas calcination. The advantages include lower cost and easier production than traditional methods that require a large amount of protective gas. The novel technology may have extensive industrial applications. Given that the traditional gas calcination has a large number of protection free Fe3+ production, this study developed a precursor iron phosphate (Fe2+) material recycling technology and conducted related tests and analyses. It focused on flow field design of calcination and new technology as well as analyzed the best conditions for powder calcination combination. The electrical properties were determined by button batteries and exhibited a capacity of 118 mAh/g (The use of new materials synthesis, capacitance is about 122 mAh/g). The cost reduced to 50% of the original. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20battery" title="lithium battery">lithium battery</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20iron%20phosphate" title=" lithium iron phosphate"> lithium iron phosphate</a>, <a href="https://publications.waset.org/abstracts/search?q=calcined%20technology" title=" calcined technology"> calcined technology</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling%20technology" title=" recycling technology"> recycling technology</a> </p> <a href="https://publications.waset.org/abstracts/5225/study-of-divalent-phosphate-iron-oxide-precursor-recycling-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">586</span> Reverse Logistics in Clothing Recycling: A Case Study in Chengdu </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guo%20Yan">Guo Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clothing recycling bin is a traditional way to collect textile waste in many areas. In the clothing recycling business, the transportation cost normally takes over 50% of total costs. This case gives a good way to reduce transportation cost by reverse logistics system. In this reverse logistics system, there are offline strategic alliance partners, such as transport firms, convenience stores, laundries, and post office which are integrated onto the mobile APP. Offline strategic alliance partners provide the service of textile waste collection, and transportation by their vacant vehicles return journey from convenience stores, laundries and post offices to sorting centers. The results of the case study provide the strategic alliance with a valuable and light - asset business model by using the logistics of offline memberships. The company in this case just focuses on textile waste sorting, reuse, recycling etc. The research method of this paper is a case study of a clothing recycling company in Chengdu by field research and interview; the analysis is based on the theory of the reverse logistics system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=closed-loop%20recycles%20system" title="closed-loop recycles system">closed-loop recycles system</a>, <a href="https://publications.waset.org/abstracts/search?q=clothing%20recycling" title=" clothing recycling"> clothing recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=end-of-life%20clothing" title=" end-of-life clothing"> end-of-life clothing</a>, <a href="https://publications.waset.org/abstracts/search?q=sharing%20economy" title=" sharing economy"> sharing economy</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20alliance" title=" strategic alliance"> strategic alliance</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20logistics." title=" reverse logistics."> reverse logistics.</a> </p> <a href="https://publications.waset.org/abstracts/102036/reverse-logistics-in-clothing-recycling-a-case-study-in-chengdu" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">585</span> Utilising Reuse and Recycling Strategies for Costume Design in Kuwait Theatre </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dashti">Ali Dashti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling materials within the realms of theatrical costume design and production is important. When a Kuwaiti play finishes its run, costumes are thrown away and new ones are designed when necessary. This practice indicates a lack of awareness of recycling strategies. This is a serious matter; tons of textile materials are being wasted rather than recycled. The current process of producing costumes for Kuwait theatre productions involves the conception and sketching of costumes, the purchase of new fabrics, and the employment of tailors for production. Since tailoring is outsourced, there is a shortage of designers who can make costumes autonomously. The current process does not incorporate any methods for recycling costumes. This combined with high levels of textile waste, results in significant ecological issues that demand immediate attention. However, data collected for this research paper, from a series of semi-structured interviews, have indicated that a lack of recycling facilities and increased textile waste do not present an area of concern within the Kuwaiti theatrical costume industry. This paper will review the findings of this research project and investigate the production processes used by costume designers in Kuwait. It will indicate how their behaviors, coupled with their lack of knowledge with using recycling strategies to create costumes, had increased textile waste and negatively affected Kuwait theatre costume design industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=costume" title="costume">costume</a>, <a href="https://publications.waset.org/abstracts/search?q=recycle" title=" recycle"> recycle</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=theatre" title=" theatre"> theatre</a> </p> <a href="https://publications.waset.org/abstracts/71327/utilising-reuse-and-recycling-strategies-for-costume-design-in-kuwait-theatre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">584</span> Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aravind%20G.">Aravind G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshinder%20Kaur"> Arshinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Pushpavanam%20S."> Pushpavanam S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery%20recycling" title=" lithium-ion battery recycling"> lithium-ion battery recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20design" title=" network design"> network design</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20supply%20chain" title=" reverse supply chain"> reverse supply chain</a> </p> <a href="https://publications.waset.org/abstracts/101642/reverse-supply-chain-analysis-of-lithium-ion-batteries-considering-economic-and-environmental-aspects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">583</span> Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgii%20Emelianov">Georgii Emelianov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Polikarpov"> Mikhail Polikarpov</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabian%20H%C3%BCbner"> Fabian Hübner</a>, <a href="https://publications.waset.org/abstracts/search?q=Jochen%20Deuse"> Jochen Deuse</a>, <a href="https://publications.waset.org/abstracts/search?q=Jochen%20Schiemann"> Jochen Schiemann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20collection" title=" data collection"> data collection</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20monitoring" title=" performance monitoring"> performance monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigerators" title=" refrigerators"> refrigerators</a> </p> <a href="https://publications.waset.org/abstracts/142799/automated-multisensory-data-collection-system-for-continuous-monitoring-of-refrigerating-appliances-recycling-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">582</span> Examining Pre-Consumer Textile Waste Recycling, Barriers to Implementation, and Participant Demographics: A Review of Literature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madeline%20W.%20Miller">Madeline W. Miller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global textile industry produces pollutants in the form of liquid discharge, solid waste, and emissions into the natural environment. Textile waste resulting from garment production and other manufacturing processes makes a significant contribution to the amount of waste landfilled globally. While the majority of curbside and other convenient recycling methods cater to post-consumer paper and plastics, pre-consumer textile waste is often discarded with trash and is commonly classified as ‘other’ in municipal solid waste breakdowns. On a larger scale, many clothing manufacturers and other companies utilizing textiles have not yet identified or began using the most sustainable methods for discarding their post-industrial, pre-consumer waste. To lessen the amount of waste sent to landfills, there are post-industrial, pre-consumer textile waste recycling methods that can be used to give textiles a new life. This process requires that textile and garment manufacturers redirect their waste to companies that use industrial machinery to shred or fiberize these materials in preparation for their second life. The goal of this literature review is to identify the recycling and reuse challenges faced by producers within the clothing and textile industry that prevent these companies from utilizing the described recycling methods, causing them to opt for landfill. The literature analyzed in this review reflects manufacturer sentiments toward waste disposal and recycling. The results of this review indicate that the cost of logistics is the determining factor when it comes to companies recycling their pre-consumer textile waste and that the most applicable and successful textile waste recycling methods require a company separate from the manufacturer to account for waste production, provide receptacles for waste, arrange waste transport, and identify a secondary use for the material at a price-point below that of traditional waste disposal service. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leadership%20demographics" title="leadership demographics">leadership demographics</a>, <a href="https://publications.waset.org/abstracts/search?q=post-industrial%20textile%20waste" title=" post-industrial textile waste"> post-industrial textile waste</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-consumer%20textile%20waste" title=" pre-consumer textile waste"> pre-consumer textile waste</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20shoddy" title=" industrial shoddy"> industrial shoddy</a> </p> <a href="https://publications.waset.org/abstracts/131620/examining-pre-consumer-textile-waste-recycling-barriers-to-implementation-and-participant-demographics-a-review-of-literature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">581</span> The Potential for Recycling Household Wastes Generated from the Residential Areas of Obafemi Awolowo University, Ile-Ife</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asaolu%20Olugbenga%20Stephen">Asaolu Olugbenga Stephen</a>, <a href="https://publications.waset.org/abstracts/search?q=Afolabi%20Olusegun%20Temitope"> Afolabi Olusegun Temitope</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lack of proper solid waste management is one of the main causes of environmental pollution and degradation in many cities, especially in developing countries. The aim of this study was to estimate the quantity of waste generated per capita per day, determine the composition and identify the potentials for recycling of waste generated. Characterization of wastes from selected households in the residential areas was done for over a 7 day period. The weight of each sorted category of waste was recorded in a structured database that calculated the proportion of each waste component. The results indicated that 85.4% of the sampled waste characterized was found to be recyclable; with an estimated average waste generated of 1.82kg/capita/day. The various solid waste fractions were organic (64.6%), plastics (15.6%), metals (9.2%), glass materials (1.6%) and unclassified (8.9%). It was concluded from this study that a large proportion of the waste generated from OAU campus residential area was recyclable and that there is a need to enact policy on waste recycling within the university campus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling" title="recycling">recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=household%20wastes" title=" household wastes"> household wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=residential" title=" residential"> residential</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a> </p> <a href="https://publications.waset.org/abstracts/35534/the-potential-for-recycling-household-wastes-generated-from-the-residential-areas-of-obafemi-awolowo-university-ile-ife" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">580</span> Recycling Construction Waste Materials to Reduce the Environmental Pollutants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Abkenari">Mehrdad Abkenari</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rezaei"> Alireza Rezaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Naghmeh%20Pournayeb"> Naghmeh Pournayeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term &#39;construction waste&#39; covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people&#39;s primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=civil%20engineering" title="civil engineering">civil engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20waste" title=" construction waste "> construction waste </a> </p> <a href="https://publications.waset.org/abstracts/32501/recycling-construction-waste-materials-to-reduce-the-environmental-pollutants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">305</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">579</span> The Effect of Recycling on Price Volatility of Critical Metals in the EU (2010-2019): An Application of Multivariate GARCH Family Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marc%20Evenst%20Jn%20Jacques">Marc Evenst Jn Jacques</a>, <a href="https://publications.waset.org/abstracts/search?q=Sophie%20Bernard"> Sophie Bernard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical and electronic applications, as well as rechargeable batteries, are common in any economy. They also contain a number of important and valuable metals. It is critical to investigate the impact of these new materials or volume sources on the metal market dynamics. This paper investigates the impact of responsible recycling within the European region on metal price volatility. As far as we know, no empirical studies have been conducted to assess the role of metal recycling in metal market price volatility. The goal of this paper is to test the claim that metal recycling helps to cushion price volatility. A set of circular economy indicators/variables, namely, 1) annual total trade values of recycled metals, 2) annual volume of scrap traded and 3) circular material use rate, and 4) information about recycling, are used to estimate the volatility of monthly spot prices of regular metals. A combination of the GARCH-MIDAS model for mixed frequency data sampling and a simple GARCH (1,1) model for the same frequency variables was adopted to examine the potential links between each variable and price volatility. We discovered that from 2010 to 2019, except for Nickel, scrap consumption (Millions of tons), Scrap Trade Values, and Recycled Material use rate had no significant impact on the price volatility of standard metals (Aluminum, Lead) and precious metals (Gold and Platinum). Worldwide interest in recycling has no impact on returns or volatility. Specific interest in metal recycling did have a link to the mean return equation for Aluminum, Gold and to the volatility equation for lead and Nickel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycling" title="recycling">recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=price%20volatility" title=" price volatility"> price volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=GARCH" title=" GARCH"> GARCH</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20data%20sampling" title=" mixed data sampling"> mixed data sampling</a> </p> <a href="https://publications.waset.org/abstracts/160352/the-effect-of-recycling-on-price-volatility-of-critical-metals-in-the-eu-2010-2019-an-application-of-multivariate-garch-family-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">578</span> Design Consideration of a Plastic Shredder in Recycling Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tolulope%20A.%20Olukunle">Tolulope A. Olukunle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plastic waste management has emerged as one of the greatest challenges facing developing countries. This paper describes the design of various components of a plastic shredder. This machine is widely used in industries and recycling plants. The introduction of plastic shredder machine will promote reduction of post-consumer plastic waste accumulation and serves as a system for wealth creation and empowerment through conversion of waste into economically viable products. In this design research, a 10 kW electric motor with a rotational speed of 500 rpm was chosen to drive the shredder. A pulley size of 400 mm is mounted on the electric motor at a distance of 1000 mm away from the shredder pulley. The shredder rotational speed is 300 rpm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=machine" title=" machine"> machine</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20waste" title=" plastic waste"> plastic waste</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/53521/design-consideration-of-a-plastic-shredder-in-recycling-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">577</span> Recovery of Metals from Electronic Waste by Physical and Chemical Recycling Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muammer%20Kaya">Muammer Kaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this article is to provide a comprehensive review of various physical and chemical processes for electronic waste (e-waste) recycling, their advantages and shortfalls towards achieving a cleaner process of waste utilization, with especial attention towards extraction of metallic values. Current status and future perspectives of waste printed circuit boards (PCBs) recycling are described. E-waste characterization, dismantling/ disassembly methods, liberation and classification processes, composition determination techniques are covered. Manual selective dismantling and metal-nonmetal liberation at – 150 µm at two step crushing are found to be the best. After size reduction, mainly physical separation/concentration processes employing gravity, electrostatic, magnetic separators, froth floatation etc., which are commonly used in mineral processing, have been critically reviewed here for separation of metals and non-metals, along with useful utilizations of the non-metallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining and some suitable flowsheets are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-waste" title="e-waste">e-waste</a>, <a href="https://publications.waset.org/abstracts/search?q=WEEE" title=" WEEE"> WEEE</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20recovery" title=" metal recovery"> metal recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrometallurgy" title=" hydrometallurgy"> hydrometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=pirometallurgy" title=" pirometallurgy"> pirometallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=biometallurgy" title=" biometallurgy"> biometallurgy</a> </p> <a href="https://publications.waset.org/abstracts/42536/recovery-of-metals-from-electronic-waste-by-physical-and-chemical-recycling-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">576</span> Research on Eco-Sustainable Recycling of Industrial Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Cr%C4%83c">Liliana Crăc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Giorgi"> Nicolae Giorgi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Fometescu"> Gheorghe Fometescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20solid%20wastes" title=" drilled solid wastes"> drilled solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slag" title=" metallurgical slag"> metallurgical slag</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/15190/research-on-eco-sustainable-recycling-of-industrial-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">575</span> Bio-Based Processes for Circular Economy in the Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazanin%20Forouz">Nazanin Forouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile industry faces increasing criticism due to its resource-intensive nature and the negative environmental and societal impacts associated with the manufacturing, use, and disposal of clothes. To address these concerns, there is a growing desire to transition towards a circular economy for textiles, implementing recycling concepts and technologies to protect resources, the environment, and people. While existing recycling processes have focused on chemical and mechanical reuse of textile fibers, bio-based processes have received limited attention beyond end-of-life composting. However, bio-based technologies hold great promise for circularizing the textile life cycle and reducing environmental impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=textile%20industry" title="textile industry">textile industry</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-based%20processes" title=" bio-based processes"> bio-based processes</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impacts" title=" environmental impacts"> environmental impacts</a> </p> <a href="https://publications.waset.org/abstracts/167974/bio-based-processes-for-circular-economy-in-the-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">574</span> Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abioye%20A.%20Oyenuga">Abioye A. Oyenuga</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20Bhamidiarri"> Rao Bhamidiarri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper, and plasterboard. Data obtained from demolition specialist and contractors are considered and evaluated. With the date source, the research paper found that construction material recovery process fully incorporate the 3R’s process and shows how energy recovery by means of 3R's principles can be evaluated. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste%20%28C%26DW%29" title="construction and demolition waste (C&amp;DW)">construction and demolition waste (C&amp;DW)</a>, <a href="https://publications.waset.org/abstracts/search?q=3R%20concept" title=" 3R concept"> 3R concept</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=UK" title=" UK"> UK</a> </p> <a href="https://publications.waset.org/abstracts/26873/reduce-reuse-and-recycle-grand-challenges-in-construction-recovery-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">428</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=20">20</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=21">21</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=recycling&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10