CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;39 of 39 results for author: <span class="mathjax">Ruas, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Ruas%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Ruas, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Ruas%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Ruas, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11926">arXiv:2502.11926</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.11926">pdf</a>, <a href="https://arxiv.org/format/2502.11926">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Muhammad%2C+S+H">Shamsuddeen Hassan Muhammad</a>, <a href="/search/cs?searchtype=author&amp;query=Ousidhoum%2C+N">Nedjma Ousidhoum</a>, <a href="/search/cs?searchtype=author&amp;query=Abdulmumin%2C+I">Idris Abdulmumin</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Beloucif%2C+M">Meriem Beloucif</a>, <a href="/search/cs?searchtype=author&amp;query=de+Kock%2C+C">Christine de Kock</a>, <a href="/search/cs?searchtype=author&amp;query=Surange%2C+N">Nirmal Surange</a>, <a href="/search/cs?searchtype=author&amp;query=Teodorescu%2C+D">Daniela Teodorescu</a>, <a href="/search/cs?searchtype=author&amp;query=Ahmad%2C+I+S">Ibrahim Said Ahmad</a>, <a href="/search/cs?searchtype=author&amp;query=Adelani%2C+D+I">David Ifeoluwa Adelani</a>, <a href="/search/cs?searchtype=author&amp;query=Aji%2C+A+F">Alham Fikri Aji</a>, <a href="/search/cs?searchtype=author&amp;query=Ali%2C+F+D+M+A">Felermino D. M. A. Ali</a>, <a href="/search/cs?searchtype=author&amp;query=Alimova%2C+I">Ilseyar Alimova</a>, <a href="/search/cs?searchtype=author&amp;query=Araujo%2C+V">Vladimir Araujo</a>, <a href="/search/cs?searchtype=author&amp;query=Babakov%2C+N">Nikolay Babakov</a>, <a href="/search/cs?searchtype=author&amp;query=Baes%2C+N">Naomi Baes</a>, <a href="/search/cs?searchtype=author&amp;query=Bucur%2C+A">Ana-Maria Bucur</a>, <a href="/search/cs?searchtype=author&amp;query=Bukula%2C+A">Andiswa Bukula</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+G">Guanqun Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Cardenas%2C+R+T">Rodrigo Tufino Cardenas</a>, <a href="/search/cs?searchtype=author&amp;query=Chevi%2C+R">Rendi Chevi</a>, <a href="/search/cs?searchtype=author&amp;query=Chukwuneke%2C+C+I">Chiamaka Ijeoma Chukwuneke</a>, <a href="/search/cs?searchtype=author&amp;query=Ciobotaru%2C+A">Alexandra Ciobotaru</a>, <a href="/search/cs?searchtype=author&amp;query=Dementieva%2C+D">Daryna Dementieva</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11926v1-abstract-short" style="display: inline;"> People worldwide use language in subtle and complex ways to express emotions. While emotion recognition -- an umbrella term for several NLP tasks -- significantly impacts different applications in NLP and other fields, most work in the area is focused on high-resource languages. Therefore, this has led to major disparities in research and proposed solutions, especially for low-resource languages t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11926v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11926v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11926v1-abstract-full" style="display: none;"> People worldwide use language in subtle and complex ways to express emotions. While emotion recognition -- an umbrella term for several NLP tasks -- significantly impacts different applications in NLP and other fields, most work in the area is focused on high-resource languages. Therefore, this has led to major disparities in research and proposed solutions, especially for low-resource languages that suffer from the lack of high-quality datasets. In this paper, we present BRIGHTER-- a collection of multilabeled emotion-annotated datasets in 28 different languages. BRIGHTER covers predominantly low-resource languages from Africa, Asia, Eastern Europe, and Latin America, with instances from various domains annotated by fluent speakers. We describe the data collection and annotation processes and the challenges of building these datasets. Then, we report different experimental results for monolingual and crosslingual multi-label emotion identification, as well as intensity-level emotion recognition. We investigate results with and without using LLMs and analyse the large variability in performance across languages and text domains. We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition and discuss their impact and utility. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11926v1-abstract-full').style.display = 'none'; document.getElementById('2502.11926v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18444">arXiv:2411.18444</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18444">pdf</a>, <a href="https://arxiv.org/format/2411.18444">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Is my Meeting Summary Good? Estimating Quality with a Multi-LLM Evaluator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18444v1-abstract-short" style="display: inline;"> The quality of meeting summaries generated by natural language generation (NLG) systems is hard to measure automatically. Established metrics such as ROUGE and BERTScore have a relatively low correlation with human judgments and fail to capture nuanced errors. Recent studies suggest using large language models (LLMs), which have the benefit of better context understanding and adaption of error def&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18444v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18444v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18444v1-abstract-full" style="display: none;"> The quality of meeting summaries generated by natural language generation (NLG) systems is hard to measure automatically. Established metrics such as ROUGE and BERTScore have a relatively low correlation with human judgments and fail to capture nuanced errors. Recent studies suggest using large language models (LLMs), which have the benefit of better context understanding and adaption of error definitions without training on a large number of human preference judgments. However, current LLM-based evaluators risk masking errors and can only serve as a weak proxy, leaving human evaluation the gold standard despite being costly and hard to compare across studies. In this work, we present MESA, an LLM-based framework employing a three-step assessment of individual error types, multi-agent discussion for decision refinement, and feedback-based self-training to refine error definition understanding and alignment with human judgment. We show that MESA&#39;s components enable thorough error detection, consistent rating, and adaptability to custom error guidelines. Using GPT-4o as its backbone, MESA achieves mid to high Point-Biserial correlation with human judgment in error detection and mid Spearman and Kendall correlation in reflecting error impact on summary quality, on average 0.25 higher than previous methods. The framework&#39;s flexibility in adapting to custom error guidelines makes it suitable for various tasks with limited human-labeled data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18444v1-abstract-full').style.display = 'none'; document.getElementById('2411.18444v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11081">arXiv:2411.11081</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11081">pdf</a>, <a href="https://arxiv.org/format/2411.11081">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> The Promises and Pitfalls of LLM Annotations in Dataset Labeling: a Case Study on Media Bias Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Horych%2C+T">Tomas Horych</a>, <a href="/search/cs?searchtype=author&amp;query=Mandl%2C+C">Christoph Mandl</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Greiner-Petter%2C+A">Andre Greiner-Petter</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a>, <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11081v2-abstract-short" style="display: inline;"> High annotation costs from hiring or crowdsourcing complicate the creation of large, high-quality datasets needed for training reliable text classifiers. Recent research suggests using Large Language Models (LLMs) to automate the annotation process, reducing these costs while maintaining data quality. LLMs have shown promising results in annotating downstream tasks like hate speech detection and p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11081v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11081v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11081v2-abstract-full" style="display: none;"> High annotation costs from hiring or crowdsourcing complicate the creation of large, high-quality datasets needed for training reliable text classifiers. Recent research suggests using Large Language Models (LLMs) to automate the annotation process, reducing these costs while maintaining data quality. LLMs have shown promising results in annotating downstream tasks like hate speech detection and political framing. Building on the success in these areas, this study investigates whether LLMs are viable for annotating the complex task of media bias detection and whether a downstream media bias classifier can be trained on such data. We create annolexical, the first large-scale dataset for media bias classification with over 48000 synthetically annotated examples. Our classifier, fine-tuned on this dataset, surpasses all of the annotator LLMs by 5-9 percent in Matthews Correlation Coefficient (MCC) and performs close to or outperforms the model trained on human-labeled data when evaluated on two media bias benchmark datasets (BABE and BASIL). This study demonstrates how our approach significantly reduces the cost of dataset creation in the media bias domain and, by extension, the development of classifiers, while our subsequent behavioral stress-testing reveals some of its current limitations and trade-offs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11081v2-abstract-full').style.display = 'none'; document.getElementById('2411.11081v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14545">arXiv:2410.14545</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14545">pdf</a>, <a href="https://arxiv.org/format/2410.14545">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Tell me what I need to know: Exploring LLM-based (Personalized) Abstractive Multi-Source Meeting Summarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Kratel%2C+R">Robert Kratel</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14545v1-abstract-short" style="display: inline;"> Meeting summarization is crucial in digital communication, but existing solutions struggle with salience identification to generate personalized, workable summaries, and context understanding to fully comprehend the meetings&#39; content. Previous attempts to address these issues by considering related supplementary resources (e.g., presentation slides) alongside transcripts are hindered by models&#39; li&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14545v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14545v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14545v1-abstract-full" style="display: none;"> Meeting summarization is crucial in digital communication, but existing solutions struggle with salience identification to generate personalized, workable summaries, and context understanding to fully comprehend the meetings&#39; content. Previous attempts to address these issues by considering related supplementary resources (e.g., presentation slides) alongside transcripts are hindered by models&#39; limited context sizes and handling the additional complexities of the multi-source tasks, such as identifying relevant information in additional files and seamlessly aligning it with the meeting content. This work explores multi-source meeting summarization considering supplementary materials through a three-stage large language model approach: identifying transcript passages needing additional context, inferring relevant details from supplementary materials and inserting them into the transcript, and generating a summary from this enriched transcript. Our multi-source approach enhances model understanding, increasing summary relevance by ~9% and producing more content-rich outputs. We introduce a personalization protocol that extracts participant characteristics and tailors summaries accordingly, improving informativeness by ~10%. This work further provides insights on performance-cost trade-offs across four leading model families, including edge-device capable options. Our approach can be extended to similar complex generative tasks benefitting from additional resources and personalization, such as dialogue systems and action planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14545v1-abstract-full').style.display = 'none'; document.getElementById('2410.14545v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11919">arXiv:2407.11919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11919">pdf</a>, <a href="https://arxiv.org/format/2407.11919">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> What&#39;s Wrong? Refining Meeting Summaries with LLM Feedback </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11919v1-abstract-short" style="display: inline;"> Meeting summarization has become a critical task since digital encounters have become a common practice. Large language models (LLMs) show great potential in summarization, offering enhanced coherence and context understanding compared to traditional methods. However, they still struggle to maintain relevance and avoid hallucination. We introduce a multi-LLM correction approach for meeting summari&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11919v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11919v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11919v1-abstract-full" style="display: none;"> Meeting summarization has become a critical task since digital encounters have become a common practice. Large language models (LLMs) show great potential in summarization, offering enhanced coherence and context understanding compared to traditional methods. However, they still struggle to maintain relevance and avoid hallucination. We introduce a multi-LLM correction approach for meeting summarization using a two-phase process that mimics the human review process: mistake identification and summary refinement. We release QMSum Mistake, a dataset of 200 automatically generated meeting summaries annotated by humans on nine error types, including structural, omission, and irrelevance errors. Our experiments show that these errors can be identified with high accuracy by an LLM. We transform identified mistakes into actionable feedback to improve the quality of a given summary measured by relevance, informativeness, conciseness, and coherence. This post-hoc refinement effectively improves summary quality by leveraging multiple LLMs to validate output quality. Our multi-LLM approach for meeting summarization shows potential for similar complex text generation tasks requiring robustness, action planning, and discussion towards a goal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11919v1-abstract-full').style.display = 'none'; document.getElementById('2407.11919v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03192">arXiv:2407.03192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.03192">pdf</a>, <a href="https://arxiv.org/format/2407.03192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> CiteAssist: A System for Automated Preprint Citation and BibTeX Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kaesberg%2C+L+B">Lars Benedikt Kaesberg</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03192v1-abstract-short" style="display: inline;"> We present CiteAssist, a system to automate the generation of BibTeX entries for preprints, streamlining the process of bibliographic annotation. Our system extracts metadata, such as author names, titles, publication dates, and keywords, to create standardized annotations within the document. CiteAssist automatically attaches the BibTeX citation to the end of a PDF and links it on the first page&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03192v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03192v1-abstract-full" style="display: none;"> We present CiteAssist, a system to automate the generation of BibTeX entries for preprints, streamlining the process of bibliographic annotation. Our system extracts metadata, such as author names, titles, publication dates, and keywords, to create standardized annotations within the document. CiteAssist automatically attaches the BibTeX citation to the end of a PDF and links it on the first page of the document so other researchers gain immediate access to the correct citation of the article. This method promotes platform flexibility by ensuring that annotations remain accessible regardless of the repository used to publish or access the preprint. The annotations remain available even if the preprint is viewed externally to CiteAssist. Additionally, the system adds relevant related papers based on extracted keywords to the preprint, providing researchers with additional publications besides those in related work for further reading. Researchers can enhance their preprints organization and reference management workflows through a free and publicly available web interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03192v1-abstract-full').style.display = 'none'; document.getElementById('2407.03192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at SDProc @ ACL 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02302">arXiv:2407.02302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02302">pdf</a>, <a href="https://arxiv.org/format/2407.02302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Towards Human Understanding of Paraphrase Types in ChatGPT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Meier%2C+D">Dominik Meier</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02302v1-abstract-short" style="display: inline;"> Paraphrases represent a human&#39;s intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02302v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02302v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02302v1-abstract-full" style="display: none;"> Paraphrases represent a human&#39;s intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic expression (e.g., a shift in syntax or vocabulary used). In this study, we assess the human preferences towards ChatGPT in generating English paraphrases with ten APTs and five prompting techniques. We introduce APTY (Atomic Paraphrase TYpes), a dataset of 500 sentence-level and word-level annotations by 15 annotators. The dataset also provides a human preference ranking of paraphrases with different types that can be used to fine-tune models with RLHF and DPO methods. Our results reveal that ChatGPT can generate simple APTs, such as additions and deletions, but struggle with complex structures (e.g., subordination changes). This study contributes to understanding which aspects of paraphrasing language models have already succeeded at understanding and what remains elusive. In addition, our curated datasets can be used to develop language models with specific linguistic capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02302v1-abstract-full').style.display = 'none'; document.getElementById('2407.02302v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19898">arXiv:2406.19898</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.19898">pdf</a>, <a href="https://arxiv.org/format/2406.19898">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Paraphrase Types Elicit Prompt Engineering Capabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19898v4-abstract-short" style="display: inline;"> Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19898v4-abstract-full').style.display = 'inline'; document.getElementById('2406.19898v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19898v4-abstract-full" style="display: none;"> Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19898v4-abstract-full').style.display = 'none'; document.getElementById('2406.19898v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EMNLP 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07494">arXiv:2406.07494</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07494">pdf</a>, <a href="https://arxiv.org/format/2406.07494">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07494v2-abstract-short" style="display: inline;"> Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07494v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07494v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07494v2-abstract-full" style="display: none;"> Abstractive dialogue summarization is the task of distilling conversations into informative and concise summaries. Although reviews have been conducted on this topic, there is a lack of comprehensive work detailing the challenges of dialogue summarization, unifying the differing understanding of the task, and aligning proposed techniques, datasets, and evaluation metrics with the challenges. This article summarizes the research on Transformer-based abstractive summarization for English dialogues by systematically reviewing 1262 unique research papers published between 2019 and 2024, relying on the Semantic Scholar and DBLP databases. We cover the main challenges present in dialog summarization (i.e., language, structure, comprehension, speaker, salience, and factuality) and link them to corresponding techniques such as graph-based approaches, additional training tasks, and planning strategies, which typically overly rely on BART-based encoder-decoder models. We find that while some challenges, like language, have seen considerable progress, mainly due to training methods, others, such as comprehension, factuality, and salience, remain difficult and hold significant research opportunities. We investigate how these approaches are typically assessed, covering the datasets for the subdomains of dialogue (e.g., meeting, medical), the established automatic metrics and human evaluation approaches for assessing scores and annotator agreement. We observe that only a few datasets span across all subdomains. The ROUGE metric is the most used, while human evaluation is frequently reported without sufficient detail on inner-annotator agreement and annotation guidelines. Additionally, we discuss the possible implications of the recently explored large language models and conclude that despite a potential shift in relevance and difficulty, our described challenge taxonomy remains relevant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07494v2-abstract-full').style.display = 'none'; document.getElementById('2406.07494v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15604">arXiv:2405.15604</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15604">pdf</a>, <a href="https://arxiv.org/format/2405.15604">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Becker%2C+J">Jonas Becker</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15604v3-abstract-short" style="display: inline;"> Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15604v3-abstract-full').style.display = 'inline'; document.getElementById('2405.15604v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15604v3-abstract-full" style="display: none;"> Text generation has become more accessible than ever, and the increasing interest in these systems, especially those using large language models, has spurred an increasing number of related publications. We provide a systematic literature review comprising 244 selected papers between 2017 and 2024. This review categorizes works in text generation into five main tasks: open-ended text generation, summarization, translation, paraphrasing, and question answering. For each task, we review their relevant characteristics, sub-tasks, and specific challenges (e.g., missing datasets for multi-document summarization, coherence in story generation, and complex reasoning for question answering). Additionally, we assess current approaches for evaluating text generation systems and ascertain problems with current metrics. Our investigation shows nine prominent challenges common to all tasks and sub-tasks in recent text generation publications: bias, reasoning, hallucinations, misuse, privacy, interpretability, transparency, datasets, and computing. We provide a detailed analysis of these challenges, their potential solutions, and which gaps still require further engagement from the community. This systematic literature review targets two main audiences: early career researchers in natural language processing looking for an overview of the field and promising research directions, as well as experienced researchers seeking a detailed view of tasks, evaluation methodologies, open challenges, and recent mitigation strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15604v3-abstract-full').style.display = 'none'; document.getElementById('2405.15604v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 2 figures, 2 tables, Under review</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> A.1; I.2.7 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11124">arXiv:2404.11124</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11124">pdf</a>, <a href="https://arxiv.org/format/2404.11124">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> What&#39;s under the hood: Investigating Automatic Metrics on Meeting Summarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11124v2-abstract-short" style="display: inline;"> Meeting summarization has become a critical task considering the increase in online interactions. While new techniques are introduced regularly, their evaluation uses metrics not designed to capture meeting-specific errors, undermining effective evaluation. This paper investigates what the frequently used automatic metrics capture and which errors they mask by correlating automatic metric scores w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11124v2-abstract-full').style.display = 'inline'; document.getElementById('2404.11124v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11124v2-abstract-full" style="display: none;"> Meeting summarization has become a critical task considering the increase in online interactions. While new techniques are introduced regularly, their evaluation uses metrics not designed to capture meeting-specific errors, undermining effective evaluation. This paper investigates what the frequently used automatic metrics capture and which errors they mask by correlating automatic metric scores with human evaluations across a broad error taxonomy. We commence with a comprehensive literature review on English meeting summarization to define key challenges like speaker dynamics and contextual turn-taking and error types such as missing information and linguistic inaccuracy, concepts previously loosely defined in the field. We examine the relationship between characteristic challenges and errors by using annotated transcripts and summaries from Transformer-based sequence-to-sequence and autoregressive models from the general summary QMSum dataset. Through experimental validation, we find that different model architectures respond variably to challenges in meeting transcripts, resulting in different pronounced links between challenges and errors. Current default-used metrics struggle to capture observable errors, showing weak to mid-correlations, while a third of the correlations show trends of error masking. Only a subset reacts accurately to specific errors, while most correlations show either unresponsiveness or failure to reflect the error&#39;s impact on summary quality. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11124v2-abstract-full').style.display = 'none'; document.getElementById('2404.11124v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07910">arXiv:2403.07910</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07910">pdf</a>, <a href="https://arxiv.org/format/2403.07910">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> MAGPIE: Multi-Task Media-Bias Analysis Generalization for Pre-Trained Identification of Expressions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Horych%2C+T">Tom谩拧 Horych</a>, <a href="/search/cs?searchtype=author&amp;query=Wessel%2C+M">Martin Wessel</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Wa%C3%9Fmuth%2C+J">Jerome Wa脽muth</a>, <a href="/search/cs?searchtype=author&amp;query=Greiner-Petter%2C+A">Andr茅 Greiner-Petter</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07910v2-abstract-short" style="display: inline;"> Media bias detection poses a complex, multifaceted problem traditionally tackled using single-task models and small in-domain datasets, consequently lacking generalizability. To address this, we introduce MAGPIE, the first large-scale multi-task pre-training approach explicitly tailored for media bias detection. To enable pre-training at scale, we present Large Bias Mixture (LBM), a compilation of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07910v2-abstract-full').style.display = 'inline'; document.getElementById('2403.07910v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07910v2-abstract-full" style="display: none;"> Media bias detection poses a complex, multifaceted problem traditionally tackled using single-task models and small in-domain datasets, consequently lacking generalizability. To address this, we introduce MAGPIE, the first large-scale multi-task pre-training approach explicitly tailored for media bias detection. To enable pre-training at scale, we present Large Bias Mixture (LBM), a compilation of 59 bias-related tasks. MAGPIE outperforms previous approaches in media bias detection on the Bias Annotation By Experts (BABE) dataset, with a relative improvement of 3.3% F1-score. MAGPIE also performs better than previous models on 5 out of 8 tasks in the Media Bias Identification Benchmark (MBIB). Using a RoBERTa encoder, MAGPIE needs only 15% of finetuning steps compared to single-task approaches. Our evaluation shows, for instance, that tasks like sentiment and emotionality boost all learning, all tasks enhance fake news detection, and scaling tasks leads to the best results. MAGPIE confirms that MTL is a promising approach for addressing media bias detection, enhancing the accuracy and efficiency of existing models. Furthermore, LBM is the first available resource collection focused on media bias MTL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07910v2-abstract-full').style.display = 'none'; document.getElementById('2403.07910v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.12046">arXiv:2402.12046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.12046">pdf</a>, <a href="https://arxiv.org/format/2402.12046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Citation Amnesia: On The Recency Bias of NLP and Other Academic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Abdalla%2C+M">Mohamed Abdalla</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Mohammad%2C+S+M">Saif M. Mohammad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.12046v2-abstract-short" style="display: inline;"> This study examines the tendency to cite older work across 20 fields of study over 43 years (1980--2023). We put NLP&#39;s propensity to cite older work in the context of these 20 other fields to analyze whether NLP shows similar temporal citation patterns to these other fields over time or whether differences can be observed. Our analysis, based on a dataset of approximately 240 million papers, revea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12046v2-abstract-full').style.display = 'inline'; document.getElementById('2402.12046v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.12046v2-abstract-full" style="display: none;"> This study examines the tendency to cite older work across 20 fields of study over 43 years (1980--2023). We put NLP&#39;s propensity to cite older work in the context of these 20 other fields to analyze whether NLP shows similar temporal citation patterns to these other fields over time or whether differences can be observed. Our analysis, based on a dataset of approximately 240 million papers, reveals a broader scientific trend: many fields have markedly declined in citing older works (e.g., psychology, computer science). We term this decline a &#39;citation age recession&#39;, analogous to how economists define periods of reduced economic activity. The trend is strongest in NLP and ML research (-12.8% and -5.5% in citation age from previous peaks). Our results suggest that citing more recent works is not directly driven by the growth in publication rates (-3.4% across fields; -5.2% in humanities; -5.5% in formal sciences) -- even when controlling for an increase in the volume of papers. Our findings raise questions about the scientific community&#39;s engagement with past literature, particularly for NLP, and the potential consequences of neglecting older but relevant research. The data and a demo showcasing our results are publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.12046v2-abstract-full').style.display = 'none'; document.getElementById('2402.12046v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> COLING 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16148">arXiv:2312.16148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16148">pdf</a>, <a href="https://arxiv.org/format/2312.16148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> The Media Bias Taxonomy: A Systematic Literature Review on the Forms and Automated Detection of Media Bias </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a>, <a href="/search/cs?searchtype=author&amp;query=Hinterreiter%2C+S">Smi Hinterreiter</a>, <a href="/search/cs?searchtype=author&amp;query=Haak%2C+F">Fabian Haak</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Giese%2C+H">Helge Giese</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16148v3-abstract-short" style="display: inline;"> The way the media presents events can significantly affect public perception, which in turn can alter people&#39;s beliefs and views. Media bias describes a one-sided or polarizing perspective on a topic. This article summarizes the research on computational methods to detect media bias by systematically reviewing 3140 research papers published between 2019 and 2022. To structure our review and suppor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16148v3-abstract-full').style.display = 'inline'; document.getElementById('2312.16148v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16148v3-abstract-full" style="display: none;"> The way the media presents events can significantly affect public perception, which in turn can alter people&#39;s beliefs and views. Media bias describes a one-sided or polarizing perspective on a topic. This article summarizes the research on computational methods to detect media bias by systematically reviewing 3140 research papers published between 2019 and 2022. To structure our review and support a mutual understanding of bias across research domains, we introduce the Media Bias Taxonomy, which provides a coherent overview of the current state of research on media bias from different perspectives. We show that media bias detection is a highly active research field, in which transformer-based classification approaches have led to significant improvements in recent years. These improvements include higher classification accuracy and the ability to detect more fine-granular types of bias. However, we have identified a lack of interdisciplinarity in existing projects, and a need for more awareness of the various types of media bias to support methodologically thorough performance evaluations of media bias detection systems. Concluding from our analysis, we see the integration of recent machine learning advancements with reliable and diverse bias assessment strategies from other research areas as the most promising area for future research contributions in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16148v3-abstract-full').style.display = 'none'; document.getElementById('2312.16148v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14870">arXiv:2310.14870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14870">pdf</a>, <a href="https://arxiv.org/format/2310.14870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18653/v1/2023.emnlp-main.797">10.18653/v1/2023.emnlp-main.797 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> We are Who We Cite: Bridges of Influence Between Natural Language Processing and Other Academic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Abdalla%2C+M">Mohamed Abdalla</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Mohammad%2C+S+M">Saif M. Mohammad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14870v3-abstract-short" style="display: inline;"> Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14870v3-abstract-full').style.display = 'inline'; document.getElementById('2310.14870v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14870v3-abstract-full" style="display: none;"> Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on each other). We analyzed ~77k NLP papers, ~3.1m citations from NLP papers to other papers, and ~1.8m citations from other papers to NLP papers. We show that, unlike most fields, the cross-field engagement of NLP, measured by our proposed Citation Field Diversity Index (CFDI), has declined from 0.58 in 1980 to 0.31 in 2022 (an all-time low). In addition, we find that NLP has grown more insular -- citing increasingly more NLP papers and having fewer papers that act as bridges between fields. NLP citations are dominated by computer science; Less than 8% of NLP citations are to linguistics, and less than 3% are to math and psychology. These findings underscore NLP&#39;s urgent need to reflect on its engagement with various fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14870v3-abstract-full').style.display = 'none'; document.getElementById('2310.14870v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at EMNLP 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EMNLP 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14863">arXiv:2310.14863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14863">pdf</a>, <a href="https://arxiv.org/format/2310.14863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18653/v1/2023.emnlp-main.746">10.18653/v1/2023.emnlp-main.746 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Paraphrase Types for Generation and Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14863v3-abstract-short" style="display: inline;"> Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Dete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14863v3-abstract-full').style.display = 'inline'; document.getElementById('2310.14863v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14863v3-abstract-full" style="display: none;"> Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14863v3-abstract-full').style.display = 'none'; document.getElementById('2310.14863v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at EMNLP 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EMNLP 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02797">arXiv:2305.02797</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02797">pdf</a>, <a href="https://arxiv.org/format/2305.02797">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18653/v1/2023.acl-long.734">10.18653/v1/2023.acl-long.734 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Elephant in the Room: Analyzing the Presence of Big Tech in Natural Language Processing Research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Abdalla%2C+M">Mohamed Abdalla</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=N%C3%A9v%C3%A9ol%2C+A">Aur茅lie N茅v茅ol</a>, <a href="/search/cs?searchtype=author&amp;query=Ducel%2C+F">Fanny Ducel</a>, <a href="/search/cs?searchtype=author&amp;query=Mohammad%2C+S+M">Saif M. Mohammad</a>, <a href="/search/cs?searchtype=author&amp;query=Fort%2C+K">Kar毛n Fort</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02797v4-abstract-short" style="display: inline;"> Recent advances in deep learning methods for natural language processing (NLP) have created new business opportunities and made NLP research critical for industry development. As one of the big players in the field of NLP, together with governments and universities, it is important to track the influence of industry on research. In this study, we seek to quantify and characterize industry presence&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02797v4-abstract-full').style.display = 'inline'; document.getElementById('2305.02797v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02797v4-abstract-full" style="display: none;"> Recent advances in deep learning methods for natural language processing (NLP) have created new business opportunities and made NLP research critical for industry development. As one of the big players in the field of NLP, together with governments and universities, it is important to track the influence of industry on research. In this study, we seek to quantify and characterize industry presence in the NLP community over time. Using a corpus with comprehensive metadata of 78,187 NLP publications and 701 resumes of NLP publication authors, we explore the industry presence in the field since the early 90s. We find that industry presence among NLP authors has been steady before a steep increase over the past five years (180% growth from 2017 to 2022). A few companies account for most of the publications and provide funding to academic researchers through grants and internships. Our study shows that the presence and impact of the industry on natural language processing research are significant and fast-growing. This work calls for increased transparency of industry influence in the field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02797v4-abstract-full').style.display = 'none'; document.getElementById('2305.02797v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published at ACL 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ACL 2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13148">arXiv:2304.13148</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13148">pdf</a>, <a href="https://arxiv.org/format/2304.13148">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3539618.3591882">10.1145/3539618.3591882 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Introducing MBIB -- the first Media Bias Identification Benchmark Task and Dataset Collection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wessel%2C+M">Martin Wessel</a>, <a href="/search/cs?searchtype=author&amp;query=Horych%2C+T">Tom谩拧 Horych</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13148v1-abstract-short" style="display: inline;"> Although media bias detection is a complex multi-task problem, there is, to date, no unified benchmark grouping these evaluation tasks. We introduce the Media Bias Identification Benchmark (MBIB), a comprehensive benchmark that groups different types of media bias (e.g., linguistic, cognitive, political) under a common framework to test how prospective detection techniques generalize. After review&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13148v1-abstract-full').style.display = 'inline'; document.getElementById('2304.13148v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13148v1-abstract-full" style="display: none;"> Although media bias detection is a complex multi-task problem, there is, to date, no unified benchmark grouping these evaluation tasks. We introduce the Media Bias Identification Benchmark (MBIB), a comprehensive benchmark that groups different types of media bias (e.g., linguistic, cognitive, political) under a common framework to test how prospective detection techniques generalize. After reviewing 115 datasets, we select nine tasks and carefully propose 22 associated datasets for evaluating media bias detection techniques. We evaluate MBIB using state-of-the-art Transformer techniques (e.g., T5, BART). Our results suggest that while hate speech, racial bias, and gender bias are easier to detect, models struggle to handle certain bias types, e.g., cognitive and political bias. However, our results show that no single technique can outperform all the others significantly. We also find an uneven distribution of research interest and resource allocation to the individual tasks in media bias. A unified benchmark encourages the development of more robust systems and shifts the current paradigm in media bias detection evaluation towards solutions that tackle not one but multiple media bias types simultaneously. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13148v1-abstract-full').style.display = 'none'; document.getElementById('2304.13148v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR &#39;23)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13989">arXiv:2303.13989</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13989">pdf</a>, <a href="https://arxiv.org/format/2303.13989">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Paraphrase Detection: Human vs. Machine Content </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Becker%2C+J">Jonas Becker</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13989v1-abstract-short" style="display: inline;"> The growing prominence of large language models, such as GPT-4 and ChatGPT, has led to increased concerns over academic integrity due to the potential for machine-generated content and paraphrasing. Although studies have explored the detection of human- and machine-paraphrased content, the comparison between these types of content remains underexplored. In this paper, we conduct a comprehensive an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13989v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13989v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13989v1-abstract-full" style="display: none;"> The growing prominence of large language models, such as GPT-4 and ChatGPT, has led to increased concerns over academic integrity due to the potential for machine-generated content and paraphrasing. Although studies have explored the detection of human- and machine-paraphrased content, the comparison between these types of content remains underexplored. In this paper, we conduct a comprehensive analysis of various datasets commonly employed for paraphrase detection tasks and evaluate an array of detection methods. Our findings highlight the strengths and limitations of different detection methods in terms of performance on individual datasets, revealing a lack of suitable machine-generated datasets that can be aligned with human expectations. Our main finding is that human-authored paraphrases exceed machine-generated ones in terms of difficulty, diversity, and similarity implying that automatically generated texts are not yet on par with human-level performance. Transformers emerged as the most effective method across datasets with TF-IDF excelling on semantically diverse corpora. Additionally, we identify four datasets as the most diverse and challenging for paraphrase detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13989v1-abstract-full').style.display = 'none'; document.getElementById('2303.13989v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03886">arXiv:2303.03886</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03886">pdf</a>, <a href="https://arxiv.org/format/2303.03886">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> </div> </div> <p class="title is-5 mathjax"> AI Usage Cards: Responsibly Reporting AI-generated Content </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Mohammad%2C+S+M">Saif M. Mohammad</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03886v2-abstract-short" style="display: inline;"> Given AI systems like ChatGPT can generate content that is indistinguishable from human-made work, the responsible use of this technology is a growing concern. Although understanding the benefits and harms of using AI systems requires more time, their rapid and indiscriminate adoption in practice is a reality. Currently, we lack a common framework and language to define and report the responsible&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03886v2-abstract-full').style.display = 'inline'; document.getElementById('2303.03886v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03886v2-abstract-full" style="display: none;"> Given AI systems like ChatGPT can generate content that is indistinguishable from human-made work, the responsible use of this technology is a growing concern. Although understanding the benefits and harms of using AI systems requires more time, their rapid and indiscriminate adoption in practice is a reality. Currently, we lack a common framework and language to define and report the responsible use of AI for content generation. Prior work proposed guidelines for using AI in specific scenarios (e.g., robotics or medicine) which are not transferable to conducting and reporting scientific research. Our work makes two contributions: First, we propose a three-dimensional model consisting of transparency, integrity, and accountability to define the responsible use of AI. Second, we introduce ``AI Usage Cards&#39;&#39;, a standardized way to report the use of AI in scientific research. Our model and cards allow users to reflect on key principles of responsible AI usage. They also help the research community trace, compare, and question various forms of AI usage and support the development of accepted community norms. The proposed framework and reporting system aims to promote the ethical and responsible use of AI in scientific research and provide a standardized approach for reporting AI usage across different research fields. We also provide a free service to easily generate AI Usage Cards for scientific work via a questionnaire and export them in various machine-readable formats for inclusion in different work products at https://ai-cards.org. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03886v2-abstract-full').style.display = 'none'; document.getElementById('2303.03886v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.03491">arXiv:2211.03491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.03491">pdf</a>, <a href="https://arxiv.org/format/2211.03491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-96957-8_20">10.1007/978-3-030-96957-8_20 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exploiting Transformer-based Multitask Learning for the Detection of Media Bias in News Articles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a>, <a href="/search/cs?searchtype=author&amp;query=Krieger%2C+J">Jan-David Krieger</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Mitrovi%C4%87%2C+J">Jelena Mitrovi膰</a>, <a href="/search/cs?searchtype=author&amp;query=G%C3%B6tz-Hahn%2C+F">Franz G枚tz-Hahn</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.03491v1-abstract-short" style="display: inline;"> Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-ba&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03491v1-abstract-full').style.display = 'inline'; document.getElementById('2211.03491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.03491v1-abstract-full" style="display: none;"> Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro $F_{1}$ of 0.776, a performance boost of 3\% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve existing baseline models in identifying slanted reporting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.03491v1-abstract-full').style.display = 'none'; document.getElementById('2211.03491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the iConference 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14606">arXiv:2210.14606</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14606">pdf</a>, <a href="https://arxiv.org/format/2210.14606">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18653/v1/2022.gem-1.5">10.18653/v1/2022.gem-1.5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analyzing Multi-Task Learning for Abstractive Text Summarization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14606v2-abstract-short" style="display: inline;"> Despite the recent success of multi-task learning and pre-finetuning for natural language understanding, few works have studied the effects of task families on abstractive text summarization. Task families are a form of task grouping during the pre-finetuning stage to learn common skills, such as reading comprehension. To close this gap, we analyze the influence of multi-task learning strategies u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14606v2-abstract-full').style.display = 'inline'; document.getElementById('2210.14606v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14606v2-abstract-full" style="display: none;"> Despite the recent success of multi-task learning and pre-finetuning for natural language understanding, few works have studied the effects of task families on abstractive text summarization. Task families are a form of task grouping during the pre-finetuning stage to learn common skills, such as reading comprehension. To close this gap, we analyze the influence of multi-task learning strategies using task families for the English abstractive text summarization task. We group tasks into one of three strategies, i.e., sequential, simultaneous, and continual multi-task learning, and evaluate trained models through two downstream tasks. We find that certain combinations of task families (e.g., advanced reading comprehension and natural language inference) positively impact downstream performance. Further, we find that choice and combinations of task families influence downstream performance more than the training scheme, supporting the use of task families for abstractive text summarization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14606v2-abstract-full').style.display = 'none'; document.getElementById('2210.14606v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EMNLP-GEM 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.06878">arXiv:2210.06878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.06878">pdf</a>, <a href="https://arxiv.org/format/2210.06878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> </div> </div> <p class="title is-5 mathjax"> CS-Insights: A System for Analyzing Computer Science Research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=K%C3%BCll%2C+L">Lennart K眉ll</a>, <a href="/search/cs?searchtype=author&amp;query=Mohammad%2C+S+M">Saif M. Mohammad</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.06878v2-abstract-short" style="display: inline;"> This paper presents CS-Insights, an interactive web application to analyze computer science publications from DBLP through multiple perspectives. The dedicated interfaces allow its users to identify trends in research activity, productivity, accessibility, author&#39;s productivity, venues&#39; statistics, topics of interest, and the impact of computer science research on other fields. CS-Insightsis publi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06878v2-abstract-full').style.display = 'inline'; document.getElementById('2210.06878v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.06878v2-abstract-full" style="display: none;"> This paper presents CS-Insights, an interactive web application to analyze computer science publications from DBLP through multiple perspectives. The dedicated interfaces allow its users to identify trends in research activity, productivity, accessibility, author&#39;s productivity, venues&#39; statistics, topics of interest, and the impact of computer science research on other fields. CS-Insightsis publicly available, and its modular architecture can be easily adapted to domains other than computer science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.06878v2-abstract-full').style.display = 'none'; document.getElementById('2210.06878v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03568">arXiv:2210.03568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.03568">pdf</a>, <a href="https://arxiv.org/format/2210.03568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18653/v1/2022.emnlp-main.62">10.18653/v1/2022.emnlp-main.62 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How Large Language Models are Transforming Machine-Paraphrased Plagiarism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Kirstein%2C+F">Frederic Kirstein</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03568v3-abstract-short" style="display: inline;"> The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work. However, the role of large autoregressive transformers in generating machine-paraphrased plagiarism and their detection is still developing in the literature. This work explores T5 and GPT-3 for machine-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03568v3-abstract-full').style.display = 'inline'; document.getElementById('2210.03568v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03568v3-abstract-full" style="display: none;"> The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work. However, the role of large autoregressive transformers in generating machine-paraphrased plagiarism and their detection is still developing in the literature. This work explores T5 and GPT-3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia. We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples. Our results suggest that large models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.). Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5). The best-performing detection model (GPT-3) achieves a 66% F1-score in detecting paraphrases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03568v3-abstract-full').style.display = 'none'; document.getElementById('2210.03568v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> EMNLP 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.14557">arXiv:2209.14557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.14557">pdf</a>, <a href="https://arxiv.org/format/2209.14557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.18653/v1/2021.findings-emnlp.101">10.18653/v1/2021.findings-emnlp.101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a>, <a href="/search/cs?searchtype=author&amp;query=Plank%2C+M">Manuel Plank</a>, <a href="/search/cs?searchtype=author&amp;query=Krieger%2C+J">Jan-David Krieger</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.14557v1-abstract-short" style="display: inline;"> Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14557v1-abstract-full').style.display = 'inline'; document.getElementById('2209.14557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.14557v1-abstract-full" style="display: none;"> Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.14557v1-abstract-full').style.display = 'none'; document.getElementById('2209.14557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">substantial text overlap with Ph.D. proposal by same author, part of dissertation arXiv:2112.13352</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Findings of the Association for Computational Linguistics: EMNLP 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10773">arXiv:2205.10773</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.10773">pdf</a>, <a href="https://arxiv.org/format/2205.10773">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3529372.3530932">10.1145/3529372.3530932 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Domain-adaptive Pre-training Approach for Language Bias Detection in News </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Krieger%2C+J">Jan-David Krieger</a>, <a href="/search/cs?searchtype=author&amp;query=Spinde%2C+T">Timo Spinde</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Kulshrestha%2C+J">Juhi Kulshrestha</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10773v1-abstract-short" style="display: inline;"> Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of repr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10773v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10773v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10773v1-abstract-full" style="display: none;"> Media bias is a multi-faceted construct influencing individual behavior and collective decision-making. Slanted news reporting is the result of one-sided and polarized writing which can occur in various forms. In this work, we focus on an important form of media bias, i.e. bias by word choice. Detecting biased word choices is a challenging task due to its linguistic complexity and the lack of representative gold-standard corpora. We present DA-RoBERTa, a new state-of-the-art transformer-based model adapted to the media bias domain which identifies sentence-level bias with an F1 score of 0.814. In addition, we also train, DA-BERT and DA-BART, two more transformer models adapted to the bias domain. Our proposed domain-adapted models outperform prior bias detection approaches on the same data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10773v1-abstract-full').style.display = 'none'; document.getElementById('2205.10773v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the ACM/IEEE-CS Joint Conference on Digital Libraries 2022 (JCDL) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13384">arXiv:2204.13384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13384">pdf</a>, <a href="https://arxiv.org/format/2204.13384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> D3: A Massive Dataset of Scholarly Metadata for Analyzing the State of Computer Science Research </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Mohammad%2C+S+M">Saif M. Mohammad</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13384v4-abstract-short" style="display: inline;"> DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trend&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13384v4-abstract-full').style.display = 'inline'; document.getElementById('2204.13384v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13384v4-abstract-full" style="display: none;"> DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (approx. 15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers&#39; abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13384v4-abstract-full').style.display = 'none'; document.getElementById('2204.13384v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> LREC 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14541">arXiv:2203.14541</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14541">pdf</a>, <a href="https://arxiv.org/format/2203.14541">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Specialized Document Embeddings for Aspect-based Similarity of Research Papers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ostendorff%2C+M">Malte Ostendorff</a>, <a href="/search/cs?searchtype=author&amp;query=Blume%2C+T">Till Blume</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Rehm%2C+G">Georg Rehm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14541v1-abstract-short" style="display: inline;"> Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14541v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14541v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14541v1-abstract-full" style="display: none;"> Document embeddings and similarity measures underpin content-based recommender systems, whereby a document is commonly represented as a single generic embedding. However, similarity computed on single vector representations provides only one perspective on document similarity that ignores which aspects make two documents alike. To address this limitation, aspect-based similarity measures have been developed using document segmentation or pairwise multi-class document classification. While segmentation harms the document coherence, the pairwise classification approach scales poorly to large scale corpora. In this paper, we treat aspect-based similarity as a classical vector similarity problem in aspect-specific embedding spaces. We represent a document not as a single generic embedding but as multiple specialized embeddings. Our approach avoids document segmentation and scales linearly w.r.t.the corpus size. In an empirical study, we use the Papers with Code corpus containing 157,606 research papers and consider the task, method, and dataset of the respective research papers as their aspects. We compare and analyze three generic document embeddings, six specialized document embeddings and a pairwise classification baseline in the context of research paper recommendations. As generic document embeddings, we consider FastText, SciBERT, and SPECTER. To compute the specialized document embeddings, we compare three alternative methods inspired by retrofitting, fine-tuning, and Siamese networks. In our experiments, Siamese SciBERT achieved the highest scores. Additional analyses indicate an implicit bias of the generic document embeddings towards the dataset aspect and against the method aspect of each research paper. Our approach of aspect-based document embeddings mitigates potential risks arising from implicit biases by making them explicit. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14541v1-abstract-full').style.display = 'none'; document.getElementById('2203.14541v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at JCDL 2022</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.09749">arXiv:2111.09749</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.09749">pdf</a>, <a href="https://arxiv.org/format/2111.09749">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.6084/m9.figshare.17212340.v3">10.6084/m9.figshare.17212340.v3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting Cross-Language Plagiarism using Open Knowledge Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Stegm%C3%BCller%2C+J">Johannes Stegm眉ller</a>, <a href="/search/cs?searchtype=author&amp;query=Bauer-Marquart%2C+F">Fabian Bauer-Marquart</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Schubotz%2C+M">Moritz Schubotz</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.09749v2-abstract-short" style="display: inline;"> Identifying cross-language plagiarism is challenging, especially for distant language pairs and sense-for-sense translations. We introduce the new multilingual retrieval model Cross-Language Ontology-Based Similarity Analysis (CL-OSA) for this task. CL-OSA represents documents as entity vectors obtained from the open knowledge graph Wikidata. Opposed to other methods, CL-OSA does not require compu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09749v2-abstract-full').style.display = 'inline'; document.getElementById('2111.09749v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.09749v2-abstract-full" style="display: none;"> Identifying cross-language plagiarism is challenging, especially for distant language pairs and sense-for-sense translations. We introduce the new multilingual retrieval model Cross-Language Ontology-Based Similarity Analysis (CL-OSA) for this task. CL-OSA represents documents as entity vectors obtained from the open knowledge graph Wikidata. Opposed to other methods, CL-OSA does not require computationally expensive machine translation, nor pre-training using comparable or parallel corpora. It reliably disambiguates homonyms and scales to allow its application to Web-scale document collections. We show that CL-OSA outperforms state-of-the-art methods for retrieving candidate documents from five large, topically diverse test corpora that include distant language pairs like Japanese-English. For identifying cross-language plagiarism at the character level, CL-OSA primarily improves the detection of sense-for-sense translations. For these challenging cases, CL-OSA&#39;s performance in terms of the well-established PlagDet score exceeds that of the best competitor by more than factor two. The code and data of our study are openly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.09749v2-abstract-full').style.display = 'none'; document.getElementById('2111.09749v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, EEKE21, Preprint</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.07819">arXiv:2111.07819</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.07819">pdf</a>, <a href="https://arxiv.org/ps/2111.07819">ps</a>, <a href="https://arxiv.org/format/2111.07819">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-96957-8_33">10.1007/978-3-030-96957-8_33 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing the Generalization of Neural Language Models for COVID-19 Misinformation Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ashok%2C+N">Nischal Ashok</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Ghosal%2C+T">Tirthankar Ghosal</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.07819v5-abstract-short" style="display: inline;"> A drastic rise in potentially life-threatening misinformation has been a by-product of the COVID-19 pandemic. Computational support to identify false information within the massive body of data on the topic is crucial to prevent harm. Researchers proposed many methods for flagging online misinformation related to COVID-19. However, these methods predominantly target specific content types (e.g., n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07819v5-abstract-full').style.display = 'inline'; document.getElementById('2111.07819v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.07819v5-abstract-full" style="display: none;"> A drastic rise in potentially life-threatening misinformation has been a by-product of the COVID-19 pandemic. Computational support to identify false information within the massive body of data on the topic is crucial to prevent harm. Researchers proposed many methods for flagging online misinformation related to COVID-19. However, these methods predominantly target specific content types (e.g., news) or platforms (e.g., Twitter). The methods&#39; capabilities to generalize were largely unclear so far. We evaluate fifteen Transformer-based models on five COVID-19 misinformation datasets that include social media posts, news articles, and scientific papers to fill this gap. We show tokenizers and models tailored to COVID-19 data do not provide a significant advantage over general-purpose ones. Our study provides a realistic assessment of models for detecting COVID-19 misinformation. We expect that evaluating a broad spectrum of datasets and models will benefit future research in developing misinformation detection systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.07819v5-abstract-full').style.display = 'none'; document.getElementById('2111.07819v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> iConference 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07967">arXiv:2106.07967</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07967">pdf</a>, <a href="https://arxiv.org/format/2106.07967">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Incorporating Word Sense Disambiguation in Neural Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07967v3-abstract-short" style="display: inline;"> We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models&#39; performance for Word Sense Disambiguation (WSD) but also benefits general language understanding tasks while adding almost no parameters. We evaluate our techniques with seven different neural LMs and find that XLNet is more s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07967v3-abstract-full').style.display = 'inline'; document.getElementById('2106.07967v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07967v3-abstract-full" style="display: none;"> We present two supervised (pre-)training methods to incorporate gloss definitions from lexical resources into neural language models (LMs). The training improves our models&#39; performance for Word Sense Disambiguation (WSD) but also benefits general language understanding tasks while adding almost no parameters. We evaluate our techniques with seven different neural LMs and find that XLNet is more suitable for WSD than BERT. Our best-performing methods exceeds state-of-the-art WSD techniques on the SemCor 3.0 dataset by 0.5% F1 and increase BERT&#39;s performance on the GLUE benchmark by 1.1% on average. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07967v3-abstract-full').style.display = 'none'; document.getElementById('2106.07967v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.13841">arXiv:2104.13841</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.13841">pdf</a>, <a href="https://arxiv.org/format/2104.13841">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Evaluating Document Representations for Content-based Legal Literature Recommendations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ostendorff%2C+M">Malte Ostendorff</a>, <a href="/search/cs?searchtype=author&amp;query=Ash%2C+E">Elliott Ash</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Moreno-Schneider%2C+J">Julian Moreno-Schneider</a>, <a href="/search/cs?searchtype=author&amp;query=Rehm%2C+G">Georg Rehm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.13841v1-abstract-short" style="display: inline;"> Recommender systems assist legal professionals in finding relevant literature for supporting their case. Despite its importance for the profession, legal applications do not reflect the latest advances in recommender systems and representation learning research. Simultaneously, legal recommender systems are typically evaluated in small-scale user study without any public available benchmark datase&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13841v1-abstract-full').style.display = 'inline'; document.getElementById('2104.13841v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.13841v1-abstract-full" style="display: none;"> Recommender systems assist legal professionals in finding relevant literature for supporting their case. Despite its importance for the profession, legal applications do not reflect the latest advances in recommender systems and representation learning research. Simultaneously, legal recommender systems are typically evaluated in small-scale user study without any public available benchmark datasets. Thus, these studies have limited reproducibility. To address the gap between research and practice, we explore a set of state-of-the-art document representation methods for the task of retrieving semantically related US case law. We evaluate text-based (e.g., fastText, Transformers), citation-based (e.g., DeepWalk, Poincar茅), and hybrid methods. We compare in total 27 methods using two silver standards with annotations for 2,964 documents. The silver standards are newly created from Open Case Book and Wikisource and can be reused under an open license facilitating reproducibility. Our experiments show that document representations from averaged fastText word vectors (trained on legal corpora) yield the best results, closely followed by Poincar茅 citation embeddings. Combining fastText and Poincar茅 in a hybrid manner further improves the overall result. Besides the overall performance, we analyze the methods depending on document length, citation count, and the coverage of their recommendations. We make our source code, models, and datasets publicly available at https://github.com/malteos/legal-document-similarity/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.13841v1-abstract-full').style.display = 'none'; document.getElementById('2104.13841v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at ICAIL 2021</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.12450">arXiv:2103.12450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.12450">pdf</a>, <a href="https://arxiv.org/format/2103.12450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JCDL52503.2021.00065">10.1109/JCDL52503.2021.00065 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Are Neural Language Models Good Plagiarists? A Benchmark for Neural Paraphrase Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.12450v5-abstract-short" style="display: inline;"> The rise of language models such as BERT allows for high-quality text paraphrasing. This is a problem to academic integrity, as it is difficult to differentiate between original and machine-generated content. We propose a benchmark consisting of paraphrased articles using recent language models relying on the Transformer architecture. Our contribution fosters future research of paraphrase detectio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12450v5-abstract-full').style.display = 'inline'; document.getElementById('2103.12450v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.12450v5-abstract-full" style="display: none;"> The rise of language models such as BERT allows for high-quality text paraphrasing. This is a problem to academic integrity, as it is difficult to differentiate between original and machine-generated content. We propose a benchmark consisting of paraphrased articles using recent language models relying on the Transformer architecture. Our contribution fosters future research of paraphrase detection systems as it offers a large collection of aligned original and paraphrased documents, a study regarding its structure, classification experiments with state-of-the-art systems, and we make our findings publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.12450v5-abstract-full').style.display = 'none'; document.getElementById('2103.12450v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCDL 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.11909">arXiv:2103.11909</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.11909">pdf</a>, <a href="https://arxiv.org/ps/2103.11909">ps</a>, <a href="https://arxiv.org/format/2103.11909">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-030-96957-8_34">10.1007/978-3-030-96957-8_34 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Identifying Machine-Paraphrased Plagiarism </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wahle%2C+J+P">Jan Philip Wahle</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Folt%C3%BDnek%2C+T">Tom谩拧 Folt媒nek</a>, <a href="/search/cs?searchtype=author&amp;query=Meuschke%2C+N">Norman Meuschke</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.11909v7-abstract-short" style="display: inline;"> Employing paraphrasing tools to conceal plagiarized text is a severe threat to academic integrity. To enable the detection of machine-paraphrased text, we evaluate the effectiveness of five pre-trained word embedding models combined with machine-learning classifiers and eight state-of-the-art neural language models. We analyzed preprints of research papers, graduation theses, and Wikipedia article&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11909v7-abstract-full').style.display = 'inline'; document.getElementById('2103.11909v7-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.11909v7-abstract-full" style="display: none;"> Employing paraphrasing tools to conceal plagiarized text is a severe threat to academic integrity. To enable the detection of machine-paraphrased text, we evaluate the effectiveness of five pre-trained word embedding models combined with machine-learning classifiers and eight state-of-the-art neural language models. We analyzed preprints of research papers, graduation theses, and Wikipedia articles, which we paraphrased using different configurations of the tools SpinBot and SpinnerChief. The best-performing technique, Longformer, achieved an average F1 score of 81.0% (F1=99.7% for SpinBot and F1=71.6% for SpinnerChief cases), while human evaluators achieved F1=78.4% for SpinBot and F1=65.6% for SpinnerChief cases. We show that the automated classification alleviates shortcomings of widely-used text-matching systems, such as Turnitin and PlagScan. To facilitate future research, all data, code, and two web applications showcasing our contributions are openly available at https://github.com/jpwahle/iconf22-paraphrase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.11909v7-abstract-full').style.display = 'none'; document.getElementById('2103.11909v7-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> iConference 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09023">arXiv:2101.09023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09023">pdf</a>, <a href="https://arxiv.org/format/2101.09023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.ins.2020.04.048">10.1016/j.ins.2020.04.048 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhanced word embeddings using multi-semantic representation through lexical chains </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Ferreira%2C+C+H+P">Charles Henrique Porto Ferreira</a>, <a href="/search/cs?searchtype=author&amp;query=Grosky%2C+W">William Grosky</a>, <a href="/search/cs?searchtype=author&amp;query=de+Fran%C3%A7a%2C+F+O">Fabr铆cio Olivetti de Fran莽a</a>, <a href="/search/cs?searchtype=author&amp;query=Medeiros%2C+D+M+R">D茅bora Maria Rossi Medeiros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09023v2-abstract-short" style="display: inline;"> The relationship between words in a sentence often tells us more about the underlying semantic content of a document than its actual words, individually. In this work, we propose two novel algorithms, called Flexible Lexical Chain II and Fixed Lexical Chain II. These algorithms combine the semantic relations derived from lexical chains, prior knowledge from lexical databases, and the robustness of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09023v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09023v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09023v2-abstract-full" style="display: none;"> The relationship between words in a sentence often tells us more about the underlying semantic content of a document than its actual words, individually. In this work, we propose two novel algorithms, called Flexible Lexical Chain II and Fixed Lexical Chain II. These algorithms combine the semantic relations derived from lexical chains, prior knowledge from lexical databases, and the robustness of the distributional hypothesis in word embeddings as building blocks forming a single system. In short, our approach has three main contributions: (i) a set of techniques that fully integrate word embeddings and lexical chains; (ii) a more robust semantic representation that considers the latent relation between words in a document; and (iii) lightweight word embeddings models that can be extended to any natural language task. We intend to assess the knowledge of pre-trained models to evaluate their robustness in the document classification task. The proposed techniques are tested against seven word embeddings algorithms using five different machine learning classifiers over six scenarios in the document classification task. Our results show the integration between lexical chains and word embeddings representations sustain state-of-the-art results, even against more complex systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09023v2-abstract-full').style.display = 'none'; document.getElementById('2101.09023v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Information Sciences. Volume 532, September 2020, Pages 16-32 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08700">arXiv:2101.08700</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.08700">pdf</a>, <a href="https://arxiv.org/format/2101.08700">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.eswa.2019.06.026">10.1016/j.eswa.2019.06.026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Multi-sense embeddings through a word sense disambiguation process </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Grosky%2C+W">William Grosky</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08700v2-abstract-short" style="display: inline;"> Natural Language Understanding has seen an increasing number of publications in the last few years, especially after robust word embeddings models became prominent, when they proved themselves able to capture and represent semantic relationships from massive amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Any exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08700v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08700v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08700v2-abstract-full" style="display: none;"> Natural Language Understanding has seen an increasing number of publications in the last few years, especially after robust word embeddings models became prominent, when they proved themselves able to capture and represent semantic relationships from massive amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Any expert system that makes use of natural language in its core, can be affected by a weak semantic representation of text, resulting in inaccurate outcomes based on poor decisions. To mitigate such issues, we propose a novel approach called Most Suitable Sense Annotation (MSSA), that disambiguates and annotates each word by its specific sense, considering the semantic effects of its context. Our approach brings three main contributions to the semantic representation scenario: (i) an unsupervised technique that disambiguates and annotates words by their senses, (ii) a multi-sense embeddings model that can be extended to any traditional word embeddings algorithm, and (iii) a recurrent methodology that allows our models to be re-used and their representations refined. We test our approach on six different benchmarks for the word similarity task, showing that our approach can produce state-of-the-art results and outperforms several more complex state-of-the-art systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08700v2-abstract-full').style.display = 'none'; document.getElementById('2101.08700v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Expert Systems with Applications. Volume 136, 1 December 2019, Pages 288-303 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.06395">arXiv:2010.06395</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.06395">pdf</a>, <a href="https://arxiv.org/format/2010.06395">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Aspect-based Document Similarity for Research Papers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ostendorff%2C+M">Malte Ostendorff</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Blume%2C+T">Till Blume</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a>, <a href="/search/cs?searchtype=author&amp;query=Rehm%2C+G">Georg Rehm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.06395v1-abstract-short" style="display: inline;"> Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classifi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06395v1-abstract-full').style.display = 'inline'; document.getElementById('2010.06395v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.06395v1-abstract-full" style="display: none;"> Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity for research papers. Paper citations indicate the aspect-based similarity, i.e., the section title in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. Our results show SciBERT as the best performing system. A qualitative examination validates our quantitative results. Our findings motivate future research of aspect-based document similarity and the development of a recommender system based on the evaluated techniques. We make our datasets, code, and trained models publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.06395v1-abstract-full').style.display = 'none'; document.getElementById('2010.06395v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication at COLING 2020</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.09881">arXiv:2003.09881</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.09881">pdf</a>, <a href="https://arxiv.org/format/2003.09881">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Pairwise Multi-Class Document Classification for Semantic Relations between Wikipedia Articles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ostendorff%2C+M">Malte Ostendorff</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Schubotz%2C+M">Moritz Schubotz</a>, <a href="/search/cs?searchtype=author&amp;query=Rehm%2C+G">Georg Rehm</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.09881v1-abstract-short" style="display: inline;"> Many digital libraries recommend literature to their users considering the similarity between a query document and their repository. However, they often fail to distinguish what is the relationship that makes two documents alike. In this paper, we model the problem of finding the relationship between two documents as a pairwise document classification task. To find the semantic relation between do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09881v1-abstract-full').style.display = 'inline'; document.getElementById('2003.09881v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.09881v1-abstract-full" style="display: none;"> Many digital libraries recommend literature to their users considering the similarity between a query document and their repository. However, they often fail to distinguish what is the relationship that makes two documents alike. In this paper, we model the problem of finding the relationship between two documents as a pairwise document classification task. To find the semantic relation between documents, we apply a series of techniques, such as GloVe, Paragraph-Vectors, BERT, and XLNet under different configurations (e.g., sequence length, vector concatenation scheme), including a Siamese architecture for the Transformer-based systems. We perform our experiments on a newly proposed dataset of 32,168 Wikipedia article pairs and Wikidata properties that define the semantic document relations. Our results show vanilla BERT as the best performing system with an F1-score of 0.93, which we manually examine to better understand its applicability to other domains. Our findings suggest that classifying semantic relations between documents is a solvable task and motivates the development of recommender systems based on the evaluated techniques. The discussions in this paper serve as first steps in the exploration of documents through SPARQL-like queries such that one could find documents that are similar in one aspect but dissimilar in another. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.09881v1-abstract-full').style.display = 'none'; document.getElementById('2003.09881v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted at ACM/IEEE Joint Conference on Digital Libraries (JCDL 2020)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08359">arXiv:1905.08359</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.08359">pdf</a>, <a href="https://arxiv.org/format/1905.08359">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Digital Libraries">cs.DL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Retrieval">cs.IR</span> </div> </div> <p class="title is-5 mathjax"> Why Machines Cannot Learn Mathematics, Yet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Greiner-Petter%2C+A">Andr茅 Greiner-Petter</a>, <a href="/search/cs?searchtype=author&amp;query=Ruas%2C+T">Terry Ruas</a>, <a href="/search/cs?searchtype=author&amp;query=Schubotz%2C+M">Moritz Schubotz</a>, <a href="/search/cs?searchtype=author&amp;query=Aizawa%2C+A">Akiko Aizawa</a>, <a href="/search/cs?searchtype=author&amp;query=Grosky%2C+W">William Grosky</a>, <a href="/search/cs?searchtype=author&amp;query=Gipp%2C+B">Bela Gipp</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08359v1-abstract-short" style="display: inline;"> Nowadays, Machine Learning (ML) is seen as the universal solution to improve the effectiveness of information retrieval (IR) methods. However, while mathematics is a precise and accurate science, it is usually expressed by less accurate and imprecise descriptions, contributing to the relative dearth of machine learning applications for IR in this domain. Generally, mathematical documents communica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08359v1-abstract-full').style.display = 'inline'; document.getElementById('1905.08359v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08359v1-abstract-full" style="display: none;"> Nowadays, Machine Learning (ML) is seen as the universal solution to improve the effectiveness of information retrieval (IR) methods. However, while mathematics is a precise and accurate science, it is usually expressed by less accurate and imprecise descriptions, contributing to the relative dearth of machine learning applications for IR in this domain. Generally, mathematical documents communicate their knowledge with an ambiguous, context-dependent, and non-formal language. Given recent advances in ML, it seems canonical to apply ML techniques to represent and retrieve mathematics semantically. In this work, we apply popular text embedding techniques to the arXiv collection of STEM documents and explore how these are unable to properly understand mathematics from that corpus. In addition, we also investigate the missing aspects that would allow mathematics to be learned by computers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08359v1-abstract-full').style.display = 'none'; document.getElementById('1905.08359v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to 4th Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries colocated at the 42nd International ACM SIGIR Conference</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> 2019 http://ceur-ws.org/Vol-2414/paper14.pdf </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10