CINXE.COM
Search results for: Andreas Binder
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Andreas Binder</title> <meta name="description" content="Search results for: Andreas Binder"> <meta name="keywords" content="Andreas Binder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Andreas Binder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Andreas Binder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 385</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Andreas Binder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Study of Interaction between Recycled Asphalt Pavement (RAP) Material and Virgin Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Bharath">G. Bharath</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Reddy"> K. S. Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Tandon"> Vivek Tandon</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Amaranatha%20Reddy"> M. Amaranatha Reddy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the details of a study conducted to evaluate the interaction between recycled binder and fresh binder in Recycled Asphalt Pavement (RAP) mixes. When RAP is mixed with virgin aggregates in the presence of fresh binder there will be partial blending in a hot mix asphalt mixture. A recent approach used by some researchers for studying the degree of blending of RAP binder with virgin binder has been adopted in this study. Dense Bituminous Macadam mix of Ministry of Road Transport of India with a nominal maximum aggregate size of 19 mm was studied. Two proportions of RAP-20% and 35% and two types of virgin binders – viscosity grade VG10 and VG30 were considered. Design binder contents were determined for all the four types of mixes (two RAP contents and two virgin binders) as per Marshall mix design procedure. The degree of blending of RAP and virgin binders was evaluated in terms of the complex modulus of the binder. Laboratory test results showed that with an increase in RAP content, the degree of blending decreases. Better blending was observed for softer grade binder (VG10). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blending" title="blending">blending</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt%20pavement" title=" recycled asphalt pavement"> recycled asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=virgin%20binder" title=" virgin binder"> virgin binder</a> </p> <a href="https://publications.waset.org/abstracts/24171/study-of-interaction-between-recycled-asphalt-pavement-rap-material-and-virgin-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Dimensionless Binding Values in the Evaluation of Paracetamol Tablet Formulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abayomi%20T.%20Ogunjimi">Abayomi T. Ogunjimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gbenga%20Alebiowu"> Gbenga Alebiowu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mechanical properties of paracetamol tablets containing Neem (Azadirachta indica) gum were compared with standard Acacia gum BP as binder. Two dimensionless binding quantities BEN and BEC were used in assessing the influence of binder type on two mechanical properties, Tensile Strength (TS) and Brittle Fracture Index (BFI). The two quantities were also used to assess the influence of relative density and binder concentration on TS and BFI as well as compare Binding Efficiencies (BE). The result shows that TS is dependent on relative density, binder type and binder concentration while BFI is dependent on the binder type and binder concentration; and that although, the inclusion of NMG in a paracetamol tablet formulation may not enhance the TS of the tablets produced, however it will decrease the tendency of the tablets to cap or laminate. This work concludes that BEN may be useful in quantitative assessment while BEC may be appropriate for qualitative assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binding%20efficiency" title="binding efficiency">binding efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=brittle%20fracture%20index" title=" brittle fracture index"> brittle fracture index</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensionless%20binding" title=" dimensionless binding"> dimensionless binding</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a> </p> <a href="https://publications.waset.org/abstracts/2503/dimensionless-binding-values-in-the-evaluation-of-paracetamol-tablet-formulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Experimental Investigation to Find Transition Temperature of VG 30 Binder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Latha">D. Latha</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sunitha"> V. Sunitha</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20Mathew"> Samson Mathew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In India, most of the pavement is laid by bituminous road and the consumption of binder is high for pavement construction and also modified binders are used to satisfy any specific pavement requirement. Since the binders are visco-elastic material which is having the mechanical properties of binder transition from visco-elastic solid to visco-elastic fluid. In this paper, two different protocols were used to measure the viscosity property of binder using a Brookfield Viscometer and there is a need to find the appropriate mixing and compaction temperatures of various types of binders which can result in complete aggregate coating and adequate field density of HMA mixtures. The aim of this work is to find the transition temperature from Non-Newtonian behavior to Newtonian behavior of the binder by adopting a steady shear protocol and the shear rate ramp protocol. The transition from non-Newtonian to Newtonian can occur through an increase of temperature and shear of the material. The test has been conducted for unmodified binder VG 30. The transition temperature was found in the unmodified binder VG is 120oC. So the application of both modified binder and unmodified binder in the pavement construction needs to be studied properly by considering temperature and traffic loading factors of the respective project site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unmodified%20and%20modified%20binders" title="unmodified and modified binders">unmodified and modified binders</a>, <a href="https://publications.waset.org/abstracts/search?q=Brookfield%20viscometer" title=" Brookfield viscometer"> Brookfield viscometer</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature"> transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=steady%20shear%20and%20shear%20rate%20protocol" title=" steady shear and shear rate protocol"> steady shear and shear rate protocol</a> </p> <a href="https://publications.waset.org/abstracts/40594/experimental-investigation-to-find-transition-temperature-of-vg-30-binder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Recycled Asphalt Pavement with Warm Mix Additive for Sustainable Road Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meor%20Othman%20Hamzah">Meor Othman Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lillian%20Gungat"> Lillian Gungat</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Izzi%20Md.%20Yusoff"> Nur Izzi Md. Yusoff</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Valentin"> Jan Valentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recent hike in raw materials costs and the quest for preservation of the environment has prompted asphalt industries to adopt greener road construction technology. This paper presents a study on such technology by means of asphalt recycling and use of warm mix asphalt (WMA) additive. It evaluates the effects of a WMA named RH-WMA on binder rheological properties and asphalt mixture performance. The recycled asphalt, obtained from local roads, was processed, fractionated, and incorporated with virgin aggregate and binder. For binder testing, the recycled asphalt was extracted and blended with virgin binder. The binder and mixtures specimen containing 30 % and 50 % recycled asphalt contents were mixed with 3 % RH-WMA. The rheological properties of the binder were evaluated based on fundamental, viscosity, and frequency sweep tests. Indirect tensile strength and resilient modulus tests were carried out to assess the mixture’s performances. The rheological properties and strength performance results showed that the addition of RH-WMA slightly reduced the binder and mixtures stiffness. The percentage of recycled asphalt increased the stiffness of binder and mixture, and thus improves the resistance to rutting. Therefore, the integration of recycled asphalt and RH-WMA can be an alternative material for road sustainable construction for countries in the tropics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20asphalt" title="recycled asphalt">recycled asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=warm%20mix%20additive" title=" warm mix additive"> warm mix additive</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological" title=" rheological"> rheological</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20performance" title=" mixture performance"> mixture performance</a> </p> <a href="https://publications.waset.org/abstracts/36104/recycled-asphalt-pavement-with-warm-mix-additive-for-sustainable-road-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Hastuti">Yulia Hastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi"> Ratna Dewi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sandi"> Muhammad Sandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20binder" title=" soil binder"> soil binder</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/58657/the-effect-of-soil-binder-and-gypsum-to-the-changes-of-the-expansive-soil-shear-strength-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Sulfate Attack on Pastes Made with Different C3A and C4AF Contents and Stored at 5°C</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20Sotiriadis">Konstantinos Sotiriadis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rados%C5%82aw%20Mr%C3%B3z"> Radosław Mróz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work the internal sulfate attack on pastes made from pure clinker phases was studied. Two binders were produced: (a) a binder with 2% C3A and 18% C4AF content; (b) a binder with 10% C3A and C4AF content each. Gypsum was used as the sulfate bearing compound, while calcium carbonate added to differentiate the binders produced. The phases formed were identified by XRD analysis. The results showed that ettringite was the deterioration phase detected in the case of the low C3A content binder. Carbonation occurred in the specimen without calcium carbonate addition, while portlandite was observed in the one containing calcium carbonate. In the case of the high C3A content binder, traces of thaumasite were detected when calcium carbonate was not incorporated in the binder. A solid solution of thaumasite and ettringite was found when calcium carbonate was added. The amount of C3A had not fully reacted with sulfates, since its corresponding peaks were detected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tricalcium%20aluminate" title="tricalcium aluminate">tricalcium aluminate</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20aluminate%20ferrite" title=" calcium aluminate ferrite"> calcium aluminate ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfate%20attack" title=" sulfate attack"> sulfate attack</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature" title=" low temperature"> low temperature</a> </p> <a href="https://publications.waset.org/abstracts/12814/sulfate-attack-on-pastes-made-with-different-c3a-and-c4af-contents-and-stored-at-5c" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Onyango">F. Onyango</a>, <a href="https://publications.waset.org/abstracts/search?q=Salim%20R.%20Wanjala"> Salim R. Wanjala</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ndege"> M. Ndege</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Masu"> L. Masu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8, and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4, and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder Rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title="crumb rubber">crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20process" title=" dry process"> dry process</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20mix%20asphalt" title=" hot mix asphalt"> hot mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20process" title=" wet process"> wet process</a> </p> <a href="https://publications.waset.org/abstracts/30286/effect-of-rubber-tyre-and-plastic-wastes-use-in-asphalt-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Identifying and Optimizing the Critical Excipients in Moisture Activated Dry Granulation Process for Two Anti TB Drugs of Different Aqueous Solubilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Srujana">K. Srujana</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinay%20U.%20Rao"> Vinay U. Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sudhakar"> M. Sudhakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Isoniazide (INH) a freely water soluble and pyrazinamide (Z) a practically water insoluble first line anti tubercular (TB) drugs were identified as candidates for optimizing the Moisture Activated Dry Granulation (MADG) process. The work focuses on identifying the effect of binder type and concentration as well as the effect of magnesium stearate level on critical quality attributes of Disintegration time (DT) and in vitro dissolution test when the tablets are processed by the MADG process. Also, the level of the drug concentration, binder concentration and fluid addition during the agglomeration stage of the MADG process was evaluated and optimized. For INH, it was identified that for tablets with HPMC as binder at both 2% w/w and 5% w/w level and Magnesium stearate upto 1%w/w as lubrication the DT is within 1 minute and the dissolution rate is the fastest (> 80% in 15 minutes) as compared to when PVP or pregelatinized starch is used as binder. Regarding the process, fast disintegrating and rapidly dissolving tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 25% w/w 0% w/w binder and 0.033%. w/w. At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is also slower. For pyrazinamide,it was identified that for the tablets with 2% w/w level of each of PVP as binder and Cross Caramellose Sodium disintegrant the DT is within 2 minutes and the dissolution rate is the fastest(>80 in 15 minutes)as compared to when HPMC or pregelatinized starch is used as binder. This may be attributed to the fact that PVP may be acting as a solubilizer for the practically insoluble Pyrazinamide. Regarding the process,fast dispersing and rapidly disintegrating tablets are obtained when the level of drug, binder and fluid uptake in agglomeration stage is 10% w/w,25% w/w binder and 1% w/w.At the other 2 levels of these three ingredients, the DT is significantly impacted and dissolution is comparatively slower and less complete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agglomeration%20stage" title="agglomeration stage">agglomeration stage</a>, <a href="https://publications.waset.org/abstracts/search?q=isoniazide" title=" isoniazide"> isoniazide</a>, <a href="https://publications.waset.org/abstracts/search?q=MADG" title=" MADG"> MADG</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20distribution%20stage" title=" moisture distribution stage"> moisture distribution stage</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrazinamide" title=" pyrazinamide "> pyrazinamide </a> </p> <a href="https://publications.waset.org/abstracts/8977/identifying-and-optimizing-the-critical-excipients-in-moisture-activated-dry-granulation-process-for-two-anti-tb-drugs-of-different-aqueous-solubilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Physical and Rheological Properties of Asphalt Modified with Cellulose Date Palm Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Howaidi%20M.%20Al-Otaibi">Howaidi M. Al-Otaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fibers are extensively used in civil engineering applications for many years. In this study, empty fruit bunch of date palm trees were used to produce cellulose fiber that were used as additives in the asphalt binder. Two sizes (coarse and fine) of cellulose fibers were pre-blended in PG64-22 binder with various contents of 1.5%, 3%, 4.5%, 6%, and 7.5% by weight of asphalt binder. The physical and rheological properties of fiber modified asphalt binders were tested by using conventional tests such as penetration, softening point and viscosity; and SHRP test such as dynamic shear rheometer. The results indicated that the fiber modified asphalt binders were higher in softening point, viscosity, and complex shear modulus, and lower in penetration compared to pure asphalt. The fiber modified binders showed an improvement in rheological properties since it was possible to raise the control binder (pure asphalt) PG from 64 to 70 by adding 6% (by weight) of either fine or coarse fibers. Such improvement in stiffness of fiber modified binder is expected to improve pavement resistance to rutting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20date%20palm%20fiber" title="cellulose date palm fiber">cellulose date palm fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20modified%20asphalt" title=" fiber modified asphalt"> fiber modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title=" physical properties"> physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/48756/physical-and-rheological-properties-of-asphalt-modified-with-cellulose-date-palm-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Babalghaith">Ali M. Babalghaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20asphalt" title="polymer modified asphalt">polymer modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS" title=" SBS"> SBS</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=EE-2" title=" EE-2"> EE-2</a> </p> <a href="https://publications.waset.org/abstracts/44713/comparison-of-rheological-properties-for-polymer-modified-asphalt-produced-in-riyadh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20V.%20Staub%20de%20Melo">João V. Staub de Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Glic%C3%A9rio%20Trich%C3%AAs"> Glicério Trichês</a>, <a href="https://publications.waset.org/abstracts/search?q=Liseane%20P.%20Thives"> Liseane P. Thives</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20nanocomposites" title="asphalt nanocomposites">asphalt nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixtures" title=" asphalt mixtures"> asphalt mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a> </p> <a href="https://publications.waset.org/abstracts/72307/optimization-of-carbon-nanotube-content-of-asphalt-nanocomposites-with-regard-to-resistance-to-permanent-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baha%20Vural%20K%C3%B6k">Baha Vural Kök</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yilmaz"> Mehmet Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Akpolat"> Mustafa Akpolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihat%20Sav"> Cihat Sav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a> </p> <a href="https://publications.waset.org/abstracts/79014/effects-of-preparation-conditions-on-the-properties-of-crumb-rubber-modified-binder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Trihatmoko">John Trihatmoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Luky%20Handoko"> Luky Handoko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20temperature" title="curing temperature">curing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20clay" title=" organic clay"> organic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title=" bagasse ash"> bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbide%20residue" title=" calcium carbide residue"> calcium carbide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/123381/effect-of-curing-temperature-on-unconfined-compression-strength-of-bagasse-ash-calcium-carbide-residue-treated-organic-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanizam%20Awang">Hanizam Awang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Zuhear%20Al-Mulali"> Mohammed Zuhear Al-Mulali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foamed%20concrete" title="foamed concrete">foamed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20ash" title=" oil palm ash"> oil palm ash</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=interlocking%20block" title=" interlocking block"> interlocking block</a> </p> <a href="https://publications.waset.org/abstracts/38425/utilising-unground-oil-palm-ash-in-producing-foamed-concrete-and-its-implementation-as-an-interlocking-mortar-less-block" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Effect of Natural Binder on Pang-Rum Hardness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pattaranut%20Eakwaropas">Pattaranut Eakwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=Khemjira%20Jarmkom"> Khemjira Jarmkom</a>, <a href="https://publications.waset.org/abstracts/search?q=Warachate%20Khobjai"> Warachate Khobjai</a>, <a href="https://publications.waset.org/abstracts/search?q=Surachai%20Techaoei"> Surachai Techaoei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to improve Pang-Rum (PR) hardness by adding natural binders. PR is one of Thai tradition aroma products. In the past, it was used for aesthetic propose on face and body with good odor. Nowadays, PR is not popular and going to be disappeared. Five natural materials, i.e. agar, rice flour, glutinous flour, corn starch, and tapioca starch were selected to use as binders. Binders were dissolved with boiled water into concentration 5% and 10% w/w except agar that was prepared 0.5% and 1% w/w. PR with and without binder were formulated. Physical properties, i.e. weight, shape, color, and hardness were evaluated. PR with 10% of corn starch solution had suitable hardness (14.2±0.9 kg) and the best appearance. In the future, it would be planned to study about odor and physical stability for decorated product development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aromatic%20water" title="aromatic water">aromatic water</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20binder" title=" natural binder"> natural binder</a>, <a href="https://publications.waset.org/abstracts/search?q=pang-rum" title=" pang-rum"> pang-rum</a> </p> <a href="https://publications.waset.org/abstracts/61564/effect-of-natural-binder-on-pang-rum-hardness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiza%20Rusati%20Pacifique">Kiza Rusati Pacifique</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-il%20Song"> Ki-il Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damping%20ratio" title="damping ratio">damping ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20resistivity" title=" electrical resistivity"> electrical resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20improvement" title=" ground improvement"> ground improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20binder" title=" inorganic binder"> inorganic binder</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20wave%20velocity" title=" longitudinal wave velocity"> longitudinal wave velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/78919/transient-electrical-resistivity-and-elastic-wave-velocity-of-sand-cement-inorganic-binder-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Assessing the Effect of Waste-based Geopolymer on Asphalt Binders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amani%20A.%20Saleh">Amani A. Saleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Maram%20M.%20Saudy"> Maram M. Saudy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20N.%20AbouZeid"> Mohamed N. AbouZeid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphalt cement concrete is a very commonly used material in the construction of roads. It has many advantages, such as being easy to use as well as providing high user satisfaction in terms of comfortability and safety on the road. However, there are some problems that come with asphalt cement concrete, such as its high carbon footprint, which makes it environmentally unfriendly. In addition, pavements require frequent maintenance, which could be very costly and uneconomic. The aim of this research is to study the effect of mixing waste-based geopolymers with asphalt binders. Geopolymer mixes were prepared by combining alumino-silicate sources such as fly ash, silica fumes, and metakaolin with alkali activators. The purpose of mixing geopolymers with the asphalt binder is to enhance the rheological and microstructural properties of asphalt. This was done through two phases, where the first phase was developing an optimum mix design of the geopolymer additive itself. The following phase was testing the geopolymer-modified asphalt binder after the addition of the optimum geopolymer mix design to it. The testing of the modified binder is performed according to the Superpave testing procedures, which include the dynamic shear rheometer to measure parameters such as rutting and fatigue cracking, and the rotational viscometer to measure workability. In addition, the microstructural properties of the modified binder is studied using the environmental scanning electron microscopy test (ESEM). In the testing phase, the aim is to observe whether the addition of different geopolymer percentages to the asphalt binder will enhance the properties of the binder and yield desirable results. Furthermore, the tests on the geopolymer-modified binder were carried out at fixed time intervals, therefore, the curing time was the main parameter being tested in this research. It was observed that the addition of geopolymers to asphalt binder has shown an increased performance of asphalt binder with time. It is worth mentioning that carbon emissions are expected to be reduced since geopolymers are environmentally friendly materials that minimize carbon emissions and lead to a more sustainable environment. Additionally, the use of industrial by-products such as fly ash and silica fumes is beneficial in the sense that they are recycled into producing geopolymers instead of being accumulated in landfills and therefore wasting space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting" title=" rutting"> rutting</a>, <a href="https://publications.waset.org/abstracts/search?q=superpave" title=" superpave"> superpave</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20cracking" title=" fatigue cracking"> fatigue cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/156055/assessing-the-effect-of-waste-based-geopolymer-on-asphalt-binders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Stability of Essential Oils in Pang-Rum by Gas Chromatography-Mass Spectrometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Jarmkom">K. Jarmkom</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Eakwaropas"> P. Eakwaropas</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Khobjai"> W. Khobjai</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Techaeoi"> S. Techaeoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ancient Thai perfumed powder was used as a fragrance for clothing, food, and the body. Plant-based natural Thai perfume products are known as Pang-Rum. The objective of this study was to evaluate the stability of essential oils after six months of incubation. The chemical compositions were determined by gas chromatography-mass spectrometry (GC-MS), in terms of the qualitative composition of the isolated essential oil. The isolation of the essential oil of natural products by incubate sample for 5 min at 40 ºC is described. The volatile components were identified by percentage of total peak areas comparing their retention times of GC chromatograph with NIST mass spectral library. The results show no significant difference in the seven chromatograms of perfumed powder (Pang-Rum) both with binder and without binder. Further identification was done by GC-MS. Some components of Pang-Rum with/without binder were changed by temperature and time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GC-MS%20analysis" title="GC-MS analysis">GC-MS analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=Pang-Rum" title=" Pang-Rum"> Pang-Rum</a> </p> <a href="https://publications.waset.org/abstracts/61580/stability-of-essential-oils-in-pang-rum-by-gas-chromatography-mass-spectrometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61580.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Active Abdominal Compression Device for Treatment of Orthostatic Hypotension</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20Emani">Vishnu Emani</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Escher"> Andreas Escher</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Roche"> Ellen Roche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Orthostatic hypotension (OH) is an autonomic disorder marked by a sudden drop in blood pressure upon standing resulting from autonomic dysfunction. OH is especially prevalent in elderly populations, affecting more than 30% of Americans over the age of 70. OH is one of the most significant risk factors for accidental falls in elderly populations, making it a crucial focus for medical and device therapies. Pharmacologic therapy with midodrine and fludrocortisone may alleviate hypotension but have significant adverse side effects. Abdominal passive compression devices (binders) are more effective than lower extremity compression stockings at mitigating postural hypotension, by improving venous return to the heart. However, abdominal binders are difficult to don and uncomfortable to wear, leading to poor compliance. A disadvantage of passive compression devices is their inability to selectively compress during the crucial moment of standing. We have recently developed an active compression device that applies external pressure on the abdomen during the transition from a prone to a supine position and conducted initial prototype testing. Methods: An active abdominal compression device was developed utilizing a simple, servo-driven straptightening mechanism to supply tension onto foam fabric, which applies pressure to the abdomen. Healthy volunteers (n=5) were utilized for prototype testing and were subjected to three conditions: no compression, passive compression (i.e. standard abdominal binder), and active compression (device prototype). Abdominal applied pressure during device activation was measured by a strain-gauge manometer placed between the skin and binder. Systolic (SBP) and mean (MAP) arterial blood pressure was measured by standard blood pressure cuff in supine position followed by repeat measurements at 1 minute intervals for 5 minutes following upright position. A survey tool was administered to determine scores (1-10) for comfort and ease of donning abdominal binders. Results: Abdominal pressure increased from 0 to 15±3 mmHg upon device activation for both passive and active compression devices. During the transition from supine to an upright position, both active and passive compression devices demonstrated significantly higher MAP compared to the no-compression condition (67±4, 68±5, 62±5 respectively, P<0.05), but there was no statistically significant difference in SBP or MAP when comparing active to passive compression. Active compression demonstrated significantly higher comfort scores (8.3±1) compared to passive compression (3.2±2) but lower when compared to no compression (10). Subjects universally reported that active compression device was easier to don compared to passive device. Conclusions: Active or passive abdominal compression prevents hypotension associated with postural changes. Active compression is associated with increased comfort and ease of donning compared to passive compression devices. Future trials are warranted to investigate the efficacy of our device in patients with OH. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthostatic%20hypotension" title="orthostatic hypotension">orthostatic hypotension</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20binder" title=" compression binder"> compression binder</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20binder" title=" abdominal binder"> abdominal binder</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20abdominal%20compression" title=" active abdominal compression"> active abdominal compression</a> </p> <a href="https://publications.waset.org/abstracts/192113/active-abdominal-compression-device-for-treatment-of-orthostatic-hypotension" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anmar%20Dulaimi">Anmar Dulaimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Al%20Nageim"> Hassan Al Nageim</a>, <a href="https://publications.waset.org/abstracts/search?q=Felicite%20Ruddock"> Felicite Ruddock</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Seton"> Linda Seton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20mix%20asphalt" title="cold mix asphalt">cold mix asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=binder%20course" title=" binder course"> binder course</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness%20modulus" title=" stiffness modulus"> stiffness modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20sensitivity" title=" water sensitivity"> water sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/32611/a-novel-cold-asphalt-concrete-mixture-for-heavily-trafficked-binder-course" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taekyun%20Kim">Taekyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jongho%20Park"> Jongho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinwoong%20Choi"> Jinwoong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Kyu%20Park"> Sun-Kyu Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20ratio" title=" mixing ratio"> mixing ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=textile" title=" textile"> textile</a>, <a href="https://publications.waset.org/abstracts/search?q=TRC" title=" TRC"> TRC</a> </p> <a href="https://publications.waset.org/abstracts/46094/strength-of-fine-concrete-used-in-textile-reinforced-concrete-by-changing-water-binder-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> The Effect of Ethylene Propylene Diene Monomer on the Rheological Properties of Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Eren">Emre Eren</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Yigit%20Katanalp"> Burak Yigit Katanalp</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Tastan"> Murat Tastan</a>, <a href="https://publications.waset.org/abstracts/search?q=Perviz%20Ahmedzade"> Perviz Ahmedzade</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87igdem%20Canbay%20Turkyilmaz"> Çigdem Canbay Turkyilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Turkyilmaz"> Emrah Turkyilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the mechanical and high-temperature rheological properties of Ethylene Propylene Diene Monomer (EPDM) modified bitumen. To achieve this, the neat binder was modified with EPDM additive in different percentages: 2% to 5%. The neat and modified binder were subjected to conventional and rheological tests, including penetration and softening point tests, as well as evaluations of their rutting performance and high-temperature viscosity characteristics. Additionally, the mixing and compaction temperatures for hot mix asphalt production were identified using a rotational viscometer. The findings indicated that EPDM is a highly effective bitumen modifier, with the high temperature performance class of the neat binder improving by 3 grades according to the Superpave asphalt grading system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer" title="polymer">polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology" title=" rheology"> rheology</a>, <a href="https://publications.waset.org/abstracts/search?q=EPDM" title=" EPDM"> EPDM</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title=" dynamic mechanical analysis"> dynamic mechanical analysis</a> </p> <a href="https://publications.waset.org/abstracts/165229/the-effect-of-ethylene-propylene-diene-monomer-on-the-rheological-properties-of-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Phenomenon of Raveling Distress on the Flexible Pavements: An Overview</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ali%20Shahbaz%20Shah">Syed Ali Shahbaz Shah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few years, Bituminous Asphaltic roads are becoming popular day by day in the world. Plenty of research has been carried out to identify many advantages like safety, environmental effects, and comfort. Some other benefits are minimal noise and skid resistance enhancement. Besides the benefits of asphaltic roads, the permeable structure of the road also causes some distress, and raveling is one of the crucial defects. The main reason behind this distress is the failure of adhesion between bitumen mortar, specifically due to excessive load from heavy traffic. The main focus of this study is to identify the root cause and propose both the long-term and the short-term solutions of raveling on a specific road section depicting the overall road situation from the bridge of Kahuta road towards the intersection of the Islamabad express highway. The methodology adopted for this purpose is visual inspections in-situ. It was noted that there were chunks of debris on the road surface, which indicates that the asphalt binder is aged the most probably. Further laboratory testing would confirm that either asphalt binder is aged or inadequate compaction was adept during cold weather paving. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltic%20roads" title="asphaltic roads">asphaltic roads</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20binder" title=" asphalt binder"> asphalt binder</a>, <a href="https://publications.waset.org/abstracts/search?q=distress" title=" distress"> distress</a>, <a href="https://publications.waset.org/abstracts/search?q=raveling" title=" raveling"> raveling</a> </p> <a href="https://publications.waset.org/abstracts/157599/phenomenon-of-raveling-distress-on-the-flexible-pavements-an-overview" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Effect of Crashed Stone on Properties of Fly Ash Based-Geopolymer Concrete with Local Alkaline Activator in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20M.%20Omar">O. M. Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Abd%20Elhameed"> G. D. Abd Elhameed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Heniegal"> A. M. Heniegal</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20A.%20Mohamadien"> H. A. Mohamadien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green concrete are generally composed of recycling materials as hundred or partial percent substitutes for aggregate, cement, and admixture in concrete. To reduce greenhouse gas emissions, efforts are needed to develop environmentally friendly construction materials. Using of fly ash based geopolymer as an alternative binder can help reduce CO2 emission of concrete. The binder of geopolymer concrete is different from the ordinary Portland cement concrete. Geopolymer Concrete specimens were prepared with different concentration of NaOH solution M10, M14, and, M16 and cured at 60 ºC in duration of 24 hours and 8 hours, in addition to the curing in direct sunlight. Thus, it is necessary to study the effects of the geopolymer binder on the behavior of concrete. Concrete is made by using geopolymer technology is environmental friendly and could be considered as part of the sustainable development. In this study the Local Alkaline Activator in Egypt and dolomite as coarse aggregate in fly ash based-geopolymer concrete was investigated. This paper illustrates the development of mechanical properties. Since the gained compressive strength for geopolymer concrete at 28 days was in the range of 22.5MPa – 43.9MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title="geopolymer">geopolymer</a>, <a href="https://publications.waset.org/abstracts/search?q=molarity" title=" molarity"> molarity</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydroxide" title=" sodium hydroxide"> sodium hydroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20silicate" title=" sodium silicate"> sodium silicate</a> </p> <a href="https://publications.waset.org/abstracts/38420/effect-of-crashed-stone-on-properties-of-fly-ash-based-geopolymer-concrete-with-local-alkaline-activator-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> The Influence of Partial Replacement of Hydrated Lime by Pozzolans on Properties of Lime Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Przemyslaw%20Brzyski">Przemyslaw Brzyski</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislaw%20Fic"> Stanislaw Fic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrated lime, because of the life cycle (return to its natural form as a result of the setting and hardening) has a positive environmental impact. The lime binder is used in mortars. Lime is a slow setting binder with low mechanical properties. The aim of the study was to evaluate the possibility of improving the properties of the lime binder by using different pozzolanic materials as partial replacement of hydrated lime binder. Pozzolan materials are the natural or industrial waste, so do not affect the environmental impact of the lime binder. The following laboratory tests were performed: the analysis of the physical characteristics of the tested samples of lime mortars (bulk density, porosity), flexural and compressive strength, water absorption and the capillary rise of samples and consistency of fresh mortars. As a partial replacement of hydrated lime (in the amount of 10%, 20%, 30% by weight of lime) a metakaolin, silica fume, and zeolite were used. The shortest setting and hardening time showed mortars with the addition of metakaolin. All additives noticeably improved strength characteristic of lime mortars. With the increase in the amount of additive, the increase in strength was also observed. The highest flexural strength was obtained by using the addition of metakaolin in an amount of 20% by weight of lime (2.08 MPa). The highest compressive strength was obtained by using also the addition of metakaolin but in an amount of 30% by weight of lime (9.43 MPa). The addition of pozzolan caused an increase in the mortar tightness which contributed to the limitation of absorbability. Due to the different surface area, pozzolanic additives affected the consistency of fresh mortars. Initial consistency was assumed as plastic. Only the addition of silica fume an amount of 20 and 30% by weight of lime changed the consistency to the thick-plastic. The conducted study demonstrated the possibility of applying lime mortar with satisfactory properties. The features of lime mortars do not differ significantly from cement-based mortar properties and show a lower environmental impact due to CO₂ absorption during lime hardening. Taking into consideration the setting time, strength and consistency, the best results can be obtained with metakaolin addition to the lime mortar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lime" title="lime">lime</a>, <a href="https://publications.waset.org/abstracts/search?q=binder" title=" binder"> binder</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolan" title=" pozzolan"> pozzolan</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/91218/the-influence-of-partial-replacement-of-hydrated-lime-by-pozzolans-on-properties-of-lime-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Comparison of Different Electrical Machines with Permanent Magnets in the Stator for Use as an Industrial Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcel%20Lehr">Marcel Lehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder"> Andreas Binder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares three different permanent magnet synchronous machines (Doubly-Salient-Permanent-Magnet-Machine (DSPM), Flux-Reversal-Permanent-Magnet-Machine (FRPM), Flux-Switching-Permanent-Magnet-Machine (FSPM)) with the permanent magnets in the stator of the machine for use as an industrial drive for 400 V Y, 45 kW and 1000 ... 3000 min-1. The machines are compared based on the magnetic co-energy and Finite-Element-Method-Simulations regarding the torque density. The results show that the FSPM provides the highest torque density of the three machines. Therefore, an FSPM prototype was built, tested on a test bench and finally compared with an already built conventional permanent magnet synchronous machine (PMSM) of the same size (stator outer diameter dso = 314 mm, axial length lFe = 180 mm) and rating with surface-mounted rotor magnets. These measurements show that the conventional PMSM and the FSPM machine are roughly equivalent in their electrical behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=doubly-salient-permanent-magnet-machine" title="doubly-salient-permanent-magnet-machine">doubly-salient-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-reversal-permanent-magnet-machine" title=" flux-reversal-permanent-magnet-machine"> flux-reversal-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=flux-switching-permanent-magnet-machine" title=" flux-switching-permanent-magnet-machine"> flux-switching-permanent-magnet-machine</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20drive" title=" industrial drive"> industrial drive</a> </p> <a href="https://publications.waset.org/abstracts/61399/comparison-of-different-electrical-machines-with-permanent-magnets-in-the-stator-for-use-as-an-industrial-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Microwave Assisted Rapid Synthesis of Nano-Binder from Renewable Resource and Their Application in Textile Printing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Haggag">K. Haggag</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20S.%20Elshemy"> N. S. Elshemy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to limited fossil resource and an increased need for environmentally friendly, sustainable technologies, the importance of using renewable feed stocks in textile industry area will increase in the decades to come. This research highlights some of the perspectives in this area. Alkyd resins for high characterization and reactive properties, completely based on commercially available renewable resources (sunflower and/or soybean oil) were prepared and characterized. In this work, we present results on the synthesis of various alkyd resins according to the alcoholysis – polyesterification process under different preparation conditions using a microwave synthesis as energy source to determine suitable reaction conditions. Effects of polymerization parameters, such as catalyst ratio, reaction temperature and microwave power level have been studied. The prepared binder was characterized via FT-IR, scanning electron microscope (SEM) and transmission electron microscope (TEM), in addition to acid value (AV), iodine value (IV), water absorbance, weight loss, and glass transition temperature. The prepared binder showed high performance physico-mechanical properties. TEM analysis showed that the polymer latex nanoparticle within range of 20–200 nm. The study involved the application of the prepared alkyd resins as binder for pigment printing process onto cotton fabric by using a flat screen technique and the prints were dried and thermal cured. The optimum curing conditions were determined, color strength and fastness properties of pigment printed areas to light, washing, perspiration and crocking were evaluated. The rheological properties and apparent viscosity of prepared binders were measured in addition roughness of the prints was also determined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-binder" title="nano-binder">nano-binder</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20heating" title=" microwave heating"> microwave heating</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20resource" title=" renewable resource"> renewable resource</a>, <a href="https://publications.waset.org/abstracts/search?q=alkyd%20resins" title=" alkyd resins"> alkyd resins</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/11124/microwave-assisted-rapid-synthesis-of-nano-binder-from-renewable-resource-and-their-application-in-textile-printing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar">Ashish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Suman"> Sanjeev Kumar Suman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cloisite-15A" title="Cloisite-15A">Cloisite-15A</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20shear%20modulus" title=" complex shear modulus"> complex shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20angle" title=" phase angle"> phase angle</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/58589/experimental-investigations-on-nanoclay-cloisite-15a-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Compressive and Torsional Strength of Self-Compacting Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moosa%20Mazloom">Moosa Mazloom</a>, <a href="https://publications.waset.org/abstracts/search?q=Morteza%20Mehrvand"> Morteza Mehrvand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this study was to investigate the effects of silica fume and super plasticizer dosages on compressive and torsional properties of SCC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of 400 kg/m3 and 500 kg/m3, respectively. The percentages of silica fume that replaced cement were 0 % and 10 %. The super plasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2 % and 1.6 % of the weight of cement. Prism dimensions used in this test were 10 × 10 × 40 cm3. The results of this research indicated that torsional strength of SCC prisms can be calculated using the equations presented in Canadian and American concrete building codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title="self-compacting concrete">self-compacting concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20prism" title=" rectangular prism"> rectangular prism</a>, <a href="https://publications.waset.org/abstracts/search?q=torsional%20strength" title=" torsional strength"> torsional strength</a> </p> <a href="https://publications.waset.org/abstracts/29748/compressive-and-torsional-strength-of-self-compacting-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Kiani">Maryam Kiani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly-ash" title="fly-ash">fly-ash</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20black" title=" carbon black"> carbon black</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=geopolymer" title=" geopolymer"> geopolymer</a> </p> <a href="https://publications.waset.org/abstracts/172605/effect-of-carbon-black-nanoparticles-additive-on-the-qualities-of-fly-ash-based-geopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Andreas%20Binder&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>