CINXE.COM

Search results for: rutting resistance

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rutting resistance</title> <meta name="description" content="Search results for: rutting resistance"> <meta name="keywords" content="rutting resistance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rutting resistance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rutting resistance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3273</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rutting resistance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3273</span> Laboratory Evaluation of Rutting and Fatigue Damage Resistance of Asphalt Mixtures Modified with Carbon Nano Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zain%20Ul%20Abadeen">Ali Zain Ul Abadeen</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Hussain"> Arshad Hussain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Roads are considered as the national capital, and huge developmental budget is spent on its construction, maintenance, and rehabilitation. Due to proliferating traffic volume, heavier loads and challenging environmental factors, the need for high-performance asphalt pavement is increased. In this research, the asphalt mixture was modified with carbon nanotubes ranging from 0.2% to 2% of binder to study the effect of CNT modification on rutting potential and fatigue life of asphalt mixtures. During this study, the conventional and modified asphalt mixture was subjected to a uni-axial dynamic creep test and dry Hamburg wheel tracking test to study rutting resistance. Fatigue behavior of asphalt mixture was studied using a four-point bending test apparatus. The plateau value of asphalt mixture was taken as a measure of fatigue performance according to the ratio of dissipated energy approach. Results of these experiments showed that CNT modified asphalt mixtures had reduced rut depth and increased rutting and fatigue resistance at higher percentages of carbon nanotubes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title="carbon nanotubes">carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20point%20bending%20test" title=" four point bending test"> four point bending test</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20asphalt" title=" modified asphalt"> modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting" title=" rutting"> rutting</a> </p> <a href="https://publications.waset.org/abstracts/107538/laboratory-evaluation-of-rutting-and-fatigue-damage-resistance-of-asphalt-mixtures-modified-with-carbon-nano-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3272</span> Permanent Deformation Resistance of Asphalt Mixtures with Red Mud as a Filler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liseane%20Padilha%20Thives">Liseane Padilha Thives</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayara%20S.%20S.%20Lima"> Mayara S. S. Lima</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20Victor%20Staub%20De%20Melo"> João Victor Staub De Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Glic%C3%A9rio%20Trich%C3%AAs"> Glicério Trichês</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Red mud is a waste resulting from the processing of bauxite to alumina, the raw material of the production of aluminum. The large quantity of red mud generated and inadequately disposed in the environment has motivated researchers to develop methods for reinsertion of this waste into the productive cycle. This work aims to evaluate the resistance to permanent deformation of dense asphalt mixtures with red mud filler. The red mud was characterized by tests of X-ray diffraction, fluorescence, specific mass, laser granulometry, pH and scanning electron microscopy. For the analysis of the influence of the quantity of red mud in the mechanical performance of asphalt mixtures, a total filler content of 7% was established. Asphalt mixtures with 3%, 5% and 7% red mud were produced. A conventional mixture with 7% stone powder filler was used as reference. The asphalt mixtures were evaluated for performance to permanent deformation in the French Rutting Tester (FRT) traffic simulator. The mixture with 5% red mud presented greater resistance to permanent deformation with rutting depth at 30,000 cycles of 3.50%. The asphalt mixtures with red mud presented better performance, with reduction of the rutting of 12.63 to 42.62% in relation to the reference mixture. This study confirmed the viability of reinserting the red mud in the production chain and possible usage in the construction industry. The red mud as filler in asphalt mixtures is a reuse option of this waste and mitigation of the disposal problems, as well as being an environmentally friendly alternative. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixtures" title="asphalt mixtures">asphalt mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a> </p> <a href="https://publications.waset.org/abstracts/72325/permanent-deformation-resistance-of-asphalt-mixtures-with-red-mud-as-a-filler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3271</span> Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20V.%20Staub%20de%20Melo">João V. Staub de Melo</a>, <a href="https://publications.waset.org/abstracts/search?q=Glic%C3%A9rio%20Trich%C3%AAs"> Glicério Trichês</a>, <a href="https://publications.waset.org/abstracts/search?q=Liseane%20P.%20Thives"> Liseane P. Thives</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orni&eacute;reur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20nanocomposites" title="asphalt nanocomposites">asphalt nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixtures" title=" asphalt mixtures"> asphalt mixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotechnology" title=" nanotechnology"> nanotechnology</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a> </p> <a href="https://publications.waset.org/abstracts/72307/optimization-of-carbon-nanotube-content-of-asphalt-nanocomposites-with-regard-to-resistance-to-permanent-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72307.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3270</span> Investigating the Properties of Asphalt and Asphalt Mixture Based on the Effect of Waste Toner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prince%20Igor%20Itoua">Prince Igor Itoua</a>, <a href="https://publications.waset.org/abstracts/search?q=Daquan%20Sun"> Daquan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Shihui%20Shen"> Shihui Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed at investigating the properties of asphalt and mix asphalt based on the effects of waste toner sources (WT1 and WT2) with 8% dosage waste toner powders (WT). The test results included penetration, softening points, ductility, G*sinδ, G*/sinδ, Ideal cracking test(IDEAL-CT), and Ideal shear rutting test(IDEAL-RT). The results showed that the base binder with WT2 had a significantly higher viscosity value compared to the WT1 modified binder, and thus, higher energy for mixing and compaction is needed. Fur-thermore, the results of penetration, softening points, G*sinδ, and G*/sinδ were all affected by waste toner type. In terms of asphalt mixture, the IDEAL-RT test revealed that the addition of waste toner improved the rutting resistance of the asphalt mixture regardless of toner type. Further, CTindex values for waste toner-modified asphalt mixtures show no significant difference. Above all, WT-modified asphalt mixtures produced by the wet process have better rutting performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20toner" title="waste toner">waste toner</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20toner%20modified%20asphalt" title=" waste toner modified asphalt"> waste toner modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20mixture%20properties" title=" asphalt mixture properties"> asphalt mixture properties</a>, <a href="https://publications.waset.org/abstracts/search?q=IDEAL-RT%20test" title=" IDEAL-RT test"> IDEAL-RT test</a>, <a href="https://publications.waset.org/abstracts/search?q=IDEAL-CT%20test" title=" IDEAL-CT test"> IDEAL-CT test</a> </p> <a href="https://publications.waset.org/abstracts/164668/investigating-the-properties-of-asphalt-and-asphalt-mixture-based-on-the-effect-of-waste-toner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3269</span> Use of Cold In-Place Asphalt Mixtures Technique in Road Maintenance in Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mamdouh%20Mohammed">Mohammed Mamdouh Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Zain%20Elabdeen%20Heikal"> Ali Zain Elabdeen Heikal</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Mahdy"> Hassan Mahdy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20El-Badawy"> Sherif El-Badawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this research is to assess the effectiveness of the Cold In-Place Recycling (CIR) technique in asphalt maintenance by analyzing performance outcomes. To achieve this, fifteen CIR mixtures were prepared using slow-setting emulsified asphalt as the recycling agent, with percentages ranging from 2% to 4% in 0.5% increments. Additionally, pure water was incorporated in percentages ranging from 2% to 4% in 1% increments, and Portland cement was added at a constant content of 1%. The components were mixed at room temperature and subsequently compacted using a gyratory compactor with 150 gyrations. Prior to testing, the samples underwent a two-stage treatment process: initially, they were placed in an oven at 60°C for 48 hours, followed by a 24-hour period of air curing. The Hamburg wheel tracking test was performed to evaluate the samples’ resistance to rutting. Additionally, the Indirect Tensile Strength (ITS) test and the Semi-Circular Beam (SCB) test were conducted to assess their resistance to cracking. Upon analyzing the test results, it was observed that the samples’ resistance to rutting decreased with higher asphalt and moisture content. In contrast, ITS and SCB tests revealed that the samples’ resistance to cracking initially increased with higher asphalt and moisture content, peaking at a certain point, and then decreased, forming a bell-curve pattern. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20in-place" title="cold in-place">cold in-place</a>, <a href="https://publications.waset.org/abstracts/search?q=indirect%20tensile%20strength" title=" indirect tensile strength"> indirect tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsified%20asphalt" title=" emulsified asphalt"> emulsified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-circular%20beam" title=" semi-circular beam"> semi-circular beam</a> </p> <a href="https://publications.waset.org/abstracts/194599/use-of-cold-in-place-asphalt-mixtures-technique-in-road-maintenance-in-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3268</span> Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lillian%20Gungat">Lillian Gungat</a>, <a href="https://publications.waset.org/abstracts/search?q=Meor%20Othman%20Hamzah"> Meor Othman Hamzah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Rosli%20Mohd%20Hasan"> Mohd Rosli Mohd Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Valentin"> Jan Valentin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement" title="reclaimed asphalt pavement">reclaimed asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=WMA%20additive" title=" WMA additive"> WMA additive</a>, <a href="https://publications.waset.org/abstracts/search?q=viscosity" title=" viscosity"> viscosity</a>, <a href="https://publications.waset.org/abstracts/search?q=stiffness" title=" stiffness"> stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a> </p> <a href="https://publications.waset.org/abstracts/69909/warm-mix-and-reclaimed-asphalt-pavement-a-greener-road-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3267</span> The Influence of Moisture Conditioning on Hamburg Wheel Tracking Test Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Al-Baghli">Hussain Al-Baghli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Hamburg Wheel Tracking Test (HWTT) was conducted to evaluate the resistance to moisture damage of two asphalt mixtures: an optimized rubberized asphalt mixture and an HMA mix with anti-stripping additives. The mixtures were subjected to varying numbers of moisture conditioning cycles and then tested for rutting depth. The results showed that the optimized rubberized asphalt mixture met the requirements for medium to heavy traffic in accordance with Kuwait's Ministry of Public Works specification. The number of moisture conditioning cycles did not significantly impact rutting development for the rubberized asphalt. The HMA asphalt samples showed a significant reduction in strength and did not satisfy the HWTT criteria after the moisture conditioning cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rubberized%20asphalt" title="rubberized asphalt">rubberized asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamburg%20wheel%20tracking" title=" Hamburg wheel tracking"> Hamburg wheel tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=antistripping" title=" antistripping"> antistripping</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20conditioning" title=" moisture conditioning"> moisture conditioning</a> </p> <a href="https://publications.waset.org/abstracts/177075/the-influence-of-moisture-conditioning-on-hamburg-wheel-tracking-test-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3266</span> The Effect of Linear Low-Density Polyethylene Cross-Contamination by Other Plastic Types on Bitumen Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nioushasadat%20Haji%20Seyed%20Javadi">Nioushasadat Haji Seyed Javadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ailar%20Hajimohammadi"> Ailar Hajimohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Khalili"> Nasser Khalili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the recycling of plastic wastes has been the subject of much research attention, especially in pavement constructions, where virgin polymers can be replaced by recycled plastics for asphalt binder modification. Among the plastic types, recycled linear low-density polyethylene (RLLDPE) has been one of the common and largely available plastics for bitumen modification. However, it is important to note that during the recycling process, LLDPE can easily be contaminated with other plastic types, especially with low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP). The cross-contamination of LLDPE with other plastics lowers its quality and, consequently, can affect the asphalt modification process. This study aims to assess the effect of LLDPE cross-contamination on bitumen modification. To do so, samples of bitumen modified with LLDPE and blends of LLDPE with LDPE, HDPE, and PP were prepared and compared through physical and rheological evaluations. The experimental tests, including softening point, penetration, viscosity at 135 °C, and dynamic shear rheometer, were conducted. The results indicated that the effect of cross-contamination on softening point and rutting resistance was negligible. On the other side, penetration and viscosity were highly impacted. The results also showed that among contamination of LLDPE with the other plastic types, PP had the highest influence in comparison with HDPE and LDPE on changing the properties of the LLDPE- modified bitumen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20polyethylene" title="recycled polyethylene">recycled polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20cross-contamination" title=" polymer cross-contamination"> polymer cross-contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20plastic" title=" waste plastic"> waste plastic</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/152078/the-effect-of-linear-low-density-polyethylene-cross-contamination-by-other-plastic-types-on-bitumen-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3265</span> Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashish%20Kumar">Ashish Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Suman"> Sanjeev Kumar Suman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cloisite-15A" title="Cloisite-15A">Cloisite-15A</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20shear%20modulus" title=" complex shear modulus"> complex shear modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20angle" title=" phase angle"> phase angle</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/58589/experimental-investigations-on-nanoclay-cloisite-15a-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58589.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3264</span> Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Chegenizadeh">A. Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Keramatikerman"> M. Keramatikerman</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Nikraz"> H. Nikraz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64&ordm;C, 70&ordm;C, 76&ordm;C and 82&ordm;C. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (&delta;) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70&ordm;C. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title="rheological properties">rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=DSR%20test" title=" DSR test"> DSR test</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20mixed%20with%20bitumen%20%28PMB%29" title=" polymer mixed with bitumen (PMB)"> polymer mixed with bitumen (PMB)</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20modulus" title=" complex modulus"> complex modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=lime" title=" lime"> lime</a> </p> <a href="https://publications.waset.org/abstracts/83817/study-on-the-application-of-lime-to-improve-the-rheological-properties-of-polymer-modified-bitumen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3263</span> Effect of Nano-Alumina on the Mechanical Properties of Cold Recycled Asphalt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahab%20Hasani%20Nasab">Shahab Hasani Nasab</a>, <a href="https://publications.waset.org/abstracts/search?q=Aran%20Aeini"> Aran Aeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Navid%20Kermanshahi"> Navid Kermanshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce road building costs and reduce environmental damage, recycled materials can be used instead of mineral materials in the production of asphalt mixtures. Today, in most parts of the world, cold recycled asphalt with bitumen emulsion, has acceptable results. However, Cold Recycled Asphalt have some deficiency such as stripping, thermal cracking, and rutting. This requires the addition of additives to reduce this deficiency of recycled pavement with emulsified asphalt. In this research, nano-alumina and emulsified asphalt were used to modify the properties of recycled asphalt mixtures according to the technical specifications and the operation of cold recycling. Marshall test methods, dynamic creep test, and resiliency modulus test has been used to obtain the nano-alumina’s effects on asphalt mixture properties. The results show that the addition of nano-alumina would reduce the Marshall stability in samples but increases the rutting resistance. The resiliency modulus increases significantly with this additive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20asphalt" title="cold asphalt">cold asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20recycling" title=" cold recycling"> cold recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-alumina" title=" nano-alumina"> nano-alumina</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20creep" title=" dynamic creep"> dynamic creep</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen%20emulsion" title=" bitumen emulsion"> bitumen emulsion</a> </p> <a href="https://publications.waset.org/abstracts/98810/effect-of-nano-alumina-on-the-mechanical-properties-of-cold-recycled-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3262</span> Enhancing Performance of Semi-Flexible Pavements through Self-Compacting Cement Mortar as Cementitious Grout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Islam%20Dahmani">Mohamed Islam Dahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigates the performance enhancement of semi-flexible pavements by incorporating self-compacting cement mortar as a cementitious grout. The study is divided into three phases for comprehensive evaluation. In the initial phase, a porous asphalt mixture is formulated with a target voids content of 25-30%. The goal is to achieve optimal interconnected voids that facilitate effective penetration of self-compacting cement mortar. The mixture's compliance with porous asphalt performance standards is ensured through tests such as marshal stability, indirect tensile strength, contabro test, and draindown test. The second phase focuses on creating a self-compacting cement mortar with high workability and superior penetration capabilities. This mortar is designed to fill the interconnected voids within the porous asphalt mixture. The formulated mortar's characteristics are assessed through tests like mini V funnel flow time, slump flow mini cone, as well as mechanical properties such as compressive strength, bending strength, and shrinkage strength. In the final phase, the performance of the semi-flexible pavement is thoroughly studied. Various tests, including marshal stability, indirect tensile strength, high-temperature bending, low-temperature bending, resistance to rutting, and fatigue life, are conducted to assess the effectiveness of the self-compacting cement mortar-enhanced pavement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semi-flexible%20pavements" title="semi-flexible pavements">semi-flexible pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=cementitious%20grout" title=" cementitious grout"> cementitious grout</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20cement%20mortar" title=" self-compacting cement mortar"> self-compacting cement mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20asphalt%20mixture" title=" porous asphalt mixture"> porous asphalt mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=interconnected%20voids" title=" interconnected voids"> interconnected voids</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20resistance" title=" rutting resistance"> rutting resistance</a> </p> <a href="https://publications.waset.org/abstracts/171576/enhancing-performance-of-semi-flexible-pavements-through-self-compacting-cement-mortar-as-cementitious-grout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3261</span> Multi-Index Performance Investigation of Rubberized Reclaimed Asphalt Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling%20Xu">Ling Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Loprencipe"> Giuseppe Loprencipe</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20D%27Andrea"> Antonio D&#039;Andrea</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphalt pavement with recycled and sustainable materials has become the most commonly adopted strategy for road construction, including reclaimed asphalt pavement (RAP) and crumb rubber (CR) from waste tires. However, the adhesion and cohesion characteristics of rubberized reclaimed asphalt pavement were still ambiguous, resulting in deteriorated adhesion behavior and life performance. This research investigated the effect of bonding characteristics on rutting resistance and moisture susceptibility of rubberized reclaimed asphalt pavement in terms of two RAP sources with different oxidation levels and two tire rubber with different particle sizes. Firstly, the binder bond strength (BBS) test and bonding failure distinguishment were conducted to analyze the surface behaviors of binder-aggregate interaction. Then, the compatibility and penetration grade of rubberized RAP binder were evaluated by rotational viscosity test and penetration test, respectively. Hamburg wheel track (HWT) test with high-temperature viscoelastic deformation analysis was adopted, which illustrated the rutting resistance. Additionally, a water boiling test was employed to evaluate the moisture susceptibility of the mixture and the texture features were characterized with the statistical parameters of image colors. Finally, the colloid structure model of rubberized RAP binder with surface interaction was proposed, and statistical analysis was established to release the correlation among various indexes. This study concluded that the gel-phase colloid structure and molecular diffusion of the free light fraction would affect the surface interpretation with aggregate, determining the bonding characteristic of rubberized RAP asphalt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bonding%20characteristics" title="bonding characteristics">bonding characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20asphalt%20pavement" title=" reclaimed asphalt pavement"> reclaimed asphalt pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=rubberized%20asphalt" title=" rubberized asphalt"> rubberized asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20material" title=" sustainable material"> sustainable material</a> </p> <a href="https://publications.waset.org/abstracts/178980/multi-index-performance-investigation-of-rubberized-reclaimed-asphalt-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3260</span> Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20P.%20Leon">Lee P. Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Raymond%20Charles"> Raymond Charles</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aggregate%20angularity" title="aggregate angularity">aggregate angularity</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title=" asphalt concrete"> asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting%20prediction" title=" rutting prediction "> rutting prediction </a> </p> <a href="https://publications.waset.org/abstracts/27233/aggregate-angularity-on-the-permanent-deformation-zones-of-hot-mix-asphalt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27233.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">405</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3259</span> Effect of Compaction Method on the Mechanical and Anisotropic Properties of Asphalt Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mai%20Sirhan">Mai Sirhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arieh%20Sidess"> Arieh Sidess</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Asphaltic mixture is a heterogeneous material composed of three main components: aggregates; bitumen and air voids. The professional experience and scientific literature categorize asphaltic mixture as a viscoelastic material, whose behavior is determined by temperature and loading rate. Properties characterization of the asphaltic mixture used under the service conditions is done by compacting and testing cylindric asphalt samples in the laboratory. These samples must resemble in a high degree internal structure of the mixture achieved in service, and the mechanical characteristics of the compacted asphalt layer in the pavement. The laboratory samples are usually compacted in temperatures between 140 and 160 degrees Celsius. In this temperature range, the asphalt has a low degree of strength. The laboratory samples are compacted using the dynamic or vibrational compaction methods. In the compaction process, the aggregates tend to align themselves in certain directions that lead to anisotropic behavior of the asphaltic mixture. This issue has been studied in the Strategic Highway Research Program (SHRP) research, that recommended using the gyratory compactor based on the assumption that this method is the best in mimicking the compaction in the service. In Israel, the Netivei Israel company is considering adopting the Gyratory Method as a replacement for the Marshall method used today. Therefore, the compatibility of the Gyratory Method for the use with Israeli asphaltic mixtures should be investigated. In this research, we aimed to examine the impact of the compaction method used on the mechanical characteristics of the asphaltic mixtures and to evaluate the degree of anisotropy in relation to the compaction method. In order to carry out this research, samples have been compacted in the vibratory and gyratory compactors. These samples were cylindrically cored both vertically (compaction wise) and horizontally (perpendicular to compaction direction). These models were tested under dynamic modulus and permanent deformation tests. The comparable results of the tests proved that: (1) specimens compacted by the vibratory compactor had higher dynamic modulus values than the specimens compacted by the gyratory compactor (2) both vibratory and gyratory compacted specimens had anisotropic behavior, especially in high temperatures. Also, the degree of anisotropy is higher in specimens compacted by the gyratory method. (3) Specimens compacted by the vibratory method that were cored vertically had the highest resistance to rutting. On the other hand, specimens compacted by the vibratory method that were cored horizontally had the lowest resistance to rutting. Additionally (4) these differences between the different types of specimens rise mainly due to the different internal arrangement of aggregates resulting from the compaction method. (5) Based on the initial prediction of the performance of the flexible pavement containing an asphalt layer having characteristics based on the results achieved in this research. It can be concluded that there is a significant impact of the compaction method and the degree of anisotropy on the strains that develop in the pavement, and the resistance of the pavement to fatigue and rutting defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anisotropy" title="anisotropy">anisotropy</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt%20compaction" title=" asphalt compaction"> asphalt compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20modulus" title=" dynamic modulus"> dynamic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=gyratory%20compactor" title=" gyratory compactor"> gyratory compactor</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20deformation" title=" permanent deformation"> permanent deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=vibratory%20compactor" title=" vibratory compactor"> vibratory compactor</a> </p> <a href="https://publications.waset.org/abstracts/110338/effect-of-compaction-method-on-the-mechanical-and-anisotropic-properties-of-asphalt-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3258</span> Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abishek%20Rajkumar">Abishek Rajkumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular" title=" molecular"> molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/66066/selection-effects-on-the-molecular-and-abiotic-evolution-of-antibiotic-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3257</span> The Effect of Nanoclay on Long Term Performance of Asphalt Concrete Pavement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Khodadadi">A. Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasani"> Hasani</a>, <a href="https://publications.waset.org/abstracts/search?q=Salehi"> Salehi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The advantages of using modified asphalt binders are widely recognized—primarily, improved rutting resistance, reduced fatigue cracking and less cold-temperature cracking. Nanoclays are known to enhance the properties of many polymers. Nanoclays are used to improve modulus and tensile strength, flame resistance and thermal and structural properties of many materials. This paper intends to investigate the application and development of nano-technological concepts for bituminous materials and asphalt pavements. The application of nano clay on the fatigue life of asphalt pavement have not been yet thoroughly understood. In this research, two type of highway asphalt materials, dense Marshall specimens, with 2% nano clay and without nano clay, were employed for the fatigue behavior of the asphalt pavement.The effect of nano additive on the performance of flexible pavements has been investigated through the indirect tensile test for the samples prepared with 2% nano clay and without nano clay in four stress levels from 200–500 kPa. The primary results indicated samples with 2% nano clay have almost double or even more fatigue life in most of stress levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nano%20clay" title="Nano clay">Nano clay</a>, <a href="https://publications.waset.org/abstracts/search?q=Asphalt" title=" Asphalt"> Asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20life" title=" fatigue life"> fatigue life</a>, <a href="https://publications.waset.org/abstracts/search?q=pavement" title=" pavement"> pavement</a> </p> <a href="https://publications.waset.org/abstracts/18838/the-effect-of-nanoclay-on-long-term-performance-of-asphalt-concrete-pavement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3256</span> Comparison of Elastic and Viscoelastic Modeling for Asphalt Concrete Surface Layer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouzieh%20Rouzmehr">Fouzieh Rouzmehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Mousavi"> Mehdi Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hot mix asphalt concrete (HMAC) is a mixture of aggregates and bitumen. The primary ingredient that determines the mechanical properties of HMAC is the bitumen in it, which displays viscoelastic behavior under normal service conditions. For simplicity, asphalt concrete is considered an elastic material, but this is far from reality at high service temperatures and longer loading times. Viscoelasticity means that the material's stress-strain relationship depends on the strain rate and loading duration. The goal of this paper is to simulate the mechanical response of flexible pavements using linear elastic and viscoelastic modeling of asphalt concrete and predict pavement performance. Falling Weight Deflectometer (FWD) load will be simulated and the results for elastic and viscoelastic modeling will be evaluated. The viscoelastic simulation is performed by the Prony series, which will be modeled by using ANSYS software. Inflexible pavement design, tensile strain at the bottom of the surface layer and compressive strain at the top of the last layer plays an important role in the structural response of the pavement and they will imply the number of loads for fatigue (Nf) and rutting (Nd) respectively. The differences of these two modelings are investigated on fatigue cracking and rutting problem, which are the two main design parameters in flexible pavement design. Although the differences in rutting problem between the two models were negligible, in fatigue cracking, the viscoelastic model results were more accurate. Results indicate that modeling the flexible pavement with elastic material is efficient enough and gives acceptable results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement" title="flexible pavement">flexible pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic" title=" viscoelastic"> viscoelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic" title=" elastic"> elastic</a>, <a href="https://publications.waset.org/abstracts/search?q=ANSYS" title=" ANSYS"> ANSYS</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a> </p> <a href="https://publications.waset.org/abstracts/145159/comparison-of-elastic-and-viscoelastic-modeling-for-asphalt-concrete-surface-layer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3255</span> Antibiotic Resistance and Tolerance to Biocides in Enterobacter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rebiahi%20Sid%20Ahmed">Rebiahi Sid Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Boutarfi%20Zakaria"> Boutarfi Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahmoun%20Malika"> Rahmoun Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Galvez"> Antonio Galvez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to explore the possible correlation between resistance to antibiotics and tolerance to biocides in Gram-negative bacilli isolated from the University Hospital Center of Tlemcen. This study focused on 175 clinical isolates of Gram-negative bacilli, it is a question of exploring: their level and profile of resistance to antibiotics, their tolerance to biocides, as well as the identification of the genetic supports of this resistance. Enterobacter spp. was the most predominant bacterial genus, all isolates harbored at least one of the studied genes with significant resistance capacity. Our results show, in some cases, a possible positive correlation between the presence of biocide tolerance genes and those of antibiotic resistance; in fact, tolerance to biocides could be one of the co-selection factors for antibiotic resistance. The results of this study should encourage the good practice of hygiene measures as well as the rational use of antimicrobials in order to hinder the development and emergence of resistance in our hospital departments.Mots clés : Antibiotiques, Biocides, Enterobacter, Hôpital, Résistance, <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=biocides" title=" biocides"> biocides</a>, <a href="https://publications.waset.org/abstracts/search?q=enterobacter" title=" enterobacter"> enterobacter</a>, <a href="https://publications.waset.org/abstracts/search?q=hospital" title=" hospital"> hospital</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a> </p> <a href="https://publications.waset.org/abstracts/159663/antibiotic-resistance-and-tolerance-to-biocides-in-enterobacter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3254</span> Mechanistic Study of Composite Pavement Behavior in Heavy Duty Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Makara%20Rith">Makara Rith</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Kyu%20Kim"> Young Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung%20Woo%20Lee"> Seung Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In heavy duty areas, asphalt pavement constructed as entrance roadway may expose distresses such as cracking and rutting during service life. To mitigate these problems, composite pavement with a roller-compacted concrete base may be a good alternative; however, it should be initially investigated. Structural performances such as fatigue cracking and rut depth may be changed due to variation of some design factors. Therefore, this study focuses on the variation effect of material modulus, layer thickness and loading on composite pavement performances. Stress and strain at the critical location are determined and used as the input of transfer function for corresponding distresses to evaluate the pavement performance. Also, composite pavement satisfying the design criteria may be selected as a design section for heavy duty areas. Consequently, this investigation indicates that composite pavement has the ability to eliminate fatigue cracking in asphalt surfaces and significantly reduce rut depth. In addition, a thick or strong rigid base can significantly reduce rut depth and prolong fatigue life of this layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20pavement" title="composite pavement">composite pavement</a>, <a href="https://publications.waset.org/abstracts/search?q=ports" title=" ports"> ports</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=rutting" title=" rutting"> rutting</a> </p> <a href="https://publications.waset.org/abstracts/85660/mechanistic-study-of-composite-pavement-behavior-in-heavy-duty-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3253</span> Four-Week Plyometric and Resistance Training on Muscle Strength and Sprint Performance in Wheelchair Racing Athletes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Thawichai">K. Thawichai</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Pornthep"> R. Pornthep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to compare the effects of a four week training period of combined plyometric and resistance training or resistance training alone on muscle strength and sprint performance in wheelchair racing athletes. The participants were sixteen healthy male wheelchair racing athletes of the Thai national team. All participants were randomly assignments into two groups in the plyometric and resistance training group (n = 8) performed plyometric exercises followed by resistance training, whereas the resistance training group (n = 8) performed static stretching and the same resistance training program. At baseline and after training all participants were tested on 1-RM bench press for muscle strength and 100-m cycling sprint performance. The results of this study show that the plyometric and resistance training group made significantly greater improvements in overall muscle strength and sprint performance than the resistance training group following training. In conclusion, these findings suggest that the addition of a four week plyometric and resistance training program more beneficial than resistance training alone on muscle strength and sprint performance in wheelchair racing athletes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plyometric" title="plyometric">plyometric</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title=" resistance training"> resistance training</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=sprint" title=" sprint"> sprint</a>, <a href="https://publications.waset.org/abstracts/search?q=wheelchair%20athletes" title=" wheelchair athletes"> wheelchair athletes</a> </p> <a href="https://publications.waset.org/abstracts/36004/four-week-plyometric-and-resistance-training-on-muscle-strength-and-sprint-performance-in-wheelchair-racing-athletes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">538</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3252</span> Detection of Tetracycline Resistance Genes in Lactococcus garvieae Strains Isolated from Rainbow Trout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Raissy">M. Raissy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahrani"> M. Shahrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was done to evaluate the presence of tetracycline resistance genes in Lactococcus garvieae isolated from cultured rainbow trout, West Iran. The isolates were examined for antimicrobial resistance using disc diffusion method. Of the 49 strains tested, 19 were resistant to tetracycline (38.7%), 32 to enrofloxacin (65.3%), 21 to erythromycin (42.8%), 20 to chloramphenicol and trimetoprim-sulfamethoxazole (40.8%). The strains were then characterized for their genotypic resistance profiles. The results revealed that all 49 isolates contained at least one of the tetracycline resistance genes. Tet (A) was found in 89.4% of tetracycline resistant isolates and the frequency of other gene were as follow: tet (E) 42.1%, tet (B) 47.3%, tet (D) 15.7%, tet (L) 26.3%, tet (K) 52.6%, tet (G) 36.8%, tet (34) 21%, tet (S) 63.1%, tet (C) 57.8%, tet (M) 73.6%, tet (O) 42.1%. The results revealed high levels of antibiotic resistance in L. garvieae strains which is a potential danger for trout culture as well as for public health. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20garvieae" title="Lactococcus garvieae">Lactococcus garvieae</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracycline%20resistance%20genes" title=" tetracycline resistance genes"> tetracycline resistance genes</a>, <a href="https://publications.waset.org/abstracts/search?q=rainbow%20trout" title=" rainbow trout"> rainbow trout</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20resistance" title=" antimicrobial resistance "> antimicrobial resistance </a> </p> <a href="https://publications.waset.org/abstracts/21002/detection-of-tetracycline-resistance-genes-in-lactococcus-garvieae-strains-isolated-from-rainbow-trout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21002.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3251</span> Total Thermal Resistance of Graphene-Oxide-Substrate Stack: Role of Interfacial Thermal Resistance in Heat Flow of 2D Material Based Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roisul%20H.%20Galib">Roisul H. Galib</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20R.%20Bandaru"> Prabhakar R. Bandaru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2D material based device, an interface between 2D materials and substrates often limits the heat flow through the device. In this paper, we quantify the total thermal resistance of a graphene-based device by series resistance model and show that the thermal resistance at the interface of graphene and substrate contributes to more than 50% of the total resistance. Weak Van der Waals interactions at the interface and dissimilar phonon vibrational modes create this thermal resistance, allowing less heat to flow across the interface. We compare our results with commonly used materials and interfaces, demonstrating the role of the interface as a potential application for heat guide or block in a 2D material-based device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20material" title="2D material">2D material</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductance" title=" thermal conductance"> thermal conductance</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20resistance" title=" thermal resistance"> thermal resistance</a> </p> <a href="https://publications.waset.org/abstracts/150149/total-thermal-resistance-of-graphene-oxide-substrate-stack-role-of-interfacial-thermal-resistance-in-heat-flow-of-2d-material-based-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3250</span> Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20M.%20Babalghaith">Ali M. Babalghaith</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20A.%20Alsoliman"> Hamad A. Alsoliman</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20S.%20Al-Suhaibani"> Abdulrahman S. Al-Suhaibani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20modified%20asphalt" title="polymer modified asphalt">polymer modified asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20properties" title=" rheological properties"> rheological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=SBS" title=" SBS"> SBS</a>, <a href="https://publications.waset.org/abstracts/search?q=crumb%20rubber" title=" crumb rubber"> crumb rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=EE-2" title=" EE-2"> EE-2</a> </p> <a href="https://publications.waset.org/abstracts/44713/comparison-of-rheological-properties-for-polymer-modified-asphalt-produced-in-riyadh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44713.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chong%20Hu">Chong Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiantian%20Wang"> Tiantian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Li"> Zhe Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Ourui%20Huang"> Ourui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yichen%20Pan"> Yichen Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high-speed%20trains" title="high-speed trains">high-speed trains</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20resistance" title=" aerodynamic resistance"> aerodynamic resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=high-ground%20temperature" title=" high-ground temperature"> high-ground temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=tunnel" title=" tunnel"> tunnel</a> </p> <a href="https://publications.waset.org/abstracts/179282/study-on-the-influence-of-different-lengths-of-tunnel-high-temperature-zones-on-train-aerodynamic-resistance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> A Qualitative Exploration of the Strategic Management of Employee Resistance to Organisational Change</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muneeb%20Banday">Muneeb Banday</a>, <a href="https://publications.waset.org/abstracts/search?q=Anukriti%20Dixit"> Anukriti Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Change in organizations is viewed as a conversion process of the organizational functioning. One of the crucial elements of this conversion process is the employee resistance to organizational change. The existing literature on change resistance has generally treated resistance as a barrier or an opportunity for successful implementation of change. However, there is little empirical research exploring how resistance to change is managed. This may be partially due to difficulty in getting information on resistance to change. The top management does not divulge such information to avoid negative evaluation whereas employees face huge risk in sharing information related to resistance. The focus of the study is to understand how the organization under study dealt with the employee resistance to change. The conversion process is a story of how the organization went from one stage to another. We used narrative approach to change. Data was collected data through company visits and interviews. The interviews were transcribed, coded, and themes were identified. We focused on the strands that left huge scope for alternative interpretations than the dominant narrative of change prevalent in the organization. The study reveals that the top management strategically uses the legitimacy of leadership, roles of key employees, and rationality of change to manage resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=employee%20resistance" title="employee resistance">employee resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=legitimacy%20of%20leadership" title=" legitimacy of leadership"> legitimacy of leadership</a>, <a href="https://publications.waset.org/abstracts/search?q=narrative%20analysis" title=" narrative analysis"> narrative analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=organisational%20change" title=" organisational change"> organisational change</a> </p> <a href="https://publications.waset.org/abstracts/77240/a-qualitative-exploration-of-the-strategic-management-of-employee-resistance-to-organisational-change" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> Insulin Resistance in Children and Adolescents in Relation to Body Mass Index, Waist Circumference and Body Fat Weight</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Vlachopapadopoulou">E. Vlachopapadopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Dikaiakou"> E. Dikaiakou</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Anagnostou"> E. Anagnostou</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Panagiotopoulos"> I. Panagiotopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kaloumenou"> E. Kaloumenou</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kafetzi"> M. Kafetzi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fotinou"> A. Fotinou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Michalacos"> S. Michalacos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: To investigate the relation and impact of Body Mass Index (BMI), Waist Circumference (WC) and Body Fat Weight (BFW) on insulin resistance (MATSUDA INDEX < 2.5) in children and adolescents. Methods: Data from 95 overweight and obese children (47 boys and 48 girls) with mean age 10.7 ± 2.2 years were analyzed. ROC analysis was used to investigate the predictive ability of BMI, WC and BFW for insulin resistance and find the optimal cut-offs. The overall performance of the ROC analysis was quantified by computing area under the curve (AUC). Results: ROC curve analysis indicated that the optimal-cut off of WC for the prediction of insulin resistance was 97 cm with sensitivity equal to 75% and specificity equal to 73.1%. AUC was 0.78 (95% CI: 0.63-0.92, p=0.001). The sensitivity and specificity of obesity for the discrimination of participants with insulin resistance from those without insulin resistance were equal to 58.3% and 75%, respectively (AUC=0.67). BFW had a borderline predictive ability for insulin resistance (AUC=0.58, 95% CI: 0.43-0.74, p=0.101). The predictive ability of WC was equivalent with the correspondence predictive ability of BMI (p=0.891). Obese subjects had 4.2 times greater odds for having insulin resistance (95% CI: 1.71-10.30, p < 0.001), while subjects with WC more than 97 had 8.1 times greater odds for having insulin resistance (95% CI: 2.14-30.86, p=0.002). Conclusion: BMI and WC are important clinical factors that have significant clinical relation with insulin resistance in children and adolescents. The cut off of 97 cm for WC can identify children with greater likelihood for insulin resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20weight" title="body fat weight">body fat weight</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=insulin%20resistance" title=" insulin resistance"> insulin resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=obese%20children" title=" obese children"> obese children</a>, <a href="https://publications.waset.org/abstracts/search?q=waist%20circumference" title=" waist circumference"> waist circumference</a> </p> <a href="https://publications.waset.org/abstracts/64737/insulin-resistance-in-children-and-adolescents-in-relation-to-body-mass-index-waist-circumference-and-body-fat-weight" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3246</span> The Effect of Resistance and Progressive Training on Hsp 70 and Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Nameni">F. Nameni</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Poursadra"> H. Poursadra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study investigated resistance and progressive training alters the expression of chaperone proteins. These proteins function to maintain homeostasis, facilitate repair from injury, and provide protection. Nineteen training female in 2 groups taking part in the intervention volunteered to give blood samples. Levels of chaperone proteins were measured in response to resistance and progressive training. Hsp 70 levels were increased immediately after 2 h progressive training but decreased after resistance training. The data showed that human skeletal muscle responds to the stress of a single period of progressive training by up-regulating and resistance training by down-regulating expression of HSP70. Physical exercise can elevate core temperature and muscle temperatures and the expression pattern of HSP70 due to training status may be attributed to adaptive mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20training" title="resistance training">resistance training</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20proteins" title=" heat shock proteins"> heat shock proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=leukocytes" title=" leukocytes"> leukocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsp%2070" title=" Hsp 70"> Hsp 70</a> </p> <a href="https://publications.waset.org/abstracts/12855/the-effect-of-resistance-and-progressive-training-on-hsp-70-and-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3245</span> Understanding the Mechanisms of Salmonella Typhimurium Resistance to Cannabidiol (CDB)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iddrisu%20Ibrahim">Iddrisu Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Atia%20Ayariga"> Joseph Atia Ayariga</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhuan%20Xu"> Junhuan Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20A.%20Abugri"> Daniel A. Abugri</a>, <a href="https://publications.waset.org/abstracts/search?q=Robertson%20K.%20Boakai"> Robertson K. Boakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Olufemi%20S.%20Ajayi"> Olufemi S. Ajayi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The recalcitrance of pathogenic bacteria indicates that millions of people who are at risk of infection arising from chronic diseases, surgery, organ transplant, diabetes, and several other debilitating diseases present an aura of potentially untreatable illness due to resistance development. Antimicrobial resistance has successfully become a global health menace, and resistances are often acquired by bacteria through health-care-related incidence (HRI) orchestrated by multi-drug resistant (MDR) and extended drug-resistant pathogens (EDRP). To understand the mechanisms S. Typhimurium uses to resist CDB, we study the abundance of LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of susceptible and resistant S. Typhimurium. Using qPCR, we also analyzed the expression of selected genes known for enabling resistance in S. Typhimurium. We found high abundance of LPS, Ergosterols, Mysristic palmitic resistance, Oleic acid resistance of and high expression of resistant genes in S. Typhimurium compared to the susceptible strain. LPS modification, Ergosterols, Mysristic palmitic resistance, Oleic acid and genes such as Fims, integrons, blaTEM are important indicators of resistance development of S. typhimurium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Cannabidiol" title=" Cannabidiol"> Cannabidiol</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella" title=" Salmonella"> Salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=blaTEM" title=" blaTEM"> blaTEM</a>, <a href="https://publications.waset.org/abstracts/search?q=fimA" title=" fimA"> fimA</a>, <a href="https://publications.waset.org/abstracts/search?q=Lipopolysaccharide" title=" Lipopolysaccharide"> Lipopolysaccharide</a>, <a href="https://publications.waset.org/abstracts/search?q=Ergosterols" title=" Ergosterols"> Ergosterols</a> </p> <a href="https://publications.waset.org/abstracts/182736/understanding-the-mechanisms-of-salmonella-typhimurium-resistance-to-cannabidiol-cdb" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3244</span> The Resistance Reader Program Based on Image Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Janpen%20Srijan">Janpen Srijan</a>, <a href="https://publications.waset.org/abstracts/search?q=Nahathai%20%20Tanmang"> Nahathai Tanmang</a>, <a href="https://publications.waset.org/abstracts/search?q=Thanit%20Purathanang"> Thanit Purathanang</a>, <a href="https://publications.waset.org/abstracts/search?q=Anun%20Dowchern"> Anun Dowchern</a>, <a href="https://publications.waset.org/abstracts/search?q=Saksit%20Summart"> Saksit Summart</a>, <a href="https://publications.waset.org/abstracts/search?q=Seangduan%20Kampimpa"> Seangduan Kampimpa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the resistance reader program based on image processing by using MATLAB. The proposed program is divided into six parts; the first part is the web camera; the second part is a watt selection before shooting the resistor; the third part is a part of finding the position of the color on the mid-point of resistor; the fourth part is a part of identifying color code of the resistor; the fifth part is a part of taking the number of values for each color for resistance calculation and the last part is a part of displaying result of resistance value. The experimental result of the resistance reader program based on image processing was able to display the resistance value of resistor. The accuracy of proposed program is 85 percent for 1 watt resistor. It has 15 percent of reading error because a problem with the color code of some resistor was too bright. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resistance%20reader%20program" title="resistance reader program">resistance reader program</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=resistor" title=" resistor"> resistor</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/39785/the-resistance-reader-program-based-on-image-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=110">110</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rutting%20resistance&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10