CINXE.COM

Borel set - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Borel set - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"c22d382f-fee4-4172-a28c-3888b0149b34","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Borel_set","wgTitle":"Borel set","wgCurRevisionId":1256780809,"wgRevisionId":1256780809,"wgArticleId":43327,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 French-language sources (fr)","Articles with short description","Short description is different from Wikidata","Wikipedia articles needing clarification from October 2024","Webarchive template wayback links","Module:Interwiki extra: additional interwiki links","Topology","Descriptive set theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Borel_set","wgRelevantArticleId":43327,"wgIsProbablyEditable":true, "wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q21086747","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics" :true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar", "ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Borel set - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Borel_set"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Borel_set&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Borel_set"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Borel_set rootpage-Borel_set skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Borel+set" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Borel+set" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Borel+set" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Borel+set" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Generating_the_Borel_algebra" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Generating_the_Borel_algebra"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Generating the Borel algebra</span> </div> </a> <button aria-controls="toc-Generating_the_Borel_algebra-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generating the Borel algebra subsection</span> </button> <ul id="toc-Generating_the_Borel_algebra-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Standard_Borel_spaces_and_Kuratowski_theorems" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Standard_Borel_spaces_and_Kuratowski_theorems"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Standard Borel spaces and Kuratowski theorems</span> </div> </a> <ul id="toc-Standard_Borel_spaces_and_Kuratowski_theorems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-Borel_sets" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Non-Borel_sets"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Non-Borel sets</span> </div> </a> <ul id="toc-Non-Borel_sets-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Alternative_non-equivalent_definitions" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Alternative_non-equivalent_definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Alternative non-equivalent definitions</span> </div> </a> <ul id="toc-Alternative_non-equivalent_definitions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Borel set</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 23 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-23" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">23 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AC%D9%85%D9%88%D8%B9%D8%A9_%D8%A8%D9%88%D8%B1%D9%84" title="مجموعة بورل – Arabic" lang="ar" hreflang="ar" data-title="مجموعة بورل" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca badge-Q70893996 mw-list-item" title=""><a href="https://ca.wikipedia.org/wiki/Conjunt_de_Borel" title="Conjunt de Borel – Catalan" lang="ca" hreflang="ca" data-title="Conjunt de Borel" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Borelovsk%C3%A1_mno%C5%BEina" title="Borelovská množina – Czech" lang="cs" hreflang="cs" data-title="Borelovská množina" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de badge-Q70894304 mw-list-item" title=""><a href="https://de.wikipedia.org/wiki/Borel-Menge" title="Borel-Menge – German" lang="de" hreflang="de" data-title="Borel-Menge" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Conjunto_de_Borel" title="Conjunto de Borel – Spanish" lang="es" hreflang="es" data-title="Conjunto de Borel" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%D8%AC%D9%85%D9%88%D8%B9%D9%87_%D8%A8%D9%88%D8%B1%D9%84" title="مجموعه بورل – Persian" lang="fa" hreflang="fa" data-title="مجموعه بورل" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr badge-Q70894304 mw-list-item" title=""><a href="https://fr.wikipedia.org/wiki/Ensemble_bor%C3%A9lien" title="Ensemble borélien – French" lang="fr" hreflang="fr" data-title="Ensemble borélien" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B3%B4%EB%A0%90_%EC%A7%91%ED%95%A9" title="보렐 집합 – Korean" lang="ko" hreflang="ko" data-title="보렐 집합" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it badge-Q70894304 mw-list-item" title=""><a href="https://it.wikipedia.org/wiki/Insieme_boreliano" title="Insieme boreliano – Italian" lang="it" hreflang="it" data-title="Insieme boreliano" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A7%D7%91%D7%95%D7%A6%D7%AA_%D7%91%D7%95%D7%A8%D7%9C" title="קבוצת בורל – Hebrew" lang="he" hreflang="he" data-title="קבוצת בורל" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Borelstam" title="Borelstam – Dutch" lang="nl" hreflang="nl" data-title="Borelstam" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%AC%E3%83%AB%E9%9B%86%E5%90%88" title="ボレル集合 – Japanese" lang="ja" hreflang="ja" data-title="ボレル集合" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Ansem_borelian" title="Ansem borelian – Piedmontese" lang="pms" hreflang="pms" data-title="Ansem borelian" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Zbi%C3%B3r_borelowski" title="Zbiór borelowski – Polish" lang="pl" hreflang="pl" data-title="Zbiór borelowski" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt badge-Q70894304 mw-list-item" title=""><a href="https://pt.wikipedia.org/wiki/Conjunto_boreliano" title="Conjunto boreliano – Portuguese" lang="pt" hreflang="pt" data-title="Conjunto boreliano" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Algebr%C4%83_borelian%C4%83" title="Algebră boreliană – Romanian" lang="ro" hreflang="ro" data-title="Algebră boreliană" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru badge-Q70894304 mw-list-item" title=""><a href="https://ru.wikipedia.org/wiki/%D0%91%D0%BE%D1%80%D0%B5%D0%BB%D0%B5%D0%B2%D1%81%D0%BA%D0%BE%D0%B5_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="Борелевское множество – Russian" lang="ru" hreflang="ru" data-title="Борелевское множество" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D0%BE%D1%80%D0%B5%D0%BB%D0%BE%D0%B2_%D1%81%D0%BA%D1%83%D0%BF" title="Борелов скуп – Serbian" lang="sr" hreflang="sr" data-title="Борелов скуп" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Aljabar_Borel" title="Aljabar Borel – Sundanese" lang="su" hreflang="su" data-title="Aljabar Borel" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Borel-joukko" title="Borel-joukko – Finnish" lang="fi" hreflang="fi" data-title="Borel-joukko" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Borelm%C3%A4ngd" title="Borelmängd – Swedish" lang="sv" hreflang="sv" data-title="Borelmängd" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-uk badge-Q70894304 mw-list-item" title=""><a href="https://uk.wikipedia.org/wiki/%D0%91%D0%BE%D1%80%D0%B5%D0%BB%D1%96%D0%B2%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%BD%D0%BE%D0%B6%D0%B8%D0%BD%D0%B0" title="Борелівська множина – Ukrainian" lang="uk" hreflang="uk" data-title="Борелівська множина" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%8D%9A%E9%9B%B7%E7%88%BE%E9%9B%86" title="博雷爾集 – Chinese" lang="zh" hreflang="zh" data-title="博雷爾集" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q21086747#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Borel_set" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Borel_set" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Borel_set"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Borel_set&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Borel_set&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Borel_set"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Borel_set&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Borel_set&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Borel_set" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Borel_set" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Borel_set&amp;oldid=1256780809" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Borel_set&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Borel_set&amp;id=1256780809&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBorel_set"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBorel_set"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Borel_set&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Borel_set&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q21086747" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Class of mathematical sets</div> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, a <b>Borel set</b> is any set in a <a href="/wiki/Topological_space" title="Topological space">topological space</a> that can be formed from <a href="/wiki/Open_set" title="Open set">open sets</a> (or, equivalently, from <a href="/wiki/Closed_set" title="Closed set">closed sets</a>) through the operations of <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a> <a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a>, countable <a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a>, and <a href="/wiki/Relative_complement" class="mw-redirect" title="Relative complement">relative complement</a>. Borel sets are named after <a href="/wiki/%C3%89mile_Borel" title="Émile Borel">Émile Borel</a>. </p><p>For a topological space <i>X</i>, the collection of all Borel sets on <i>X</i> forms a <a href="/wiki/Sigma-algebra" class="mw-redirect" title="Sigma-algebra">&#963;-algebra</a>, known as the <b>Borel algebra</b> or <b>Borel &#963;-algebra</b>. The Borel algebra on <i>X</i> is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). </p><p>Borel sets are important in <a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">measure theory</a>, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a <a href="/wiki/Borel_measure" title="Borel measure">Borel measure</a>. Borel sets and the associated <a href="/wiki/Borel_hierarchy" title="Borel hierarchy">Borel hierarchy</a> also play a fundamental role in <a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">descriptive set theory</a>. </p><p>In some contexts, Borel sets are defined to be generated by the <a href="/wiki/Compact_set" class="mw-redirect" title="Compact set">compact sets</a> of the topological space, rather than the open sets. The two definitions are equivalent for many <a href="/wiki/Well-behaved" class="mw-redirect" title="Well-behaved">well-behaved</a> spaces, including all <a href="/wiki/Hausdorff_space" title="Hausdorff space">Hausdorff</a> <a href="/wiki/%CE%A3-compact_space" title="Σ-compact space">σ-compact spaces</a>, but can be different in more <a href="/wiki/Pathological_(mathematics)" title="Pathological (mathematics)">pathological</a> spaces. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Generating_the_Borel_algebra">Generating the Borel algebra</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=1" title="Edit section: Generating the Borel algebra"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In the case that <i>X</i> is a <a href="/wiki/Metric_space" title="Metric space">metric space</a>, the Borel algebra in the first sense may be described <i>generatively</i> as follows. </p><p>For a collection <i>T</i> of subsets of <i>X</i> (that is, for any subset of the <a href="/wiki/Power_set" title="Power set">power set</a> P(<i>X</i>) of <i>X</i>), let </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\sigma }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\sigma }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/165318401b4e26bba1301983ffdaff7836ff2628" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.53ex; height:2.509ex;" alt="{\displaystyle T_{\sigma }}"></span> be all countable unions of elements of <i>T</i></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efe770511024e143cc945e78fda8e5e91548317d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.331ex; height:2.509ex;" alt="{\displaystyle T_{\delta }}"></span> be all countable intersections of elements of <i>T</i></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{\delta \sigma }=(T_{\delta })_{\sigma }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{\delta \sigma }=(T_{\delta })_{\sigma }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b6d51907894c36dab033567f004de8cad687c10" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.33ex; height:2.843ex;" alt="{\displaystyle T_{\delta \sigma }=(T_{\delta })_{\sigma }.}"></span></li></ul> <p>Now define by <a href="/wiki/Transfinite_induction" title="Transfinite induction">transfinite induction</a> a sequence <i>G<sup>m</sup></i>, where <i>m</i> is an <a href="/wiki/Ordinal_number" title="Ordinal number">ordinal number</a>, in the following manner: </p> <ul><li>For the base case of the definition, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7c332d09499538333927fb909f9e38cfc991ada3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.881ex; height:2.676ex;" alt="{\displaystyle G^{0}}"></span> be the collection of open subsets of <i>X</i>.</li> <li>If <i>i</i> is not a <a href="/wiki/Limit_ordinal" title="Limit ordinal">limit ordinal</a>, then <i>i</i> has an immediately preceding ordinal <i>i</i> − 1. Let <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{i}=[G^{i-1}]_{\delta \sigma }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">[</mo> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{i}=[G^{i-1}]_{\delta \sigma }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96fe98112623e51d57fa1aeef56c9c6c538931dd" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.306ex; height:3.176ex;" alt="{\displaystyle G^{i}=[G^{i-1}]_{\delta \sigma }.}"></span></li> <li>If <i>i</i> is a limit ordinal, set <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{i}=\bigcup _{j&lt;i}G^{j}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <munder> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&lt;</mo> <mi>i</mi> </mrow> </munder> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{i}=\bigcup _{j&lt;i}G^{j}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09d768fbc26d6adc056631a05c41b0b3f9e9d7be" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:12.077ex; height:5.843ex;" alt="{\displaystyle G^{i}=\bigcup _{j&lt;i}G^{j}.}"></span></li></ul> <p>The claim is that the Borel algebra is <i>G</i><sup>ω<sub>1</sub></sup>, where ω<sub>1</sub> is the <a href="/wiki/First_uncountable_ordinal" title="First uncountable ordinal">first uncountable ordinal number</a>. That is, the Borel algebra can be <i>generated</i> from the class of open sets by iterating the operation <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G\mapsto G_{\delta \sigma }.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03C3;<!-- σ --></mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G\mapsto G_{\delta \sigma }.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/519af8295c6a62b5e0be47217aa3bfa5d135c6ff" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.828ex; height:2.509ex;" alt="{\displaystyle G\mapsto G_{\delta \sigma }.}"></span> to the first uncountable ordinal. </p><p>To prove this claim, any open set in a metric space is the union of an increasing sequence of closed sets. In particular, complementation of sets maps <i>G<sup>m</sup></i> into itself for any limit ordinal <i>m</i>; moreover if <i>m</i> is an uncountable limit ordinal, <i>G<sup>m</sup></i> is closed under countable unions. </p><p>For each Borel set <i>B</i>, there is some countable ordinal <i>α<sub>B</sub></i> such that <i>B</i> can be obtained by iterating the operation over <i>α<sub>B</sub></i>. However, as <i>B</i> varies over all Borel sets, <i>α<sub>B</sub></i> will vary over all the countable ordinals, and thus the first ordinal at which all the Borel sets are obtained is <i>ω</i><sub>1</sub>, the first uncountable ordinal. </p><p>The resulting sequence of sets is termed the <a href="/wiki/Borel_hierarchy" title="Borel hierarchy">Borel hierarchy</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Example">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=2" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>An important example, especially in the <a href="/wiki/Probability_theory" title="Probability theory">theory of probability</a>, is the Borel algebra on the set of <a href="/wiki/Real_number" title="Real number">real numbers</a>. It is the algebra on which the <a href="/wiki/Borel_measure" title="Borel measure">Borel measure</a> is defined. Given a <a href="/wiki/Random_variable#Real-valued_random_variables" title="Random variable">real random variable</a> defined on a <a href="/wiki/Probability_space" title="Probability space">probability space</a>, its <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> is by definition also a measure on the Borel algebra. </p><p>The Borel algebra on the reals is the smallest σ-algebra on <b>R</b> that contains all the <a href="/wiki/Interval_(mathematics)" title="Interval (mathematics)">intervals</a>. </p><p>In the construction by transfinite induction, it can be shown that, in each step, the <a href="/wiki/Cardinality" title="Cardinality">number</a> of sets is, at most, the <a href="/wiki/Cardinality_of_the_continuum" title="Cardinality of the continuum">cardinality of the continuum</a>. So, the total number of Borel sets is less than or equal to <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \aleph _{1}\cdot 2^{\aleph _{0}}\,=2^{\aleph _{0}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> <mspace width="thinmathspace" /> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \aleph _{1}\cdot 2^{\aleph _{0}}\,=2^{\aleph _{0}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9bc46f57e863028d5a4ad05709453680b5151ae8" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.747ex; height:3.009ex;" alt="{\displaystyle \aleph _{1}\cdot 2^{\aleph _{0}}\,=2^{\aleph _{0}}.}"></span> </p><p>In fact, the cardinality of the collection of Borel sets is equal to that of the continuum (compare to the number of <a href="/wiki/Lebesgue_measurable" class="mw-redirect" title="Lebesgue measurable">Lebesgue measurable</a> sets that exist, which is strictly larger and equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{2^{\aleph _{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="normal">&#x2135;<!-- ℵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{2^{\aleph _{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/66fc0957bdedfac064b7111d0596e1ddd50e9405" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.997ex; height:3.176ex;" alt="{\displaystyle 2^{2^{\aleph _{0}}}}"></span>). </p> <div class="mw-heading mw-heading2"><h2 id="Standard_Borel_spaces_and_Kuratowski_theorems">Standard Borel spaces and Kuratowski theorems</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=3" title="Edit section: Standard Borel spaces and Kuratowski theorems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Standard_Borel_space" title="Standard Borel space">Standard Borel space</a></div> <p>Let <i>X</i> be a topological space. The <b>Borel space</b> associated to <i>X</i> is the pair (<i>X</i>,<i>B</i>), where <i>B</i> is the σ-algebra of Borel sets of <i>X</i>. </p><p><a href="/wiki/George_Mackey" title="George Mackey">George Mackey</a> defined a Borel space somewhat differently, writing that it is "a set together with a distinguished σ-field of subsets called its Borel sets."<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> However, modern usage is to call the distinguished sub-algebra the <i>measurable sets</i> and such spaces <a href="/wiki/Measurable_space" title="Measurable space"><i>measurable spaces</i></a>. The reason for this distinction is that the Borel sets are the σ-algebra generated by <i>open</i> sets (of a topological space), whereas Mackey's definition refers to a set equipped with an <i>arbitrary</i> σ-algebra. There exist measurable spaces that are not Borel spaces, for any choice of topology on the underlying space.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> </p><p>Measurable spaces form a <a href="/wiki/Category_(mathematics)" title="Category (mathematics)">category</a> in which the <a href="/wiki/Morphism" title="Morphism">morphisms</a> are <a href="/wiki/Measurable_function" title="Measurable function">measurable functions</a> between measurable spaces. A function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f:X\rightarrow Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>:</mo> <mi>X</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f:X\rightarrow Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b215af1e965d0595a97ad2b21f7d0cbcf6281303" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.583ex; height:2.509ex;" alt="{\displaystyle f:X\rightarrow Y}"></span> is <a href="/wiki/Measurable_function" title="Measurable function">measurable</a> if it <a href="/wiki/Pullback" title="Pullback">pulls back</a> measurable sets, i.e., for all measurable sets <i>B</i> in <i>Y</i>, the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/572ddad8cd0a0758fb98e1c94c432dc2f7a06636" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.227ex; height:3.176ex;" alt="{\displaystyle f^{-1}(B)}"></span> is measurable in <i>X</i>. </p><p><b>Theorem</b>. Let <i>X</i> be a <a href="/wiki/Polish_space" title="Polish space">Polish space</a>, that is, a topological space such that there is a <a href="/wiki/Metric_(mathematics)" class="mw-redirect" title="Metric (mathematics)">metric</a> <i>d</i> on <i>X</i> that defines the topology of <i>X</i> and that makes <i>X</i> a complete <a href="/wiki/Separable_space" title="Separable space">separable</a> metric space. Then <i>X</i> as a Borel space is <a href="/wiki/Isomorphic" class="mw-redirect" title="Isomorphic">isomorphic</a> to one of </p> <ol><li><b>R</b>,</li> <li><b>Z</b><sup class="noprint Inline-Template" style="margin-left:0.1em; white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Please_clarify" title="Wikipedia:Please clarify"><span title="The text near this tag may need clarification or removal of jargon. (October 2024)">clarification needed</span></a></i>&#93;</sup>,</li> <li>a finite space.</li></ol> <p>(This result is reminiscent of <a href="/wiki/Maharam%27s_theorem" title="Maharam&#39;s theorem">Maharam's theorem</a>.) </p><p>Considered as Borel spaces, the real line <b>R</b>, the union of <b>R</b> with a countable set, and <b>R</b><sup>n</sup> are isomorphic. </p><p>A <b><a href="/wiki/Standard_Borel_space" title="Standard Borel space">standard Borel space</a></b> is the Borel space associated to a <a href="/wiki/Polish_space" title="Polish space">Polish space</a>. A standard Borel space is characterized up to isomorphism by its cardinality,<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> and any uncountable standard Borel space has the cardinality of the continuum. </p><p>For subsets of Polish spaces, Borel sets can be characterized as those sets that are the ranges of continuous injective maps defined on Polish spaces. Note however, that the range of a continuous noninjective map may fail to be Borel. See <a href="/wiki/Analytic_set" title="Analytic set">analytic set</a>. </p><p>Every <a href="/wiki/Probability_measure" title="Probability measure">probability measure</a> on a standard Borel space turns it into a <a href="/wiki/Standard_probability_space" title="Standard probability space">standard probability space</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Non-Borel_sets">Non-Borel sets</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=4" title="Edit section: Non-Borel sets"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="counterexample"></span> An example of a subset of the reals that is non-Borel, due to <a href="/wiki/Nikolai_Luzin" title="Nikolai Luzin">Lusin</a>,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> is described below. In contrast, an example of a <a href="/wiki/Non-measurable_set" title="Non-measurable set">non-measurable set</a> cannot be exhibited, although the existence of such a set is implied, for example, by the <a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a>. </p><p>Every <a href="/wiki/Irrational_number" title="Irrational number">irrational number</a> has a unique representation by an infinite <a href="/wiki/Simple_continued_fraction" title="Simple continued fraction">simple continued fraction</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+{\cfrac {1}{\ddots \,}}}}}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x22F1;<!-- ⋱ --></mo> <mspace width="thinmathspace" /> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+{\cfrac {1}{\ddots \,}}}}}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/482094f725cb2e8201a58ec1f9cac1ec5188803f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.338ex; width:31.636ex; height:19.509ex;" alt="{\displaystyle x=a_{0}+{\cfrac {1}{a_{1}+{\cfrac {1}{a_{2}+{\cfrac {1}{a_{3}+{\cfrac {1}{\ddots \,}}}}}}}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/693ad9f934775838bd72406b41ada4a59785d7ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.284ex; height:2.009ex;" alt="{\displaystyle a_{0}}"></span> is some <a href="/wiki/Integer" title="Integer">integer</a> and all the other numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05e256a120c3ab9f8958de71acdf81cd75065e3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.319ex; height:2.009ex;" alt="{\displaystyle a_{k}}"></span> are <i>positive</i> integers. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> be the set of all irrational numbers that correspond to sequences <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{0},a_{1},\dots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{0},a_{1},\dots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c647b6395eb10b6d0f29d0024117e192e3fad3d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.169ex; height:2.843ex;" alt="{\displaystyle (a_{0},a_{1},\dots )}"></span> with the following property: there exists an infinite <a href="/wiki/Subsequence" title="Subsequence">subsequence</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a_{k_{0}},a_{k_{1}},\dots )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a_{k_{0}},a_{k_{1}},\dots )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fadc8feedfd265d44407cf7935aaad029c2c7611" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.901ex; height:3.009ex;" alt="{\displaystyle (a_{k_{0}},a_{k_{1}},\dots )}"></span> such that each element is a <a href="/wiki/Divisor" title="Divisor">divisor</a> of the next element. This set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is not Borel. However, it is <a href="/wiki/Analytic_set" title="Analytic set">analytic</a> (all Borel sets are also analytic), and complete in the class of analytic sets. For more details see <a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">descriptive set theory</a> and the book by <a href="/wiki/Alexander_S._Kechris" title="Alexander S. Kechris">A. S. Kechris</a> (see References), especially Exercise (27.2) on page 209, Definition (22.9) on page 169, Exercise (3.4)(ii) on page 14, and on page 196. </p><p>It's important to note, that while <a href="/wiki/Zermelo%E2%80%93Fraenkel_axioms" class="mw-redirect" title="Zermelo–Fraenkel axioms">Zermelo–Fraenkel axioms</a> (ZF) are sufficient to formalize the construction of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>, it cannot be proven in ZF alone that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> is non-Borel. In fact, it is consistent with ZF that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is a countable union of countable sets,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> so that any subset of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786849c765da7a84dbc3cce43e96aad58a5868dc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \mathbb {R} }"></span> is a Borel set. </p><p>Another non-Borel set is an inverse image <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{-1}[0]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">[</mo> <mn>0</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{-1}[0]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e6e10867d4537921fb1e5199e8dac6c575da042" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.109ex; height:3.176ex;" alt="{\displaystyle f^{-1}[0]}"></span> of an <a href="/wiki/Infinite_parity_function" class="mw-redirect" title="Infinite parity function">infinite parity function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\colon \{0,1\}^{\omega }\to \{0,1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo>&#x003A;<!-- : --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <msup> <mo fence="false" stretchy="false">}</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> </mrow> </msup> <mo stretchy="false">&#x2192;<!-- → --></mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\colon \{0,1\}^{\omega }\to \{0,1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7146f73539ea4285971f2f86d824a6c73cdff14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.549ex; height:2.843ex;" alt="{\displaystyle f\colon \{0,1\}^{\omega }\to \{0,1\}}"></span>. However, this is a proof of existence (via the axiom of choice), not an explicit example. </p> <div class="mw-heading mw-heading2"><h2 id="Alternative_non-equivalent_definitions">Alternative non-equivalent definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=5" title="Edit section: Alternative non-equivalent definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>According to <a href="/wiki/Paul_Halmos" title="Paul Halmos">Paul Halmos</a>,<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> a subset of a <a href="/wiki/Locally_compact" class="mw-redirect" title="Locally compact">locally compact</a> Hausdorff topological space is called a <i>Borel set</i> if it belongs to the smallest <a href="/wiki/Sigma-ring" title="Sigma-ring">σ-ring</a> containing all compact sets. </p><p>Norberg and Vervaat<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> redefine the Borel algebra of a topological space <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> as the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>-algebra generated by its open subsets and its compact <a href="/wiki/Saturated_set" title="Saturated set">saturated subsets</a>. This definition is well-suited for applications in the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is not Hausdorff. It coincides with the usual definition if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is <a href="/wiki/Second_countable" class="mw-redirect" title="Second countable">second countable</a> or if every compact saturated subset is closed (which is the case in particular if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is Hausdorff). </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=6" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Borel_hierarchy" title="Borel hierarchy">Borel hierarchy</a></li> <li><a href="/wiki/Borel_isomorphism" title="Borel isomorphism">Borel isomorphism</a></li> <li><a href="/wiki/Baire_set" title="Baire set">Baire set</a></li> <li><a href="/wiki/Cylindrical_%CF%83-algebra" title="Cylindrical σ-algebra">Cylindrical σ-algebra</a></li> <li><a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">Descriptive set theory</a>&#160;– Subfield of mathematical logic</li> <li><a href="/wiki/Polish_space" title="Polish space">Polish space</a>&#160;– Concept in topology</li></ul> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=7" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFMackey1966" class="citation cs2"><a href="/wiki/George_Mackey" title="George Mackey">Mackey, G.W.</a> (1966), "Ergodic Theory and Virtual Groups", <i><a href="/wiki/Math._Ann." class="mw-redirect" title="Math. Ann.">Math. Ann.</a></i>, <b>166</b> (3): 187–207, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01361167">10.1007/BF01361167</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0025-5831">0025-5831</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119738592">119738592</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Math.+Ann.&amp;rft.atitle=Ergodic+Theory+and+Virtual+Groups&amp;rft.volume=166&amp;rft.issue=3&amp;rft.pages=187-207&amp;rft.date=1966&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119738592%23id-name%3DS2CID&amp;rft.issn=0025-5831&amp;rft_id=info%3Adoi%2F10.1007%2FBF01361167&amp;rft.aulast=Mackey&amp;rft.aufirst=G.W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://mathoverflow.net/q/87888">Jochen Wengenroth, Is every sigma-algebra the Borel algebra of a topology?</a></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSrivastava1991" class="citation cs2">Srivastava, S.M. (1991), <i>A Course on Borel Sets</i>, <a href="/wiki/Springer_Verlag" class="mw-redirect" title="Springer Verlag">Springer Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-387-98412-4" title="Special:BookSources/978-0-387-98412-4"><bdi>978-0-387-98412-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=A+Course+on+Borel+Sets&amp;rft.pub=Springer+Verlag&amp;rft.date=1991&amp;rft.isbn=978-0-387-98412-4&amp;rft.aulast=Srivastava&amp;rft.aufirst=S.M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLusin1927" class="citation cs2 cs1-prop-foreign-lang-source">Lusin, Nicolas (1927), <a rel="nofollow" class="external text" href="https://www.impan.pl/en/publishing-house/journals-and-series/fundamenta-mathematicae/all/25/0/93222/sur-les-ensembles-analytiques-nuls">"Sur les ensembles analytiques"</a>, <i><a href="/wiki/Fundamenta_Mathematicae" title="Fundamenta Mathematicae">Fundamenta Mathematicae</a></i> (in French), <b>10</b>: Sect. 62, pages 76–78, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4064%2Ffm-10-1-1-95">10.4064/fm-10-1-1-95</a></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Fundamenta+Mathematicae&amp;rft.atitle=Sur+les+ensembles+analytiques&amp;rft.volume=10&amp;rft.pages=Sect.+62%2C+pages+76-78&amp;rft.date=1927&amp;rft_id=info%3Adoi%2F10.4064%2Ffm-10-1-1-95&amp;rft.aulast=Lusin&amp;rft.aufirst=Nicolas&amp;rft_id=https%3A%2F%2Fwww.impan.pl%2Fen%2Fpublishing-house%2Fjournals-and-series%2Ffundamenta-mathematicae%2Fall%2F25%2F0%2F93222%2Fsur-les-ensembles-analytiques-nuls&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJech2008" class="citation book cs1"><a href="/wiki/Thomas_Jech" title="Thomas Jech">Jech, Thomas</a> (2008). <i>The Axiom of Choice</i>. Courier Corporation. p.&#160;142.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Axiom+of+Choice&amp;rft.pages=142&amp;rft.pub=Courier+Corporation.&amp;rft.date=2008&amp;rft.aulast=Jech&amp;rft.aufirst=Thomas&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">(<a href="#CITEREFHalmos1950">Halmos 1950</a>, page 219)</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text">Tommy Norberg and Wim Vervaat, Capacities on non-Hausdorff spaces, in: <i>Probability and Lattices</i>, in: CWI Tract, vol. 110, Math. Centrum Centrum Wisk. Inform., Amsterdam, 1997, pp. 133-150</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/William_Arveson" title="William Arveson">William Arveson</a>, <i>An Invitation to C*-algebras</i>, Springer-Verlag, 1981. (See Chapter 3 for an excellent exposition of <i>Polish topology</i>)</li> <li><a href="/wiki/Richard_M._Dudley" title="Richard M. Dudley">Richard Dudley</a>, <i> Real Analysis and Probability</i>. Wadsworth, Brooks and Cole, 1989</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHalmos1950" class="citation book cs1"><a href="/wiki/Paul_Halmos" title="Paul Halmos">Halmos, Paul R.</a> (1950). <i>Measure theory</i>. D. van Nostrand Co.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Measure+theory&amp;rft.pub=D.+van+Nostrand+Co&amp;rft.date=1950&amp;rft.aulast=Halmos&amp;rft.aufirst=Paul+R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span> See especially Sect. 51 "Borel sets and Baire sets".</li> <li><a href="/wiki/Halsey_Royden" title="Halsey Royden">Halsey Royden</a>, <i>Real Analysis</i>, Prentice Hall, 1988</li> <li><a href="/wiki/Alexander_S._Kechris" title="Alexander S. Kechris">Alexander S. Kechris</a>, <i>Classical Descriptive Set Theory</i>, Springer-Verlag, 1995 (Graduate texts in Math., vol. 156)</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Borel_set&amp;action=edit&amp;section=9" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Borel_set">"Borel set"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Borel+set&amp;rft.btitle=Encyclopedia+of+Mathematics&amp;rft.pub=EMS+Press&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DBorel_set&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20130923121802/http://mws.cs.ru.nl/mwiki/prob_1.html#K12">Formal definition</a> of Borel Sets in the <a href="/wiki/Mizar_system" title="Mizar system">Mizar system</a>, and the <a rel="nofollow" class="external text" href="http://mmlquery.mizar.org/cgi-bin/mmlquery/emacs_search?input=(symbol+Borel_Sets+%7C+notation+%7C+constructor+%7C+occur+%7C+th)+ordered+by+number+of+ref">list of theorems</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20200601022908/http://mmlquery.mizar.org/cgi-bin/mmlquery/emacs_search?input=(symbol+Borel_Sets+%7C+notation+%7C+constructor+%7C+occur+%7C+th)+ordered+by+number+of+ref">Archived</a> 2020-06-01 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a> that have been formally proved about it.</li> <li><span class="citation mathworld" id="Reference-Mathworld-Borel_Set"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/BorelSet.html">"Borel Set"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Borel+Set&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FBorelSet.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ABorel+set" class="Z3988"></span></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist"><span>This box: </span><ul><li class="nv-view"><a href="/wiki/Template:Pointclasses" title="Template:Pointclasses"><span title="View this template">view</span></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Pointclasses" title="Template talk:Pointclasses"><span title="Discuss this template">talk</span></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Pointclasses" title="Special:EditPage/Template:Pointclasses"><span title="Edit this template">edit</span></a></li></ul></div> <table class="wikitable" style="text-align: center;"> <tbody><tr> <th colspan="2"><style data-mw-deduplicate="TemplateStyles:r886047488">.mw-parser-output .nobold{font-weight:normal}</style><span class="nobold"><a href="/wiki/Lightface_hierarchy" class="mw-redirect" title="Lightface hierarchy">Lightface</a></span> </th> <th colspan="2"><a href="/wiki/Boldface_hierarchy" class="mw-redirect" title="Boldface hierarchy">Boldface</a> </th></tr> <tr> <td colspan="2">Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> (sometimes the same as Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span>) </td> <td colspan="2"><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> (if defined) </td></tr> <tr> <td colspan="2">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = <a href="/wiki/Computable_set" title="Computable set">recursive</a> </td> <td colspan="2"><b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></b> = <a href="/wiki/Clopen_set" title="Clopen set">clopen</a> </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = <a href="/wiki/Computably_enumerable_set" title="Computably enumerable set">recursively enumerable</a> </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = co-recursively enumerable </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></b> = <i>G</i> = <a href="/wiki/Open_set" title="Open set">open</a> </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></b> = <i>F</i> = <a href="/wiki/Closed_set" title="Closed set">closed</a> </td></tr> <tr> <td colspan="2">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> </td> <td colspan="2"><b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></b> </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></b> = <a href="/wiki/F%CF%83_set" title="Fσ set"><i>F</i><sub>σ</sub></a> </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></b> = <a href="/wiki/G%CE%B4_set" title="Gδ set"><i>G</i><sub>δ</sub></a> </td></tr> <tr> <td colspan="2">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span> </td> <td colspan="2"><b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></b> </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span> </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span> </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></b> = <i>G</i><sub>δσ</sub> </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></b> = <i>F</i><sub>σδ</sub> </td></tr> <tr> <td colspan="2">⋮ </td> <td colspan="2">⋮ </td></tr> <tr> <td colspan="2">Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span> = Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span> = Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = <a href="/wiki/Arithmetical_set" title="Arithmetical set">arithmetical</a> </td> <td colspan="2"><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span></b> = <b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span></b> = <b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span></b> = <b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b> Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = boldface arithmetical </td></tr> <tr> <td colspan="2">⋮ </td> <td colspan="2">⋮ </td></tr> <tr> <td colspan="2">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">α</sub></span></span> (α <a href="/wiki/Recursive_ordinal" class="mw-redirect" title="Recursive ordinal">recursive</a>) </td> <td colspan="2"><b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">α</sub></span></span></b> (α <a href="/wiki/Countable_ordinal" class="mw-redirect" title="Countable ordinal">countable</a>) </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">α</sub></span></span> </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">α</sub></span></span> </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">α</sub></span></span></b> </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">α</sub></span></span></b> </td></tr> <tr> <td colspan="2">⋮ </td> <td colspan="2">⋮ </td></tr> <tr> <td colspan="2">Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><a href="/wiki/Church%E2%80%93Kleene_ordinal" class="mw-redirect" title="Church–Kleene ordinal">ω<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">CK</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></a></sub></span></span> = Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">ω<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">CK</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">ω<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">CK</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = <a href="/wiki/Hyperarithmetical_theory" title="Hyperarithmetical theory">hyperarithmetical</a> </td> <td colspan="2"><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><a href="/wiki/First_uncountable_ordinal" title="First uncountable ordinal">ω<sub>1</sub></a></sub></span></span></b> = <b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">ω<sub>1</sub></sub></span></span></b> = <b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">ω<sub>1</sub></sub></span></span></b> = <b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></b> = <b>B</b> = <a class="mw-selflink selflink">Borel</a> </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = lightface analytic </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = lightface coanalytic </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></b> = A = <a href="/wiki/Analytic_set" title="Analytic set">analytic</a> </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span></b> = CA = <a href="/wiki/Coanalytic_set" title="Coanalytic set">coanalytic</a> </td></tr> <tr> <td colspan="2">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> </td> <td colspan="2"><b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></b> </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span> </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></b> = PCA </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sub></span></span></b> = CPCA </td></tr> <tr> <td colspan="2">Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span> </td> <td colspan="2"><b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></b> </td></tr> <tr> <td>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span> </td> <td>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span> </td> <td><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></b> = PCPCA </td> <td><b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">3</sub></span></span></b> = CPCPCA </td></tr> <tr> <td colspan="2">⋮ </td> <td colspan="2">⋮ </td></tr> <tr> <td colspan="2">Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span> = Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span> = Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span> = <a href="/wiki/Analytical_hierarchy" title="Analytical hierarchy">analytical</a> </td> <td colspan="2"><b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span></b> = <b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span></b> = <b>Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">&lt;ω</sub></span></span></b> = <b>Σ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b>Π<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b> Δ<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">0</sub></span></span></b> = <b>P</b> = <a href="/wiki/Projective_hierarchy" title="Projective hierarchy">projective</a> </td></tr> <tr> <td colspan="2">⋮ </td> <td colspan="2">⋮ </td></tr></tbody></table> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Measure_theory" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Measure_theory" title="Template:Measure theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Measure_theory" title="Template talk:Measure theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Measure_theory" title="Special:EditPage/Template:Measure theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Measure_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">Measure theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_continuity" title="Absolute continuity">Absolute continuity</a>&#160;<a href="/wiki/Absolute_continuity_(measure_theory)" class="mw-redirect" title="Absolute continuity (measure theory)">of measures</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li></ul></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Atom_(measure_theory)" title="Atom (measure theory)">Atom</a></li> <li><a href="/wiki/Baire_set" title="Baire set">Baire set</a></li> <li><a class="mw-selflink selflink">Borel set</a> <ul><li><a href="/wiki/Borel_equivalence_relation" title="Borel equivalence relation">equivalence relation</a></li></ul></li> <li><a href="/wiki/Standard_Borel_space" title="Standard Borel space">Borel space</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_criterion" title="Carathéodory&#39;s criterion">Carathéodory's criterion</a></li> <li><a href="/wiki/Cylindrical_%CF%83-algebra" title="Cylindrical σ-algebra">Cylindrical σ-algebra</a> <ul><li><a href="/wiki/Cylinder_set" title="Cylinder set">Cylinder set</a></li></ul></li> <li><a href="/wiki/Dynkin_system" title="Dynkin system">𝜆-system</a></li> <li><a href="/wiki/Essential_range" title="Essential range">Essential range</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">infimum/supremum</a></li></ul></li> <li><a href="/wiki/Locally_measurable_set" class="mw-redirect" title="Locally measurable set">Locally measurable</a></li> <li><a href="/wiki/Pi-system" title="Pi-system"><span class="texhtml mvar" style="font-style:italic;">π</span>-system</a></li> <li><a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a></li> <li><a href="/wiki/Non-measurable_set" title="Non-measurable set">Non-measurable set</a> <ul><li><a href="/wiki/Vitali_set" title="Vitali set">Vitali set</a></li></ul></li> <li><a href="/wiki/Null_set" title="Null set">Null set</a></li> <li><a href="/wiki/Support_(measure_theory)" title="Support (measure theory)">Support</a></li> <li><a href="/wiki/Transverse_measure" title="Transverse measure">Transverse measure</a></li> <li><a href="/wiki/Universally_measurable_set" title="Universally measurable set">Universally measurable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_measure" class="mw-redirect" title="Atomic measure">Atomic</a></li> <li><a href="/wiki/Baire_measure" title="Baire measure">Baire</a></li> <li><a href="/wiki/Banach_measure" title="Banach measure">Banach</a></li> <li><a href="/wiki/Besov_measure" title="Besov measure">Besov</a></li> <li><a href="/wiki/Borel_measure" title="Borel measure">Borel</a></li> <li><a href="/wiki/Brown_measure" title="Brown measure">Brown</a></li> <li><a href="/wiki/Complex_measure" title="Complex measure">Complex</a></li> <li><a href="/wiki/Complete_measure" title="Complete measure">Complete</a></li> <li><a href="/wiki/Content_(measure_theory)" title="Content (measure theory)">Content</a></li> <li>(<a href="/wiki/Logarithmically_concave_measure" title="Logarithmically concave measure">Logarithmically</a>)&#160;<a href="/wiki/Convex_measure" title="Convex measure">Convex</a></li> <li><a href="/wiki/Decomposable_measure" title="Decomposable measure">Decomposable</a></li> <li><a href="/wiki/Discrete_measure" title="Discrete measure">Discrete</a></li> <li><a href="/wiki/Equivalence_(measure_theory)" title="Equivalence (measure theory)">Equivalent</a></li> <li><a href="/wiki/Finite_measure" title="Finite measure">Finite</a></li> <li><a href="/wiki/Inner_measure" title="Inner measure">Inner</a></li> <li>(<a href="/wiki/Quasi-invariant_measure" title="Quasi-invariant measure">Quasi-</a>)&#160;<a href="/wiki/Invariant_measure" title="Invariant measure">Invariant</a></li> <li><a href="/wiki/Locally_finite_measure" title="Locally finite measure">Locally finite</a></li> <li><a href="/wiki/Maximising_measure" title="Maximising measure">Maximising</a></li> <li><a href="/wiki/Metric_outer_measure" title="Metric outer measure">Metric outer</a></li> <li><a href="/wiki/Outer_measure" title="Outer measure">Outer</a></li> <li><a href="/wiki/Perfect_measure" title="Perfect measure">Perfect</a></li> <li><a href="/wiki/Pre-measure" title="Pre-measure">Pre-measure</a></li> <li>(<a href="/wiki/Sub-probability_measure" title="Sub-probability measure">Sub-</a>)&#160;<a href="/wiki/Probability_measure" title="Probability measure">Probability</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Radon_measure" title="Radon measure">Radon</a></li> <li><a href="/wiki/Random_measure" title="Random measure">Random</a></li> <li><a href="/wiki/Regular_measure" title="Regular measure">Regular</a> <ul><li><a href="/wiki/Borel_regular_measure" title="Borel regular measure">Borel regular</a></li> <li><a href="/wiki/Inner_regular_measure" class="mw-redirect" title="Inner regular measure">Inner regular</a></li> <li><a href="/wiki/Outer_regular_measure" class="mw-redirect" title="Outer regular measure">Outer regular</a></li></ul></li> <li><a href="/wiki/Saturated_measure" title="Saturated measure">Saturated</a></li> <li><a href="/wiki/Set_function" title="Set function">Set function</a></li> <li><a href="/wiki/%CE%A3-finite_measure" title="Σ-finite measure">σ-finite</a></li> <li><a href="/wiki/S-finite_measure" title="S-finite measure">s-finite</a></li> <li><a href="/wiki/Signed_measure" title="Signed measure">Signed</a></li> <li><a href="/wiki/Singular_measure" title="Singular measure">Singular</a></li> <li><a href="/wiki/Spectral_measure" class="mw-redirect" title="Spectral measure">Spectral</a></li> <li><a href="/wiki/Strictly_positive_measure" title="Strictly positive measure">Strictly positive</a></li> <li><a href="/wiki/Tightness_of_measures" title="Tightness of measures">Tight</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Measures_(measure_theory)" title="Category:Measures (measure theory)">Particular measures</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Counting_measure" title="Counting measure">Counting</a></li> <li><a href="/wiki/Dirac_measure" title="Dirac measure">Dirac</a></li> <li><a href="/wiki/Euler_measure" title="Euler measure">Euler</a></li> <li><a href="/wiki/Gaussian_measure" title="Gaussian measure">Gaussian</a></li> <li><a href="/wiki/Haar_measure" title="Haar measure">Haar</a></li> <li><a href="/wiki/Harmonic_measure" title="Harmonic measure">Harmonic</a></li> <li><a href="/wiki/Hausdorff_measure" title="Hausdorff measure">Hausdorff</a></li> <li><a href="/wiki/Intensity_measure" title="Intensity measure">Intensity</a></li> <li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a> <ul><li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">Infinite-dimensional</a></li></ul></li> <li><a href="/wiki/Positive_real_numbers#Logarithmic_measure" title="Positive real numbers">Logarithmic</a></li> <li><a href="/wiki/Product_measure" title="Product measure">Product</a> <ul><li><a href="/wiki/Projection_(measure_theory)" title="Projection (measure theory)">Projections</a></li></ul></li> <li><a href="/wiki/Pushforward_measure" title="Pushforward measure">Pushforward</a></li> <li><a href="/wiki/Spherical_measure" title="Spherical measure">Spherical measure</a></li> <li><a href="/wiki/Tangent_measure" title="Tangent measure">Tangent</a></li> <li><a href="/wiki/Trivial_measure" title="Trivial measure">Trivial</a></li> <li><a href="/wiki/Young_measure" title="Young measure">Young</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a> <ul><li><a href="/wiki/Bochner_measurable_function" title="Bochner measurable function">Bochner</a></li> <li><a href="/wiki/Strongly_measurable_function" title="Strongly measurable function">Strongly</a></li> <li><a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a></li></ul></li> <li>Convergence: <a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">almost everywhere</a></li> <li><a href="/wiki/Convergence_of_measures" title="Convergence of measures">of measures</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">in measure</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">of random variables</a> <ul><li><a href="/wiki/Convergence_in_distribution" class="mw-redirect" title="Convergence in distribution">in distribution</a></li> <li><a href="/wiki/Convergence_in_probability" class="mw-redirect" title="Convergence in probability">in probability</a></li></ul></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a></li> <li>Random: <a href="/wiki/Random_compact_set" title="Random compact set">compact set</a></li> <li><a href="/wiki/Random_element" title="Random element">element</a></li> <li><a href="/wiki/Random_measure" title="Random measure">measure</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">process</a></li> <li><a href="/wiki/Random_variable" title="Random variable">variable</a></li> <li><a href="/wiki/Multivariate_random_variable" title="Multivariate random variable">vector</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued measure</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_measure_theory" title="Category:Theorems in measure theory">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carath%C3%A9odory%27s_extension_theorem" title="Carathéodory&#39;s extension theorem">Carathéodory's extension theorem</a></li> <li>Convergence theorems <ul><li><a href="/wiki/Dominated_convergence_theorem" title="Dominated convergence theorem">Dominated</a></li> <li><a href="/wiki/Monotone_convergence_theorem" title="Monotone convergence theorem">Monotone</a></li> <li><a href="/wiki/Vitali_convergence_theorem" title="Vitali convergence theorem">Vitali</a></li></ul></li> <li>Decomposition theorems <ul><li><a href="/wiki/Hahn_decomposition_theorem" title="Hahn decomposition theorem">Hahn</a></li> <li><a href="/wiki/Jordan_decomposition_theorem" class="mw-redirect" title="Jordan decomposition theorem">Jordan</a></li> <li><a href="/wiki/Maharam%27s_theorem" title="Maharam&#39;s theorem">Maharam's</a></li></ul></li> <li><a href="/wiki/Egorov%27s_theorem" title="Egorov&#39;s theorem">Egorov's</a></li> <li><a href="/wiki/Fatou%27s_lemma" title="Fatou&#39;s lemma">Fatou's lemma</a></li> <li><a href="/wiki/Fubini%27s_theorem" title="Fubini&#39;s theorem">Fubini's</a> <ul><li><a href="/wiki/Fubini%E2%80%93Tonelli_theorem" class="mw-redirect" title="Fubini–Tonelli theorem">Fubini–Tonelli</a></li></ul></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder&#39;s inequality">Hölder's inequality</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a></li> <li><a href="/wiki/Radon%E2%80%93Nikodym_theorem" title="Radon–Nikodym theorem">Radon–Nikodym</a></li> <li><a href="/wiki/Riesz%E2%80%93Markov%E2%80%93Kakutani_representation_theorem" title="Riesz–Markov–Kakutani representation theorem">Riesz–Markov–Kakutani representation theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Disintegration_theorem" title="Disintegration theorem">Disintegration theorem</a> <ul><li><a href="/wiki/Lifting_theory" title="Lifting theory">Lifting theory</a></li></ul></li> <li><a href="/wiki/Lebesgue%27s_density_theorem" title="Lebesgue&#39;s density theorem">Lebesgue's density theorem</a></li> <li><a href="/wiki/Lebesgue_differentiation_theorem" title="Lebesgue differentiation theorem">Lebesgue differentiation theorem</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard&#39;s theorem">Sard's theorem</a></li> <li><a href="/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" title="Vitali–Hahn–Saks theorem">Vitali–Hahn–Saks theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="Brunn–Minkowski theorem">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman&#39;s reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale&#39;s random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications&#160;&amp;&#160;related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_analysis" title="Convex analysis">Convex analysis</a></li> <li><a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">Descriptive set theory</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐62ftq Cached time: 20241124053453 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.591 seconds Real time usage: 0.807 seconds Preprocessor visited node count: 3222/1000000 Post‐expand include size: 129938/2097152 bytes Template argument size: 1077/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 35921/5000000 bytes Lua time usage: 0.375/10.000 seconds Lua memory usage: 16442197/52428800 bytes Number of Wikibase entities loaded: 2/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 633.719 1 -total 22.01% 139.482 6 Template:Annotated_link 20.49% 129.842 1 Template:Reflist 17.47% 110.707 1 Template:Pointclasses 13.77% 87.252 3 Template:Citation 9.88% 62.604 1 Template:Short_description 8.56% 54.262 1 Template:Navbar 7.85% 49.717 1 Template:Interwiki_extra 7.59% 48.086 82 Template:Su 6.67% 42.240 2 Template:Navbox --> <!-- Saved in parser cache with key enwiki:pcache:idhash:43327-0!canonical and timestamp 20241124053453 and revision id 1256780809. Rendering was triggered because: api-parse --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Borel_set&amp;oldid=1256780809">https://en.wikipedia.org/w/index.php?title=Borel_set&amp;oldid=1256780809</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Topology" title="Category:Topology">Topology</a></li><li><a href="/wiki/Category:Descriptive_set_theory" title="Category:Descriptive set theory">Descriptive set theory</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_French-language_sources_(fr)" title="Category:CS1 French-language sources (fr)">CS1 French-language sources (fr)</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_clarification_from_October_2024" title="Category:Wikipedia articles needing clarification from October 2024">Wikipedia articles needing clarification from October 2024</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Module:Interwiki_extra:_additional_interwiki_links" title="Category:Module:Interwiki extra: additional interwiki links">Module:Interwiki extra: additional interwiki links</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 11 November 2024, at 14:59<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Borel_set&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7ztkk","wgBackendResponseTime":158,"wgPageParseReport":{"limitreport":{"cputime":"0.591","walltime":"0.807","ppvisitednodes":{"value":3222,"limit":1000000},"postexpandincludesize":{"value":129938,"limit":2097152},"templateargumentsize":{"value":1077,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":35921,"limit":5000000},"entityaccesscount":{"value":2,"limit":400},"timingprofile":["100.00% 633.719 1 -total"," 22.01% 139.482 6 Template:Annotated_link"," 20.49% 129.842 1 Template:Reflist"," 17.47% 110.707 1 Template:Pointclasses"," 13.77% 87.252 3 Template:Citation"," 9.88% 62.604 1 Template:Short_description"," 8.56% 54.262 1 Template:Navbar"," 7.85% 49.717 1 Template:Interwiki_extra"," 7.59% 48.086 82 Template:Su"," 6.67% 42.240 2 Template:Navbox"]},"scribunto":{"limitreport-timeusage":{"value":"0.375","limit":"10.000"},"limitreport-memusage":{"value":16442197,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFHalmos1950\"] = 1,\n [\"CITEREFJech2008\"] = 1,\n [\"CITEREFLusin1927\"] = 1,\n [\"CITEREFMackey1966\"] = 1,\n [\"CITEREFSrivastava1991\"] = 1,\n [\"counterexample\"] = 1,\n}\ntemplate_list = table#1 {\n [\"Anchor\"] = 1,\n [\"Annotated link\"] = 6,\n [\"Citation\"] = 3,\n [\"Cite book\"] = 2,\n [\"Clarification needed\"] = 1,\n [\"Harv\"] = 1,\n [\"Interwiki extra\"] = 1,\n [\"MathWorld\"] = 1,\n [\"Measure theory\"] = 1,\n [\"Pointclasses\"] = 1,\n [\"Reflist\"] = 1,\n [\"See also\"] = 1,\n [\"Short description\"] = 1,\n [\"Springer\"] = 1,\n [\"Webarchive\"] = 1,\n}\narticle_whitelist = table#1 {\n}\n"},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-62ftq","timestamp":"20241124053453","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Borel set","url":"https:\/\/en.wikipedia.org\/wiki\/Borel_set","sameAs":"http:\/\/www.wikidata.org\/entity\/Q21086747","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q21086747","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-03-08T06:21:34Z","dateModified":"2024-11-11T14:59:42Z","headline":"set that can be constructed from open or closed sets by repeatedly taking countable unions and intersections"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10