CINXE.COM
Brunn–Minkowski theorem - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Brunn–Minkowski theorem - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"817bce73-4b29-45f9-8f2f-8db1e158c69f","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Brunn–Minkowski_theorem","wgTitle":"Brunn–Minkowski theorem","wgCurRevisionId":1256944053,"wgRevisionId":1256944053,"wgArticleId":7500545,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Calculus of variations","Geometric inequalities","Hermann Minkowski","Sumsets","Theorems in convex geometry","Theorems in measure theory"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Brunn–Minkowski_theorem","wgRelevantArticleId":7500545,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia", "wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":40000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q3915398","wgCheckUserClientHintsHeadersJsApi":["architecture","bitness","brands","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth", "ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.2"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Brunn–Minkowski theorem - Wikipedia"> <meta property="og:type" content="website"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Brunn%E2%80%93Minkowski_theorem"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Brunn%E2%80%93Minkowski_theorem"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Brunn–Minkowski_theorem rootpage-Brunn–Minkowski_theorem skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Brunn%E2%80%93Minkowski+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Brunn%E2%80%93Minkowski+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Brunn%E2%80%93Minkowski+theorem" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Brunn%E2%80%93Minkowski+theorem" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Statement" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Statement"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Statement</span> </div> </a> <button aria-controls="toc-Statement-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Statement subsection</span> </button> <ul id="toc-Statement-sublist" class="vector-toc-list"> <li id="toc-Multiplicative_version" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Multiplicative_version"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Multiplicative version</span> </div> </a> <ul id="toc-Multiplicative_version-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-On_the_hypothesis" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#On_the_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>On the hypothesis</span> </div> </a> <button aria-controls="toc-On_the_hypothesis-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle On the hypothesis subsection</span> </button> <ul id="toc-On_the_hypothesis-sublist" class="vector-toc-list"> <li id="toc-Measurability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measurability"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Measurability</span> </div> </a> <ul id="toc-Measurability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Non-emptiness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Non-emptiness"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Non-emptiness</span> </div> </a> <ul id="toc-Non-emptiness-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Proofs" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Proofs"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Proofs</span> </div> </a> <ul id="toc-Proofs-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Important_corollaries" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Important_corollaries"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Important corollaries</span> </div> </a> <button aria-controls="toc-Important_corollaries-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Important corollaries subsection</span> </button> <ul id="toc-Important_corollaries-sublist" class="vector-toc-list"> <li id="toc-Concavity_of_the_radius_function_(Brunn's_theorem)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Concavity_of_the_radius_function_(Brunn's_theorem)"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Concavity of the radius function (Brunn's theorem)</span> </div> </a> <ul id="toc-Concavity_of_the_radius_function_(Brunn's_theorem)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Brunn–Minkowski_symmetrization_of_a_convex_body" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Brunn–Minkowski_symmetrization_of_a_convex_body"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Brunn–Minkowski symmetrization of a convex body</span> </div> </a> <ul id="toc-Brunn–Minkowski_symmetrization_of_a_convex_body-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Grunbaum's_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Grunbaum's_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Grunbaum's theorem</span> </div> </a> <ul id="toc-Grunbaum's_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Isoperimetric_inequality" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isoperimetric_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Isoperimetric inequality</span> </div> </a> <ul id="toc-Isoperimetric_inequality-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_to_inequalities_between_mixed_volumes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Applications_to_inequalities_between_mixed_volumes"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Applications to inequalities between mixed volumes</span> </div> </a> <ul id="toc-Applications_to_inequalities_between_mixed_volumes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Concentration_of_measure_on_the_sphere_and_other_strictly_convex_surfaces" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Concentration_of_measure_on_the_sphere_and_other_strictly_convex_surfaces"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.6</span> <span>Concentration of measure on the sphere and other strictly convex surfaces</span> </div> </a> <ul id="toc-Concentration_of_measure_on_the_sphere_and_other_strictly_convex_surfaces-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Remarks" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Remarks"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Remarks</span> </div> </a> <ul id="toc-Remarks-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Rounded_cubes" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Rounded_cubes"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Rounded cubes</span> </div> </a> <ul id="toc-Rounded_cubes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Examples_where_the_lower_bound_is_loose" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Examples_where_the_lower_bound_is_loose"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Examples where the lower bound is loose</span> </div> </a> <ul id="toc-Examples_where_the_lower_bound_is_loose-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Connections_to_other_parts_of_mathematics" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Connections_to_other_parts_of_mathematics"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Connections to other parts of mathematics</span> </div> </a> <ul id="toc-Connections_to_other_parts_of_mathematics-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References_2" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <ul id="toc-References_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Brunn–Minkowski theorem</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 7 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-7" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">7 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Brunn-Minkowski-Ungleichung" title="Brunn-Minkowski-Ungleichung – German" lang="de" hreflang="de" data-title="Brunn-Minkowski-Ungleichung" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teorema_de_Brunn-Minkowski" title="Teorema de Brunn-Minkowski – Spanish" lang="es" hreflang="es" data-title="Teorema de Brunn-Minkowski" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teorema_di_Brunn-Minkowski" title="Teorema di Brunn-Minkowski – Italian" lang="it" hreflang="it" data-title="Teorema di Brunn-Minkowski" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-pms mw-list-item"><a href="https://pms.wikipedia.org/wiki/Disugualiansa_%C3%ABd_Brunn-Minkowski" title="Disugualiansa ëd Brunn-Minkowski – Piedmontese" lang="pms" hreflang="pms" data-title="Disugualiansa ëd Brunn-Minkowski" data-language-autonym="Piemontèis" data-language-local-name="Piedmontese" class="interlanguage-link-target"><span>Piemontèis</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teorema_Brunn-Minkowski" title="Teorema Brunn-Minkowski – Romanian" lang="ro" hreflang="ro" data-title="Teorema Brunn-Minkowski" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%91%D1%80%D1%83%D0%BD%D0%BD%D0%B0_%E2%80%94_%D0%9C%D0%B8%D0%BD%D0%BA%D0%BE%D0%B2%D1%81%D0%BA%D0%BE%D0%B3%D0%BE" title="Неравенство Брунна — Минковского – Russian" lang="ru" hreflang="ru" data-title="Неравенство Брунна — Минковского" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Brunn%E2%80%93Minkowskis_sats" title="Brunn–Minkowskis sats – Swedish" lang="sv" hreflang="sv" data-title="Brunn–Minkowskis sats" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3915398#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Brunn%E2%80%93Minkowski_theorem" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Brunn%E2%80%93Minkowski_theorem" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Brunn%E2%80%93Minkowski_theorem"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Brunn%E2%80%93Minkowski_theorem"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Brunn%E2%80%93Minkowski_theorem" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Brunn%E2%80%93Minkowski_theorem" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&oldid=1256944053" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Brunn%E2%80%93Minkowski_theorem&id=1256944053&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBrunn%25E2%2580%2593Minkowski_theorem"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBrunn%25E2%2580%2593Minkowski_theorem"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Brunn%E2%80%93Minkowski_theorem&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q3915398" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Brunn–Minkowski theorem</b> (or <b>Brunn–Minkowski inequality</b>) is an inequality relating the volumes (or more generally <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measures</a>) of <a href="/wiki/Compact_space" title="Compact space">compact</a> <a href="/wiki/Subset" title="Subset">subsets</a> of <a href="/wiki/Euclidean_space" title="Euclidean space">Euclidean space</a>. The original version of the Brunn–Minkowski theorem (<a href="/wiki/Hermann_Brunn" title="Hermann Brunn">Hermann Brunn</a> 1887; <a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Hermann Minkowski</a> 1896) applied to convex sets; the generalization to compact nonconvex sets stated here is due to <a href="/wiki/Lazar_Lyusternik" title="Lazar Lyusternik">Lazar Lyusternik</a> (1935). </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Statement">Statement</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=1" title="Edit section: Statement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <i>n</i> ≥ 1 and let <i>μ</i> denote the <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a> on <b>R</b><sup><i>n</i></sup>. Let <i>A</i> and <i>B</i> be two nonempty compact subsets of <b>R</b><sup><i>n</i></sup>. Then the following <a href="/wiki/Inequality_(mathematics)" title="Inequality (mathematics)">inequality</a> holds: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [\mu (A+B)]^{1/n}\geq [\mu (A)]^{1/n}+[\mu (B)]^{1/n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">[</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">[</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [\mu (A+B)]^{1/n}\geq [\mu (A)]^{1/n}+[\mu (B)]^{1/n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/600ca92c51283182b88385b0d402fc4b8204070e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.542ex; height:3.343ex;" alt="{\displaystyle [\mu (A+B)]^{1/n}\geq [\mu (A)]^{1/n}+[\mu (B)]^{1/n},}"></span></dd></dl> <p>where <i>A</i> + <i>B</i> denotes the <a href="/wiki/Minkowski_sum" class="mw-redirect" title="Minkowski sum">Minkowski sum</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B:=\{\,a+b\in \mathbb {R} ^{n}\mid a\in A,\ b\in B\,\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>:=</mo> <mo fence="false" stretchy="false">{</mo> <mspace width="thinmathspace" /> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>∣<!-- ∣ --></mo> <mi>a</mi> <mo>∈<!-- ∈ --></mo> <mi>A</mi> <mo>,</mo> <mtext> </mtext> <mi>b</mi> <mo>∈<!-- ∈ --></mo> <mi>B</mi> <mspace width="thinmathspace" /> <mo fence="false" stretchy="false">}</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B:=\{\,a+b\in \mathbb {R} ^{n}\mid a\in A,\ b\in B\,\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84f32e007152eebe46c5e156fc1c683aa69eab22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.611ex; height:2.843ex;" alt="{\displaystyle A+B:=\{\,a+b\in \mathbb {R} ^{n}\mid a\in A,\ b\in B\,\}.}"></span></dd></dl> <p>The theorem is also true in the setting where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B,A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B,A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0680cfab635ebca1c1f859ae67c1456672edf26e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.922ex; height:2.509ex;" alt="{\textstyle A,B,A+B}"></span> are only assumed to be measurable and non-empty.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Multiplicative_version">Multiplicative version</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=2" title="Edit section: Multiplicative version"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The multiplicative form of Brunn–Minkowski inequality states that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (\lambda A+(1-\lambda )B)\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397e7786f508fab50b02030093efe591afdf368a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.59ex; height:3.009ex;" alt="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda \in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda \in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/941bbebfedd01c1e27c91409dde9b32228f186b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.848ex; height:2.843ex;" alt="{\textstyle \lambda \in [0,1]}"></span>. </p><p>The Brunn–Minkowski inequality is equivalent to the multiplicative version. </p><p>In one direction, use the inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>≥<!-- ≥ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5258c63607d7b7173f255996815bb116164b90d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.918ex; height:3.009ex;" alt="{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{1-\lambda }}"></span> (exponential is convex), which holds for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x,y\geq 0,\lambda \in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x,y\geq 0,\lambda \in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8185de85a35f0fbf65af316e474feca72a0697c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.662ex; height:2.843ex;" alt="{\textstyle x,y\geq 0,\lambda \in [0,1]}"></span>. In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq (\lambda \mu (A)^{1/n}+(1-\lambda )\mu (B)^{1/n})^{n}\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (\lambda A+(1-\lambda )B)\geq (\lambda \mu (A)^{1/n}+(1-\lambda )\mu (B)^{1/n})^{n}\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e343555c1c4ce13e97f6cf72ea7810f6592c983" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:68.733ex; height:3.176ex;" alt="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq (\lambda \mu (A)^{1/n}+(1-\lambda )\mu (B)^{1/n})^{n}\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"></span>. </p><p>Conversely, using the multiplicative form, we find </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)=\mu (\lambda {\frac {A}{\lambda }}+(1-\lambda ){\frac {B}{1-\lambda }})\geq {\frac {\mu (A)^{\lambda }\mu (B)^{1-\lambda }}{\lambda ^{n\lambda }(1-\lambda )^{n(1-\lambda )}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>B</mi> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>λ<!-- λ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)=\mu (\lambda {\frac {A}{\lambda }}+(1-\lambda ){\frac {B}{1-\lambda }})\geq {\frac {\mu (A)^{\lambda }\mu (B)^{1-\lambda }}{\lambda ^{n\lambda }(1-\lambda )^{n(1-\lambda )}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/886b0d15bd6d3cb2e43a49cb861f3b652e8f1cc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:48.655ex; height:5.676ex;" alt="{\textstyle \mu (A+B)=\mu (\lambda {\frac {A}{\lambda }}+(1-\lambda ){\frac {B}{1-\lambda }})\geq {\frac {\mu (A)^{\lambda }\mu (B)^{1-\lambda }}{\lambda ^{n\lambda }(1-\lambda )^{n(1-\lambda )}}}}"></span> </p><p>The right side is maximized at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ={\frac {1}{1+e^{C}}},C={\frac {1}{n}}\ln {\frac {\mu (A)}{\mu (B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ={\frac {1}{1+e^{C}}},C={\frac {1}{n}}\ln {\frac {\mu (A)}{\mu (B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d430ce68828598c4c13887c333895362d6a39352" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:28.512ex; height:6.509ex;" alt="{\displaystyle \lambda ={\frac {1}{1+e^{C}}},C={\frac {1}{n}}\ln {\frac {\mu (A)}{\mu (B)}}}"></span>, which gives </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f465af2c45b3cd87e828ac8de7e688b93a04be74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.179ex; height:3.176ex;" alt="{\textstyle \mu (A+B)\geq (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}"></span>. </p><p>The <a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a> is a functional generalization of this version of Brunn–Minkowski. </p> <div class="mw-heading mw-heading2"><h2 id="On_the_hypothesis">On the hypothesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=3" title="Edit section: On the hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Measurability">Measurability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=4" title="Edit section: Measurability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is possible for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eed0fcc476188889967e8225eec6ca3902a28a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\textstyle A,B}"></span> to be Lebesgue measurable and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd957a1f1d7f480fb51c33b1e5ab3b8259cb37f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\textstyle A+B}"></span> to not be; a counter example can be found in <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.rae/1212412875">"Measure zero sets with non-measurable sum."</a> On the other hand, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eed0fcc476188889967e8225eec6ca3902a28a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\textstyle A,B}"></span> are Borel measurable, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd957a1f1d7f480fb51c33b1e5ab3b8259cb37f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\textstyle A+B}"></span> is the continuous image of the Borel set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>×<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb56e2f36aa038a7b962a35bf413366e933aacd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.176ex;" alt="{\textstyle A\times B}"></span>, so <a href="/wiki/Analytic_set" title="Analytic set">analytic</a> and thus measurable. See the discussion in Gardner's survey for more on this, as well as ways to avoid measurability hypothesis. </p><p>In the case that <i>A</i> and <i>B</i> are compact, so is <i>A + B</i>, being the image of the compact set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A\times B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>×<!-- × --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A\times B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb56e2f36aa038a7b962a35bf413366e933aacd8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.348ex; height:2.176ex;" alt="{\textstyle A\times B}"></span> under the continuous addition map : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle +:\mathbb {R} ^{n}\times \mathbb {R} ^{n}\to \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>+</mo> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>×<!-- × --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle +:\mathbb {R} ^{n}\times \mathbb {R} ^{n}\to \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88179db12247ee01bc78e1fef3d4bb655caa64e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.889ex; height:2.509ex;" alt="{\textstyle +:\mathbb {R} ^{n}\times \mathbb {R} ^{n}\to \mathbb {R} ^{n}}"></span>, so the measurability conditions are easy to verify. </p> <div class="mw-heading mw-heading3"><h3 id="Non-emptiness">Non-emptiness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=5" title="Edit section: Non-emptiness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The condition that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eed0fcc476188889967e8225eec6ca3902a28a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\textstyle A,B}"></span> are both non-empty is clearly necessary. This condition is not part of the multiplicative versions of BM stated below. </p> <div class="mw-heading mw-heading2"><h2 id="Proofs">Proofs</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=6" title="Edit section: Proofs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We give two well known proofs of Brunn–Minkowski. </p> <style data-mw-deduplicate="TemplateStyles:r1256386598">.mw-parser-output .cot-header-mainspace{background:#F0F2F5;color:inherit}.mw-parser-output .cot-header-other{background:#CCFFCC;color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-night .mw-parser-output .cot-header-other{background:#003500;color:inherit}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-os .mw-parser-output .cot-header-other{background:#003500;color:inherit}}</style> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Geometric proof via cuboids and measure theory</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p>We give a well-known argument that follows a general recipe of arguments in measure theory; namely, it establishes a simple case by direct analysis, uses induction to establish a finitary extension of that special case, and then uses general machinery to obtain the general case as a limit. A discussion of this history of this proof can be found in Theorem 4.1 in <a rel="nofollow" class="external text" href="https://www.ams.org/journals/bull/2002-39-03/S0273-0979-02-00941-2/">Gardner's survey on Brunn–Minkowski</a>. </p><p>We prove the version of the Brunn–Minkowski theorem that only requires <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B,A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B,A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0680cfab635ebca1c1f859ae67c1456672edf26e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.922ex; height:2.509ex;" alt="{\textstyle A,B,A+B}"></span> to be measurable and non-empty. </p> <ul><li>The case that <i>A</i> and <i>B</i> are axis aligned boxes:</li></ul> <p>By translation invariance of volumes, it suffices to take <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A=\prod _{i=1}^{n}[0,a_{i}],B=\prod _{i=1}^{n}[0,b_{i}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>,</mo> <mi>B</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A=\prod _{i=1}^{n}[0,a_{i}],B=\prod _{i=1}^{n}[0,b_{i}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/593663e1512f0901ba6b91e08a3ddaa1640e158a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.733ex; height:3.176ex;" alt="{\textstyle A=\prod _{i=1}^{n}[0,a_{i}],B=\prod _{i=1}^{n}[0,b_{i}]}"></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B=\prod _{i=1}^{n}[0,a_{i}+b_{i}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>=</mo> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B=\prod _{i=1}^{n}[0,a_{i}+b_{i}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fb6cc13110cd340b53a13062637bc5fe9d76350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.697ex; height:3.176ex;" alt="{\textstyle A+B=\prod _{i=1}^{n}[0,a_{i}+b_{i}]}"></span>. In this special case, the Brunn–Minkowski inequality asserts that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \prod (a_{i}+b_{i})^{1/n}\geq \prod a_{i}^{1/n}+\prod b_{i}^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∏<!-- ∏ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mo>∏<!-- ∏ --></mo> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msubsup> <mo>+</mo> <mo>∏<!-- ∏ --></mo> <msubsup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \prod (a_{i}+b_{i})^{1/n}\geq \prod a_{i}^{1/n}+\prod b_{i}^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ce7fdfd86bfd0f24e184692bfcc7c9579643b80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:32.585ex; height:3.676ex;" alt="{\textstyle \prod (a_{i}+b_{i})^{1/n}\geq \prod a_{i}^{1/n}+\prod b_{i}^{1/n}}"></span>. After dividing both sides by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \prod (a_{i}+b_{i})^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∏<!-- ∏ --></mo> <mo stretchy="false">(</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \prod (a_{i}+b_{i})^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b10748e4b4be2a39477bd9c71c54c350406e458" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.533ex; height:3.176ex;" alt="{\textstyle \prod (a_{i}+b_{i})^{1/n}}"></span> , this follows from the <a href="/wiki/Inequality_of_arithmetic_and_geometric_means" class="mw-redirect" title="Inequality of arithmetic and geometric means">AM–GM inequality</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (\prod {\frac {a_{i}}{a_{i}+b_{i}}})^{1/n}+(\prod {\frac {b_{i}}{a_{i}+b_{i}}})^{1/n}\leq \sum {\frac {1}{n}}{\frac {a_{i}+b_{i}}{a_{i}+b_{i}}}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (\prod {\frac {a_{i}}{a_{i}+b_{i}}})^{1/n}+(\prod {\frac {b_{i}}{a_{i}+b_{i}}})^{1/n}\leq \sum {\frac {1}{n}}{\frac {a_{i}+b_{i}}{a_{i}+b_{i}}}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dabc1f131a45bd11266c64e4c6a0e0cdcaa7924b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:44.186ex; height:4.509ex;" alt="{\textstyle (\prod {\frac {a_{i}}{a_{i}+b_{i}}})^{1/n}+(\prod {\frac {b_{i}}{a_{i}+b_{i}}})^{1/n}\leq \sum {\frac {1}{n}}{\frac {a_{i}+b_{i}}{a_{i}+b_{i}}}=1}"></span>. </p> <ul><li>The case where <i>A</i> and <i>B</i> are both disjoint unions of finitely many such boxes:</li></ul> <p>We will use induction on the total number of boxes, where the previous calculation establishes the base case of two boxes. First, we observe that there is an axis aligned hyperplane <i>H</i> that such that each side of <i>H</i> contains an entire box of <i>A.</i> To see this, it suffices to reduce to the case where <i>A</i> consists of two boxes, and then calculate that the negation of this statement implies that the two boxes have a point in common. </p><p>For a body X, we let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X^{-},X^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo>,</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X^{-},X^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94ebfe40e82c88fb36762200ef3b7af1a1302f5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.049ex; height:2.676ex;" alt="{\textstyle X^{-},X^{+}}"></span> denote the intersections of <i>X</i> with the "right" and "left" halfspaces defined by H. Noting again that the statement of Brunn–Minkowski is translation invariant, we then translate B so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe08c65789a9cf5eeadd53a0a77f4f5cd5620d41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.211ex; height:5.176ex;" alt="{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}}"></span>; such a translation exists by the intermediate value theorem because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle t\to \mu ((B+tv)^{+})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>t</mi> <mi>v</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle t\to \mu ((B+tv)^{+})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0792d958fda114af7decf593e447cb82e3974e5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.556ex; height:2.843ex;" alt="{\textstyle t\to \mu ((B+tv)^{+})}"></span> is a continuous function, if <i>v</i> is perpendicular to <i>H</i> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\mu ((B+tv)^{+})}{\mu ((B+tv)^{-})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>t</mi> <mi>v</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>t</mi> <mi>v</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\mu ((B+tv)^{+})}{\mu ((B+tv)^{-})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daa01867dafe6649e37eedbf365632d038a9c78c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:9.505ex; height:5.176ex;" alt="{\textstyle {\frac {\mu ((B+tv)^{+})}{\mu ((B+tv)^{-})}}}"></span> has limiting values <i>0</i> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7672961cb69498135a93484fe61fedd72996ad03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.324ex; height:1.676ex;" alt="{\textstyle \infty }"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\to -\infty ,t\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> <mo>,</mo> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\to -\infty ,t\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3c7a77a899110c17c544db00a9b23bb60c4607e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.397ex; height:2.343ex;" alt="{\displaystyle t\to -\infty ,t\to \infty }"></span>, so takes on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\mu (A^{+})}{\mu (A^{-})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\mu (A^{+})}{\mu (A^{-})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee224ebbbc6b3752e7ee36d2c105b9a736bc07d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:5.541ex; height:5.176ex;" alt="{\textstyle {\frac {\mu (A^{+})}{\mu (A^{-})}}}"></span> at some point. </p><p>We now have the pieces in place to complete the induction step. First, observe that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A^{+}+B^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A^{+}+B^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c43782ffc232ababc1b333e6a55da46e63c30ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.369ex; height:2.509ex;" alt="{\textstyle A^{+}+B^{+}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A^{-}+B^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A^{-}+B^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a783aab6d8d97dae731deba15a0fc55706f3c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:9.369ex; height:2.676ex;" alt="{\displaystyle A^{-}+B^{-}}"></span> are disjoint subsets of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd957a1f1d7f480fb51c33b1e5ab3b8259cb37f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\textstyle A+B}"></span>, and so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq \mu (A^{+}+B^{+})+\mu (A^{-}+B^{-}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq \mu (A^{+}+B^{+})+\mu (A^{-}+B^{-}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/93d0e252406d7d7fd754668598910aaff74dd734" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.304ex; height:2.843ex;" alt="{\textstyle \mu (A+B)\geq \mu (A^{+}+B^{+})+\mu (A^{-}+B^{-}).}"></span> Now, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A^{+},A^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A^{+},A^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84fa900dd7e7b25aba78f9154d34c11940dbcbf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.542ex; height:2.676ex;" alt="{\textstyle A^{+},A^{-}}"></span> both have one fewer box than <i>A</i>, while <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B^{+},B^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B^{+},B^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1471bab561a57ce5c4f532cbce4af588fa03caac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.584ex; height:2.676ex;" alt="{\textstyle B^{+},B^{-}}"></span> each have at most as many boxes as <i>B.</i> Thus, we can apply the induction hypothesis: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A^{+}+B^{+})\geq (\mu (A^{+})^{1/n}+\mu (B^{+})^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A^{+}+B^{+})\geq (\mu (A^{+})^{1/n}+\mu (B^{+})^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0528463cbc69cd7f839dc2b59cac682042575d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.222ex; height:3.176ex;" alt="{\textstyle \mu (A^{+}+B^{+})\geq (\mu (A^{+})^{1/n}+\mu (B^{+})^{1/n})^{n}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A^{-}+B^{-})\geq (\mu (A^{-})^{1/n}+\mu (B^{-})^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A^{-}+B^{-})\geq (\mu (A^{-})^{1/n}+\mu (B^{-})^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aac1a6068b79ed657dcc453163b37da0db6978cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:40.222ex; height:3.176ex;" alt="{\textstyle \mu (A^{-}+B^{-})\geq (\mu (A^{-})^{1/n}+\mu (B^{-})^{1/n})^{n}}"></span>. </p><p>Elementary algebra shows that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe08c65789a9cf5eeadd53a0a77f4f5cd5620d41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.211ex; height:5.176ex;" alt="{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}}"></span>, then also <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}={\frac {\mu (A)}{\mu (B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}={\frac {\mu (A)}{\mu (B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa642e18dd0dba9277ee37655d671efb174c6a91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.663ex; height:5.176ex;" alt="{\textstyle {\frac {\mu (A^{+})}{\mu (B^{+})}}={\frac {\mu (A^{-})}{\mu (B^{-})}}={\frac {\mu (A)}{\mu (B)}}}"></span>, so we can calculate: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu (A+B)\geq \mu (A^{+}+B^{+})+\mu (A^{-}+B^{-})\geq (\mu (A^{+})^{1/n}+\mu (B^{+})^{1/n})^{n}+(\mu (A^{-})^{1/n}+\mu (B^{-})^{1/n})^{n}\\=\mu (B^{+})(1+{\frac {\mu (A^{+})^{1/n}}{\mu (B^{+})^{1/n}}})^{n}+\mu (B^{-})(1+{\frac {\mu (A^{-})^{1/n}}{\mu (B^{-})^{1/n}}})^{n}=(1+{\frac {\mu (A)^{1/n}}{\mu (B)^{1/n}}})^{n}(\mu (B^{+})+\mu (B^{-}))=(\mu (B)^{1/n}+\mu (A)^{1/n})^{n}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo>+</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu (A+B)\geq \mu (A^{+}+B^{+})+\mu (A^{-}+B^{-})\geq (\mu (A^{+})^{1/n}+\mu (B^{+})^{1/n})^{n}+(\mu (A^{-})^{1/n}+\mu (B^{-})^{1/n})^{n}\\=\mu (B^{+})(1+{\frac {\mu (A^{+})^{1/n}}{\mu (B^{+})^{1/n}}})^{n}+\mu (B^{-})(1+{\frac {\mu (A^{-})^{1/n}}{\mu (B^{-})^{1/n}}})^{n}=(1+{\frac {\mu (A)^{1/n}}{\mu (B)^{1/n}}})^{n}(\mu (B^{+})+\mu (B^{-}))=(\mu (B)^{1/n}+\mu (A)^{1/n})^{n}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3146a345bcfa2815baa947809a9114b55ee19a9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.354ex; margin-bottom: -0.317ex; width:114.491ex; height:10.509ex;" alt="{\displaystyle {\begin{aligned}\mu (A+B)\geq \mu (A^{+}+B^{+})+\mu (A^{-}+B^{-})\geq (\mu (A^{+})^{1/n}+\mu (B^{+})^{1/n})^{n}+(\mu (A^{-})^{1/n}+\mu (B^{-})^{1/n})^{n}\\=\mu (B^{+})(1+{\frac {\mu (A^{+})^{1/n}}{\mu (B^{+})^{1/n}}})^{n}+\mu (B^{-})(1+{\frac {\mu (A^{-})^{1/n}}{\mu (B^{-})^{1/n}}})^{n}=(1+{\frac {\mu (A)^{1/n}}{\mu (B)^{1/n}}})^{n}(\mu (B^{+})+\mu (B^{-}))=(\mu (B)^{1/n}+\mu (A)^{1/n})^{n}\end{aligned}}}"></span></dd></dl> <ul><li>The case that <i>A</i> and <i>B</i> are bounded open sets:</li></ul> <p>In this setting, both bodies can be approximated arbitrarily well by unions of disjoint axis aligned rectangles contained in their interior; this follows from general facts about the Lebesgue measure of open sets. That is, we have a sequence of bodies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A_{k}\subseteq A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⊆<!-- ⊆ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A_{k}\subseteq A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5920e9345d23fe1594dda0494053f357850c73d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.673ex; height:2.509ex;" alt="{\textstyle A_{k}\subseteq A}"></span>, which are disjoint unions of finitely many axis aligned rectangles, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A\setminus A_{k})\leq 1/k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A\setminus A_{k})\leq 1/k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68434090ce15c63b6186e6027e5c6892920068ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.615ex; height:2.843ex;" alt="{\textstyle \mu (A\setminus A_{k})\leq 1/k}"></span>, and likewise <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B_{k}\subseteq B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⊆<!-- ⊆ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B_{k}\subseteq B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/786446020694545ac654fe21b81a1e5d9873ca20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.715ex; height:2.509ex;" alt="{\textstyle B_{k}\subseteq B}"></span>. Then we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B\supseteq A_{k}+B_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>⊇<!-- ⊇ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B\supseteq A_{k}+B_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea77dd6a5e661626d4dc81bcc40dec82153aac53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.971ex; height:2.509ex;" alt="{\textstyle A+B\supseteq A_{k}+B_{k}}"></span>, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)^{1/n}\geq \mu (A_{k}+B_{k})^{1/n}\geq \mu (A_{k})^{1/n}+\mu (B_{k})^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)^{1/n}\geq \mu (A_{k}+B_{k})^{1/n}\geq \mu (A_{k})^{1/n}+\mu (B_{k})^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27dbb2cbf045e345e9a5f5c8a3c31c910c3f8c3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.888ex; height:3.176ex;" alt="{\textstyle \mu (A+B)^{1/n}\geq \mu (A_{k}+B_{k})^{1/n}\geq \mu (A_{k})^{1/n}+\mu (B_{k})^{1/n}}"></span>. The right hand side converges to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A)^{1/n}+\mu (B)^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A)^{1/n}+\mu (B)^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d5389c3e4ed648e0fd6a9de2d212b89d496d5f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.494ex; height:3.176ex;" alt="{\textstyle \mu (A)^{1/n}+\mu (B)^{1/n}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ad397bfad8d775b7dd49ada6825db879d66d917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.149ex; height:2.176ex;" alt="{\textstyle k\to \infty }"></span>, establishing this special case. </p> <ul><li>The case that <i>A</i> and <i>B</i> are compact sets:</li></ul> <p>For a compact body <i>X</i>, define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X_{\epsilon }=X+B(0,\epsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo>=</mo> <mi>X</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X_{\epsilon }=X+B(0,\epsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a95cce1150947c3188396f9e29cccb3aca786e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.457ex; height:2.843ex;" alt="{\textstyle X_{\epsilon }=X+B(0,\epsilon )}"></span> to be the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab4aaaaf4e9f050f445d2ad1518d9012ef5a24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\textstyle \epsilon }"></span>-thickening of <i>X.</i> Here each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B(0,\epsilon )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B(0,\epsilon )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ca9eb10a5f271448bc0dbb8739a7d3584c9b528" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.714ex; height:2.843ex;" alt="{\textstyle B(0,\epsilon )}"></span> is the open ball of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab4aaaaf4e9f050f445d2ad1518d9012ef5a24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\textstyle \epsilon }"></span>, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X_{\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X_{\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dca83ec2331d174dd20a261b4b998e748aaf428a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.824ex; height:2.509ex;" alt="{\textstyle X_{\epsilon }}"></span> is a bounded, open set. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \bigcap _{\epsilon >0}X_{\epsilon }={\text{cl}}(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo>⋂<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> <mo>></mo> <mn>0</mn> </mrow> </munder> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>cl</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \bigcap _{\epsilon >0}X_{\epsilon }={\text{cl}}(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c0f510854006987b7645b18448d6a9883e023e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.714ex; height:3.009ex;" alt="{\textstyle \bigcap _{\epsilon >0}X_{\epsilon }={\text{cl}}(X)}"></span>, so that if <i>X</i> is compact, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lim _{\epsilon \to 0}\mu (X_{\epsilon })=\mu (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lim _{\epsilon \to 0}\mu (X_{\epsilon })=\mu (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfe0e1d7b7d560a72c74f1bf26a94454d70170c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.306ex; height:2.843ex;" alt="{\textstyle \lim _{\epsilon \to 0}\mu (X_{\epsilon })=\mu (X)}"></span>. By using associativity and commutativity of Minkowski sum, along with the previous case, we can calculate that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu ((A+B)_{2\epsilon })^{1/n}=\mu (A_{\epsilon }+B_{\epsilon })^{1/n}\geq \mu (A_{\epsilon })^{1/n}+\mu (B_{\epsilon })^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu ((A+B)_{2\epsilon })^{1/n}=\mu (A_{\epsilon }+B_{\epsilon })^{1/n}\geq \mu (A_{\epsilon })^{1/n}+\mu (B_{\epsilon })^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60ae196d9d42a5ac1a4d286534b63f052a95c8d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.664ex; height:3.176ex;" alt="{\textstyle \mu ((A+B)_{2\epsilon })^{1/n}=\mu (A_{\epsilon }+B_{\epsilon })^{1/n}\geq \mu (A_{\epsilon })^{1/n}+\mu (B_{\epsilon })^{1/n}}"></span>. Sending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab4aaaaf4e9f050f445d2ad1518d9012ef5a24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\textstyle \epsilon }"></span> to <i>0</i> establishes the result. </p> <ul><li>The case of bounded measurable sets:</li></ul> <p>Recall that by the <a href="/wiki/Regularity_theorem_for_Lebesgue_measure" class="mw-redirect" title="Regularity theorem for Lebesgue measure">regularity theorem for Lebesgue measure</a> for any bounded measurable set <i>X,</i> and for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k>\geq }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> <mo>>≥<!-- ≥ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k>\geq }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b87044e2f24e7c91496128a41a155373068720fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.473ex; height:2.343ex;" alt="{\textstyle k>\geq }"></span>, there is a compact set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X_{k}\subseteq X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>⊆<!-- ⊆ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X_{k}\subseteq X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89668a98557e7ff1d72616c66dcae74d40e80b38" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.091ex; height:2.509ex;" alt="{\textstyle X_{k}\subseteq X}"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (X\setminus X_{k})<1/k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo><</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (X\setminus X_{k})<1/k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9841046473eacc89caed3b332deff481bddfc44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.033ex; height:2.843ex;" alt="{\textstyle \mu (X\setminus X_{k})<1/k}"></span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq \mu (A_{k}+B_{k})\geq (\mu (A_{k})^{1/n}+\mu (B_{k})^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq \mu (A_{k}+B_{k})\geq (\mu (A_{k})^{1/n}+\mu (B_{k})^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cde63e4965b26137f8d4f0998afe5c390266ef0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.191ex; height:3.176ex;" alt="{\textstyle \mu (A+B)\geq \mu (A_{k}+B_{k})\geq (\mu (A_{k})^{1/n}+\mu (B_{k})^{1/n})^{n}}"></span> for all <i>k,</i> using the case of Brunn–Minkowski shown for compact sets. Sending <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle k\to \infty }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>k</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle k\to \infty }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ad397bfad8d775b7dd49ada6825db879d66d917" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.149ex; height:2.176ex;" alt="{\textstyle k\to \infty }"></span> establishes the result. </p> <ul><li>The case of measurable sets:</li></ul> <p>We let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A_{k}=[-k,k]^{n}\cap A,B_{k}=[-k,k]^{n}\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">[</mo> <mo>−<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>∩<!-- ∩ --></mo> <mi>A</mi> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">[</mo> <mo>−<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>∩<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A_{k}=[-k,k]^{n}\cap A,B_{k}=[-k,k]^{n}\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0a7eaced8919ba29181d0f1e5c18e8cbdc32449" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.141ex; height:2.843ex;" alt="{\textstyle A_{k}=[-k,k]^{n}\cap A,B_{k}=[-k,k]^{n}\cap B}"></span>, and again argue using the previous case that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq \mu (A_{k}+B_{k})\geq (\mu (A_{k})^{1/n}+\mu (B_{k})^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq \mu (A_{k}+B_{k})\geq (\mu (A_{k})^{1/n}+\mu (B_{k})^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9cde63e4965b26137f8d4f0998afe5c390266ef0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.191ex; height:3.176ex;" alt="{\textstyle \mu (A+B)\geq \mu (A_{k}+B_{k})\geq (\mu (A_{k})^{1/n}+\mu (B_{k})^{1/n})^{n}}"></span>, hence the result follows by sending k to infinity. </p> </td></tr></tbody></table></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1256386598"> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Proof as a corollary of the Prékopa–Leindler inequality</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p>We give a proof of the Brunn–Minkowski inequality as a corollary to the <a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a>, a functional version of the BM inequality. We will first prove PL, and then show that PL implies a multiplicative version of BM, then show that multiplicative BM implies additive BM. The argument here is simpler than the proof via cuboids, in particular, we only need to prove the BM inequality in one dimensions. This happens because the more general statement of the PL-inequality than the BM-inequality allows for an induction argument. </p> <ul><li>The multiplicative form of the BM inequality</li></ul> <p>First, the Brunn–Minkowski inequality implies a multiplicative version, using the inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>≥<!-- ≥ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e985908b33db178afc6a567110945659c2500ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.818ex; height:3.009ex;" alt="{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{\lambda }}"></span>, which holds for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x,y\geq 0,\lambda \in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> <mo>,</mo> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x,y\geq 0,\lambda \in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8185de85a35f0fbf65af316e474feca72a0697c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.662ex; height:2.843ex;" alt="{\textstyle x,y\geq 0,\lambda \in [0,1]}"></span>. In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq (\lambda \mu (A)^{1/n}+(1-\lambda )\mu (B)^{1/n})^{n}\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (\lambda A+(1-\lambda )B)\geq (\lambda \mu (A)^{1/n}+(1-\lambda )\mu (B)^{1/n})^{n}\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e343555c1c4ce13e97f6cf72ea7810f6592c983" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:68.733ex; height:3.176ex;" alt="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq (\lambda \mu (A)^{1/n}+(1-\lambda )\mu (B)^{1/n})^{n}\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"></span>. The Prékopa–Leindler inequality is a functional generalization of this version of Brunn–Minkowski. </p> <ul><li>Prékopa–Leindler inequality</li></ul> <p><b>Theorem (<a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a>)</b>: Fix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda \in (0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda \in (0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebec5a6e0cb7b486aba601de18decdfcb9df7801" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.364ex; height:2.843ex;" alt="{\textstyle \lambda \in (0,1)}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f,g,h:\mathbb {R} ^{n}\to \mathbb {R} _{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo>,</mo> <mi>g</mi> <mo>,</mo> <mi>h</mi> <mo>:</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">→<!-- → --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f,g,h:\mathbb {R} ^{n}\to \mathbb {R} _{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c946b0ad7f0f7174182819d6608be2239d531ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:17.438ex; height:2.676ex;" alt="{\textstyle f,g,h:\mathbb {R} ^{n}\to \mathbb {R} _{+}}"></span> be non-negative, measurable functions satisfying <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h(\lambda x+(1-\lambda )y)\geq f(x)^{\lambda }g(y)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>h</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h(\lambda x+(1-\lambda )y)\geq f(x)^{\lambda }g(y)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0606ed4f2304f0543c6187eb65efbe0e07a7837" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.075ex; height:3.009ex;" alt="{\textstyle h(\lambda x+(1-\lambda )y)\geq f(x)^{\lambda }g(y)^{1-\lambda }}"></span> for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x,y\in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x,y\in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a0931ed7d0d7ede667b60e4f67651106f2171f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.256ex; height:2.676ex;" alt="{\textstyle x,y\in \mathbb {R} ^{n}}"></span>. Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{\mathbb {R} ^{n}}h(x)dx\geq (\int _{\mathbb {R} ^{n}}f(x)dx)^{\lambda }(\int _{\mathbb {R} ^{n}}g(x)dx)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{\mathbb {R} ^{n}}h(x)dx\geq (\int _{\mathbb {R} ^{n}}f(x)dx)^{\lambda }(\int _{\mathbb {R} ^{n}}g(x)dx)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f7415cb32a22a17156d19baa97e384c73237428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.591ex; height:3.176ex;" alt="{\textstyle \int _{\mathbb {R} ^{n}}h(x)dx\geq (\int _{\mathbb {R} ^{n}}f(x)dx)^{\lambda }(\int _{\mathbb {R} ^{n}}g(x)dx)^{1-\lambda }}"></span>. </p><p><b>Proof</b> (Mostly following <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=5YI6wKw2Jdo">this lecture</a>): </p><p>We will need the one dimensional version of BM, namely that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B,A+B\subseteq \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>⊆<!-- ⊆ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B,A+B\subseteq \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a4ab57344db44c570b93086c334b21bc4ce02df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:16.699ex; height:2.509ex;" alt="{\textstyle A,B,A+B\subseteq \mathbb {R} }"></span> are measurable, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq \mu (A)+\mu (B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq \mu (A)+\mu (B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef8d073de57047d399450af0f02954261c514ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.426ex; height:2.843ex;" alt="{\textstyle \mu (A+B)\geq \mu (A)+\mu (B)}"></span>. First, assuming that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eed0fcc476188889967e8225eec6ca3902a28a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\textstyle A,B}"></span> are bounded, we shift <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00eed0fcc476188889967e8225eec6ca3902a28a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.541ex; height:2.509ex;" alt="{\textstyle A,B}"></span> so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A\cap B=\{0\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>∩<!-- ∩ --></mo> <mi>B</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A\cap B=\{0\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d0e3c11d926e877e7256644d7e154462f538aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.676ex; height:2.843ex;" alt="{\textstyle A\cap B=\{0\}}"></span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B\supset A\cup B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo>⊃<!-- ⊃ --></mo> <mi>A</mi> <mo>∪<!-- ∪ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B\supset A\cup B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8accc1973110b2849a26dbbc545511c9601b9a14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:15.536ex; height:2.343ex;" alt="{\textstyle A+B\supset A\cup B}"></span>, whence by almost disjointedness we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq \mu (A)+\mu (B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq \mu (A)+\mu (B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef8d073de57047d399450af0f02954261c514ce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.426ex; height:2.843ex;" alt="{\textstyle \mu (A+B)\geq \mu (A)+\mu (B)}"></span>. We then pass to the unbounded case by filtering with the intervals <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle [-k,k].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">[</mo> <mo>−<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>k</mi> <mo stretchy="false">]</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle [-k,k].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd120a445f006744b89bb15730bdf103decb9c8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.205ex; height:2.843ex;" alt="{\textstyle [-k,k].}"></span> </p><p>We first show the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5300467b7ad341a5e79a0414b0293a43c5c6ddc2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\textstyle n=1}"></span> case of the PL inequality. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L_{h}(t)=\{x:h(x)\geq t\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>:</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>t</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L_{h}(t)=\{x:h(x)\geq t\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11cfe258a844b6bc94658611febf625d12f1c470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.517ex; height:2.843ex;" alt="{\textstyle L_{h}(t)=\{x:h(x)\geq t\}}"></span>. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle L_{h}(t)\supseteq \lambda L_{f}(t)+(1-\lambda )L_{g}(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>⊇<!-- ⊇ --></mo> <mi>λ<!-- λ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle L_{h}(t)\supseteq \lambda L_{f}(t)+(1-\lambda )L_{g}(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/076faad0227ab424645fb52f00e7253325b242a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.494ex; height:3.009ex;" alt="{\textstyle L_{h}(t)\supseteq \lambda L_{f}(t)+(1-\lambda )L_{g}(t)}"></span>. Thus, by the one-dimensional version of Brunn–Minkowski, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (L_{h}(t))\geq \mu (\lambda L_{f}(t)+(1-\lambda )L_{g}(t))\geq \lambda \mu (L_{f}(t))+(1-\lambda )\mu (L_{g}(t))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (L_{h}(t))\geq \mu (\lambda L_{f}(t)+(1-\lambda )L_{g}(t))\geq \lambda \mu (L_{f}(t))+(1-\lambda )\mu (L_{g}(t))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/261768bd2bf9ca4a686bb59605302d467f1c677a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:68.42ex; height:3.009ex;" alt="{\textstyle \mu (L_{h}(t))\geq \mu (\lambda L_{f}(t)+(1-\lambda )L_{g}(t))\geq \lambda \mu (L_{f}(t))+(1-\lambda )\mu (L_{g}(t))}"></span>. We recall that if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0a982c6635ab3b98d9e12d5f5a8533359bcb38a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\textstyle f(x)}"></span> is non-negative, then Fubini's theorem implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{\mathbb {R} }h(x)dx=\int _{t\geq 0}\mu (L_{h}(t))dt}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>d</mi> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{\mathbb {R} }h(x)dx=\int _{t\geq 0}\mu (L_{h}(t))dt}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c24909bb64cf6f7747adf6d40806ec410e71cce3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:28.114ex; height:3.509ex;" alt="{\textstyle \int _{\mathbb {R} }h(x)dx=\int _{t\geq 0}\mu (L_{h}(t))dt}"></span>. Then, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{\mathbb {R} }h(x)dx=\int _{t\geq 0}\mu (L_{h}(t))dt\geq \lambda \int _{t\geq 0}\mu (L_{f}(t))+(1-\lambda )\int _{t\geq 0}\mu (L_{g}(t))=\lambda \int _{\mathbb {R} }f(x)dx+(1-\lambda )\int _{\mathbb {R} }g(x)dx\geq (\int _{\mathbb {R} }f(x)dx)^{\lambda }(\int _{\mathbb {R} }g(x)dx)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>h</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mi>d</mi> <mi>t</mi> <mo>≥<!-- ≥ --></mo> <mi>λ<!-- λ --></mi> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mrow> </msub> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>λ<!-- λ --></mi> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{\mathbb {R} }h(x)dx=\int _{t\geq 0}\mu (L_{h}(t))dt\geq \lambda \int _{t\geq 0}\mu (L_{f}(t))+(1-\lambda )\int _{t\geq 0}\mu (L_{g}(t))=\lambda \int _{\mathbb {R} }f(x)dx+(1-\lambda )\int _{\mathbb {R} }g(x)dx\geq (\int _{\mathbb {R} }f(x)dx)^{\lambda }(\int _{\mathbb {R} }g(x)dx)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/174a731bec4b74eb5747af8beddbbf9407bb064a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:134.79ex; height:3.509ex;" alt="{\textstyle \int _{\mathbb {R} }h(x)dx=\int _{t\geq 0}\mu (L_{h}(t))dt\geq \lambda \int _{t\geq 0}\mu (L_{f}(t))+(1-\lambda )\int _{t\geq 0}\mu (L_{g}(t))=\lambda \int _{\mathbb {R} }f(x)dx+(1-\lambda )\int _{\mathbb {R} }g(x)dx\geq (\int _{\mathbb {R} }f(x)dx)^{\lambda }(\int _{\mathbb {R} }g(x)dx)^{1-\lambda }}"></span>, where in the last step we use the <a href="/wiki/Inequality_of_arithmetic_and_geometric_means#Weighted_AM–GM_inequality" class="mw-redirect" title="Inequality of arithmetic and geometric means">weighted AM–GM inequality</a>, which asserts that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>≥<!-- ≥ --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <msup> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d5258c63607d7b7173f255996815bb116164b90d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.918ex; height:3.009ex;" alt="{\textstyle \lambda x+(1-\lambda )y\geq x^{\lambda }y^{1-\lambda }}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda \in (0,1),x,y\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>,</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda \in (0,1),x,y\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fe21d38e648f35cdba4dec2364d0316ff48e93e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.178ex; height:2.843ex;" alt="{\textstyle \lambda \in (0,1),x,y\geq 0}"></span>. </p><p>Now we prove the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n>1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> <mo>></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n>1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbd744935f8948c3e555428288dc855a867f4a35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.656ex; height:2.176ex;" alt="{\textstyle n>1}"></span> case. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x,y\in \mathbb {R} ^{n-1},\alpha ,\beta \in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x,y\in \mathbb {R} ^{n-1},\alpha ,\beta \in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/407d832e155979c127b9a966bcc609ec666274be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.763ex; height:3.009ex;" alt="{\textstyle x,y\in \mathbb {R} ^{n-1},\alpha ,\beta \in \mathbb {R} }"></span>, we pick <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda \in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>λ<!-- λ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda \in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/941bbebfedd01c1e27c91409dde9b32228f186b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.848ex; height:2.843ex;" alt="{\textstyle \lambda \in [0,1]}"></span> and set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \gamma =\lambda \alpha +(1-\lambda )\beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mi>λ<!-- λ --></mi> <mi>α<!-- α --></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \gamma =\lambda \alpha +(1-\lambda )\beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f21f4e1d2e7fcc7864ba4445cd5bf8d7e1fc58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.543ex; height:2.843ex;" alt="{\textstyle \gamma =\lambda \alpha +(1-\lambda )\beta }"></span>. For any c, we define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h_{c}(x)=h(x,c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h_{c}(x)=h(x,c)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a2c78af27e65bdb6acc2160db78d14b7d8cbe88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.039ex; height:2.843ex;" alt="{\textstyle h_{c}(x)=h(x,c)}"></span>, that is, defining a new function on n-1 variables by setting the last variable to be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d411ca19645ddd4fff0704de95ec770681093bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\textstyle c}"></span>. Applying the hypothesis and doing nothing but formal manipulation of the definitions, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h_{\gamma }(\lambda x+(1-\lambda )y)=h(\lambda x+(1-\lambda )y,\lambda \alpha +(1-\lambda )\beta ))=h(\lambda (x,\alpha )+(1-\lambda )(y,\beta ))\geq f(x,\alpha )^{\lambda }g(y,\beta )^{1-\lambda }=f_{\alpha }(x)^{\lambda }g_{\beta }(y)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo>,</mo> <mi>λ<!-- λ --></mi> <mi>α<!-- α --></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mi>h</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>α<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo>,</mo> <mi>β<!-- β --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> <mo>=</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h_{\gamma }(\lambda x+(1-\lambda )y)=h(\lambda x+(1-\lambda )y,\lambda \alpha +(1-\lambda )\beta ))=h(\lambda (x,\alpha )+(1-\lambda )(y,\beta ))\geq f(x,\alpha )^{\lambda }g(y,\beta )^{1-\lambda }=f_{\alpha }(x)^{\lambda }g_{\beta }(y)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/876ce7abecab8a490aa4c0316812f5ce3c1d80c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:122.295ex; height:3.176ex;" alt="{\textstyle h_{\gamma }(\lambda x+(1-\lambda )y)=h(\lambda x+(1-\lambda )y,\lambda \alpha +(1-\lambda )\beta ))=h(\lambda (x,\alpha )+(1-\lambda )(y,\beta ))\geq f(x,\alpha )^{\lambda }g(y,\beta )^{1-\lambda }=f_{\alpha }(x)^{\lambda }g_{\beta }(y)^{1-\lambda }}"></span>. </p><p>Thus, by the inductive case applied to the functions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h_{\gamma },f_{\alpha },g_{\beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h_{\gamma },f_{\alpha },g_{\beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd04e8f3106744e84173cfd90855f198b03fbfa4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.238ex; height:2.843ex;" alt="{\textstyle h_{\gamma },f_{\alpha },g_{\beta }}"></span>, we obtain <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{\mathbb {R} ^{n-1}}h_{\gamma }(z)dz\geq (\int _{\mathbb {R} ^{n-1}}f_{\alpha }(z)dz)^{\lambda }(\int _{\mathbb {R} ^{n-1}}g_{\beta }(z)dz)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>z</mi> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>α<!-- α --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>β<!-- β --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>z</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{\mathbb {R} ^{n-1}}h_{\gamma }(z)dz\geq (\int _{\mathbb {R} ^{n-1}}f_{\alpha }(z)dz)^{\lambda }(\int _{\mathbb {R} ^{n-1}}g_{\beta }(z)dz)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81c8005438e43ff1d207ec3f788281b4c8376fdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:50.694ex; height:3.176ex;" alt="{\textstyle \int _{\mathbb {R} ^{n-1}}h_{\gamma }(z)dz\geq (\int _{\mathbb {R} ^{n-1}}f_{\alpha }(z)dz)^{\lambda }(\int _{\mathbb {R} ^{n-1}}g_{\beta }(z)dz)^{1-\lambda }}"></span>. We define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H(\gamma ):=\int _{\mathbb {R} ^{n-1}}h_{\gamma }(z)dz}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo>:=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mrow> </msub> <msub> <mi>h</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>γ<!-- γ --></mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H(\gamma ):=\int _{\mathbb {R} ^{n-1}}h_{\gamma }(z)dz}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67996c825b431c9db8080ca92b64207746094b45" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.119ex; height:3.176ex;" alt="{\textstyle H(\gamma ):=\int _{\mathbb {R} ^{n-1}}h_{\gamma }(z)dz}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle F(\alpha ),G(\beta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mo>,</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle F(\alpha ),G(\beta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e312ccc03c63d6b07dbf439467a38cbdee53b83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.04ex; height:2.843ex;" alt="{\textstyle F(\alpha ),G(\beta )}"></span> similarly. In this notation, the previous calculation can be rewritten as: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H(\lambda \alpha +(1-\lambda )\beta )\geq F(\alpha )^{\lambda }G(\beta )^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>H</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>α<!-- α --></mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>G</mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H(\lambda \alpha +(1-\lambda )\beta )\geq F(\alpha )^{\lambda }G(\beta )^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dcbc9e47e06b4882aa2ce3642684f4e057e9eae2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.641ex; height:3.009ex;" alt="{\textstyle H(\lambda \alpha +(1-\lambda )\beta )\geq F(\alpha )^{\lambda }G(\beta )^{1-\lambda }}"></span>. Since we have proven this for any fixed <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha ,\beta \in \mathbb {R} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>∈<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha ,\beta \in \mathbb {R} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39353b46817b8ef89738d1085aaf4d8c4b9e65a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.372ex; height:2.509ex;" alt="{\textstyle \alpha ,\beta \in \mathbb {R} }"></span>, this means that the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H,F,G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>H</mi> <mo>,</mo> <mi>F</mi> <mo>,</mo> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H,F,G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68cd2d2e9d092433e20a1efa6f12e94756fafba9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.699ex; height:2.509ex;" alt="{\textstyle H,F,G}"></span> satisfy the hypothesis for the one dimensional version of the PL theorem. Thus, we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \int _{\mathbb {R} }H(\gamma )d\gamma \geq (\int _{\mathbb {R} }F(\alpha )d\alpha )^{\lambda }(\int _{\mathbb {R} }F(\beta )d\beta )^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>H</mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>γ<!-- γ --></mi> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>F</mi> <mo stretchy="false">(</mo> <mi>α<!-- α --></mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>α<!-- α --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mo stretchy="false">(</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>F</mi> <mo stretchy="false">(</mo> <mi>β<!-- β --></mi> <mo stretchy="false">)</mo> <mi>d</mi> <mi>β<!-- β --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \int _{\mathbb {R} }H(\gamma )d\gamma \geq (\int _{\mathbb {R} }F(\alpha )d\alpha )^{\lambda }(\int _{\mathbb {R} }F(\beta )d\beta )^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f66e1d79ef8fddad232b1b47e30a8b8966ef8658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:42.693ex; height:3.176ex;" alt="{\textstyle \int _{\mathbb {R} }H(\gamma )d\gamma \geq (\int _{\mathbb {R} }F(\alpha )d\alpha )^{\lambda }(\int _{\mathbb {R} }F(\beta )d\beta )^{1-\lambda }}"></span>, implying the claim by Fubini's theorem. QED </p> <ul><li>PL implies multiplicative BM</li></ul> <p>The multiplicative version of Brunn–Minkowski follows from the PL inequality, by taking <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle h=1_{\lambda A+(1-\lambda )B},f=1_{A},g=1_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>h</mi> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> </mrow> </msub> <mo>,</mo> <mi>f</mi> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>,</mo> <mi>g</mi> <mo>=</mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle h=1_{\lambda A+(1-\lambda )B},f=1_{A},g=1_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70a6c2ca48ea27e774750a3d7b5495c579f666a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:30.816ex; height:3.009ex;" alt="{\textstyle h=1_{\lambda A+(1-\lambda )B},f=1_{A},g=1_{B}}"></span>. </p> <ul><li>Multiplicative BM implies Additive BM</li></ul> <p>We now explain how to derive the BM-inequality from the PL-inequality. First, by using the indicator functions for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A,B,\lambda A+(1-\lambda )B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>λ<!-- λ --></mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A,B,\lambda A+(1-\lambda )B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f6ef38b598231fc025c56366dfd59401c8e96e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.445ex; height:2.843ex;" alt="{\textstyle A,B,\lambda A+(1-\lambda )B}"></span> Prékopa–Leindler inequality quickly gives the multiplicative version of Brunn–Minkowski: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>λ<!-- λ --></mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (\lambda A+(1-\lambda )B)\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/397e7786f508fab50b02030093efe591afdf368a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.59ex; height:3.009ex;" alt="{\textstyle \mu (\lambda A+(1-\lambda )B)\geq \mu (A)^{\lambda }\mu (B)^{1-\lambda }}"></span>. We now show how the multiplicative BM-inequality implies the usual, additive version. </p><p>We assume that both <i>A,B</i> have positive volume, as otherwise the inequality is trivial, and normalize them to have volume 1 by setting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A'={\frac {A}{\mu (A)^{1/n}}},B'={\frac {B}{\mu (B)^{1/n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>,</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>B</mi> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A'={\frac {A}{\mu (A)^{1/n}}},B'={\frac {B}{\mu (B)^{1/n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d23d2163a29b3815f510a1d5f180f33f79e40ff5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.4ex; height:4.843ex;" alt="{\textstyle A'={\frac {A}{\mu (A)^{1/n}}},B'={\frac {B}{\mu (B)^{1/n}}}}"></span>. We define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \lambda '={\frac {\lambda \mu (B)^{1/n}}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \lambda '={\frac {\lambda \mu (B)^{1/n}}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dbae0af0004f900a6b2a94329dd1c51cb45622d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:24.17ex; height:5.676ex;" alt="{\textstyle \lambda '={\frac {\lambda \mu (B)^{1/n}}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}}}"></span>; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 1-\lambda '={\frac {(1-\lambda )\mu (A)^{1/n}}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 1-\lambda '={\frac {(1-\lambda )\mu (A)^{1/n}}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47d381835f5ece1f43879b59ea54ff2ba479dc69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.172ex; height:5.676ex;" alt="{\textstyle 1-\lambda '={\frac {(1-\lambda )\mu (A)^{1/n}}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}}}"></span>. With these definitions, and using that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A')=\mu (B')=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A')=\mu (B')=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee8483299fa405105c4f59f86bf95ebffbcdb3c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.658ex; height:2.843ex;" alt="{\textstyle \mu (A')=\mu (B')=1}"></span>, we calculate using the multiplicative Brunn–Minkowski inequality that: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ({\frac {(1-\lambda )A+\lambda B}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}})=\mu ((1-\lambda ')A'+\lambda 'B)\geq \mu (A')^{1-\lambda '}\mu (B')^{\lambda '}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>A</mi> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>B</mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>λ<!-- λ --></mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mo stretchy="false">)</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <mo>+</mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>A</mi> <mo>′</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msup> <mi>B</mi> <mo>′</mo> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>λ<!-- λ --></mi> <mo>′</mo> </msup> </mrow> </msup> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ({\frac {(1-\lambda )A+\lambda B}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}})=\mu ((1-\lambda ')A'+\lambda 'B)\geq \mu (A')^{1-\lambda '}\mu (B')^{\lambda '}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88404cac0db14435d7bdc0081a974279cd39187b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:79.147ex; height:6.676ex;" alt="{\displaystyle \mu ({\frac {(1-\lambda )A+\lambda B}{(1-\lambda )\mu (A)^{1/n}+\lambda \mu (B)^{1/n}}})=\mu ((1-\lambda ')A'+\lambda 'B)\geq \mu (A')^{1-\lambda '}\mu (B')^{\lambda '}=1.}"></span></dd></dl> <p>The additive form of Brunn–Minkowski now follows by pulling the scaling out of the leftmost volume calculation and rearranging. </p> </td></tr></tbody></table></div> <div class="mw-heading mw-heading2"><h2 id="Important_corollaries">Important corollaries</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=7" title="Edit section: Important corollaries"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Brunn–Minkowski inequality gives much insight into the geometry of high dimensional convex bodies. In this section we sketch a few of those insights. </p> <div class="mw-heading mw-heading3"><h3 id="Concavity_of_the_radius_function_(Brunn's_theorem)"><span id="Concavity_of_the_radius_function_.28Brunn.27s_theorem.29"></span>Concavity of the radius function (Brunn's theorem)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=8" title="Edit section: Concavity of the radius function (Brunn's theorem)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Consider a convex body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K\subseteq \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo>⊆<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K\subseteq \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5b3769e6eb0babf9ec230696de34d779260263" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.061ex; height:2.509ex;" alt="{\textstyle K\subseteq \mathbb {R} ^{n}}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K(x)=K\cap \{x_{1}=x\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>K</mi> <mo>∩<!-- ∩ --></mo> <mo fence="false" stretchy="false">{</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K(x)=K\cap \{x_{1}=x\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3829cbb345e094debc123d501f0c7601e8a88e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.089ex; height:2.843ex;" alt="{\textstyle K(x)=K\cap \{x_{1}=x\}}"></span> be vertical slices of <i>K.</i> Define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle r(x)=\mu (K(x))^{\frac {1}{n-1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle r(x)=\mu (K(x))^{\frac {1}{n-1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c942422014fe00067fb0d65e5f91be9461e51c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.276ex; height:4.176ex;" alt="{\textstyle r(x)=\mu (K(x))^{\frac {1}{n-1}}}"></span> to be the radius function; if the slices of K are discs, then <i>r(x)</i> gives the radius of the disc <i>K(x)</i>, up to a constant. For more general bodies this <i>radius</i> function does not appear to have a completely clear geometric interpretation beyond being the radius of the disc obtained by packing the volume of the slice as close to the origin as possible; in the case when <i>K(x)</i> is not a disc, the example of a hypercube shows that the average distance to the center of mass can be much larger than <i>r(x).</i> Sometimes in the context of a convex geometry, the radius function has a different meaning, here we follow the terminology of <a rel="nofollow" class="external text" href="https://www.youtube.com/watch?v=UHvT1MxFuvo">this lecture</a>. </p><p>By convexity of <i>K,</i> we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K(\lambda x+(1-\lambda )y)\supseteq \lambda K(x)+(1-\lambda )K(y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>⊇<!-- ⊇ --></mo> <mi>λ<!-- λ --></mi> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K(\lambda x+(1-\lambda )y)\supseteq \lambda K(x)+(1-\lambda )K(y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/859eb210d9ff7d8612a5f71d8e38cf126163f437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.421ex; height:2.843ex;" alt="{\textstyle K(\lambda x+(1-\lambda )y)\supseteq \lambda K(x)+(1-\lambda )K(y)}"></span>. Applying the Brunn–Minkowski inequality gives <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle r(K(\lambda x+(1-\lambda )y))\geq \lambda r(K(x))+(1-\lambda )r(K(y))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>λ<!-- λ --></mi> <mi>x</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>λ<!-- λ --></mi> <mi>r</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle r(K(\lambda x+(1-\lambda )y))\geq \lambda r(K(x))+(1-\lambda )r(K(y))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1d11d116000978c126c87c2da209504869a44792" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:50.994ex; height:2.843ex;" alt="{\textstyle r(K(\lambda x+(1-\lambda )y))\geq \lambda r(K(x))+(1-\lambda )r(K(y))}"></span>, provided <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K(x)\not =\emptyset ,K(y)\not =\emptyset }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>≠</mo> <mi mathvariant="normal">∅<!-- ∅ --></mi> <mo>,</mo> <mi>K</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>≠</mo> <mi mathvariant="normal">∅<!-- ∅ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K(x)\not =\emptyset ,K(y)\not =\emptyset }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c08b6d0f5ede544ff488bc87008076d6ed5d27be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.791ex; height:2.843ex;" alt="{\textstyle K(x)\not =\emptyset ,K(y)\not =\emptyset }"></span>. This shows that the <i>radius</i> function is concave on its support, matching the intuition that a convex body does not dip into itself along any direction. This result is sometimes known as Brunn's theorem. </p> <div class="mw-heading mw-heading3"><h3 id="Brunn–Minkowski_symmetrization_of_a_convex_body"><span id="Brunn.E2.80.93Minkowski_symmetrization_of_a_convex_body"></span>Brunn–Minkowski symmetrization of a convex body</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=9" title="Edit section: Brunn–Minkowski symmetrization of a convex body"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Again consider a convex body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985dcc2532a2d4d91b9a9610139216c63cf832d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\textstyle K}"></span>. Fix some line <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a272396a098706dc62adc4bb977a8cc79739021f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\textstyle l}"></span> and for each <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle t\in l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle t\in l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6fe90c0117dfec7313b111747dcba31dba1097f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.374ex; height:2.176ex;" alt="{\textstyle t\in l}"></span> let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c651db85d37cebe505145e5a46fee29f2a27a9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.757ex; height:2.509ex;" alt="{\textstyle H_{t}}"></span> denote the affine hyperplane orthogonal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a272396a098706dc62adc4bb977a8cc79739021f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\textstyle l}"></span> that passes through <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2bc926f90178739fccd01a96c6fa778ab3535d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.84ex; height:2.009ex;" alt="{\textstyle t}"></span>. Define, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle r(t)=Vol(K\cap H_{t})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>r</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>V</mi> <mi>o</mi> <mi>l</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>∩<!-- ∩ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle r(t)=Vol(K\cap H_{t})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e48c6a3701db7b91275d867cee4aa132fcf0699b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.619ex; height:2.843ex;" alt="{\textstyle r(t)=Vol(K\cap H_{t})}"></span>; as discussed in the previous section, this function is concave. Now, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K'=\bigcup _{t\in l,K\cap H_{t}\not =\emptyset }B(t,r(t))\cap H_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>K</mi> <mo>′</mo> </msup> <mo>=</mo> <munder> <mo>⋃<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mi>l</mi> <mo>,</mo> <mi>K</mi> <mo>∩<!-- ∩ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>≠</mo> <mi mathvariant="normal">∅<!-- ∅ --></mi> </mrow> </munder> <mi>B</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>r</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>∩<!-- ∩ --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K'=\bigcup _{t\in l,K\cap H_{t}\not =\emptyset }B(t,r(t))\cap H_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a152da8ed909c02c13012ebb76a0f54235d62f73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:32.224ex; height:3.343ex;" alt="{\textstyle K'=\bigcup _{t\in l,K\cap H_{t}\not =\emptyset }B(t,r(t))\cap H_{t}}"></span>. That is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>K</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa8ff2d8a55f99b2737106bd2095ac2374cdc382" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.779ex; height:2.343ex;" alt="{\textstyle K'}"></span> is obtained from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985dcc2532a2d4d91b9a9610139216c63cf832d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\textstyle K}"></span> by replacing each slice <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H_{t}\cap K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H_{t}\cap K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b15c2721b206aa9934d8914b6d3eeb1f7acdb888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.406ex; height:2.509ex;" alt="{\textstyle H_{t}\cap K}"></span> with a disc of the same <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (n-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (n-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05832b1a81243aa574ab60759adf209666f24651" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.207ex; height:2.843ex;" alt="{\textstyle (n-1)}"></span>-dimensional volume centered <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a272396a098706dc62adc4bb977a8cc79739021f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.693ex; height:2.176ex;" alt="{\textstyle l}"></span> inside of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H_{t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H_{t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c651db85d37cebe505145e5a46fee29f2a27a9db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.757ex; height:2.509ex;" alt="{\textstyle H_{t}}"></span>. The concavity of the radius function defined in the previous section implies that that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K'}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>K</mi> <mo>′</mo> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K'}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa8ff2d8a55f99b2737106bd2095ac2374cdc382" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.779ex; height:2.343ex;" alt="{\textstyle K'}"></span> is convex. This construction is called the Brunn–Minkowski symmetrization. </p> <div class="mw-heading mw-heading3"><h3 id="Grunbaum's_theorem"><span id="Grunbaum.27s_theorem"></span>Grunbaum's theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=10" title="Edit section: Grunbaum's theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><b>Theorem</b> (Grunbaum's theorem):<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> Consider a convex body <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K\subseteq \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo>⊆<!-- ⊆ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K\subseteq \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a5b3769e6eb0babf9ec230696de34d779260263" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.061ex; height:2.509ex;" alt="{\textstyle K\subseteq \mathbb {R} ^{n}}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2435ce1b360a5f6f5a0ab5acbb3c672bf229dac7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\textstyle H}"></span> be any half-space containing the center of mass of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985dcc2532a2d4d91b9a9610139216c63cf832d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\textstyle K}"></span>; that is, the expected location of a uniform point sampled from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81a4dab61952d4c7f61fc3c96bba76c5bd8297c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.713ex; height:2.176ex;" alt="{\textstyle K.}"></span> Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (H\cap K)\geq ({\frac {n}{n+1}})^{n}\mu (K)\geq {\frac {1}{e}}\mu (K)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>H</mi> <mo>∩<!-- ∩ --></mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>e</mi> </mfrac> </mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (H\cap K)\geq ({\frac {n}{n+1}})^{n}\mu (K)\geq {\frac {1}{e}}\mu (K)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5692a472ecea7e9fbf531c8c7e6f8d68557d729f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:35.283ex; height:3.676ex;" alt="{\textstyle \mu (H\cap K)\geq ({\frac {n}{n+1}})^{n}\mu (K)\geq {\frac {1}{e}}\mu (K)}"></span>. </p><p>Grunbaum's theorem can be proven using Brunn–Minkowski inequality, specifically the convexity of the Brunn–Minkowski symmetrization.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p><p>Grunbaum's inequality has the following <a href="/wiki/Fair_cake-cutting" title="Fair cake-cutting">fair cake cutting</a> interpretation. Suppose two players are playing a game of cutting up an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span> dimensional, convex cake. Player 1 chooses a point in the cake, and player two chooses a hyperplane to cut the cake along. Player 1 then receives the cut of the cake containing his point. Grunbaum's theorem implies that if player 1 chooses the center of mass, then the worst that an adversarial player 2 can do is give him a piece of cake with volume at least a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 1/e}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>e</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 1/e}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbb84ec864a0eafee202d8bb7e94cf4bcdf35b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.408ex; height:2.843ex;" alt="{\textstyle 1/e}"></span> fraction of the total. In dimensions 2 and 3, the most common dimensions for cakes, the bounds given by the theorem are approximately <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle .444,.42}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>.444</mn> <mo>,</mo> <mn>.42</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle .444,.42}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43fce708bc2aa3117ba501d2fcb81adb355e7640" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.14ex; height:2.509ex;" alt="{\textstyle .444,.42}"></span> respectively. Note, however, that in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc6e1f880981346a604257ebcacdef24c0aca2d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\textstyle n}"></span> dimensions, calculating the centroid is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \#P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">#<!-- # --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \#P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53c75fd4f26fd056dcf8056cfeb3621df490fc3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.681ex; height:2.509ex;" alt="{\textstyle \#P}"></span> hard,<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> limiting the usefulness of this cake cutting strategy for higher dimensional, but computationally bounded creatures. </p><p>Applications of Grunbaum's theorem also appear in convex optimization, specifically in analyzing the converge of the center of gravity method.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Isoperimetric_inequality">Isoperimetric inequality</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=11" title="Edit section: Isoperimetric inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B=B(0,1)=\{x\in \mathbb {R} ^{n}:||x||_{2}\leq 1\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>≤<!-- ≤ --></mo> <mn>1</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B=B(0,1)=\{x\in \mathbb {R} ^{n}:||x||_{2}\leq 1\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/017ac0bd193dba91614ca48dcca3de4e307e2d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:35.454ex; height:2.843ex;" alt="{\textstyle B=B(0,1)=\{x\in \mathbb {R} ^{n}:||x||_{2}\leq 1\}}"></span> denote the unit ball. For a convex body, <i>K</i>, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle S(K)=\lim _{\epsilon \to 0}{\frac {\mu (K+\epsilon B)-\mu (K)}{\epsilon }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> <mi>ϵ<!-- ϵ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle S(K)=\lim _{\epsilon \to 0}{\frac {\mu (K+\epsilon B)-\mu (K)}{\epsilon }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e92121320eecd27dcfe2df0bc3452f382aa5b63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.225ex; height:4.009ex;" alt="{\textstyle S(K)=\lim _{\epsilon \to 0}{\frac {\mu (K+\epsilon B)-\mu (K)}{\epsilon }}}"></span> define its surface area. This agrees with the usual meaning of surface area by the <a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski-Steiner formula</a>. Consider the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle c(X)={\frac {\mu (K)^{1/n}}{S(K)^{1/(n-1)}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle c(X)={\frac {\mu (K)^{1/n}}{S(K)^{1/(n-1)}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65d3e3b0c1ba4e079b49e2a00243a6318d12360a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.575ex; height:5.676ex;" alt="{\textstyle c(X)={\frac {\mu (K)^{1/n}}{S(K)^{1/(n-1)}}}}"></span>. The isoperimetric inequality states that this is maximized on Euclidean balls. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1256386598"> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Proof of isoperimetric inequality via Brunn–Minkowski</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p>First, observe that Brunn–Minkowski implies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (K+\epsilon B)\geq (\mu (K)^{1/n}+\epsilon V(B)^{1/n})^{n}=\mu (K)(1+\epsilon ({\frac {\mu (B)}{\mu (K)}})^{1/n})^{n}\geq \mu (K)(1+n\epsilon ({\frac {\mu (B)}{\mu (K)}})^{1/n}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>n</mi> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (K+\epsilon B)\geq (\mu (K)^{1/n}+\epsilon V(B)^{1/n})^{n}=\mu (K)(1+\epsilon ({\frac {\mu (B)}{\mu (K)}})^{1/n})^{n}\geq \mu (K)(1+n\epsilon ({\frac {\mu (B)}{\mu (K)}})^{1/n}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65c943bebc7abe519de9c8ed6dafa582f0f750b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:89.1ex; height:4.843ex;" alt="{\textstyle \mu (K+\epsilon B)\geq (\mu (K)^{1/n}+\epsilon V(B)^{1/n})^{n}=\mu (K)(1+\epsilon ({\frac {\mu (B)}{\mu (K)}})^{1/n})^{n}\geq \mu (K)(1+n\epsilon ({\frac {\mu (B)}{\mu (K)}})^{1/n}),}"></span> where in the last inequality we used that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (1+x)^{n}\geq 1+nx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mo>+</mo> <mi>n</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (1+x)^{n}\geq 1+nx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e8fc2ae8aafc47beb9ac3b997bb4822756048a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.186ex; height:2.843ex;" alt="{\textstyle (1+x)^{n}\geq 1+nx}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c434fc1e2ab777786469de853c75e616007b3eb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.591ex; height:2.343ex;" alt="{\textstyle x\geq 0}"></span>. We use this calculation to lower bound the surface area of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/985dcc2532a2d4d91b9a9610139216c63cf832d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\textstyle K}"></span> via <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle S(K)=\lim _{\epsilon \to 0}{\frac {\mu (K+\epsilon B)-\mu (K)}{\epsilon }}\geq n\mu (K)({\frac {\mu (B)}{\mu (K)}})^{1/n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> <mo stretchy="false">→<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>ϵ<!-- ϵ --></mi> <mi>B</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> <mi>ϵ<!-- ϵ --></mi> </mfrac> </mrow> <mo>≥<!-- ≥ --></mo> <mi>n</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle S(K)=\lim _{\epsilon \to 0}{\frac {\mu (K+\epsilon B)-\mu (K)}{\epsilon }}\geq n\mu (K)({\frac {\mu (B)}{\mu (K)}})^{1/n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d7511ad9448cb7ae1e1cae9a54f420452a50038" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:47.882ex; height:4.843ex;" alt="{\textstyle S(K)=\lim _{\epsilon \to 0}{\frac {\mu (K+\epsilon B)-\mu (K)}{\epsilon }}\geq n\mu (K)({\frac {\mu (B)}{\mu (K)}})^{1/n}.}"></span> Next, we use the fact that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle S(B)=n\mu (B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle S(B)=n\mu (B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1266bf7cd1ed89afe2f559b28cac214d677a7d75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.541ex; height:2.843ex;" alt="{\textstyle S(B)=n\mu (B)}"></span>, which follows from the <a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski-Steiner formula</a>, to calculate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {S(K)}{S(B)}}={\frac {S(K)}{n\mu (B)}}\geq {\frac {\mu (K)({\frac {\mu (B)}{\mu (K)}})^{1/n}}{\mu (B)}}=\mu (K)^{\frac {n-1}{n}}\mu (B)^{\frac {1-n}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {S(K)}{S(B)}}={\frac {S(K)}{n\mu (B)}}\geq {\frac {\mu (K)({\frac {\mu (B)}{\mu (K)}})^{1/n}}{\mu (B)}}=\mu (K)^{\frac {n-1}{n}}\mu (B)^{\frac {1-n}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6259befae6fd71e59ac8a56e037315a628000a8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:49.331ex; height:6.676ex;" alt="{\textstyle {\frac {S(K)}{S(B)}}={\frac {S(K)}{n\mu (B)}}\geq {\frac {\mu (K)({\frac {\mu (B)}{\mu (K)}})^{1/n}}{\mu (B)}}=\mu (K)^{\frac {n-1}{n}}\mu (B)^{\frac {1-n}{n}}.}"></span> Rearranging this yields the isoperimetric inequality: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\mu (B)^{1/n}}{S(B)^{1/(n-1)}}}\geq {\frac {\mu (K)^{1/n}}{S(K)^{1/(n-1)}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\mu (B)^{1/n}}{S(B)^{1/(n-1)}}}\geq {\frac {\mu (K)^{1/n}}{S(K)^{1/(n-1)}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b70f37a7b1f2e5444e875a4c9d482e1504515bb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:22.892ex; height:5.676ex;" alt="{\textstyle {\frac {\mu (B)^{1/n}}{S(B)^{1/(n-1)}}}\geq {\frac {\mu (K)^{1/n}}{S(K)^{1/(n-1)}}}.}"></span> </p> </td></tr></tbody></table></div> <div class="mw-heading mw-heading3"><h3 id="Applications_to_inequalities_between_mixed_volumes">Applications to inequalities between mixed volumes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=12" title="Edit section: Applications to inequalities between mixed volumes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Brunn–Minkowski inequality can be used to deduce the following inequality <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle V(K,\ldots ,K,L)^{n}\geq V(K)^{n-1}V(L)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> <mi>L</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>V</mi> <mo stretchy="false">(</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle V(K,\ldots ,K,L)^{n}\geq V(K)^{n-1}V(L)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22689a3c3063602cab3db422ebe2f50e61c3a0b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.001ex; height:3.009ex;" alt="{\textstyle V(K,\ldots ,K,L)^{n}\geq V(K)^{n-1}V(L)}"></span>, where the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle V(K,\ldots ,K,L)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle V(K,\ldots ,K,L)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80c9e4af07afbafb5fbeadc658ae6b98beeda3da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.523ex; height:2.843ex;" alt="{\textstyle V(K,\ldots ,K,L)}"></span> term is a <a href="/wiki/Mixed_volume" title="Mixed volume">mixed-volume</a>. Equality holds if and only if <i>K,L</i> are homothetic. (See theorem 3.4.3 in Hug and Weil's course on convex geometry.) </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1256386598"> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Proof</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p>We recall the following facts about <a href="/wiki/Mixed_volume" title="Mixed volume">mixed volumes</a> : <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (\lambda _{1}K_{1}+\lambda _{2}K_{2})=\sum _{j_{1},\ldots ,j_{n}=1}^{r}V(K_{j_{1}},\ldots ,V(K_{j_{n}})\lambda _{j_{1}}\ldots \lambda _{j_{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munderover> <mi>V</mi> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>V</mi> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>…<!-- … --></mo> <msub> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (\lambda _{1}K_{1}+\lambda _{2}K_{2})=\sum _{j_{1},\ldots ,j_{n}=1}^{r}V(K_{j_{1}},\ldots ,V(K_{j_{n}})\lambda _{j_{1}}\ldots \lambda _{j_{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ba39a715a548649a6c95b181a44e17ed874d766" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:60.041ex; height:3.509ex;" alt="{\textstyle \mu (\lambda _{1}K_{1}+\lambda _{2}K_{2})=\sum _{j_{1},\ldots ,j_{n}=1}^{r}V(K_{j_{1}},\ldots ,V(K_{j_{n}})\lambda _{j_{1}}\ldots \lambda _{j_{n}}}"></span>, so that in particular if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle g(t)=\mu (K+tL)=\mu (V)+nV(K,\ldots ,K,L)t+\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>t</mi> <mi>L</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>n</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> <mi>L</mi> <mo stretchy="false">)</mo> <mi>t</mi> <mo>+</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle g(t)=\mu (K+tL)=\mu (V)+nV(K,\ldots ,K,L)t+\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2559e41cac2bdf70a5ed67f3cf131a3ea328ed5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:51.662ex; height:2.843ex;" alt="{\textstyle g(t)=\mu (K+tL)=\mu (V)+nV(K,\ldots ,K,L)t+\ldots }"></span>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle g'(0)=nV(K,\ldots ,K,L)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>n</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle g'(0)=nV(K,\ldots ,K,L)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d35908cbbdb5cb970d672dbf1f7b526851d056f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.791ex; height:2.843ex;" alt="{\textstyle g'(0)=nV(K,\ldots ,K,L)}"></span>. </p><p>Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f(t):=\mu (K+tL)^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>:=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>t</mi> <mi>L</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f(t):=\mu (K+tL)^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f61fb2056dc5dd2d202b48cf3ed4add24f623be8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.075ex; height:3.176ex;" alt="{\textstyle f(t):=\mu (K+tL)^{1/n}}"></span>. Brunn's theorem implies that this is concave for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle t\in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>t</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle t\in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ade07f7bfe79a6af8441146cd24da8dacd8641" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.333ex; height:2.843ex;" alt="{\textstyle t\in [0,1]}"></span>. Thus, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f^{+}(0)\geq f(1)-f(0)=\mu (K+L)^{1/n}-V(K)^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>L</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f^{+}(0)\geq f(1)-f(0)=\mu (K+L)^{1/n}-V(K)^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82b0ebf08878ceb8842eb386b57e3af2757a6594" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:47.269ex; height:3.176ex;" alt="{\textstyle f^{+}(0)\geq f(1)-f(0)=\mu (K+L)^{1/n}-V(K)^{1/n}}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f^{+}(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f^{+}(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cafb26b0d776a8583a848e5489ad0711440d648e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.803ex; height:2.843ex;" alt="{\textstyle f^{+}(0)}"></span> denotes the right derivative. We also have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle f^{+}(0)={\frac {1}{n}}\mu (K)^{\frac {n-1}{n}}nV(K,\ldots ,K,L)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </msup> <mi>n</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> <mi>L</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle f^{+}(0)={\frac {1}{n}}\mu (K)^{\frac {n-1}{n}}nV(K,\ldots ,K,L)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4688aa7098cabdfffc0dafe34408716e885514a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:36.493ex; height:4.009ex;" alt="{\textstyle f^{+}(0)={\frac {1}{n}}\mu (K)^{\frac {n-1}{n}}nV(K,\ldots ,K,L)}"></span>. From this we get <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (K)^{\frac {n-1}{n}}V(K,\ldots ,K,L)\geq \mu (K+L)^{1/n}-V(K)^{1/n}\geq V(L)^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </msup> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>K</mi> <mo>,</mo> <mi>L</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>+</mo> <mi>L</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>K</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>L</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (K)^{\frac {n-1}{n}}V(K,\ldots ,K,L)\geq \mu (K+L)^{1/n}-V(K)^{1/n}\geq V(L)^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e651727be80aff80d9bd4b4aab020f9922d14472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:62.541ex; height:3.843ex;" alt="{\textstyle \mu (K)^{\frac {n-1}{n}}V(K,\ldots ,K,L)\geq \mu (K+L)^{1/n}-V(K)^{1/n}\geq V(L)^{1/n}}"></span>, where we applied BM in the last inequality. </p> </td></tr></tbody></table></div> <div class="mw-heading mw-heading3"><h3 id="Concentration_of_measure_on_the_sphere_and_other_strictly_convex_surfaces">Concentration of measure on the sphere and other strictly convex surfaces</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=13" title="Edit section: Concentration of measure on the sphere and other strictly convex surfaces"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>We prove the following theorem on concentration of measure, following <a rel="nofollow" class="external text" href="http://www.math.lsa.umich.edu/~barvinok/total710.pdf">notes by Barvinok</a> and <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/~lapchi/cs798/L20.pdf">notes by Lap Chi Lau</a>. See also <a href="/wiki/Concentration_of_measure#Concentration_on_the_sphere" title="Concentration of measure">Concentration of measure#Concentration on the sphere</a>. </p><p><b>Theorem</b>: Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e10a3c52d186162ec8910ebc0288ce982aef842f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\textstyle S}"></span> be the unit sphere in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e1074bd1044378dfcd4ac6c958d9969e164e0ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\textstyle \mathbb {R} ^{n}}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X\subseteq S}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>X</mi> <mo>⊆<!-- ⊆ --></mo> <mi>S</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X\subseteq S}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e388464bdf0f9e5f9a4c586f14f7181a8fd7441" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.578ex; height:2.343ex;" alt="{\textstyle X\subseteq S}"></span>. Define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle X_{\epsilon }=\{z\in S:d(z,X)\leq \epsilon \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>z</mi> <mo>∈<!-- ∈ --></mo> <mi>S</mi> <mo>:</mo> <mi>d</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo>,</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mi>ϵ<!-- ϵ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle X_{\epsilon }=\{z\in S:d(z,X)\leq \epsilon \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54d8d94e36004a6818f9cd3e627e646d8667c69b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.783ex; height:2.843ex;" alt="{\textstyle X_{\epsilon }=\{z\in S:d(z,X)\leq \epsilon \}}"></span>, where d refers to the Euclidean distance in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e1074bd1044378dfcd4ac6c958d9969e164e0ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.897ex; height:2.343ex;" alt="{\textstyle \mathbb {R} ^{n}}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ν<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9518d669addb0cc614b524a4a5753a69b6f1b9e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\textstyle \nu }"></span> denote the surface area on the sphere. Then, for any <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon \in (0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon \in (0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/614eea23a7941d5c97cc0cb55241f2be685d1b26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.695ex; height:2.843ex;" alt="{\textstyle \epsilon \in (0,1]}"></span> we have that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {\nu (X_{\epsilon })}{\nu (S)}}\geq 1-{\frac {\nu (S)}{\nu (X)}}e^{-{\frac {n\epsilon ^{2}}{4}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>≥<!-- ≥ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>4</mn> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {\nu (X_{\epsilon })}{\nu (S)}}\geq 1-{\frac {\nu (S)}{\nu (X)}}e^{-{\frac {n\epsilon ^{2}}{4}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61abb47b6918c167a77e2acbfb12affec107fd3c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:22.116ex; height:5.509ex;" alt="{\textstyle {\frac {\nu (X_{\epsilon })}{\nu (S)}}\geq 1-{\frac {\nu (S)}{\nu (X)}}e^{-{\frac {n\epsilon ^{2}}{4}}}}"></span>. </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1256386598"> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Proof</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p><b>Proof:</b> Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \delta =\epsilon ^{2}/8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>δ<!-- δ --></mi> <mo>=</mo> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \delta =\epsilon ^{2}/8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ee6c739ce08dd03fcff4c577a63ab797b80a279" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.47ex; height:3.009ex;" alt="{\textstyle \delta =\epsilon ^{2}/8}"></span>, and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Y=S\setminus X_{\epsilon }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>S</mi> <mo class="MJX-variant">∖<!-- ∖ --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Y=S\setminus X_{\epsilon }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/538e94c639761e51dc3beafee54aff19cd67287e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.39ex; height:2.843ex;" alt="{\textstyle Y=S\setminus X_{\epsilon }}"></span>. Then, for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\in X,y\in Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\in X,y\in Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/77f7bd66a990b37ddfea551d1f6b27d62de33c63" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.954ex; height:2.509ex;" alt="{\textstyle x\in X,y\in Y}"></span> one can show, using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{2}}||x+y||^{2}=||x||^{2}+||y||^{2}-{\frac {1}{2}}||x-y||^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>−<!-- − --></mo> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{2}}||x+y||^{2}=||x||^{2}+||y||^{2}-{\frac {1}{2}}||x-y||^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d34ef70ed7cfad41184a7de350366bde261f6fd5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:39.798ex; height:3.676ex;" alt="{\textstyle {\frac {1}{2}}||x+y||^{2}=||x||^{2}+||y||^{2}-{\frac {1}{2}}||x-y||^{2}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {1-x}}\leq 1-x/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> </msqrt> </mrow> <mo>≤<!-- ≤ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {1-x}}\leq 1-x/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/857f5b275380c992d5c9b84b00b3dd86795e71be" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.024ex; height:3.009ex;" alt="{\textstyle {\sqrt {1-x}}\leq 1-x/2}"></span> for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>≤<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d661168ca7d1b110c8c80a9b84a6a98b684960a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.591ex; height:2.343ex;" alt="{\textstyle x\leq 1}"></span>, that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle ||{\frac {x+y}{2}}||\leq 1-\delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>≤<!-- ≤ --></mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle ||{\frac {x+y}{2}}||\leq 1-\delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f936da1334b4a720d383b3677fd8d01490e8334d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:14.609ex; height:3.676ex;" alt="{\textstyle ||{\frac {x+y}{2}}||\leq 1-\delta }"></span>. In particular, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {x+y}{2}}\in (1-\delta )B(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {x+y}{2}}\in (1-\delta )B(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e900893cc2ee9cf68cd50085d1294a8c03094cca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:20.506ex; height:3.676ex;" alt="{\textstyle {\frac {x+y}{2}}\in (1-\delta )B(0,1)}"></span>. </p><p>We let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\overline {X}}={\text{Conv}}(X,\{0\}),{\overline {Y}}={\text{Conv}}(Y,\{0\})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Conv</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>Conv</mtext> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>,</mo> <mo fence="false" stretchy="false">{</mo> <mn>0</mn> <mo fence="false" stretchy="false">}</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\overline {X}}={\text{Conv}}(X,\{0\}),{\overline {Y}}={\text{Conv}}(Y,\{0\})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/697c19782c69a000f9855ab0af042b0211f40b42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.661ex; height:3.509ex;" alt="{\textstyle {\overline {X}}={\text{Conv}}(X,\{0\}),{\overline {Y}}={\text{Conv}}(Y,\{0\})}"></span>, and aim to show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {{\overline {X}}+{\overline {Y}}}{2}}\subseteq (1-\delta )B(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>⊆<!-- ⊆ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {{\overline {X}}+{\overline {Y}}}{2}}\subseteq (1-\delta )B(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd40e9ff159993f7f5dc2b37bd23694b9ceae93b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:22.067ex; height:4.343ex;" alt="{\textstyle {\frac {{\overline {X}}+{\overline {Y}}}{2}}\subseteq (1-\delta )B(0,1)}"></span>. Let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle x\in X,y\in Y,\alpha ,\beta \in [0,1],{\bar {x}}=\alpha x,{\bar {y}}=\alpha y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mi>X</mi> <mo>,</mo> <mi>y</mi> <mo>∈<!-- ∈ --></mo> <mi>Y</mi> <mo>,</mo> <mi>α<!-- α --></mi> <mo>,</mo> <mi>β<!-- β --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>α<!-- α --></mi> <mi>x</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>=</mo> <mi>α<!-- α --></mi> <mi>y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle x\in X,y\in Y,\alpha ,\beta \in [0,1],{\bar {x}}=\alpha x,{\bar {y}}=\alpha y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f59057f78305a8cba6162d68526dc8682a5a06c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:41.692ex; height:2.843ex;" alt="{\textstyle x\in X,y\in Y,\alpha ,\beta \in [0,1],{\bar {x}}=\alpha x,{\bar {y}}=\alpha y}"></span>. The argument below will be symmetric in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\bar {x}},{\bar {y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\bar {x}},{\bar {y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dea5c2448568b5191b917a9952b1562cab9f4c4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.666ex; height:2.343ex;" alt="{\textstyle {\bar {x}},{\bar {y}}}"></span>, so we assume without loss of generality that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \alpha \geq \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>α<!-- α --></mi> <mo>≥<!-- ≥ --></mo> <mi>β<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \alpha \geq \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3620c6f1904db25b0784292862e44e6332f2d51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.918ex; height:2.509ex;" alt="{\textstyle \alpha \geq \beta }"></span> and set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \gamma =\beta /\alpha \leq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>=</mo> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>α<!-- α --></mi> <mo>≤<!-- ≤ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \gamma =\beta /\alpha \leq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961e37bd6f523f366229fc6d10f609aa83f050b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.604ex; height:2.843ex;" alt="{\textstyle \gamma =\beta /\alpha \leq 1}"></span>. Then, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {{\bar {x}}+{\bar {y}}}{2}}={\frac {\alpha x+\beta y}{2}}=\alpha {\frac {x+\gamma y}{2}}=\alpha (\gamma {\frac {x+y}{2}}+(1-\gamma ){\frac {x}{2}})=\alpha \gamma {\frac {x+y}{2}}+\alpha (1-\gamma ){\frac {x}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>α<!-- α --></mi> <mi>x</mi> <mo>+</mo> <mi>β<!-- β --></mi> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mi>α<!-- α --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>γ<!-- γ --></mi> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>α<!-- α --></mi> <mi>γ<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>+</mo> <mi>y</mi> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {{\bar {x}}+{\bar {y}}}{2}}={\frac {\alpha x+\beta y}{2}}=\alpha {\frac {x+\gamma y}{2}}=\alpha (\gamma {\frac {x+y}{2}}+(1-\gamma ){\frac {x}{2}})=\alpha \gamma {\frac {x+y}{2}}+\alpha (1-\gamma ){\frac {x}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e95085c86d8ae8dfc36efde803f62b6bbe167db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:81.877ex; height:5.343ex;" alt="{\displaystyle {\frac {{\bar {x}}+{\bar {y}}}{2}}={\frac {\alpha x+\beta y}{2}}=\alpha {\frac {x+\gamma y}{2}}=\alpha (\gamma {\frac {x+y}{2}}+(1-\gamma ){\frac {x}{2}})=\alpha \gamma {\frac {x+y}{2}}+\alpha (1-\gamma ){\frac {x}{2}}}"></span>.</dd></dl> <p>This implies that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {{\bar {x}}+{\bar {y}}}{2}}\in \alpha \gamma (1-\delta )B+\alpha (1-\gamma )(1-\delta )B=\alpha (1-\delta )B\subseteq (1-\delta )B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>∈<!-- ∈ --></mo> <mi>α<!-- α --></mi> <mi>γ<!-- γ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo>+</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo>=</mo> <mi>α<!-- α --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo>⊆<!-- ⊆ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {{\bar {x}}+{\bar {y}}}{2}}\in \alpha \gamma (1-\delta )B+\alpha (1-\gamma )(1-\delta )B=\alpha (1-\delta )B\subseteq (1-\delta )B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e7898c23f078470e420edd6318f31f81efb5fc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:63.196ex; height:4.176ex;" alt="{\textstyle {\frac {{\bar {x}}+{\bar {y}}}{2}}\in \alpha \gamma (1-\delta )B+\alpha (1-\gamma )(1-\delta )B=\alpha (1-\delta )B\subseteq (1-\delta )B}"></span>. (Using that for any convex body K and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \gamma \in [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \gamma \in [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/025c81e9b49c4d2102aa817dc7d72beb98d47f66" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.756ex; height:2.843ex;" alt="{\textstyle \gamma \in [0,1]}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \gamma K+(1-\gamma )K=K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>γ<!-- γ --></mi> <mi>K</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>γ<!-- γ --></mi> <mo stretchy="false">)</mo> <mi>K</mi> <mo>=</mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \gamma K+(1-\gamma )K=K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edcb488a7423b4455f1a40325278d0bc5b1c34d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.473ex; height:2.843ex;" alt="{\textstyle \gamma K+(1-\gamma )K=K}"></span>.) </p><p>Thus, we know that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {{\overline {X}}+{\overline {Y}}}{2}}\subseteq (1-\delta )B(0,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>⊆<!-- ⊆ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {{\overline {X}}+{\overline {Y}}}{2}}\subseteq (1-\delta )B(0,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd40e9ff159993f7f5dc2b37bd23694b9ceae93b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:22.067ex; height:4.343ex;" alt="{\textstyle {\frac {{\overline {X}}+{\overline {Y}}}{2}}\subseteq (1-\delta )B(0,1)}"></span>, so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu ({\frac {{\overline {X}}+{\overline {Y}}}{2}})\leq (1-\delta )^{n}\mu (B(0,1))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>≤<!-- ≤ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu ({\frac {{\overline {X}}+{\overline {Y}}}{2}})\leq (1-\delta )^{n}\mu (B(0,1))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b687998a41c02ed41f3d09a3c90caeb3ae7cfd80" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:29.707ex; height:4.343ex;" alt="{\textstyle \mu ({\frac {{\overline {X}}+{\overline {Y}}}{2}})\leq (1-\delta )^{n}\mu (B(0,1))}"></span>. We apply the multiplicative form of the Brunn–Minkowski inequality to lower bound the first term by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\sqrt {\mu ({\bar {X}})\mu ({\bar {Y}})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\sqrt {\mu ({\bar {X}})\mu ({\bar {Y}})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/226a67c686a4ba52c0a355f96acaa7ea564a6f69" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:12.499ex; height:4.843ex;" alt="{\textstyle {\sqrt {\mu ({\bar {X}})\mu ({\bar {Y}})}}}"></span>, giving us <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (1-\delta )^{n}\mu (B)\geq \mu ({\bar {X}})^{1/2}\mu ({\bar {Y}})^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (1-\delta )^{n}\mu (B)\geq \mu ({\bar {X}})^{1/2}\mu ({\bar {Y}})^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6456a6ca0d3000631a794bb3191e1cd11db8262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.724ex; height:3.176ex;" alt="{\textstyle (1-\delta )^{n}\mu (B)\geq \mu ({\bar {X}})^{1/2}\mu ({\bar {Y}})^{1/2}}"></span>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-{\frac {\nu (X_{\epsilon })}{\nu (S)}}={\frac {\nu (Y)}{\nu (S)}}={\frac {\mu ({\bar {Y}})}{\mu (B)}}\leq (1-\delta )^{2n}{\frac {\mu (B)}{\mu ({\bar {X}})}}\leq (1-\delta )^{2n}{\frac {\nu (S)}{\nu (X)}}\leq e^{-2n\delta }{\frac {\nu (S)}{\nu (X)}}=e^{-n\epsilon ^{2}/4}{\frac {\nu (S)}{\nu (X)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>ϵ<!-- ϵ --></mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>δ<!-- δ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>≤<!-- ≤ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>2</mn> <mi>n</mi> <mi>δ<!-- δ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>4</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>ν<!-- ν --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-{\frac {\nu (X_{\epsilon })}{\nu (S)}}={\frac {\nu (Y)}{\nu (S)}}={\frac {\mu ({\bar {Y}})}{\mu (B)}}\leq (1-\delta )^{2n}{\frac {\mu (B)}{\mu ({\bar {X}})}}\leq (1-\delta )^{2n}{\frac {\nu (S)}{\nu (X)}}\leq e^{-2n\delta }{\frac {\nu (S)}{\nu (X)}}=e^{-n\epsilon ^{2}/4}{\frac {\nu (S)}{\nu (X)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5649360ced6a6ebf3ef9f20f0e785c3ac3ecae4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:94.037ex; height:6.843ex;" alt="{\displaystyle 1-{\frac {\nu (X_{\epsilon })}{\nu (S)}}={\frac {\nu (Y)}{\nu (S)}}={\frac {\mu ({\bar {Y}})}{\mu (B)}}\leq (1-\delta )^{2n}{\frac {\mu (B)}{\mu ({\bar {X}})}}\leq (1-\delta )^{2n}{\frac {\nu (S)}{\nu (X)}}\leq e^{-2n\delta }{\frac {\nu (S)}{\nu (X)}}=e^{-n\epsilon ^{2}/4}{\frac {\nu (S)}{\nu (X)}}}"></span>. QED </p> </td></tr></tbody></table></div> <p>Version of this result hold also for so-called <i>strictly convex surfaces,</i> where the result depends on the <a href="/wiki/Modulus_and_characteristic_of_convexity" title="Modulus and characteristic of convexity">modulus of convexity</a>. However, the notion of surface area requires modification, see: <a rel="nofollow" class="external text" href="http://www.math.lsa.umich.edu/~barvinok/total710.pdf">the aforementioned notes on concentration of measure from Barvinok.</a> </p> <div class="mw-heading mw-heading2"><h2 id="Remarks">Remarks</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=14" title="Edit section: Remarks"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The proof of the Brunn–Minkowski theorem establishes that the function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mapsto [\mu (A)]^{1/n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">↦<!-- ↦ --></mo> <mo stretchy="false">[</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mapsto [\mu (A)]^{1/n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5e03ac4e0f7123c939ec77e61e83b4cfc2bb277" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.467ex; height:3.343ex;" alt="{\displaystyle A\mapsto [\mu (A)]^{1/n}}"></span></dd></dl> <p>is <a href="/wiki/Concave_function" title="Concave function">concave</a> in the sense that, for every pair of nonempty compact subsets <i>A</i> and <i>B</i> of <b>R</b><sup><i>n</i></sup> and every 0 ≤ <i>t</i> ≤ 1, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left[\mu (tA+(1-t)B)\right]^{1/n}\geq t[\mu (A)]^{1/n}+(1-t)[\mu (B)]^{1/n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>[</mo> <mrow> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>t</mi> <mi>A</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>≥<!-- ≥ --></mo> <mi>t</mi> <mo stretchy="false">[</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">[</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left[\mu (tA+(1-t)B)\right]^{1/n}\geq t[\mu (A)]^{1/n}+(1-t)[\mu (B)]^{1/n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/26a84a17a85ba77d4bfca93992597403428d031e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:53.524ex; height:3.509ex;" alt="{\displaystyle \left[\mu (tA+(1-t)B)\right]^{1/n}\geq t[\mu (A)]^{1/n}+(1-t)[\mu (B)]^{1/n}.}"></span></dd></dl> <p>For <a href="/wiki/Convex_set" title="Convex set">convex</a> sets <i>A</i> and <i>B</i> of positive measure, the inequality in the theorem is strict for 0 < <i>t</i> < 1 unless <i>A</i> and <i>B</i> are positive <a href="/wiki/Homothetic_transformation" class="mw-redirect" title="Homothetic transformation">homothetic</a>, i.e. are equal up to <a href="/wiki/Translation_(geometry)" title="Translation (geometry)">translation</a> and <a href="/wiki/Scaling_(geometry)" title="Scaling (geometry)">dilation</a> by a positive factor. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=15" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Rounded_cubes">Rounded cubes</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=16" title="Edit section: Rounded cubes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It is instructive to consider the case where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a118c6ad00742b3f5dccd2f0e74b5e369df6fd31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\textstyle A}"></span> an <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle l\times l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>l</mi> <mo>×<!-- × --></mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle l\times l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4e2207dfb87a9e8dc2e03e51774d92404a12ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.227ex; height:2.176ex;" alt="{\textstyle l\times l}"></span> square in the plane, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de0b47ffc21636dc2df68f6c793177a268f10e9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\textstyle B}"></span> a ball of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab4aaaaf4e9f050f445d2ad1518d9012ef5a24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\textstyle \epsilon }"></span>. In this case, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd957a1f1d7f480fb51c33b1e5ab3b8259cb37f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\textstyle A+B}"></span> is a rounded square, and its volume can be accounted for as the four rounded quarter circles of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab4aaaaf4e9f050f445d2ad1518d9012ef5a24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\textstyle \epsilon }"></span>, the four rectangles of dimensions <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle l\times \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>l</mi> <mo>×<!-- × --></mo> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle l\times \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca151be5c7c0eb34a43e0bb33c98942e1e017cf0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.478ex; height:2.176ex;" alt="{\textstyle l\times \epsilon }"></span> along the sides, and the original square. Thus, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\mu (A+B)&=l^{2}+4\epsilon l+{\frac {4}{4}}\pi \epsilon ^{2}=\mu (A)+4\epsilon l+\mu (B)\geq \mu (A)+2{\sqrt {\pi }}\epsilon l+\mu (B)\\&=\mu (A)+2{\sqrt {\mu (A)\mu (B)}}+\mu (B)=(\mu (A)^{1/2}+\mu (B)^{1/2})^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mi>l</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>4</mn> <mi>ϵ<!-- ϵ --></mi> <mi>l</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>4</mn> </mfrac> </mrow> <mi>π<!-- π --></mi> <msup> <mi>ϵ<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>4</mn> <mi>ϵ<!-- ϵ --></mi> <mi>l</mi> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>π<!-- π --></mi> </msqrt> </mrow> <mi>ϵ<!-- ϵ --></mi> <mi>l</mi> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </msqrt> </mrow> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\mu (A+B)&=l^{2}+4\epsilon l+{\frac {4}{4}}\pi \epsilon ^{2}=\mu (A)+4\epsilon l+\mu (B)\geq \mu (A)+2{\sqrt {\pi }}\epsilon l+\mu (B)\\&=\mu (A)+2{\sqrt {\mu (A)\mu (B)}}+\mu (B)=(\mu (A)^{1/2}+\mu (B)^{1/2})^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2d24b67aa04229fe1fa22b227654e60a35a16a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.314ex; margin-bottom: -0.191ex; width:75.25ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}\mu (A+B)&=l^{2}+4\epsilon l+{\frac {4}{4}}\pi \epsilon ^{2}=\mu (A)+4\epsilon l+\mu (B)\geq \mu (A)+2{\sqrt {\pi }}\epsilon l+\mu (B)\\&=\mu (A)+2{\sqrt {\mu (A)\mu (B)}}+\mu (B)=(\mu (A)^{1/2}+\mu (B)^{1/2})^{2}.\end{aligned}}}"></span></dd></dl> <p>This example also hints at the theory of <a href="/wiki/Mixed_volume" title="Mixed volume">mixed-volumes</a>, since the terms that appear in the expansion of the volume of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bdd957a1f1d7f480fb51c33b1e5ab3b8259cb37f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\textstyle A+B}"></span> correspond to the differently dimensional pieces of <i>A.</i> In particular, if we rewrite Brunn–Minkowski as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)\geq (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)\geq (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f465af2c45b3cd87e828ac8de7e688b93a04be74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.179ex; height:3.176ex;" alt="{\textstyle \mu (A+B)\geq (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}"></span>, we see that we can think of the cross terms of the binomial expansion of the latter as accounting, in some fashion, for the mixed volume representation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu (A+B)=V(A,\ldots ,A)+nV(B,A,\ldots ,A)+\ldots +{n \choose j}V(B,\ldots ,B,A,\ldots ,A)+\ldots nV(B,\ldots ,B,A)+\mu (B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>+</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>V</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>n</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>…<!-- … --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <mi>V</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo>…<!-- … --></mo> <mi>n</mi> <mi>V</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu (A+B)=V(A,\ldots ,A)+nV(B,A,\ldots ,A)+\ldots +{n \choose j}V(B,\ldots ,B,A,\ldots ,A)+\ldots nV(B,\ldots ,B,A)+\mu (B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eff796238883dd6c3b6a12631318e3758015a88d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:107.974ex; height:3.509ex;" alt="{\textstyle \mu (A+B)=V(A,\ldots ,A)+nV(B,A,\ldots ,A)+\ldots +{n \choose j}V(B,\ldots ,B,A,\ldots ,A)+\ldots nV(B,\ldots ,B,A)+\mu (B)}"></span>. This same phenomenon can also be seen for the sum of an <i>n</i>-dimensional <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle l\times l}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>l</mi> <mo>×<!-- × --></mo> <mi>l</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle l\times l}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4e2207dfb87a9e8dc2e03e51774d92404a12ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.227ex; height:2.176ex;" alt="{\textstyle l\times l}"></span> box and a ball of radius <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>ϵ<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ab4aaaaf4e9f050f445d2ad1518d9012ef5a24b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\textstyle \epsilon }"></span>, where the cross terms in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <mo>+</mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">(</mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/190e6be383b2bdb1a2531ba3a3b5b661994457a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.522ex; height:3.176ex;" alt="{\textstyle (\mu (A)^{1/n}+\mu (B)^{1/n})^{n}}"></span>, up to constants, account for the mixed volumes. This is made precise for the first mixed volume in the section above <a class="mw-selflink-fragment" href="#Applications_to_inequalities_between_mixed_volumes">on the applications to mixed volumes</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Examples_where_the_lower_bound_is_loose">Examples where the lower bound is loose</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=17" title="Edit section: Examples where the lower bound is loose"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The left-hand side of the BM inequality can in general be much larger than the right side. For instance, we can take X to be the x-axis, and Y the y-axis inside the plane; then each has measure zero but the sum has infinite measure. Another example is given by the Cantor set. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dca76d9ff4b48256b6a4a99bcb234b64b2fa72b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\textstyle C}"></span> denotes the middle third Cantor set, then it is an exercise in analysis to show that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle C+C=[0,2]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>C</mi> <mo>+</mo> <mi>C</mi> <mo>=</mo> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>2</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle C+C=[0,2]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a11942438576f62370fc7a62dbe6ebadb011a7fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.124ex; height:2.843ex;" alt="{\textstyle C+C=[0,2]}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Connections_to_other_parts_of_mathematics">Connections to other parts of mathematics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=18" title="Edit section: Connections to other parts of mathematics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Brunn–Minkowski inequality continues to be relevant to modern geometry and algebra. For instance, there are connections to algebraic geometry,<sup id="cite_ref-GROMOV_1990_pp._1–38_6-0" class="reference"><a href="#cite_note-GROMOV_1990_pp._1–38-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Neeb_2015_7-0" class="reference"><a href="#cite_note-Neeb_2015-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> and combinatorial versions about counting sets of points inside the integer lattice.<sup id="cite_ref-Hernández_Cifre_Iglesias_Nicolás_2018_pp._1840–1856_8-0" class="reference"><a href="#cite_note-Hernández_Cifre_Iglesias_Nicolás_2018_pp._1840–1856-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=19" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman's reverse Brunn–Minkowski inequality">Milman's reverse Brunn–Minkowski inequality</a></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale's random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li> <li><a href="/wiki/Mixed_volume" title="Mixed volume">Mixed volume</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=20" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBrunn,_H.1887" class="citation book cs1"><a href="/wiki/Hermann_Brunn" title="Hermann Brunn">Brunn, H.</a> (1887). <i>Über Ovale und Eiflächen</i>. Inaugural Dissertation, München.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=%C3%9Cber+Ovale+und+Eifl%C3%A4chen&rft.series=Inaugural+Dissertation%2C+M%C3%BCnchen&rft.date=1887&rft.au=Brunn%2C+H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFenchelBonnesen,_Tommy1934" class="citation book cs1"><a href="/wiki/Werner_Fenchel" title="Werner Fenchel">Fenchel, Werner</a>; Bonnesen, Tommy (1934). <i>Theorie der konvexen Körper</i>. Ergebnisse der Mathematik und ihrer Grenzgebiete. Vol. 3. Berlin: 1. Verlag von Julius Springer.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theorie+der+konvexen+K%C3%B6rper&rft.place=Berlin&rft.series=Ergebnisse+der+Mathematik+und+ihrer+Grenzgebiete&rft.pub=1.+Verlag+von+Julius+Springer&rft.date=1934&rft.aulast=Fenchel&rft.aufirst=Werner&rft.au=Bonnesen%2C+Tommy&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFenchelBonnesen,_Tommy1987" class="citation book cs1"><a href="/wiki/Werner_Fenchel" title="Werner Fenchel">Fenchel, Werner</a>; Bonnesen, Tommy (1987). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/theoryofconvexbo0000bonn"><i>Theory of convex bodies</i></a></span>. Moscow, Idaho: L. Boron, C. Christenson and B. Smith. BCS Associates. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780914351023" title="Special:BookSources/9780914351023"><bdi>9780914351023</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Theory+of+convex+bodies&rft.place=Moscow%2C+Idaho&rft.pub=L.+Boron%2C+C.+Christenson+and+B.+Smith.+BCS+Associates&rft.date=1987&rft.isbn=9780914351023&rft.aulast=Fenchel&rft.aufirst=Werner&rft.au=Bonnesen%2C+Tommy&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Ftheoryofconvexbo0000bonn&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDacorogna2004" class="citation book cs1">Dacorogna, Bernard (2004). <i>Introduction to the Calculus of Variations</i>. London: Imperial College Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/1-86094-508-2" title="Special:BookSources/1-86094-508-2"><bdi>1-86094-508-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+the+Calculus+of+Variations&rft.place=London&rft.pub=Imperial+College+Press&rft.date=2004&rft.isbn=1-86094-508-2&rft.aulast=Dacorogna&rft.aufirst=Bernard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><a href="/wiki/Heinrich_Guggenheimer" title="Heinrich Guggenheimer">Heinrich Guggenheimer</a> (1977) <i>Applicable Geometry</i>, page 146, Krieger, Huntington <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-88275-368-1" title="Special:BookSources/0-88275-368-1">0-88275-368-1</a> .</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLyusternik1935" class="citation journal cs1"><a href="/wiki/Lazar_Lyusternik" title="Lazar Lyusternik">Lyusternik, Lazar A.</a> (1935). "Die Brunn–Minkowskische Ungleichnung für beliebige messbare Mengen". <i>Comptes Rendus de l'Académie des Sciences de l'URSS</i>. Nouvelle Série. <b>III</b>: 55–58.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Comptes+Rendus+de+l%27Acad%C3%A9mie+des+Sciences+de+l%27URSS&rft.atitle=Die+Brunn%E2%80%93Minkowskische+Ungleichnung+f%C3%BCr+beliebige+messbare+Mengen&rft.volume=III&rft.pages=55-58&rft.date=1935&rft.aulast=Lyusternik&rft.aufirst=Lazar+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMinkowski1896" class="citation book cs1"><a href="/wiki/Hermann_Minkowski" title="Hermann Minkowski">Minkowski, Hermann</a> (1896). <i>Geometrie der Zahlen</i>. Leipzig: Teubner.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Geometrie+der+Zahlen&rft.place=Leipzig&rft.pub=Teubner&rft.date=1896&rft.aulast=Minkowski&rft.aufirst=Hermann&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRuzsa1997" class="citation journal cs1"><a href="/wiki/Imre_Z._Ruzsa" title="Imre Z. Ruzsa">Ruzsa, Imre Z.</a> (1997). "The Brunn–Minkowski inequality and nonconvex sets". <i>Geometriae Dedicata</i>. <b>67</b> (3): 337–348. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1023%2FA%3A1004958110076">10.1023/A:1004958110076</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1475877">1475877</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117749981">117749981</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Geometriae+Dedicata&rft.atitle=The+Brunn%E2%80%93Minkowski+inequality+and+nonconvex+sets&rft.volume=67&rft.issue=3&rft.pages=337-348&rft.date=1997&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1475877%23id-name%3DMR&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117749981%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1023%2FA%3A1004958110076&rft.aulast=Ruzsa&rft.aufirst=Imre+Z.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></li> <li><a href="/wiki/Rolf_Schneider" title="Rolf Schneider">Rolf Schneider</a>, <i>Convex bodies: the Brunn–Minkowski theory,</i> Cambridge University Press, Cambridge, 1993.</li></ul> <div class="mw-heading mw-heading2"><h2 id="References_2">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&action=edit&section=21" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">Gardner, Richard J. (2002). "The Brunn–Minkowski inequality". Bull. Amer. Math. Soc. (N.S.) 39 (3): pp. 355–405 (electronic). doi:10.1090/S0273-0979-02-00941-2. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://www.worldcat.org/search?fq=x0:jrnl&q=n2:0273-0979">0273-0979</a>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrünbaum1960" class="citation journal cs1"><a href="/wiki/Branko_Gr%C3%BCnbaum" title="Branko Grünbaum">Grünbaum, B.</a> (1960). <a rel="nofollow" class="external text" href="https://projecteuclid.org/euclid.pjm/1103038065">"Partitions of mass-distributions and of convex bodies by hyperplanes"</a>. <i>Pacific Journal of Mathematics</i>. <b>10</b> (4): 1257–1261. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2140%2Fpjm.1960.10.1257">10.2140/pjm.1960.10.1257</a>. <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0124818">0124818</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Pacific+Journal+of+Mathematics&rft.atitle=Partitions+of+mass-distributions+and+of+convex+bodies+by+hyperplanes&rft.volume=10&rft.issue=4&rft.pages=1257-1261&rft.date=1960&rft_id=info%3Adoi%2F10.2140%2Fpjm.1960.10.1257&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D124818%23id-name%3DMR&rft.aulast=Gr%C3%BCnbaum&rft.aufirst=B.&rft_id=https%3A%2F%2Fprojecteuclid.org%2Feuclid.pjm%2F1103038065&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">See <a rel="nofollow" class="external text" href="https://cs.uwaterloo.ca/~lapchi/cs798/L19.pdf">these lecture notes</a> for a proof sketch.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRademacher2007" class="citation conference cs1">Rademacher, Luis (2007). "Approximating the centroid is hard". In Erickson, Jeff (ed.). <i>Proceedings of the 23rd ACM Symposium on Computational Geometry, Gyeongju, South Korea, June 6–8, 2007</i>. pp. 302–305. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F1247069.1247123">10.1145/1247069.1247123</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-59593-705-6" title="Special:BookSources/978-1-59593-705-6"><bdi>978-1-59593-705-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.atitle=Approximating+the+centroid+is+hard&rft.btitle=Proceedings+of+the+23rd+ACM+Symposium+on+Computational+Geometry%2C+Gyeongju%2C+South+Korea%2C+June+6%E2%80%938%2C+2007&rft.pages=302-305&rft.date=2007&rft_id=info%3Adoi%2F10.1145%2F1247069.1247123&rft.isbn=978-1-59593-705-6&rft.aulast=Rademacher&rft.aufirst=Luis&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">See theorem 2.1 in <a rel="nofollow" class="external text" href="http://sbubeck.com/Bubeck15.pdf">these notes.</a></span> </li> <li id="cite_note-GROMOV_1990_pp._1–38-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-GROMOV_1990_pp._1–38_6-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGROMOV1990" class="citation book cs1">GROMOV, M. (1990). "CONVEX SETS AND KÄHLER MANIFOLDS". <i>Advances in Differential Geometry and Topology</i>. WORLD SCIENTIFIC. pp. 1–38. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1142%2F9789814439381_0001">10.1142/9789814439381_0001</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-981-02-0494-5" title="Special:BookSources/978-981-02-0494-5"><bdi>978-981-02-0494-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=CONVEX+SETS+AND+K%C3%84HLER+MANIFOLDS&rft.btitle=Advances+in+Differential+Geometry+and+Topology&rft.pages=1-38&rft.pub=WORLD+SCIENTIFIC&rft.date=1990&rft_id=info%3Adoi%2F10.1142%2F9789814439381_0001&rft.isbn=978-981-02-0494-5&rft.aulast=GROMOV&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></span> </li> <li id="cite_note-Neeb_2015-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Neeb_2015_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeeb2015" class="citation arxiv cs1">Neeb, Karl-Hermann (2015-10-12). "Kaehler Geometry, Momentum Maps and Convex Sets". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1510.03289v1">1510.03289v1</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.SG">math.SG</a>].</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Kaehler+Geometry%2C+Momentum+Maps+and+Convex+Sets&rft.date=2015-10-12&rft_id=info%3Aarxiv%2F1510.03289v1&rft.aulast=Neeb&rft.aufirst=Karl-Hermann&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></span> </li> <li id="cite_note-Hernández_Cifre_Iglesias_Nicolás_2018_pp._1840–1856-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-Hernández_Cifre_Iglesias_Nicolás_2018_pp._1840–1856_8-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHernández_CifreIglesiasNicolás2018" class="citation journal cs1">Hernández Cifre, María A.; Iglesias, David; Nicolás, Jesús Yepes (2018). "On a Discrete Brunn--Minkowski Type Inequality". <i>SIAM Journal on Discrete Mathematics</i>. <b>32</b> (3). Society for Industrial & Applied Mathematics (SIAM): 1840–1856. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1137%2F18m1166067">10.1137/18m1166067</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0895-4801">0895-4801</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=SIAM+Journal+on+Discrete+Mathematics&rft.atitle=On+a+Discrete+Brunn--Minkowski+Type+Inequality&rft.volume=32&rft.issue=3&rft.pages=1840-1856&rft.date=2018&rft_id=info%3Adoi%2F10.1137%2F18m1166067&rft.issn=0895-4801&rft.aulast=Hern%C3%A1ndez+Cifre&rft.aufirst=Mar%C3%ADa+A.&rft.au=Iglesias%2C+David&rft.au=Nicol%C3%A1s%2C+Jes%C3%BAs+Yepes&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABrunn%E2%80%93Minkowski+theorem" class="Z3988"></span></span> </li> </ol></div></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Lp_spaces" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Lp_spaces" title="Template:Lp spaces"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Lp_spaces" title="Template talk:Lp spaces"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Lp_spaces" title="Special:EditPage/Template:Lp spaces"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Lp_spaces" style="font-size:114%;margin:0 4em"><a href="/wiki/Lp_space" title="Lp space">Lp spaces</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Banach_space" title="Banach space">Banach</a> & <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert spaces</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a> <ul><li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a></li></ul></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li> <li><a href="/wiki/Minkowski_distance" title="Minkowski distance">Minkowski distance</a></li> <li><a href="/wiki/Sequence_space" title="Sequence space">Sequence spaces</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L1_space" class="mw-redirect" title="L1 space"><i>L</i><sup>1</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integrable_function" class="mw-redirect" title="Integrable function">Integrable function</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Taxicab_geometry" title="Taxicab geometry">Taxicab geometry</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L2_space" class="mw-redirect" title="L2 space"><i>L</i><sup>2</sup> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bessel%27s_inequality" title="Bessel's inequality">Bessel's</a></li> <li><a href="/wiki/Cauchy%E2%80%93Schwarz_inequality" title="Cauchy–Schwarz inequality">Cauchy–Schwarz</a></li> <li><a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a></li> <li><a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a></li> <li><a href="/wiki/Parseval%27s_identity" title="Parseval's identity">Parseval's identity</a></li> <li><a href="/wiki/Polarization_identity" title="Polarization identity">Polarization identity</a></li> <li><a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a></li> <li><a href="/wiki/Square-integrable_function" title="Square-integrable function">Square-integrable function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/L-infinity" title="L-infinity"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L^{\infty }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>L</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L^{\infty }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9ab400cc4dfd865180cd84c72dc894ca457671f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.458ex; height:2.343ex;" alt="{\displaystyle L^{\infty }}"></span> spaces</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bounded_function" title="Bounded function">Bounded function</a></li> <li><a href="/wiki/Chebyshev_distance" title="Chebyshev distance">Chebyshev distance</a></li> <li><a href="/wiki/Infimum_and_supremum" title="Infimum and supremum">Infimum and supremum</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">Essential</a></li></ul></li> <li><a href="/wiki/Uniform_norm" title="Uniform norm">Uniform norm</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">Convergence almost everywhere</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">Convergence in measure</a></li> <li><a href="/wiki/Function_space" title="Function space">Function space</a></li> <li><a href="/wiki/Integral_transform" title="Integral transform">Integral transform</a></li> <li><a href="/wiki/Locally_integrable_function" title="Locally integrable function">Locally integrable function</a></li> <li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a></li> <li><a href="/wiki/Symmetric_decreasing_rearrangement" title="Symmetric decreasing rearrangement">Symmetric decreasing rearrangement</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Inequalities</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Babenko%E2%80%93Beckner_inequality" title="Babenko–Beckner inequality">Babenko–Beckner</a></li> <li><a href="/wiki/Chebyshev%27s_inequality" title="Chebyshev's inequality">Chebyshev's</a></li> <li><a href="/wiki/Clarkson%27s_inequalities" title="Clarkson's inequalities">Clarkson's</a></li> <li><a href="/wiki/Hanner%27s_inequalities" title="Hanner's inequalities">Hanner's</a></li> <li><a href="/wiki/Hausdorff%E2%80%93Young_inequality" title="Hausdorff–Young inequality">Hausdorff–Young</a></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder's inequality">Hölder's</a></li> <li><a href="/wiki/Markov%27s_inequality" title="Markov's inequality">Markov's</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski</a></li> <li><a href="/wiki/Young%27s_convolution_inequality" title="Young's convolution inequality">Young's convolution</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_analysis" title="Category:Theorems in analysis">Results</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Marcinkiewicz_interpolation_theorem" title="Marcinkiewicz interpolation theorem">Marcinkiewicz interpolation theorem</a></li> <li><a href="/wiki/Plancherel_theorem" title="Plancherel theorem">Plancherel theorem</a></li> <li><a href="/wiki/Riemann%E2%80%93Lebesgue_lemma" title="Riemann–Lebesgue lemma">Riemann–Lebesgue</a></li> <li><a href="/wiki/Riesz%E2%80%93Fischer_theorem" title="Riesz–Fischer theorem">Riesz–Fischer theorem</a></li> <li><a href="/wiki/Riesz%E2%80%93Thorin_theorem" title="Riesz–Thorin theorem">Riesz–Thorin theorem</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a class="mw-selflink selflink">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman's reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale's random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications & related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bochner_space" title="Bochner space">Bochner space</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Lorentz_space" title="Lorentz space">Lorentz space</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Quasinorm" title="Quasinorm">Quasinorm</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Sobolev_space" title="Sobolev space">Sobolev space</a></li> <li><a href="/wiki/*-algebra" title="*-algebra">*-algebra</a> <ul><li><a href="/wiki/C*-algebra" title="C*-algebra">C*-algebra</a></li> <li><a href="/wiki/Von_Neumann_algebra" title="Von Neumann algebra">Von Neumann</a></li></ul></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Measure_theory" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Measure_theory" title="Template:Measure theory"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Measure_theory" title="Template talk:Measure theory"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Measure_theory" title="Special:EditPage/Template:Measure theory"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Measure_theory" style="font-size:114%;margin:0 4em"><a href="/wiki/Measure_theory" class="mw-redirect" title="Measure theory">Measure theory</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Basic concepts</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Absolute_continuity" title="Absolute continuity">Absolute continuity</a> <a href="/wiki/Absolute_continuity_(measure_theory)" class="mw-redirect" title="Absolute continuity (measure theory)">of measures</a></li> <li><a href="/wiki/Lebesgue_integration" class="mw-redirect" title="Lebesgue integration">Lebesgue integration</a></li> <li><a href="/wiki/Lp_space" title="Lp space"><i>L</i><sup><i>p</i></sup> spaces</a></li> <li><a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">Measure</a></li> <li><a href="/wiki/Measure_space" title="Measure space">Measure space</a> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li></ul></li> <li><a href="/wiki/Measurable_space" title="Measurable space">Measurable space</a>/<a href="/wiki/Measurable_function" title="Measurable function">function</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sets</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_everywhere" title="Almost everywhere">Almost everywhere</a></li> <li><a href="/wiki/Atom_(measure_theory)" title="Atom (measure theory)">Atom</a></li> <li><a href="/wiki/Baire_set" title="Baire set">Baire set</a></li> <li><a href="/wiki/Borel_set" title="Borel set">Borel set</a> <ul><li><a href="/wiki/Borel_equivalence_relation" title="Borel equivalence relation">equivalence relation</a></li></ul></li> <li><a href="/wiki/Standard_Borel_space" title="Standard Borel space">Borel space</a></li> <li><a href="/wiki/Carath%C3%A9odory%27s_criterion" title="Carathéodory's criterion">Carathéodory's criterion</a></li> <li><a href="/wiki/Cylindrical_%CF%83-algebra" title="Cylindrical σ-algebra">Cylindrical σ-algebra</a> <ul><li><a href="/wiki/Cylinder_set" title="Cylinder set">Cylinder set</a></li></ul></li> <li><a href="/wiki/Dynkin_system" title="Dynkin system">𝜆-system</a></li> <li><a href="/wiki/Essential_range" title="Essential range">Essential range</a> <ul><li><a href="/wiki/Essential_infimum_and_essential_supremum" title="Essential infimum and essential supremum">infimum/supremum</a></li></ul></li> <li><a href="/wiki/Locally_measurable_set" class="mw-redirect" title="Locally measurable set">Locally measurable</a></li> <li><a href="/wiki/Pi-system" title="Pi-system"><span class="texhtml mvar" style="font-style:italic;">π</span>-system</a></li> <li><a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a></li> <li><a href="/wiki/Non-measurable_set" title="Non-measurable set">Non-measurable set</a> <ul><li><a href="/wiki/Vitali_set" title="Vitali set">Vitali set</a></li></ul></li> <li><a href="/wiki/Null_set" title="Null set">Null set</a></li> <li><a href="/wiki/Support_(measure_theory)" title="Support (measure theory)">Support</a></li> <li><a href="/wiki/Transverse_measure" title="Transverse measure">Transverse measure</a></li> <li><a href="/wiki/Universally_measurable_set" title="Universally measurable set">Universally measurable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Measure_(mathematics)" title="Measure (mathematics)">measures</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Atomic_measure" class="mw-redirect" title="Atomic measure">Atomic</a></li> <li><a href="/wiki/Baire_measure" title="Baire measure">Baire</a></li> <li><a href="/wiki/Banach_measure" title="Banach measure">Banach</a></li> <li><a href="/wiki/Besov_measure" title="Besov measure">Besov</a></li> <li><a href="/wiki/Borel_measure" title="Borel measure">Borel</a></li> <li><a href="/wiki/Brown_measure" title="Brown measure">Brown</a></li> <li><a href="/wiki/Complex_measure" title="Complex measure">Complex</a></li> <li><a href="/wiki/Complete_measure" title="Complete measure">Complete</a></li> <li><a href="/wiki/Content_(measure_theory)" title="Content (measure theory)">Content</a></li> <li>(<a href="/wiki/Logarithmically_concave_measure" title="Logarithmically concave measure">Logarithmically</a>) <a href="/wiki/Convex_measure" title="Convex measure">Convex</a></li> <li><a href="/wiki/Decomposable_measure" title="Decomposable measure">Decomposable</a></li> <li><a href="/wiki/Discrete_measure" title="Discrete measure">Discrete</a></li> <li><a href="/wiki/Equivalence_(measure_theory)" title="Equivalence (measure theory)">Equivalent</a></li> <li><a href="/wiki/Finite_measure" title="Finite measure">Finite</a></li> <li><a href="/wiki/Inner_measure" title="Inner measure">Inner</a></li> <li>(<a href="/wiki/Quasi-invariant_measure" title="Quasi-invariant measure">Quasi-</a>) <a href="/wiki/Invariant_measure" title="Invariant measure">Invariant</a></li> <li><a href="/wiki/Locally_finite_measure" title="Locally finite measure">Locally finite</a></li> <li><a href="/wiki/Maximising_measure" title="Maximising measure">Maximising</a></li> <li><a href="/wiki/Metric_outer_measure" title="Metric outer measure">Metric outer</a></li> <li><a href="/wiki/Outer_measure" title="Outer measure">Outer</a></li> <li><a href="/wiki/Perfect_measure" title="Perfect measure">Perfect</a></li> <li><a href="/wiki/Pre-measure" title="Pre-measure">Pre-measure</a></li> <li>(<a href="/wiki/Sub-probability_measure" title="Sub-probability measure">Sub-</a>) <a href="/wiki/Probability_measure" title="Probability measure">Probability</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued</a></li> <li><a href="/wiki/Radon_measure" title="Radon measure">Radon</a></li> <li><a href="/wiki/Random_measure" title="Random measure">Random</a></li> <li><a href="/wiki/Regular_measure" title="Regular measure">Regular</a> <ul><li><a href="/wiki/Borel_regular_measure" title="Borel regular measure">Borel regular</a></li> <li><a href="/wiki/Inner_regular_measure" class="mw-redirect" title="Inner regular measure">Inner regular</a></li> <li><a href="/wiki/Outer_regular_measure" class="mw-redirect" title="Outer regular measure">Outer regular</a></li></ul></li> <li><a href="/wiki/Saturated_measure" title="Saturated measure">Saturated</a></li> <li><a href="/wiki/Set_function" title="Set function">Set function</a></li> <li><a href="/wiki/%CE%A3-finite_measure" title="Σ-finite measure">σ-finite</a></li> <li><a href="/wiki/S-finite_measure" title="S-finite measure">s-finite</a></li> <li><a href="/wiki/Signed_measure" title="Signed measure">Signed</a></li> <li><a href="/wiki/Singular_measure" title="Singular measure">Singular</a></li> <li><a href="/wiki/Spectral_measure" class="mw-redirect" title="Spectral measure">Spectral</a></li> <li><a href="/wiki/Strictly_positive_measure" title="Strictly positive measure">Strictly positive</a></li> <li><a href="/wiki/Tightness_of_measures" title="Tightness of measures">Tight</a></li> <li><a href="/wiki/Vector_measure" title="Vector measure">Vector</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Measures_(measure_theory)" title="Category:Measures (measure theory)">Particular measures</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Counting_measure" title="Counting measure">Counting</a></li> <li><a href="/wiki/Dirac_measure" title="Dirac measure">Dirac</a></li> <li><a href="/wiki/Euler_measure" title="Euler measure">Euler</a></li> <li><a href="/wiki/Gaussian_measure" title="Gaussian measure">Gaussian</a></li> <li><a href="/wiki/Haar_measure" title="Haar measure">Haar</a></li> <li><a href="/wiki/Harmonic_measure" title="Harmonic measure">Harmonic</a></li> <li><a href="/wiki/Hausdorff_measure" title="Hausdorff measure">Hausdorff</a></li> <li><a href="/wiki/Intensity_measure" title="Intensity measure">Intensity</a></li> <li><a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue</a> <ul><li><a href="/wiki/Infinite-dimensional_Lebesgue_measure" title="Infinite-dimensional Lebesgue measure">Infinite-dimensional</a></li></ul></li> <li><a href="/wiki/Positive_real_numbers#Logarithmic_measure" title="Positive real numbers">Logarithmic</a></li> <li><a href="/wiki/Product_measure" title="Product measure">Product</a> <ul><li><a href="/wiki/Projection_(measure_theory)" title="Projection (measure theory)">Projections</a></li></ul></li> <li><a href="/wiki/Pushforward_measure" title="Pushforward measure">Pushforward</a></li> <li><a href="/wiki/Spherical_measure" title="Spherical measure">Spherical measure</a></li> <li><a href="/wiki/Tangent_measure" title="Tangent measure">Tangent</a></li> <li><a href="/wiki/Trivial_measure" title="Trivial measure">Trivial</a></li> <li><a href="/wiki/Young_measure" title="Young measure">Young</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Maps</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Measurable_function" title="Measurable function">Measurable function</a> <ul><li><a href="/wiki/Bochner_measurable_function" title="Bochner measurable function">Bochner</a></li> <li><a href="/wiki/Strongly_measurable_function" title="Strongly measurable function">Strongly</a></li> <li><a href="/wiki/Weakly_measurable_function" title="Weakly measurable function">Weakly</a></li></ul></li> <li>Convergence: <a href="/wiki/Convergence_almost_everywhere" class="mw-redirect" title="Convergence almost everywhere">almost everywhere</a></li> <li><a href="/wiki/Convergence_of_measures" title="Convergence of measures">of measures</a></li> <li><a href="/wiki/Convergence_in_measure" title="Convergence in measure">in measure</a></li> <li><a href="/wiki/Convergence_of_random_variables" title="Convergence of random variables">of random variables</a> <ul><li><a href="/wiki/Convergence_in_distribution" class="mw-redirect" title="Convergence in distribution">in distribution</a></li> <li><a href="/wiki/Convergence_in_probability" class="mw-redirect" title="Convergence in probability">in probability</a></li></ul></li> <li><a href="/wiki/Cylinder_set_measure" title="Cylinder set measure">Cylinder set measure</a></li> <li>Random: <a href="/wiki/Random_compact_set" title="Random compact set">compact set</a></li> <li><a href="/wiki/Random_element" title="Random element">element</a></li> <li><a href="/wiki/Random_measure" title="Random measure">measure</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">process</a></li> <li><a href="/wiki/Random_variable" title="Random variable">variable</a></li> <li><a href="/wiki/Multivariate_random_variable" title="Multivariate random variable">vector</a></li> <li><a href="/wiki/Projection-valued_measure" title="Projection-valued measure">Projection-valued measure</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Category:Theorems_in_measure_theory" title="Category:Theorems in measure theory">Main results</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carath%C3%A9odory%27s_extension_theorem" title="Carathéodory's extension theorem">Carathéodory's extension theorem</a></li> <li>Convergence theorems <ul><li><a href="/wiki/Dominated_convergence_theorem" title="Dominated convergence theorem">Dominated</a></li> <li><a href="/wiki/Monotone_convergence_theorem" title="Monotone convergence theorem">Monotone</a></li> <li><a href="/wiki/Vitali_convergence_theorem" title="Vitali convergence theorem">Vitali</a></li></ul></li> <li>Decomposition theorems <ul><li><a href="/wiki/Hahn_decomposition_theorem" title="Hahn decomposition theorem">Hahn</a></li> <li><a href="/wiki/Jordan_decomposition_theorem" class="mw-redirect" title="Jordan decomposition theorem">Jordan</a></li> <li><a href="/wiki/Maharam%27s_theorem" title="Maharam's theorem">Maharam's</a></li></ul></li> <li><a href="/wiki/Egorov%27s_theorem" title="Egorov's theorem">Egorov's</a></li> <li><a href="/wiki/Fatou%27s_lemma" title="Fatou's lemma">Fatou's lemma</a></li> <li><a href="/wiki/Fubini%27s_theorem" title="Fubini's theorem">Fubini's</a> <ul><li><a href="/wiki/Fubini%E2%80%93Tonelli_theorem" class="mw-redirect" title="Fubini–Tonelli theorem">Fubini–Tonelli</a></li></ul></li> <li><a href="/wiki/H%C3%B6lder%27s_inequality" title="Hölder's inequality">Hölder's inequality</a></li> <li><a href="/wiki/Minkowski_inequality" title="Minkowski inequality">Minkowski inequality</a></li> <li><a href="/wiki/Radon%E2%80%93Nikodym_theorem" title="Radon–Nikodym theorem">Radon–Nikodym</a></li> <li><a href="/wiki/Riesz%E2%80%93Markov%E2%80%93Kakutani_representation_theorem" title="Riesz–Markov–Kakutani representation theorem">Riesz–Markov–Kakutani representation theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other results</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Disintegration_theorem" title="Disintegration theorem">Disintegration theorem</a> <ul><li><a href="/wiki/Lifting_theory" title="Lifting theory">Lifting theory</a></li></ul></li> <li><a href="/wiki/Lebesgue%27s_density_theorem" title="Lebesgue's density theorem">Lebesgue's density theorem</a></li> <li><a href="/wiki/Lebesgue_differentiation_theorem" title="Lebesgue differentiation theorem">Lebesgue differentiation theorem</a></li> <li><a href="/wiki/Sard%27s_theorem" title="Sard's theorem">Sard's theorem</a></li> <li><a href="/wiki/Vitali%E2%80%93Hahn%E2%80%93Saks_theorem" title="Vitali–Hahn–Saks theorem">Vitali–Hahn–Saks theorem</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span style="font-size:85%;">For <a href="/wiki/Lebesgue_measure" title="Lebesgue measure">Lebesgue measure</a></span></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Isoperimetric_inequality" title="Isoperimetric inequality">Isoperimetric inequality</a></li> <li><a class="mw-selflink selflink">Brunn–Minkowski theorem</a> <ul><li><a href="/wiki/Milman%27s_reverse_Brunn%E2%80%93Minkowski_inequality" title="Milman's reverse Brunn–Minkowski inequality">Milman's reverse</a></li></ul></li> <li><a href="/wiki/Minkowski%E2%80%93Steiner_formula" title="Minkowski–Steiner formula">Minkowski–Steiner formula</a></li> <li><a href="/wiki/Pr%C3%A9kopa%E2%80%93Leindler_inequality" title="Prékopa–Leindler inequality">Prékopa–Leindler inequality</a></li> <li><a href="/wiki/Vitale%27s_random_Brunn%E2%80%93Minkowski_inequality" title="Vitale's random Brunn–Minkowski inequality">Vitale's random Brunn–Minkowski inequality</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Applications & related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Convex_analysis" title="Convex analysis">Convex analysis</a></li> <li><a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">Descriptive set theory</a></li> <li><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></li> <li><a href="/wiki/Real_analysis" title="Real analysis">Real analysis</a></li> <li><a href="/wiki/Spectral_theory" title="Spectral theory">Spectral theory</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐54f95c77b8‐jtkgr Cached time: 20241112101416 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.625 seconds Real time usage: 0.853 seconds Preprocessor visited node count: 3003/1000000 Post‐expand include size: 71968/2097152 bytes Template argument size: 1482/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 68703/5000000 bytes Lua time usage: 0.253/10.000 seconds Lua memory usage: 4267196/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 477.490 1 -total 30.73% 146.743 4 Template:Navbox 28.19% 134.593 6 Template:Cite_book 27.29% 130.295 1 Template:Lp_spaces 14.93% 71.291 1 Template:Reflist 13.05% 62.316 1 Template:Measure_theory 6.49% 31.003 1 Template:ISBN 5.41% 25.811 5 Template:Collapse_top 4.81% 22.990 4 Template:Cite_journal 4.57% 21.826 2 Template:Catalog_lookup_link --> <!-- Saved in parser cache with key enwiki:pcache:idhash:7500545-0!canonical and timestamp 20241112101416 and revision id 1256944053. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Brunn–Minkowski_theorem&oldid=1256944053">https://en.wikipedia.org/w/index.php?title=Brunn–Minkowski_theorem&oldid=1256944053</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Calculus_of_variations" title="Category:Calculus of variations">Calculus of variations</a></li><li><a href="/wiki/Category:Geometric_inequalities" title="Category:Geometric inequalities">Geometric inequalities</a></li><li><a href="/wiki/Category:Hermann_Minkowski" title="Category:Hermann Minkowski">Hermann Minkowski</a></li><li><a href="/wiki/Category:Sumsets" title="Category:Sumsets">Sumsets</a></li><li><a href="/wiki/Category:Theorems_in_convex_geometry" title="Category:Theorems in convex geometry">Theorems in convex geometry</a></li><li><a href="/wiki/Category:Theorems_in_measure_theory" title="Category:Theorems in measure theory">Theorems in measure theory</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 12 November 2024, at 10:14<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Brunn%E2%80%93Minkowski_theorem&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-85fc59d95f-b285h","wgBackendResponseTime":215,"wgPageParseReport":{"limitreport":{"cputime":"0.625","walltime":"0.853","ppvisitednodes":{"value":3003,"limit":1000000},"postexpandincludesize":{"value":71968,"limit":2097152},"templateargumentsize":{"value":1482,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":68703,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 477.490 1 -total"," 30.73% 146.743 4 Template:Navbox"," 28.19% 134.593 6 Template:Cite_book"," 27.29% 130.295 1 Template:Lp_spaces"," 14.93% 71.291 1 Template:Reflist"," 13.05% 62.316 1 Template:Measure_theory"," 6.49% 31.003 1 Template:ISBN"," 5.41% 25.811 5 Template:Collapse_top"," 4.81% 22.990 4 Template:Cite_journal"," 4.57% 21.826 2 Template:Catalog_lookup_link"]},"scribunto":{"limitreport-timeusage":{"value":"0.253","limit":"10.000"},"limitreport-memusage":{"value":4267196,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-54f95c77b8-jtkgr","timestamp":"20241112101416","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Brunn\u2013Minkowski theorem","url":"https:\/\/en.wikipedia.org\/wiki\/Brunn%E2%80%93Minkowski_theorem","sameAs":"http:\/\/www.wikidata.org\/entity\/Q3915398","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q3915398","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2006-10-18T13:50:20Z","dateModified":"2024-11-12T10:14:06Z","headline":"theorem in geometry"}</script> </body> </html>