CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 563 results for author: <span class="mathjax">Buchner, B</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Buchner%2C+B">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Buchner, B"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Buchner%2C+B&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Buchner, B"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19660">arXiv:2411.19660</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.19660">pdf</a>, <a href="https://arxiv.org/format/2411.19660">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Large Nernst effect in Te-based van der Waals materials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Behnami%2C+M">M. Behnami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gillig%2C+M">M. Gillig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moghaddam%2C+A+G">A. G. Moghaddam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efremov%2C+D+V">D. V. Efremov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">G. Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piening%2C+B+R">B. R. Piening</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I+V">I. V. Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">J. Dufouleur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ochkan%2C+K">K. Ochkan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zemen%2C+J">J. Zemen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kocsis%2C+V">V. Kocsis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">C. Hess</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putti%2C+M">M. Putti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caglieris%2C+F">F. Caglieris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichlova%2C+H">H. Reichlova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19660v1-abstract-short" style="display: inline;"> Layered van der Waals tellurides reveal topologically non-trivial properties that give rise to unconventional magneto-transport phenomena. Additionally, their semimetallic character with high mobility makes them promising candidates for large magneto-thermoelectric effects. Remarkable studies on the very large and unconventional Nernst effect in WTe$_2$ have been reported, raising questions about&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19660v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19660v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19660v1-abstract-full" style="display: none;"> Layered van der Waals tellurides reveal topologically non-trivial properties that give rise to unconventional magneto-transport phenomena. Additionally, their semimetallic character with high mobility makes them promising candidates for large magneto-thermoelectric effects. Remarkable studies on the very large and unconventional Nernst effect in WTe$_2$ have been reported, raising questions about whether this property is shared across the entire family of van der Waals tellurides. In this study, systematic measurements of the Nernst effect in telluride van der Waals Weyl semimetals are presented. Large linear Nernst coefficients in WTe$_2$ and MoTe$_2$ are identified, and moderate Nernst coefficients with non-linear behavior in magnetic fields are observed in W$_{0.65}$Mo$_{0.35}$Te$_2$, TaIrTe$_4$, and TaRhTe$_4$. Within this sample set, a correlation between the dominant linear-in-magnetic-field component of the Nernst coefficient and mobility is established, aligning with the established Nernst scaling framework, though with a different scaling factor compared to existing literature. This enhancement might be caused by the shared favorable electronic band structure of this family of materials. Conversely, the non-linear component of the Nernst effect in a magnetic field could not be correlated with mobility. This non-linear term is almost absent in the binary compounds, suggesting a multiband origin and strong compensation between electron-like and hole-like carriers. This comprehensive study highlights the potential of van der Waals tellurides for thermoelectric conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19660v1-abstract-full').style.display = 'none'; document.getElementById('2411.19660v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14329">arXiv:2410.14329</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.14329">pdf</a>, <a href="https://arxiv.org/format/2410.14329">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian topology in the quantum Hall effect of graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=%C3%96zer%2C+B">Burak 脰zer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ochkan%2C+K">Kyrylo Ochkan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaturvedi%2C+R">Raghav Chaturvedi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maltsev%2C+E">Evgenii Maltsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6nye%2C+V">Viktor K枚nye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giraud%2C+R">Romain Giraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+A">Arthur Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hankiewicz%2C+E+M">Ewelina M. Hankiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fulga%2C+I+C">Ion Cosma Fulga</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">Joseph Dufouleur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">Louis Veyrat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14329v1-abstract-short" style="display: inline;"> Quantum Hall phases have recently emerged as a platform to investigate non-Hermitian topology in condensed-matter systems. This platform is particularly interesting due to its tunability, which allows to modify the properties and topology of the investigated non-Hermitian phases by tuning external parameters of the system such as the magnetic field. Here, we show the tunability of non-Hermitian to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14329v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14329v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14329v1-abstract-full" style="display: none;"> Quantum Hall phases have recently emerged as a platform to investigate non-Hermitian topology in condensed-matter systems. This platform is particularly interesting due to its tunability, which allows to modify the properties and topology of the investigated non-Hermitian phases by tuning external parameters of the system such as the magnetic field. Here, we show the tunability of non-Hermitian topology chirality in a graphene heterostructure using a gate voltage. By changing the charge carrier density, we unveil some novel properties specific to different quantum Hall regimes. First, we find that the best quantization of the non-Hermitian topological invariant is interestingly obtained at very high filling factor rather than on well-quantized quantum Hall plateaus. This is of particular importance for the efficient operation of devices based on non-Hermitian topology. Moreover, we observe an additional non-Hermitian topological phase in the insulating nu=0 quantum Hall plateau, which survives at lower fields than the opening of the nu=0 gap, confirming a recent prediction of a disorder-induced trivial phase. Our results evidence graphene as a promising platform for the study of non-Hermitian physics and of emergent phases in such topological devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14329v1-abstract-full').style.display = 'none'; document.getElementById('2410.14329v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.12596">arXiv:2410.12596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.12596">pdf</a>, <a href="https://arxiv.org/format/2410.12596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Room temperature Planar Hall effect in nanostructures of trigonal-PtBi2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+A">Arthur Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koepernik%2C+K">Klaus Koepernik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">Louis Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+J">Jiang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ceccardi%2C+M">Michele Ceccardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caglieris%2C+F">Federico Caglieris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodr%C3%ADguez%2C+N+P">Nicol谩s P茅rez Rodr铆guez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giraud%2C+R">Romain Giraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortix%2C+C">Carmine Ortix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">Joseph Dufouleur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.12596v1-abstract-short" style="display: inline;"> Trigonal-PtBi2 has recently garnered significant interest as it exhibits unique superconducting topological surface states due to electron pairing on Fermi arcs connecting bulk Weyl nodes. Furthermore, topological nodal lines have been predicted in trigonal-PtBi2, and their signature was measured in magnetotransport as a dissipationless, i.e. odd under a magnetic field reversal, anomalous planar H&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12596v1-abstract-full').style.display = 'inline'; document.getElementById('2410.12596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.12596v1-abstract-full" style="display: none;"> Trigonal-PtBi2 has recently garnered significant interest as it exhibits unique superconducting topological surface states due to electron pairing on Fermi arcs connecting bulk Weyl nodes. Furthermore, topological nodal lines have been predicted in trigonal-PtBi2, and their signature was measured in magnetotransport as a dissipationless, i.e. odd under a magnetic field reversal, anomalous planar Hall effect. Understanding the topological superconducting surface state in trigonal-PtBi2 requires unravelling the intrinsic geometric properties of the normal state electronic wavefunctions and further studies of their hallmarks in charge transport characteristics are needed. In this work, we reveal the presence of a strong dissipative, i.e. even under a magnetic field reversal, planar Hall effect in PtBi2 at low magnetic fields and up to room temperature. This robust response can be attributed to the presence of Weyl nodes close to the Fermi energy. While this effect generally follows the theoretical prediction for a planar Hall effect in a Weyl semimetal, we show that it deviates from theoretical expectations at both low fields and high temperatures. We also discuss the origin of the PHE in our material, and the contributions of both the topological features in PtBi2 and its possible trivial origin. Our results strengthen the topological nature of PtBi2 and the strong influence of quantum geometric effects on the electronic transport properties of the low energy normal state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.12596v1-abstract-full').style.display = 'none'; document.getElementById('2410.12596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02353">arXiv:2410.02353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.02353">pdf</a>, <a href="https://arxiv.org/format/2410.02353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Dissipationless transport signature of topological nodal lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+A">Arthur Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koepernik%2C+K">Klaus Koepernik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">Louis Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qu%2C+J">Jiang Qu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+A">Ankit Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ceccardi%2C+M">Michele Ceccardi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caglieris%2C+F">Federico Caglieris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rodr%C3%ADguez%2C+N+P">Nicol谩s P茅rez Rodr铆guez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giraud%2C+R">Romain Giraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ortix%2C+C">Carmine Ortix</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">Joseph Dufouleur</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02353v1-abstract-short" style="display: inline;"> Topological materials, such as topological insulators or semimetals, usually not only reveal the nontrivial properties of their electronic wavefunctions through the appearance of stable boundary modes, but also through very specific electromagnetic responses. The anisotropic longitudinal magnetoresistance of Weyl semimetals, for instance, carries the signature of the chiral anomaly of Weyl fermion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02353v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02353v1-abstract-full" style="display: none;"> Topological materials, such as topological insulators or semimetals, usually not only reveal the nontrivial properties of their electronic wavefunctions through the appearance of stable boundary modes, but also through very specific electromagnetic responses. The anisotropic longitudinal magnetoresistance of Weyl semimetals, for instance, carries the signature of the chiral anomaly of Weyl fermions. However for topological nodal line semimetals -- materials where the valence and conduction bands cross each other on one-dimensional curves in the three-dimensional Brillouin zone -- such a characteristic has been lacking. Here we report the discovery of a peculiar charge transport effect generated by topological nodal lines: a dissipationless transverse signal in the presence of coplanar electric and magnetic fields, which originates from a Zeeman-induced conversion of topological nodal lines into Weyl nodes under infinitesimally small magnetic fields. We evidence this dissipationless topological response in trigonal \ce{PtBi2} persisting up to room temperature, and unveil the extensive topological nodal lines in the band structure of this non-magnetic material. These findings provide a new pathway to engineer Weyl nodes by arbitrary small magnetic fields and reveal that bulk topological nodal lines can exhibit non-dissipative transport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02353v1-abstract-full').style.display = 'none'; document.getElementById('2410.02353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01631">arXiv:2410.01631</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.01631">pdf</a>, <a href="https://arxiv.org/format/2410.01631">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Disorder-resilient transition of helical to conical ground states in M$_{1/3}$NbS$_2$, M=Cr,Mn </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahoo%2C+M">Manaswini Sahoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonf%C3%A0%2C+P">Pietro Bonf脿</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hall%2C+A+E">Amelia. E. Hall</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mayoh%2C+D+A">Daniel. A. Mayoh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corredor%2C+L+T">Laura T. Corredor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">Anja U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balakrishnan%2C+G">Geetha Balakrishnan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Renzi%2C+R">Roberto De Renzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allodi%2C+G">Giuseppe Allodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01631v1-abstract-short" style="display: inline;"> The discovery of chiral helical magnetism (CHM) in Cr$_{1/3}$NbS$_2$ and the stabilization of a chiral soliton lattice (CSL) has attracted considerable interest in view of their potential technological applications. However, there is an ongoing debate regarding whether the sister compound, Mn$_{1/3}$NbS$_2$, which shares the same crystal structure, exhibits similar nontrivial properties which rely&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01631v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01631v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01631v1-abstract-full" style="display: none;"> The discovery of chiral helical magnetism (CHM) in Cr$_{1/3}$NbS$_2$ and the stabilization of a chiral soliton lattice (CSL) has attracted considerable interest in view of their potential technological applications. However, there is an ongoing debate regarding whether the sister compound, Mn$_{1/3}$NbS$_2$, which shares the same crystal structure, exhibits similar nontrivial properties which rely on the stabilization of the lack of inversion symmetry at the magnetic ion. In this study, we conduct a comprehensive investigation of the magnetically ordered states of both compounds, using $^{53}$Cr, $^{55}$Mn and $^{93}$Nb nuclear magnetic resonance. Our results, supported by density functional calculations, detect in a high-quality single crystal of Cr$_{1/3}$NbS$_2$ all the signatures of the monoaxial CHM in a magnetic field, identifying it as a textbook NMR case. The detailed understanding of this prototypic behavior provides a reference for Mn$_{1/3}$NbS$_2$. Despite the much larger density of specific defects in this second single crystal, we confirm the presence of a CHM phase in the Mn compound, characterized by a very large critical field for the forced ferromagnetic phase ($\approx 5$ T for H$\parallel\hat c$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01631v1-abstract-full').style.display = 'none'; document.getElementById('2410.01631v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures, Supplemental MAterial</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10214">arXiv:2409.10214</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.10214">pdf</a>, <a href="https://arxiv.org/format/2409.10214">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Anomalous quasielastic scattering contribution in the centrosymmetric multi-$\mathbf{q}$ helimagnet SrFeO$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Andriushin%2C+N+D">N. D. Andriushin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grumbach%2C+J">J. Grumbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kulbakov%2C+A+A">A. A. Kulbakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tymoshenko%2C+Y+V">Y. V. Tymoshenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onykiienko%2C+Y+A">Y. A. Onykiienko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Firouzmandi%2C+R">R. Firouzmandi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E">E. Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granovsky%2C+S">S. Granovsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Skourski%2C+Y">Y. Skourski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Walker%2C+H+C">H. C. Walker</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kocsis%2C+V">V. Kocsis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchner%2C+B">B. Buchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keimer%2C+B">B. Keimer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doerr%2C+M">M. Doerr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Inosov%2C+D+S">D. S. Inosov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">D. C. Peets</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10214v1-abstract-short" style="display: inline;"> Centrosymmetric compounds which host three-dimensional topological spin structures comprise a distinct subclass of materials in which multiple-$\mathbf{q}$ magnetic order is stabilized by anisotropy and bond frustration in contrast to the more common path of antisymmetric exchange interactions. Here we investigate static and dynamic magnetic properties of the cubic perovskite SrFeO$_3$&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10214v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10214v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10214v1-abstract-full" style="display: none;"> Centrosymmetric compounds which host three-dimensional topological spin structures comprise a distinct subclass of materials in which multiple-$\mathbf{q}$ magnetic order is stabilized by anisotropy and bond frustration in contrast to the more common path of antisymmetric exchange interactions. Here we investigate static and dynamic magnetic properties of the cubic perovskite SrFeO$_3$ $\unicode{x2013}$ a rare example of a centrosymmetric material hosting two types of topological spin textures: skyrmion- and hedgehog-lattice phases. Our detailed magnetization and dilatometry measurements describe the domain selection processes and phase transitions in SrFeO$_3$. Spin excitations are investigated using inelastic neutron scattering for all three zero-field phases. In the higher-temperature ordered phases, high-energy magnons increasingly lose coherence, so that spin fluctuations are dominated by a distinct quasielastic component at low energies. We anticipate that this could be generic to symmetric helimagnets in which the chiral symmetry is spontaneously broken by the magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10214v1-abstract-full').style.display = 'none'; document.getElementById('2409.10214v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04294">arXiv:2409.04294</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04294">pdf</a>, <a href="https://arxiv.org/format/2409.04294">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Bulk and surface electron scattering in disordered Bi$_{2}$Te$_{3}$ probed by quasiparticle interference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nagorkin%2C+V">Vladislav Nagorkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schimmel%2C+S">Sebastian Schimmel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gebauer%2C+P">Paul Gebauer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">Anna Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumann%2C+D">Danny Baumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koitzsch%2C+A">Andreas Koitzsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04294v1-abstract-short" style="display: inline;"> We investigated the electronic properties of the topological insulator Bi$_{2}$Te$_{3}$ by scanning tunneling microscopy and spectroscopy at low temperature. We obtained high-resolution quasiparticle interference data of the topological surface Dirac electrons at different energies. Spin-selective joint density of states calculations were performed for surface and bulk electronic states to interpr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04294v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04294v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04294v1-abstract-full" style="display: none;"> We investigated the electronic properties of the topological insulator Bi$_{2}$Te$_{3}$ by scanning tunneling microscopy and spectroscopy at low temperature. We obtained high-resolution quasiparticle interference data of the topological surface Dirac electrons at different energies. Spin-selective joint density of states calculations were performed for surface and bulk electronic states to interpret the observed quasiparticle interference data. The topological properties of our crystals are demonstrated by the absence of backscattering along with the linear energy dispersion of the dominant scattering vector. In addition, we detect non-dispersive scattering modes which we associate with bulk-surface scattering and, thus, allow an approximate identification of the bulk energy gap range based on our quasiparticle interference data. Measurements of differential conductance maps in magnetic fields up to 15 T have been carried out, but no strong modifications could be observed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04294v1-abstract-full').style.display = 'none'; document.getElementById('2409.04294v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01365">arXiv:2409.01365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01365">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Striped magnetization plateau and chirality-reversible anomalous Hall effect in a magnetic kagome metal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E">Erjian Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mao%2C+N">Ning Mao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xiaotian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+B">Boqing Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ying%2C+T">Tianping Ying</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nie%2C+S">Simin Nie</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bertran%2C+F">Fran莽ois Bertran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ding%2C+P">Pengfei Ding</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suvorov%2C+O">Oleksandr Suvorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Changdar%2C+S">Susmita Changdar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schnelle%2C+W">Walter Schnelle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koban%2C+R">Ralf Koban</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Burkhardt%2C+U">Ulrich Burkhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shancai Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wenbo Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01365v1-abstract-short" style="display: inline;"> Kagome materials with magnetic frustration in two-dimensional networks are known for their exotic properties, such as the anomalous Hall effect (AHE) with non-collinear spin textures. However, the effects of one-dimensional (1D) spin chains within these networks are less understood. Here, we report a distinctive AHE in the bilayer-distorted kagome material GdTi$_3$Bi$_4$, featuring 1D Gd zigzag sp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01365v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01365v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01365v1-abstract-full" style="display: none;"> Kagome materials with magnetic frustration in two-dimensional networks are known for their exotic properties, such as the anomalous Hall effect (AHE) with non-collinear spin textures. However, the effects of one-dimensional (1D) spin chains within these networks are less understood. Here, we report a distinctive AHE in the bilayer-distorted kagome material GdTi$_3$Bi$_4$, featuring 1D Gd zigzag spin chains, a one-third magnetization plateau, and two successive metamagnetic transitions. At these metamagnetic transitions, Hall resistivity shows abrupt jumps linked to the formation of stripe domain walls, while within the plateau, the absence of detectable domain walls suggests possible presence of skyrmion phase. Reducing the sample size to a few microns reveals additional Hall resistivity spikes, indicating domain wall skew scattering contributions. Magnetic atomistic spin dynamics simulations reveal that the magnetic textures at these transitions have reverse chirality, explaining the evolution of AHE and domain walls with fields. These results underscore the potential of magnetic and crystal symmetry interplay, and magnetic field-engineered spin chirality, for controlling domain walls and tuning transverse properties, advancing spintronic applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01365v1-abstract-full').style.display = 'none'; document.getElementById('2409.01365v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02409">arXiv:2408.02409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02409">pdf</a>, <a href="https://arxiv.org/format/2408.02409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Electron-beam-induced modification of gold microparticles in an SEM </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Weinel%2C+K">Kristina Weinel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hahn%2C+M+B">Marc Benjamin Hahn</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lubk%2C+A">Axel Lubk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feng%2C+W">Wen Feng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinez%2C+I+G">Ignacio Gonzalez Martinez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=J%C3%A1come%2C+L+A">Leonardo Agudo J谩come</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02409v1-abstract-short" style="display: inline;"> Electron-beam-induced conversion of materials in a transmission electron microscope uses the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02409v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02409v1-abstract-full" style="display: none;"> Electron-beam-induced conversion of materials in a transmission electron microscope uses the high power density of a localized electron beam of acceleration voltages above 100 kV as an energy source to transform matter at the sub-micron scale. Here, the e-beam-induced transformation of precursor microparticles employing a low-energy e-beam with an acceleration voltage of 30 kV in a scanning electron microscope is developed to increase the versatility and efficiency of the technique. Under these conditions, the technique can be classified between e-beam lithography, where the e-beam is used to mill holes in or grow some different material onto a substrate, and e-beam welding, where matter can be welded together when overcoming the melting phase. Modifying gold microparticles on an amorphous SiOx substrate reveals the dominant role of inelastic electron-matter interaction and subsequent localized heating for the observed melting and vaporization of the precursor microparticles under the electron beam. Monte-Carlo scattering simulations and thermodynamic modeling further support the findings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02409v1-abstract-full').style.display = 'none'; document.getElementById('2408.02409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17173">arXiv:2407.17173</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.17173">pdf</a>, <a href="https://arxiv.org/format/2407.17173">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00723-024-01671-x">10.1007/s00723-024-01671-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron Spin Resonance Spectroscopy on Magnetic Van der Waals Compounds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kataev%2C+V">Vladislav Kataev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alfonsov%2C+A">Alexey Alfonsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17173v1-abstract-short" style="display: inline;"> The field of research on magnetic van der Waals compounds -- a special subclass of quasi-two-dimensional materials -- is currently rapidly expanding due to the relevance of these compounds to fundamental research where they serve as a playground for the investigation of different models of quantum magnetism and also in view of their unique magneto-electronic and magneto-optical properties pertinen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17173v1-abstract-full').style.display = 'inline'; document.getElementById('2407.17173v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17173v1-abstract-full" style="display: none;"> The field of research on magnetic van der Waals compounds -- a special subclass of quasi-two-dimensional materials -- is currently rapidly expanding due to the relevance of these compounds to fundamental research where they serve as a playground for the investigation of different models of quantum magnetism and also in view of their unique magneto-electronic and magneto-optical properties pertinent to novel technological applications. The Electron Spin Resonance (ESR) spectroscopy plays an important role in the exploration of the rich magnetic behavior of van der Waals compounds due to its high sensitivity to magnetic anisotropies and unprecedentedly high energy resolution that altogether enable one to obtain thorough insights into the details of the spin structure in the magnetically ordered state and the low-energy spin dynamics in the ordered and paramagnetic phases. This article provides an overview of the recent achievements in this field made by the ESR spectroscopic techniques encompassing representatives of antiferro- and ferromagnetic van der Waals compounds of different crystal structures and chemical composition as well as of a special category of these materials termed magnetic topological insulators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17173v1-abstract-full').style.display = 'none'; document.getElementById('2407.17173v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This version of the article has been accepted for publication in Applied Magnetic Resonance, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s00723-024-01671-x</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Appl Magn Reson (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15790">arXiv:2407.15790</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.15790">pdf</a>, <a href="https://arxiv.org/format/2407.15790">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/apxr.202400150">10.1002/apxr.202400150 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fermi arcs dominating the electronic surface properties of trigonal PtBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+S">Sven Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schimmel%2C+S">Sebastian Schimmel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vocaturo%2C+R">Riccardo Vocaturo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puig%2C+J">Joaquin Puig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janson%2C+O">Oleg Janson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumann%2C+D">Danny Baumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasano%2C+Y">Y. Fasano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">C. Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15790v1-abstract-short" style="display: inline;"> Materials combining topologically non-trivial behavior and superconductivity offer a potential route for quantum computation. However, the set of available materials intrinsically realizing these properties are scarce. Recently, surface superconductivity has been reported in PtBi$_2$ in its trigonal phase and an inherent Weyl semimetal phase has been predicted. Here, based on scanning tunneling mi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15790v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15790v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15790v1-abstract-full" style="display: none;"> Materials combining topologically non-trivial behavior and superconductivity offer a potential route for quantum computation. However, the set of available materials intrinsically realizing these properties are scarce. Recently, surface superconductivity has been reported in PtBi$_2$ in its trigonal phase and an inherent Weyl semimetal phase has been predicted. Here, based on scanning tunneling microscopy experiments, we reveal the signature of topological Fermi arcs in the normal state patterns of the quasiparticle interference. We show that the scattering between Fermi arcs dominates the interference spectra, providing conclusive evidence for the relevance of Weyl fermiology for the surface electronic properties of trigonal PtBi$_2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15790v1-abstract-full').style.display = 'none'; document.getElementById('2407.15790v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Phys. Res. 2400150 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10551">arXiv:2406.10551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10551">pdf</a>, <a href="https://arxiv.org/format/2406.10551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Electron dynamics in a three-dimensional Brillouin zone analysed by machine learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Majchrzak%2C+P">Paulina Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanders%2C+C">Charlotte Sanders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuibarov%2C+A">Andrii Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suvorov%2C+O">Oleksandr Suvorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springate%2C+E">Emma Springate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalchuk%2C+I">Iryna Kovalchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A">Alexander Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">Sergey Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Philip Hofmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10551v2-abstract-short" style="display: inline;"> The electron dynamics in the unoccupied states of the Weyl semimetal PtBi$_2$ is studied by time- and angle-resolved photoemission spectroscopy (TR-ARPES). The measurement&#39;s result is the photoemission intensity $I$ as a function of at least four parameters: the emission angle and kinetic energy of the photoelectrons, the time delay between pump and probe laser pulses, and the probe laser photon e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10551v2-abstract-full').style.display = 'inline'; document.getElementById('2406.10551v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10551v2-abstract-full" style="display: none;"> The electron dynamics in the unoccupied states of the Weyl semimetal PtBi$_2$ is studied by time- and angle-resolved photoemission spectroscopy (TR-ARPES). The measurement&#39;s result is the photoemission intensity $I$ as a function of at least four parameters: the emission angle and kinetic energy of the photoelectrons, the time delay between pump and probe laser pulses, and the probe laser photon energy that needs to be varied to access the full three-dimensional Brillouin zone of the material. The TR-ARPES results are reported in an accompanying paper. Here we focus on the technique of using $k$-means, an unsupervised machine learning technique, in order to discover trends in the four-dimensional data sets. We study how to compare the electron dynamics across the entire data set and how to reveal subtle variations between different data sets collected in the vicinity of the bulk Weyl points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10551v2-abstract-full').style.display = 'none'; document.getElementById('2406.10551v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.10550">arXiv:2406.10550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.10550">pdf</a>, <a href="https://arxiv.org/format/2406.10550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Ultrafast carrier dynamics throughout the three-dimensional Brillouin zone of the Weyl semimetal PtBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Majchrzak%2C+P">Paulina Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanders%2C+C">Charlotte Sanders</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuibarov%2C+A">Andrii Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suvorov%2C+O">Oleksandr Suvorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springate%2C+E">Emma Springate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kovalchuk%2C+I">Iryna Kovalchuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A">Alexander Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">Sergey Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Philip Hofmann</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.10550v2-abstract-short" style="display: inline;"> Using time- and angle-resolved photoemission spectroscopy, we examine the unoccupied electronic structure and electron dynamics of the type-I Weyl semimetal PtBi$_2$. Using the ability to change the probe photon energy over a wide range, we identify the predicted Weyl points in the unoccupied three-dimensional band structure and we discuss the effect of $k_\perp$ broadening in the normally unoccup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10550v2-abstract-full').style.display = 'inline'; document.getElementById('2406.10550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.10550v2-abstract-full" style="display: none;"> Using time- and angle-resolved photoemission spectroscopy, we examine the unoccupied electronic structure and electron dynamics of the type-I Weyl semimetal PtBi$_2$. Using the ability to change the probe photon energy over a wide range, we identify the predicted Weyl points in the unoccupied three-dimensional band structure and we discuss the effect of $k_\perp$ broadening in the normally unoccupied states. We characterise the electron dynamics close to the Weyl point and in other parts of three-dimensional Brillouin zone using $k$-means, an unsupervised machine learning technique. This reveals distinct differences -- in particular, dynamics that are faster in the parts of the Brillouin zone that host most of the bulk Fermi surface than in parts close to the Weyl points. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.10550v2-abstract-full').style.display = 'none'; document.getElementById('2406.10550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16516">arXiv:2404.16516</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16516">pdf</a>, <a href="https://arxiv.org/format/2404.16516">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anisotropic magnetoresistance in altermagnetic MnTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Betancourt%2C+R+D+G">Ruben Dario Gonzalez Betancourt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zub%C3%A1%C4%8D%2C+J">Jan Zub谩膷</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geishendorf%2C+K">Kevin Geishendorf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ritzinger%2C+P">Philipp Ritzinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=R%C5%AF%C5%BEi%C4%8Dkov%C3%A1%2C+B">Barbora R暖啪i膷kov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotte%2C+T">Tommy Kotte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=%C5%BDelezn%C3%BD%2C+J">Jakub 沤elezn媒</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Olejn%C3%ADk%2C+K">Kamil Olejn铆k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springholz%2C+G">Gunther Springholz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+A">Andy Thomas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%BDborn%C3%BD%2C+K">Karel V媒born媒</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">Tomas Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichlov%C3%A1%2C+H">Helena Reichlov谩</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kriegner%2C+D">Dominik Kriegner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16516v1-abstract-short" style="display: inline;"> Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical res&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16516v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16516v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16516v1-abstract-full" style="display: none;"> Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity. In particular, we establish which components of anisotropic magnetoresistance are present when the magnetic order is rotated within the hexagonal basal plane. Our experimental results, which are in agreement with our symmetry analysis of the magnetotransport components, showcase the existence of an anisotropic magnetoresistance linked to both the relative orientation of current and magnetic order, as well as crystal and magnetic order. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16516v1-abstract-full').style.display = 'none'; document.getElementById('2404.16516v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08269">arXiv:2404.08269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.08269">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Electron-phonon interaction, magnetic phase transition, charge density waves and resistive switching in VS2 and VSe2 revealed by Yanson point contact spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bashlakov%2C+D+L">D. L. Bashlakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kvitnitskaya%2C+O+E">O. E. Kvitnitskaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">G. Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harnagea%2C+L">L. Harnagea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efremov%2C+D+V">D. V. Efremov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naidyuk%2C+Y+G">Yu. G. Naidyuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08269v1-abstract-short" style="display: inline;"> VS2 and VSe2 have attracted particular attention among the transition metals dichalcogenides because of their promising physical properties concerning magnetic ordering, charge density wave (CDW), emergent superconductivity, etc., which are very sensitive to stoichiometry and dimensionality reduction. Yanson point contact (PC) spectroscopic study reveals metallic and nonmetallic states in VS2 PCs,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08269v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08269v1-abstract-full" style="display: none;"> VS2 and VSe2 have attracted particular attention among the transition metals dichalcogenides because of their promising physical properties concerning magnetic ordering, charge density wave (CDW), emergent superconductivity, etc., which are very sensitive to stoichiometry and dimensionality reduction. Yanson point contact (PC) spectroscopic study reveals metallic and nonmetallic states in VS2 PCs, as well as a magnetic phase transition was detected below 25 K. Analysis of PC spectra of VS2 testifies the realization of the thermal regime in PCs. At the same time, rare PC spectra, where the magnetic phase transition was not visible, shows a broad maximum of around 20 mV, likely connected with electron-phonon interaction (EPI). On the other hand, PC spectra of VSe2 demonstrate metallic behavior, which allowed us to detect features associated with EPI and CDW transition. The Kondo effect appeared for both compounds, apparently due to interlayer vanadium ions. Besides, the resistive switching was observed in PCs on VSe2 between a low resistive, mainly metallic-type state, and a high resistive nonmetallic-type state by applying bias voltage (about 0.4V). In contrast, reverse switching occurs by applying a voltage of opposite polarity (about 0.4V). The reason may be the alteration of stoichiometry in the PC core due to the displacement of V ions to interlayer under a high electric field. The observed resistive switching characterize VSe2 as a potential material, e.g., for non-volatile resistive RAM, neuromorphic engineering, and for other nanoelectronic applications. At the same time, VSe2 attracts attention as a rare layered van der Waals compound with magnetic transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08269v1-abstract-full').style.display = 'none'; document.getElementById('2404.08269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figs. Presented on IV International Workshop on Point-Contact Spectroscopy: http://www.ilt.kharkov.ua/pcs2024/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.06340">arXiv:2402.06340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.06340">pdf</a>, <a href="https://arxiv.org/format/2402.06340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/advs.202402753">10.1002/advs.202402753 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ubiquitous order-disorder transition in the Mn antisite sublattice of the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ magnetic topological insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Sahoo%2C+M">M. Sahoo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Onuorah%2C+I+J">I. J. Onuorah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Folkers%2C+L+C">L. C. Folkers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chulkov%2C+E+V">E. V. Chulkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Otrokov%2C+M+M">M. M. Otrokov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aliev%2C+Z+S">Z. S. Aliev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amiraslanov%2C+I+R">I. R. Amiraslanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corredor%2C+L+T">L. T. Corredor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+C">Ch. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Z. Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">A. Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Renzi%2C+R">R. De Renzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Allodi%2C+G">G. Allodi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.06340v1-abstract-short" style="display: inline;"> Magnetic topological insulators (TIs) herald a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this mater&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06340v1-abstract-full').style.display = 'inline'; document.getElementById('2402.06340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.06340v1-abstract-full" style="display: none;"> Magnetic topological insulators (TIs) herald a wealth of applications in spin-based technologies, relying on the novel quantum phenomena provided by their topological properties. Particularly promising is the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ layered family of established intrinsic magnetic TIs that can flexibly realize various magnetic orders and topological states. High tunability of this material platform is enabled by manganese-pnictogen intermixing, whose amounts and distribution patterns are controlled by synthetic conditions. Positive implication of the strong intermixing in MnSb$_2$Te$_4$ is the interlayer exchange coupling switching from antiferromagnetic to ferromagnetic, and the increasing magnetic critical temperature. On the other side, intermixing also implies atomic disorder which may be detrimental for applications. Here, we employ nuclear magnetic resonance and muon spin spectroscopy, sensitive local probe techniques, to scrutinize the impact of the intermixing on the magnetic properties of (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ and MnSb$_2$Te$_4$. Our measurements not only confirm the opposite alignment between the Mn magnetic moments on native sites and antisites in the ground state of MnSb$_2$Te$_4$, but for the first time directly show the same alignment in (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ with n = 0, 1 and 2. Moreover, for all compounds, we find the static magnetic moment of the Mn antisite sublattice to disappear well below the intrinsic magnetic transition temperature, leaving a homogeneous magnetic structure undisturbed by the intermixing. Our findings provide a microscopic understanding of the crucial role played by Mn-Bi intermixing in (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ and offer pathways to optimizing the magnetic gap in its surface states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.06340v1-abstract-full').style.display = 'none'; document.getElementById('2402.06340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 4 figures (Main) and 8 pages, 10 figures (Supplemental)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Adv. Sci. 2024, 11, 2402753 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05880">arXiv:2401.05880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05880">pdf</a>, <a href="https://arxiv.org/format/2401.05880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Optical and acoustic plasmons in the layered material Sr$_2$RuO$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schultz%2C+J">J. Schultz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lubk%2C+A">A. Lubk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jerzembeck%2C+F">F. Jerzembeck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kikugawa%2C+N">N. Kikugawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Knupfer%2C+M">M. Knupfer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+D">D. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fink%2C+J">J. Fink</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05880v3-abstract-short" style="display: inline;"> We use momentum-dependent electron energy-loss spectroscopy in transmission to study collective charge excitations in the layer metal Sr$_2$RuO$_4$. This metal has a transition from a perfect Fermi liquid below $T\approx30\,$K into a &#34;strange&#34; metal phase above $T\approx800\,$K. We cover a complete range between in-phase and out-of-phase oscillations. Outside the classical range of electron-hole e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05880v3-abstract-full').style.display = 'inline'; document.getElementById('2401.05880v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05880v3-abstract-full" style="display: none;"> We use momentum-dependent electron energy-loss spectroscopy in transmission to study collective charge excitations in the layer metal Sr$_2$RuO$_4$. This metal has a transition from a perfect Fermi liquid below $T\approx30\,$K into a &#34;strange&#34; metal phase above $T\approx800\,$K. We cover a complete range between in-phase and out-of-phase oscillations. Outside the classical range of electron-hole excitations, leading to a Landau damping, we observe well-defined plasmons. The optical (acoustic) plasmon due to an in-phase (out-of-phase) charge oscillation of neighbouring layers exhibits a quadratic (linear) positive dispersion. Using a model for the Coulomb interaction of the charges in a layered system, it is possible to describe the range of optical plasmon excitations at high energies in a mean-field random phase approximation without taking correlation effects into account. In contrast, resonant inelastic X-ray scattering data show at low energies an enhancement of the acoustic plasmon velocity due to correlation effects. This difference can be explained by an energy dependent effective mass which changes from $\approx$ 3.5 at low energy to 1 at high energy near the optical plasmon energy. There are no signs of over-damped plasmons predicted by holographic theories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05880v3-abstract-full').style.display = 'none'; document.getElementById('2401.05880v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.03744">arXiv:2401.03744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.03744">pdf</a>, <a href="https://arxiv.org/format/2401.03744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Transport of Intensity Phase Retrieval in the Presence of Intensity Variations and Unknown Boundary Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lubk%2C+A">A. Lubk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kyrychenko%2C+R">R. Kyrychenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+D">D. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wegner%2C+M">M. Wegner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Herzog%2C+M">M. Herzog</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+M">M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zaiets%2C+O">O. Zaiets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vir%2C+P">P. Vir</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schultz%2C+J">J. Schultz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">C. Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.03744v2-abstract-short" style="display: inline;"> The so-called Transport of Intensity Equation (TIE) phase retrieval technique is widely applied in light, x-ray and electron optics to reconstruct, e.g., refractive indices, electric and magnetic fields in solids. Here, we present a largely improved TIE reconstruction algorithm, which properly considers intensity variations as well as unknown boundary conditions in a finite difference implementati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03744v2-abstract-full').style.display = 'inline'; document.getElementById('2401.03744v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.03744v2-abstract-full" style="display: none;"> The so-called Transport of Intensity Equation (TIE) phase retrieval technique is widely applied in light, x-ray and electron optics to reconstruct, e.g., refractive indices, electric and magnetic fields in solids. Here, we present a largely improved TIE reconstruction algorithm, which properly considers intensity variations as well as unknown boundary conditions in a finite difference implementation of the Transport of Intensity partial differential equation. That largely removes reconstruction artifacts encountered in state-of-the-art Poisson solvers of the TIE, and hence significantly increases the applicability of the technique. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.03744v2-abstract-full').style.display = 'none'; document.getElementById('2401.03744v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01098">arXiv:2312.01098</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01098">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Interplay of topology and antiferromagnetic order in two-dimensional van der Waals crystals of (NixFe1-x)2P2S6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Khan%2C+N">N. Khan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+D">D. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+V">V. Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shemerliuk%2C+Y">Y. Shemerliuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Selter%2C+S">S. Selter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pal%2C+K">K. Pal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+P">Pradeep Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01098v1-abstract-short" style="display: inline;"> Mermin-Wagner theorem forbid spontaneous symmetry breaking of spins in one/two-dimensional systems at finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions such as topologically ordered phase rigorously shown by Berezinskii-Kosterlitz-Thouless (BKT) and experimentally realized in very limited systems&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01098v1-abstract-full').style.display = 'inline'; document.getElementById('2312.01098v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01098v1-abstract-full" style="display: none;"> Mermin-Wagner theorem forbid spontaneous symmetry breaking of spins in one/two-dimensional systems at finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions such as topologically ordered phase rigorously shown by Berezinskii-Kosterlitz-Thouless (BKT) and experimentally realized in very limited systems such as superfluids, superconducting thin films. Quasi 2D van der Waals magnets provide an ideal platform to investigate the fundamentals of low-dimensional magnetism. We explored the 2D honeycomb antiferromagnetic single crystals of (NixFe1-x)2P2S6 with varying spins ( ) using in depth temperature dependent Raman measurements supported by first-principles calculations of the phonon frequencies. As a function of doping, a tunable transition from paramagnetic to antiferromagnetic ordering is shown via phonons reflected in the strong renormalization of the self-energy parameters of the Raman active phonon modes. An anomalously broad magnetic continuum attributed to two-magnon excitations is observed and its coupling with the phonons is revealed in the observation a Fano line asymmetry. Interestingly, the two-magnon continuum is observed only for the finite doping understood invoking underlying nature of insulator these materials belongs to, i.e. exchange interaction between transition metals via surrounding ligands (sulphur) and the resonance involving phonon modes associated with the (P2S6) cage. Quite surprisingly, we also observed renormalization of the phonon modes much below the long-range magnetic ordered temperature attributed to the topological ordered state, namely the BKT phase, which is also found to change as a function of doping. The extracted critical exponent of the order-parameter evince the signature of topologically active state driven by vortex-antivortex excitations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01098v1-abstract-full').style.display = 'none'; document.getElementById('2312.01098v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.12221">arXiv:2311.12221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.12221">pdf</a>, <a href="https://arxiv.org/format/2311.12221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Spinon heat transport in the three-dimensional quantum magnet PbCuTe$_2$O$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xiaochen Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gillig%2C+M">Matthias Gillig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hanna%2C+A+R+N">Abanoub R. N. Hanna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chillal%2C+S">Shravani Chillal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+A+T+M+N">A. T. M. Nazmul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lake%2C+B">Bella Lake</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.12221v1-abstract-short" style="display: inline;"> Quantum spin liquids (QSL) are novel phases of matter which remain quantum disordered even at the lowest temperature. They are characterized by emergent gauge fields and fractionalized quasiparticles. Here we show that the sub-Kelvin thermal transport of the three-dimensional $S=1/2$ hyper-hyperkagome quantum magnet PbCuTe$_2$O$_6$ is governed by a sizeable charge-neutral fermionic contribution wh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12221v1-abstract-full').style.display = 'inline'; document.getElementById('2311.12221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.12221v1-abstract-full" style="display: none;"> Quantum spin liquids (QSL) are novel phases of matter which remain quantum disordered even at the lowest temperature. They are characterized by emergent gauge fields and fractionalized quasiparticles. Here we show that the sub-Kelvin thermal transport of the three-dimensional $S=1/2$ hyper-hyperkagome quantum magnet PbCuTe$_2$O$_6$ is governed by a sizeable charge-neutral fermionic contribution which is compatible with the itinerant fractionalized excitations of a spinon Fermi surface. We demonstrate that this hallmark feature of the QSL state is remarkably robust against sample crystallinity, large magnetic field, and field-induced magnetic order, ruling out the imitation of QSL features by extrinsic effects. Our findings thus reveal the characteristic low-energy features of PbCuTe$_2$O$_6$ which qualify this compound as a true QSL material. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.12221v1-abstract-full').style.display = 'none'; document.getElementById('2311.12221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11535">arXiv:2309.11535</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11535">pdf</a>, <a href="https://arxiv.org/format/2309.11535">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Access to the full 3D Brillouin zone with time resolution, using a new tool for pump-probe ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Majchrzak%2C+P">Paulina Majchrzak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuibarov%2C+A">Andrii Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chapman%2C+R">Richard Chapman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wyatt%2C+A">Adam Wyatt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Springate%2C+E">Emma Springate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">Sergey Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+P">Philip Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanders%2C+C+E">Charlotte E. Sanders</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11535v1-abstract-short" style="display: inline;"> Here we report the first time- and angle-resolved photoemission spectroscopy (TR-ARPES) with the new Fermiologics &#34;FeSuMa&#34; analyzer. The new experimental setup has been commissioned at the Artemis laboratory of the UK Central Laser Facility. We explain here some of the advantages of the FeSuMa for TR-ARPES and discuss how its capabilities relate to those of hemispherical analyzers and momentum mic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11535v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11535v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11535v1-abstract-full" style="display: none;"> Here we report the first time- and angle-resolved photoemission spectroscopy (TR-ARPES) with the new Fermiologics &#34;FeSuMa&#34; analyzer. The new experimental setup has been commissioned at the Artemis laboratory of the UK Central Laser Facility. We explain here some of the advantages of the FeSuMa for TR-ARPES and discuss how its capabilities relate to those of hemispherical analyzers and momentum microscopes. We have integrated the FeSuMa into an optimized pump-probe beamline that permits photon-energy- (i.e., kz-) dependent scanning, using probe energies generated from high harmonics in a gas jet. The advantages of using the FeSuMa in this situation include the possibility of taking advantage of its &#34;fisheye&#34; mode of operation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11535v1-abstract-full').style.display = 'none'; document.getElementById('2309.11535v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Review of Scientific Instruments</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06963">arXiv:2309.06963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06963">pdf</a>, <a href="https://arxiv.org/format/2309.06963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Anomalous Hall effect and magnetoresistance in micro-ribbons of the magnetic Weyl semimetal candidate PrRhC2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Martini%2C+M">Mickey Martini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichlova%2C+H">Helena Reichlova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corredor%2C+L+T">Laura T. Corredor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kriegner%2C+D">Dominik Kriegner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+Y">Yejin Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tomarchio%2C+L">Luca Tomarchio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nielsch%2C+K">Kornelius Nielsch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moghaddam%2C+A+G">Ali G. Moghaddam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romaka%2C+V">Vitaliy Romaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomas%2C+A">Andy Thomas</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06963v1-abstract-short" style="display: inline;"> PrRhC2 belongs to the rare-earth carbides family whose properties are of special interest among topological semimetals due to the simultaneous breaking of both inversion and time-reversal symmetry. The concomitant absence of both symmetries grants the possibility to tune the Weyl nodes chirality and to enhance topological effects like the chiral anomaly. In this work, we report on the synthesis an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06963v1-abstract-full').style.display = 'inline'; document.getElementById('2309.06963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06963v1-abstract-full" style="display: none;"> PrRhC2 belongs to the rare-earth carbides family whose properties are of special interest among topological semimetals due to the simultaneous breaking of both inversion and time-reversal symmetry. The concomitant absence of both symmetries grants the possibility to tune the Weyl nodes chirality and to enhance topological effects like the chiral anomaly. In this work, we report on the synthesis and compare the magnetotransport measurements of a poly- and single crystalline PrRhC2 sample. Using a remarkable and sophisticated technique, the PrRhC2 single crystal is prepared via focused ion beam cutting from the polycrystalline material. Our magnetometric and specific heat analyses reveal a non-collinear antiferromagnetic state below 20K, as well as short-range magnetic correlations and/or magnetic fluctuations well above the onset of the magnetic transition. The transport measurements on the PrRhC2 single crystal display an electrical resistivity peak at 3K and an anomalous Hall effect below 6K indicative of a net magnetization component in the ordered state. Furthermore, we study the angular variation of magnetoresistivities as a function of the angle between the in-plane magnetic field and the injected electrical current. We find that both the transverse and the longitudinal resistivities exhibit fourfold angular dependencies due to higher-order terms in the resistivity tensor, consistent with the orthorhombic crystal symmetry of PrRhC2. Our experimental results may be interpreted as features of topological Weyl semimetallic behavior in the magnetotransport properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06963v1-abstract-full').style.display = 'none'; document.getElementById('2309.06963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.06399">arXiv:2309.06399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.06399">pdf</a>, <a href="https://arxiv.org/format/2309.06399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-53343-w">10.1038/s41467-024-53343-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital-selective effect of spin reorientation on the Dirac fermions in a non-charge-ordered kagome ferromagnet Fe$_3$Ge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+L">Liqin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wenhua Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tu%2C+Z">Zhijun Tu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+B">Bei Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+M">Man Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Z">Zhonghao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+X">Xuezhi Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">Oliver Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sun%2C+Y">Yujie Sun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weng%2C+H">Hongming Weng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+S">Shancai Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.06399v2-abstract-short" style="display: inline;"> Kagome magnets provide a fascinating platform for the realization of correlated topological quantum phases under various magnetic ground states. However, the effect of the magnetic spin configurations on the characteristic electronic structure of the kagome lattice layer remains elusive. Here, utilizing angle-resolved photoemission spectroscopy and density functional theory calculations, we report&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06399v2-abstract-full').style.display = 'inline'; document.getElementById('2309.06399v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.06399v2-abstract-full" style="display: none;"> Kagome magnets provide a fascinating platform for the realization of correlated topological quantum phases under various magnetic ground states. However, the effect of the magnetic spin configurations on the characteristic electronic structure of the kagome lattice layer remains elusive. Here, utilizing angle-resolved photoemission spectroscopy and density functional theory calculations, we report the spectroscopic evidence for the spin-reorientation effect of a kagome ferromagnet Fe$_3$Ge, which is composed solely of kagome planes. As the Fe moments cant from the $c$ axis into the $ab$ plane upon cooling, the two kinds of kagome-derived Dirac fermions respond quite differently. The one with less-dispersive bands ($k_z$ $\sim$ 0) containing the $3d_{z^2}$ orbitals evolves from gapped into nearly gapless, while the other with linear dispersions ($k_z$ $\sim$ $蟺$) embracing the $3d_{xz}$/$3d_{yz}$ components remains intact, suggesting that the effect of spin reorientation on the Dirac fermions has an orbital selectivity. Moreover, we demonstrate that there is no signature of charge order formation in Fe$_3$Ge, contrasting with its sibling compound FeGe, a newly established charge-density-wave kagome magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.06399v2-abstract-full').style.display = 'none'; document.getElementById('2309.06399v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 15, 9823 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00568">arXiv:2309.00568</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00568">pdf</a>, <a href="https://arxiv.org/format/2309.00568">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0160335">10.1063/5.0160335 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tschirner%2C+T">Teresa Tschirner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ke%C3%9Fler%2C+P">Philipp Ke脽ler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Betancourt%2C+R+D+G">Ruben Dario Gonzalez Betancourt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kotte%2C+T">Tommy Kotte</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kriegner%2C+D">Dominik Kriegner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buechner%2C+B">Bernd Buechner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">Joseph Dufouleur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamp%2C+M">Martin Kamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jovic%2C+V">Vedran Jovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Smejkal%2C+L">Libor Smejkal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sinova%2C+J">Jairo Sinova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claessen%2C+R">Ralph Claessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jungwirth%2C+T">Tomas Jungwirth</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moser%2C+S">Simon Moser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichlova%2C+H">Helena Reichlova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">Louis Veyrat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00568v1-abstract-short" style="display: inline;"> Observations of the anomalous Hall effect in RuO$_2$ and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in Ru&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00568v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00568v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00568v1-abstract-full" style="display: none;"> Observations of the anomalous Hall effect in RuO$_2$ and MnTe have demonstrated unconventional time-reversal symmetry breaking in the electronic structure of a recently identified new class of compensated collinear magnets, dubbed altermagnets. While in MnTe the unconventional anomalous Hall signal accompanied by a vanishing magnetization is observable at remanence, the anomalous Hall effect in RuO$_2$ is excluded by symmetry for the N茅el vector pointing along the zero-field [001] easy-axis. Guided by a symmetry analysis and ab initio calculations, a field-induced reorientation of the N茅el vector from the easy-axis towards the [110] hard-axis was used to demonstrate the anomalous Hall signal in this altermagnet. We confirm the existence of an anomalous Hall effect in our RuO$_2$ thin-film samples whose set of magnetic and magneto-transport characteristics is consistent with the earlier report. By performing our measurements at extreme magnetic fields up to 68 T, we reach saturation of the anomalous Hall signal at a field $H_{\rm c} \simeq$ 55 T that was inaccessible in earlier studies, but is consistent with the expected N茅el-vector reorientation field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00568v1-abstract-full').style.display = 'none'; document.getElementById('2309.00568v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> APL Mater. 11, 101103 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16963">arXiv:2306.16963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16963">pdf</a>, <a href="https://arxiv.org/format/2306.16963">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00628-4">10.1038/s41535-024-00628-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phonon thermal transport shaped by strong spin-phonon scattering in a Kitaev material Na$_2$Co$_2$TeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xiaochen Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gillig%2C+M">Matthias Gillig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Weiliang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Janssen%2C+L">Lukas Janssen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kocsis%2C+V">Vilmos Kocsis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gass%2C+S">Sebastian Gass</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">Anja U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16963v1-abstract-short" style="display: inline;"> The recent report of a half-quantized thermal Hall effect in the Kitaev material $伪$-RuCl$_3$ has sparked a strong debate on whether it is generated by Majorana fermion edge currents or whether other more conventional mechanisms involving magnons or phonons are at its origin. A more direct evidence for Majorana fermions which could be expected to arise from a contribution to the longitudinal heat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16963v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16963v1-abstract-full" style="display: none;"> The recent report of a half-quantized thermal Hall effect in the Kitaev material $伪$-RuCl$_3$ has sparked a strong debate on whether it is generated by Majorana fermion edge currents or whether other more conventional mechanisms involving magnons or phonons are at its origin. A more direct evidence for Majorana fermions which could be expected to arise from a contribution to the longitudinal heat conductivity $魏_{xx}$ at $T\rightarrow0$ is elusive due to a very complex magnetic field dependence of $魏_{xx}$. Here, we report very low temperature (below 1~K) thermal conductivity ($魏$) of another candidate Kitaev material, Na$_2$Co$_2$TeO$_6$. The application of a magnetic field along different principal axes of the crystal reveals a strong directional-dependent magnetic-field ($\bf B$) impact on $魏$. We show that no evidence for mobile quasiparticles except phonons can be concluded at any field from 0~T to the field polarized state. In particular, severely scattered phonon transport is observed across the $B-T$ phase diagram, which is attributed to prominent magnetic fluctuations. Cascades of phase transitions are uncovered for all $\bf B$ directions by probing the strength of magnetic fluctuations via a precise record of $魏$($B$). Our results thus rule out recent proposals for itinerant magnetic excitations in Na$_2$Co$_2$TeO$_6$, and emphasise the importance of discriminating true spin liquid transport properties from scattered phonons in candidate materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16963v1-abstract-full').style.display = 'none'; document.getElementById('2306.16963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Mater. 9, 18 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.18674">arXiv:2305.18674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.18674">pdf</a>, <a href="https://arxiv.org/format/2305.18674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02337-4">10.1038/s41567-023-02337-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of non-Hermitian topology in a multi-terminal quantum Hall device </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ochkan%2C+K">Kyrylo Ochkan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chaturvedi%2C+R">Raghav Chaturvedi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%B6nye%2C+V">Viktor K枚nye</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">Louis Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giraud%2C+R">Romain Giraud</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mailly%2C+D">Dominique Mailly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cavanna%2C+A">Antonella Cavanna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gennser%2C+U">Ulf Gennser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hankiewicz%2C+E+M">Ewelina M. Hankiewicz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">Joseph Dufouleur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fulga%2C+I+C">Ion Cosma Fulga</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.18674v1-abstract-short" style="display: inline;"> Quantum devices characterized by non-Hermitian topology are predicted to show highly robust and potentially useful properties, but realizing them has remained a daunting experimental task. This is because non-Hermiticity is often associated with gain and loss, which would require precise tailoring to produce the signatures of nontrivial topology. Here, instead of gain/loss, we use the nonreciproci&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18674v1-abstract-full').style.display = 'inline'; document.getElementById('2305.18674v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.18674v1-abstract-full" style="display: none;"> Quantum devices characterized by non-Hermitian topology are predicted to show highly robust and potentially useful properties, but realizing them has remained a daunting experimental task. This is because non-Hermiticity is often associated with gain and loss, which would require precise tailoring to produce the signatures of nontrivial topology. Here, instead of gain/loss, we use the nonreciprocity of the quantum Hall edge states to directly observe non-Hermitian topology in a multi-terminal quantum Hall ring. Our transport measurements evidence a robust, non-Hermitian skin effect: currents and voltages show an exponential profile, which persists also across Hall plateau transitions away from the regime of maximum non-reciprocity. Our observation of non-Hermitian topology in a quantum device introduces a scalable experimental approach to construct and investigate generic non-Hermitian systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.18674v1-abstract-full').style.display = 'none'; document.getElementById('2305.18674v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> 20, 395--401 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04744">arXiv:2305.04744</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04744">pdf</a>, <a href="https://arxiv.org/ps/2305.04744">ps</a>, <a href="https://arxiv.org/format/2305.04744">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevApplied.18.054076">10.1103/PhysRevApplied.18.054076 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Large magnetocaloric effect in the kagome ferromagnet Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Magar%2C+A">Akshata Magar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%2C+S">Somesh K</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+V">Vikram Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abraham%2C+J+J">J. J. Abraham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senyk%2C+Y">Y. Senyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alfonsov%2C+A">A. Alfonsov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataev%2C+V">V. Kataev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirlin%2C+A+A">A. A. Tsirlin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nath%2C+R">R. Nath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04744v1-abstract-short" style="display: inline;"> Single-crystal growth, magnetic properties, and magnetocaloric effect of the $S = 3/2$ kagome ferromagnet Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ (trigonal, space group: $P\bar{3}c1$) are reported. Magnetization data suggest dominant ferromagnetic intra-plane coupling with a weak anisotropy and the onset of ferromagnetic ordering at $T_{\rm C} \simeq 2.6$ K. Microscopic analysis reveals a very sm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04744v1-abstract-full').style.display = 'inline'; document.getElementById('2305.04744v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04744v1-abstract-full" style="display: none;"> Single-crystal growth, magnetic properties, and magnetocaloric effect of the $S = 3/2$ kagome ferromagnet Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ (trigonal, space group: $P\bar{3}c1$) are reported. Magnetization data suggest dominant ferromagnetic intra-plane coupling with a weak anisotropy and the onset of ferromagnetic ordering at $T_{\rm C} \simeq 2.6$ K. Microscopic analysis reveals a very small ratio of interlayer to intralayer ferromagnetic couplings ($J_{\perp}/J \simeq 0.02$). Electron spin resonance data suggest the presence of short-range correlations above $T_{\rm C}$ and confirms quasi-two-dimensional character of the spin system. A large magnetocaloric effect characterized by isothermal entropy change of $-螖S_{\rm m}\simeq 31$ J kg$^{-1}$ K$^{-1}$ and adiabatic temperature change of $-螖T_{\rm ad}\simeq 9$ K upon a field sweep of 7 T is observed around $T_{\rm C}$. This leads to a large relative cooling power of $RCP \simeq 284$ J kg$^{-1}$. The large magnetocaloric effect, together with negligible hysteresis render Li$_9$Cr$_3$(P$_2$O$_7$)$_3$(PO$_4$)$_2$ a promising material for magnetic refrigeration at low temperatures. The magnetocrystalline anisotropy constant $K \simeq -7.42 \times 10^4$ erg cm$^{-3}$ implies that the compound is an easy-plane type ferromagnet with the hard axis normal to the $ab$-plane, consistent with the magnetization data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04744v1-abstract-full').style.display = 'none'; document.getElementById('2305.04744v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Applied 18, 054076 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.02900">arXiv:2305.02900</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.02900">pdf</a>, <a href="https://arxiv.org/format/2305.02900">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06977-7">10.1038/s41586-023-06977-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Superconducting Arcs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kuibarov%2C+A">Andrii Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suvorov%2C+O">Oleksandr Suvorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vocaturo%2C+R">Riccardo Vocaturo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Merkwitz%2C+L">Luise Merkwitz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Voroshnin%2C+V">Vladimir Voroshnin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Koepernik%2C+K">Klaus Koepernik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A">Alexander Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigoriy Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">Sergey Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.02900v1-abstract-short" style="display: inline;"> An essential ingredient for the production of Majorana fermions that can be used for quantum computing is the presence of topological superconductivity. As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity making systems fragile and difficult to realize. Weyl semimetals due to their intrinsic topology belong to potential cand&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02900v1-abstract-full').style.display = 'inline'; document.getElementById('2305.02900v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.02900v1-abstract-full" style="display: none;"> An essential ingredient for the production of Majorana fermions that can be used for quantum computing is the presence of topological superconductivity. As bulk topological superconductors remain elusive, the most promising approaches exploit proximity-induced superconductivity making systems fragile and difficult to realize. Weyl semimetals due to their intrinsic topology belong to potential candidates too, but search for Majorana fermions has always been connected with the superconductivity in the bulk, leaving the possibility of intrinsic superconductivity of the Fermi surface arcs themselves practically without attention, even from the theory side.Here, by means of angle-resolved photoemission spectroscopy and ab-initio calculations, we unambiguously identify topological Fermi arcs on two opposing surfaces of the non-centrosymmetric Weyl material PtBi2. We show that these states become superconducting at different temperatures around 10K. Remarkably, the corresponding coherencepeaks appear as the strongest and sharpest excitations ever detected by photoemission from solids, suggesting significant technological relevance. Our findings indicate that topological superconductivity in PtBi2 occurs exclusively at the surface, which not only makes it an ideal platform to host Majorana fermions, but may also lead to a unique quantum phase - an intrinsic topological SNS Josephson junction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.02900v1-abstract-full').style.display = 'none'; document.getElementById('2305.02900v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures and Supplementary Information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 626, 294 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.08080">arXiv:2304.08080</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.08080">pdf</a>, <a href="https://arxiv.org/format/2304.08080">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.035101">10.1103/PhysRevB.108.035101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ultrafast Relaxation Dynamics of Spin-Density Wave Order in BaFe$_2$As$_2$ under High Pressures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fotev%2C+I">Ivan Fotev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winnerl%2C+S">Stephan Winnerl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schneider%2C+H">Harald Schneider</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Helm%2C+M">Manfred Helm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pashkin%2C+A">Alexej Pashkin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.08080v1-abstract-short" style="display: inline;"> BaFe$_2$As$_2$ is the parent compound for a family of iron-based high-temperature superconductors as well as a prototypical example of the spin-density wave (SDW) system. In this study, we perform an optical pump-probe study of this compound to systematically investigate the SDW order across the pressure-temperature phase diagram. The suppression of the SDW order by pressure manifests itself by th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08080v1-abstract-full').style.display = 'inline'; document.getElementById('2304.08080v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.08080v1-abstract-full" style="display: none;"> BaFe$_2$As$_2$ is the parent compound for a family of iron-based high-temperature superconductors as well as a prototypical example of the spin-density wave (SDW) system. In this study, we perform an optical pump-probe study of this compound to systematically investigate the SDW order across the pressure-temperature phase diagram. The suppression of the SDW order by pressure manifests itself by the increase of relaxation time together with the decrease of the pump-probe signal and the pump energy necessary for complete vaporization of the SDW condensate. We have found that the pressure-driven suppression of the SDW order at low temperature occurs gradually in contrast to the thermally-induced SDW transition. Our results suggest that the pressure-driven quantum phase transition in BaFe$_2$As$_2$ (and probably other iron pnictides) is continuous and it is caused by the gradual worsening of the Fermi-surface nesting conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.08080v1-abstract-full').style.display = 'none'; document.getElementById('2304.08080v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 035101 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03067">arXiv:2303.03067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03067">pdf</a>, <a href="https://arxiv.org/ps/2303.03067">ps</a>, <a href="https://arxiv.org/format/2303.03067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043110">10.1103/PhysRevResearch.5.043110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phononic-magnetic dichotomy of the thermal Hall effect in the Kitaev-Heisenberg candidate material Na$_2$Co$_2$TeO$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Gillig%2C+M">Matthias Gillig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xiaochen Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wellm%2C+C">Christoph Wellm</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataev%2C+V">Vladislav Kataev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+W">Weiliang Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03067v1-abstract-short" style="display: inline;"> Majorana fermions as emergent excitations of the Kitaev quantum spin liquid ground state constitute a promising concept in fault tolerant quantum computation. Experimentally, the recently reported topological half-quantized thermal Hall effect in the Kitaev material $伪$-RuCl$_3$ seems to confirm the Majorana nature of the material&#39;s magnetic excitations. It has been argued, however, that the therm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03067v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03067v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03067v1-abstract-full" style="display: none;"> Majorana fermions as emergent excitations of the Kitaev quantum spin liquid ground state constitute a promising concept in fault tolerant quantum computation. Experimentally, the recently reported topological half-quantized thermal Hall effect in the Kitaev material $伪$-RuCl$_3$ seems to confirm the Majorana nature of the material&#39;s magnetic excitations. It has been argued, however, that the thermal Hall signal in $伪$-RuCl$_3$ rather stems from phonons or topological magnons than from Majorana fermions. Here we investigate the thermal Hall effect of the closely related Kitaev quantum material Na$_2$Co$_2$TeO$_6$, and we show that the thermal Hall signal emerges from at least two components, phonons and magnetic excitations. This dichotomy results from our discovery that the transversal heat conductivity $魏_{xy}$ carries clear signatures of the phononic $魏_{xx}$, but changes sign upon entering the low-temperature, magnetically ordered phase. We systematically resolve the two components by considering the detailed temperature and field dependence of both $魏_{xy}$ and $魏_{xx}$. Our results demonstrate that uncovering a genuinely quantized magnetic thermal Hall effect in a Kitaev topological quantum spin liquid requires to disentangle phonon vs. magnetic contributions where the latter include potentially fractionalized excitations such as the expected Majorana fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03067v1-abstract-full').style.display = 'none'; document.getElementById('2303.03067v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13085">arXiv:2302.13085</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13085">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/10.0019694">10.1063/10.0019694 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Peculiarities of electron transport and resistive switching in point contacts on TiSe2, TiSeS and CuxTiSe2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bashlakov%2C+D+L">D. L. Bashlakov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kvitnitskaya%2C+O+E">O. E. Kvitnitskaya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shemerliuk%2C+Y">Y. Shemerliuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berger%2C+H">H. Berger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efremov%2C+D+V">D. V. Efremov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Naidyuk%2C+Y+G">Yu. G. Naidyuk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13085v1-abstract-short" style="display: inline;"> TiSe2 has received much attention among the transition metals chalcogenides because of its thrilling physical properties concerning atypical resistivity behavior, emerging of charge density wave (CDW) state, induced superconductivity etc. Here, we report discovery of new feature of TiSe2, namely, observation of resistive switching in voltage biased point contacts (PCs) based on TiSe2 and its deriv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13085v1-abstract-full').style.display = 'inline'; document.getElementById('2302.13085v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13085v1-abstract-full" style="display: none;"> TiSe2 has received much attention among the transition metals chalcogenides because of its thrilling physical properties concerning atypical resistivity behavior, emerging of charge density wave (CDW) state, induced superconductivity etc. Here, we report discovery of new feature of TiSe2, namely, observation of resistive switching in voltage biased point contacts (PCs) based on TiSe2 and its derivatives doped by S and Cu (TiSeS, CuxTiSe2). The switching is taking place between a low resistive mainly metallic-type state and a high resistive semiconducting-type state by applying bias voltage (usually below 0.5V), while reverse switching takes place by applying voltage of opposite polarity (usually below 0.5V). The difference in resistance between these two states can reach up to two orders of magnitude at the room temperature. The origin of the effect can be attributed to the variation of stoichiometry in PC core due to drift/displacement of Se/Ti vacancies under high electric field. Additionally, we demonstrated, that heating takes place in PC core, which can facilitate the electric field induced effect. At the same time, we did not found any evidence for CDW spectral features in our PC spectra for TiSe2. The observed resistive switching allows to propose TiSe2 and their derivatives as the promising materials, e.g., for non-volatile resistive random access memory (ReRAM) engineering. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13085v1-abstract-full').style.display = 'none'; document.getElementById('2302.13085v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Low Temp. Phys. 49, 834 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.08968">arXiv:2302.08968</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.08968">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-54389-6">10.1038/s41467-024-54389-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Surface superconductivity in the topological Weyl semimetal t-PtBi$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schimmel%2C+S">Sebastian Schimmel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasano%2C+Y">Yanina Fasano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+S">Sven Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Besproswanny%2C+J">Julia Besproswanny</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bohorquez%2C+L+T+C">Laura Teresa Corredor Bohorquez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Puig%2C+J">Joaqu铆n Puig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elshalem%2C+B">Bat-Chen Elshalem</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kalisky%2C+B">Beena Kalisky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shipunov%2C+G">Grigory Shipunov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baumann%2C+D">Danny Baumann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.08968v2-abstract-short" style="display: inline;"> The advancement of quantum computation is eager on generating fault tolerant qubits, and topological superconductivity is a very promising concept for reaching this goal. Early experimental achievements study hybrid systems as well as doped intrinsic topological or superconducting materials presenting the phenomena at very low temperatures. However, higher critical temperatures are indispensable f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08968v2-abstract-full').style.display = 'inline'; document.getElementById('2302.08968v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.08968v2-abstract-full" style="display: none;"> The advancement of quantum computation is eager on generating fault tolerant qubits, and topological superconductivity is a very promising concept for reaching this goal. Early experimental achievements study hybrid systems as well as doped intrinsic topological or superconducting materials presenting the phenomena at very low temperatures. However, higher critical temperatures are indispensable for technological exploitation. Promising very recent angle-resolved photoemission spectroscopy results reveal that superconductivity of the type-I Weyl semimetal trigonal PtBi$_2$ (t-PtBi$_2$) is located at the Fermi arcs surface states which renders t-PtBi$_2$ a candidate for intrinsic topological superconductivity. Here we show, using scanning tunnelling microscopy and spectroscopy (STM/STS) that t-PtBi$_2$ presents surface superconductivity at elevated temperatures (5 K). The gap magnitude is elusive: it is spatially inhomogeneous and spans from 0 to 20 meV. In particular, the large gap value and the shape of the quasiparticle excitation spectrum resemble the phenomenology of high-Tc superconductors. To our knowledge, this is the largest superconducting gap so far measured in a topological material. Moreover, we show that the superconducting state at 5 K persists up to 12 T magnetic field. Thus, we show that t-PtBi2 is a prime candidate for intrinsic topological superconductivity at technologically relevant temperatures, fields and gap magnitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.08968v2-abstract-full').style.display = 'none'; document.getElementById('2302.08968v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised Version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 9895 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.01023">arXiv:2302.01023</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.01023">pdf</a>, <a href="https://arxiv.org/format/2302.01023">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Intermixing-driven surface and bulk ferromagnetism in the quantum anomalous Hall candidate MnBi$_6$Te$_{10}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tcakaev%2C+A+V">Abdul V. Tcakaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rubrecht%2C+B">Bastian Rubrecht</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Facio%2C+J+I">Jorge I. Facio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V+B">Volodymyr B. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corredor%2C+L+T">Laura T. Corredor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Folkers%2C+L+C">Laura C. Folkers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kochetkova%2C+E">Ekaterina Kochetkova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peixoto%2C+T+R+F">Thiago R. F. Peixoto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kagerer%2C+P">Philipp Kagerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Heinze%2C+S">Simon Heinze</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentmann%2C+H">Hendrik Bentmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Green%2C+R+J">Robert J. Green</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gargiani%2C+P">Pierluigi Gargiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valvidares%2C+M">Manuel Valvidares</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Weschke%2C+E">Eugen Weschke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Haverkort%2C+M+W">Maurits W. Haverkort</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">Friedrich Reinert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brink%2C+J+v+d">Jeroen van den Brink</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">Anja U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">Anna Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">Vladimir Hinkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.01023v1-abstract-short" style="display: inline;"> The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ benchmark the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi$_2$Te$_4$ septuple layers (SL). However, the QAHE realization is complicated in MnBi$_2$Te$_4$ and MnBi$_4$Te&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01023v1-abstract-full').style.display = 'inline'; document.getElementById('2302.01023v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.01023v1-abstract-full" style="display: none;"> The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ benchmark the (MnBi$_2$Te$_4$)(Bi$_2$Te$_3$)$_n$ family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi$_2$Te$_4$ septuple layers (SL). However, the QAHE realization is complicated in MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ due to the substantial antiferromagnetic (AFM) coupling between the SL. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SL with an increasing number $n$ of Bi$_2$Te$_3$ layers. However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, we demonstrate robust FM properties in MnBi$_6$Te$_{10}$ ($n = 2$) with $T_C \approx 12$ K and establish their origin in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. Our measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. Our investigation thus consolidates the MnBi$_6$Te$_{10}$ system as perspective for the QAHE at elevated temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.01023v1-abstract-full').style.display = 'none'; document.getElementById('2302.01023v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Accepted to Advanced Science (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.13768">arXiv:2301.13768</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.13768">pdf</a>, <a href="https://arxiv.org/format/2301.13768">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.035158">10.1103/PhysRevB.107.035158 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signature of weakly coupled $f$ electrons and conduction electrons in magnetic Weyl semimetal candidates PrAlSi and SmAlSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yaresko%2C+A">Alexander Yaresko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">Sergey Borisenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.13768v1-abstract-short" style="display: inline;"> Magnetic topological materials are a class of compounds with the underlying interplay of nontrivial band topology and magnetic spin configuration. Extensive interests have been aroused due to their application potential involved with an array of exotic quantum states. With angle-resolved photoemission spectroscopy and first-principles calculations, here we study the electronic properties of two ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13768v1-abstract-full').style.display = 'inline'; document.getElementById('2301.13768v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.13768v1-abstract-full" style="display: none;"> Magnetic topological materials are a class of compounds with the underlying interplay of nontrivial band topology and magnetic spin configuration. Extensive interests have been aroused due to their application potential involved with an array of exotic quantum states. With angle-resolved photoemission spectroscopy and first-principles calculations, here we study the electronic properties of two magnetic Weyl semimetal candidates PrAlSi and SmAlSi. Though the two compounds harbor distinct magnetic ground states (ferromagnetic and antiferromagnetic for PrAlSi and SmAlSi, respectively) and 4$f$ shell fillings, we find that they share quite analogous low-energy band structure. By the measurements across the magnetic transitions, we further reveal that there is no evident evolution of the band structure in both compounds and the experimental spectra can be well reproduced by the nonmagnetic calculations, together suggesting a negligible effect of the magnetism on their electronic structures and a possibly weak coupling between the localized 4$f$ electrons and the itinerant conduction electrons. Our results offer essential insights into the interactions between magnetism, electron correlations, and topological orders in the $R$Al$X$ ($R$ = light rare earth and $X$ = Si or Ge) family. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.13768v1-abstract-full').style.display = 'none'; document.getElementById('2301.13768v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 035158 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04239">arXiv:2301.04239</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04239">pdf</a>, <a href="https://arxiv.org/format/2301.04239">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.165141">10.1103/PhysRevB.107.165141 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic anisotropy and low-energy spin dynamics in the van der Waals compounds Mn$_{2}$P$_{2}$S$_{6}$ and MnNiP$_{2}$S$_{6}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Abraham%2C+J+J">J. J. Abraham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Senyk%2C+Y">Y. Senyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shemerliuk%2C+Y">Y. Shemerliuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Selter%2C+S">S. Selter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataev%2C+V">V. Kataev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alfonsov%2C+A">A. Alfonsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04239v2-abstract-short" style="display: inline;"> We report the detailed high-field and high-frequency electron spin resonance (HF-ESR) spectroscopic study of the single-crystalline van der Waals compounds Mn$_{2}$P$_{2}$S$_{6}$ and MnNiP$_{2}$S$_{6}$. Analysis of magnetic excitations shows that in comparison to Mn$_{2}$P$_{2}$S$_{6}$ increasing the Ni content yields a larger magnon gap in the ordered state and a larger g-factor value and its ani&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04239v2-abstract-full').style.display = 'inline'; document.getElementById('2301.04239v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04239v2-abstract-full" style="display: none;"> We report the detailed high-field and high-frequency electron spin resonance (HF-ESR) spectroscopic study of the single-crystalline van der Waals compounds Mn$_{2}$P$_{2}$S$_{6}$ and MnNiP$_{2}$S$_{6}$. Analysis of magnetic excitations shows that in comparison to Mn$_{2}$P$_{2}$S$_{6}$ increasing the Ni content yields a larger magnon gap in the ordered state and a larger g-factor value and its anisotropy in the paramagnetic state. The studied compounds are found to be strongly anisotropic having each the unique ground state and type of magnetic order. Stronger deviation of the g-factor from the free electron value in the samples containing Ni suggests that the anisotropy of the exchange is an important contributor to the stabilization of a certain type of magnetic order with particular anisotropy. At temperatures above the magnetic order, we have analyzed the spin-spin correlations resulting in a development of slowly fluctuating short-range order. They are much stronger pronounced in MnNiP$_{2}$S$_{6}$ compared to Mn$_{2}$P$_{2}$S$_{6}$. The enhanced spin fluctuations in MnNiP$_{2}$S$_{6}$ are attributed to the competition of different types of magnetic order. Finally, the analysis of the temperature dependent critical behavior of the magnon gaps below the ordering temperature in Mn$_{2}$P$_{2}$S$_{6}$ suggests that the character of the spin wave excitations in this compound undergoes a field induced crossover from a 3D-like towards 2D XY regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04239v2-abstract-full').style.display = 'none'; document.getElementById('2301.04239v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.03800">arXiv:2301.03800</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.03800">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Tunable positions of Weyl nodes via magnetism and pressure in the ferromagnetic Weyl semimetal CeAlSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+E">Erjian Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+L">Limin Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+X">Xianbiao Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnami%2C+M">Mahdi Behnami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+J">Jian Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yuanji Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+Y">Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pavlovskii%2C+N">Nikolai Pavlovskii</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peets%2C+D+C">Darren C. Peets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weiwei Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wan%2C+Y">Yimin Wan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+S">Shiyan Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+W">Wenge Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.03800v2-abstract-short" style="display: inline;"> The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion (SI) and time-reversal (TR) symmetry breaking provides a unique platform for the exploration of novel topological states. Here, by employing electrical and thermoelectrical transport, angle-resolved photoemission spectroscopy (ARPES), high-pressure techniques, and band calculations, we demonstrate that mag&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03800v2-abstract-full').style.display = 'inline'; document.getElementById('2301.03800v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.03800v2-abstract-full" style="display: none;"> The noncentrosymmetric ferromagnetic Weyl semimetal CeAlSi with simultaneous space-inversion (SI) and time-reversal (TR) symmetry breaking provides a unique platform for the exploration of novel topological states. Here, by employing electrical and thermoelectrical transport, angle-resolved photoemission spectroscopy (ARPES), high-pressure techniques, and band calculations, we demonstrate that magnetism and pressure can serve as efficient parameters to tune the positions of Weyl nodes in CeAlSi. At ambient pressure, an anomalous Hall effect (AHE) and an anomalous Nernst effect (ANE) arise in the paramagnetic state, and then are enhanced when temperature approaches the ferromagnetic ordering temperature, evidencing magnetism facilitates the AHE/ANE. Such an enhancement of AHE/ANE can be ascribed to the tuning of the positions of Weyl nodes via magnetism. The ARPES measurements reveal that the ferromagnetism serves as a pivotal knob to tune the band structure of CeAlSi both in the bulk and on the surface. Such magnetism-tunable electronic structure has hitherto not been reported in other magnetic $R$Al$Pn$ ($R$ = rare earth elements, $Pn$ = Si, Ge) siblings, suggesting the great potential of controlling Weyl node positions in CeAlSi. Under pressure, an enhancement and a sign change of AHE are discovered. Based on band calculations, the evolution of AHE may root in the tuning of Weyl nodes via pressure. Moreover, multiple pressure-induced phase transitions are uncovered. These findings indicate that CeAlSi provides a unique and tunable platform for exploring exotic topological physics and electron correlations, as well as catering to an array of potential applications, such as spintronics and thermoelectrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.03800v2-abstract-full').style.display = 'none'; document.getElementById('2301.03800v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00521">arXiv:2211.00521</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00521">pdf</a>, <a href="https://arxiv.org/format/2211.00521">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.014003">10.1103/PhysRevMaterials.7.014003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of the spin dynamics in the van der Waals system $M_{\text{2}}$P$_{\text{2}}$S$_{\text{6}}$ ($\boldsymbol{M}_{\text{2}}$ = Mn$_{\text{2}}$, MnNi, Ni$_{\text{2}}$) series probed by electron spin resonance spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Senyk%2C+Y">Y. Senyk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Abraham%2C+J+J">J. J. Abraham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shemerliuk%2C+Y">Y. Shemerliuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Selter%2C+S">S. Selter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kataev%2C+V">V. Kataev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Alfonsov%2C+A">A. Alfonsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00521v2-abstract-short" style="display: inline;"> In this work we report a detailed ESR spectroscopic study of the single-crystalline samples of the van der Waals compounds $M_{\text{2}}$P$_{\text{2}}$S$_{\text{6}}$ ($M_{\text{2}}$ = Mn$_{\text{2}}$, MnNi, Ni$_{\text{2}}$), performed at an excitation frequency of 9.56 GHz, in a broad range of temperatures above the magnetic order, and at different orientations of the magnetic field with respect t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00521v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00521v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00521v2-abstract-full" style="display: none;"> In this work we report a detailed ESR spectroscopic study of the single-crystalline samples of the van der Waals compounds $M_{\text{2}}$P$_{\text{2}}$S$_{\text{6}}$ ($M_{\text{2}}$ = Mn$_{\text{2}}$, MnNi, Ni$_{\text{2}}$), performed at an excitation frequency of 9.56 GHz, in a broad range of temperatures above the magnetic order, and at different orientations of the magnetic field with respect to the sample. Analyzing temperature and angular dependences of the resonance field and of the linewidth of the Mn$_2$P$_2$S$_6$ compound we have observed a significant change of the spin dynamics from the dominance of the 3D-like fluctuations close to the magnetic order to a relative increase of the 2D-like spin fluctuations at higher temperatures. Such a behavior, which is opposite to the development of the low-D signatures in the previously studied Cr$_{\text{2}}$Ge$_{\text{2}}$Te$_{\text{6}}$ compound, can be explained by the difference in the type of magnetic order in Mn$_2$P$_2$S$_6$ and Cr$_{\text{2}}$Ge$_{\text{2}}$Te$_{\text{6}}$. On the other hand, MnNiP$_2$S$_6$ compound exhibits angular dependences of the linewidth typical for the system with 3D-like spin correlations in the whole measurement temperature range, however the 2D-like correlations can be seen in the temperature dependences of the resonance field and the linewidth. Ni$_2$P$_2$S$_6$, in turn, does not show any 2D signatures. This suggests that varying the Ni content in (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ one can control the exchange interaction, possibly also in the third dimension. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00521v2-abstract-full').style.display = 'none'; document.getElementById('2211.00521v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.12799">arXiv:2210.12799</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.12799">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.7.033405">10.1103/PhysRevMaterials.7.033405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal growth, characterization and electronic band structure of TiSeS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Shemerliuk%2C+Y">Y. Shemerliuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuibarov%2C+A">A. Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Feia%2C+O">O. Feia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnami%2C+M">M. Behnami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reichlova%2C+H">H. Reichlova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suvorov%2C+O">O. Suvorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Selter%2C+S">S. Selter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Efremov%2C+D+V">D. V. Efremov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">S. Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.12799v2-abstract-short" style="display: inline;"> Layered semimetallic van der Waals materials TiSe2 has attracted a lot of attention because of interplay of a charge density wave (CDW) state and superconductivity. Its sister compound TiS2, being isovalent to TiSe2 and having the same crystal structure, shows a semiconducting behavior. The natural rises what happens at the transition point in TiSe2-xSx, which is expected for x close to 1. Here we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12799v2-abstract-full').style.display = 'inline'; document.getElementById('2210.12799v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.12799v2-abstract-full" style="display: none;"> Layered semimetallic van der Waals materials TiSe2 has attracted a lot of attention because of interplay of a charge density wave (CDW) state and superconductivity. Its sister compound TiS2, being isovalent to TiSe2 and having the same crystal structure, shows a semiconducting behavior. The natural rises what happens at the transition point in TiSe2-xSx, which is expected for x close to 1. Here we report the growth and characterization of TiSeS single crystals and the study of the electronic structure using density functional theory (DFT) and angle-resolved photoemission (ARPES). We show that TiSeS single crystals have the same morphology as TiSe2. Transport measurements reveal a metallic state, no evidence of CDW was found. DFT calculations suggest that the electronic band structure in TiSeS is similar to that of TiSe2, but the electron and hole pockets in TiSeS are much smaller. The ARPES results are in good agreement with the calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.12799v2-abstract-full').style.display = 'none'; document.getElementById('2210.12799v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 9 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07682">arXiv:2210.07682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07682">pdf</a>, <a href="https://arxiv.org/format/2210.07682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.245405">10.1103/PhysRevB.108.245405 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear colossal magnetoresistance driven by magnetic textures in LaTiO3 thin films on SrTiO3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tschirner%2C+T">Teresa Tschirner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leikert%2C+B">Berengar Leikert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kern%2C+F">Felix Kern</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+D">Daniel Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lubk%2C+A">Axel Lubk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamp%2C+M">Martin Kamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miller%2C+K">Kirill Miller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartmann%2C+F">Fabian Hartmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=H%C3%B6fling%2C+S">Sven H枚fling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dufouleur%2C+J">Joseph Dufouleur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gabay%2C+M">Marc Gabay</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sing%2C+M">Michael Sing</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claessen%2C+R">Ralph Claessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">Louis Veyrat</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07682v1-abstract-short" style="display: inline;"> Linear magnetoresistance (LMR) is of particular interest for memory, electronics, and sensing applications, especially when it does not saturate over a wide range of magnetic fields. One of its principal origins is local mobility or density inhomogeneities, often structural, which in the Parish-Littlewood theory leads to an unsaturating LMR proportional to mobility. Structural disorder, however, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07682v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07682v1-abstract-full" style="display: none;"> Linear magnetoresistance (LMR) is of particular interest for memory, electronics, and sensing applications, especially when it does not saturate over a wide range of magnetic fields. One of its principal origins is local mobility or density inhomogeneities, often structural, which in the Parish-Littlewood theory leads to an unsaturating LMR proportional to mobility. Structural disorder, however, also tends to limit the mobility and hence the overall LMR amplitude. An alternative route to achieve large LMR is via non-structural inhomogeneities which do not affect the zero field mobility, like magnetic domains. Here, linear positive magnetoresistance caused by magnetic texture is reported in \ch{LaTiO3}/\ch{SrTiO3} heterostructures. The LMR amplitude reaches up to 6500\% at 9T. This colossal value is understood by the unusual combination of a very high thin film mobility, up to 40 000 cm$^2$/V.s, and a very large coverage of low-mobility regions. These regions correlate with a striped magnetic structure, compatible with a spiral magnetic texture in the \ch{LaTiO3} film, revealed by low temperature Lorentz transmission electron microscopy. These results provide a novel route for the engineering of large-LMR devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07682v1-abstract-full').style.display = 'none'; document.getElementById('2210.07682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 245405 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.02252">arXiv:2210.02252</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.02252">pdf</a>, <a href="https://arxiv.org/format/2210.02252">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134507">10.1103/PhysRevB.106.134507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Absence of hexagonal to square structural transition in LiFeAs vortex matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hoffmann%2C+S">Sven Hoffmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schlegel%2C+R">Ronny Schlegel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salazar%2C+C">Christian Salazar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sykora%2C+S">Steffen Sykora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nag%2C+P+K">Pranab Kumar Nag</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khanenko%2C+P">Pavlo Khanenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Beck%2C+R">Robert Beck</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasano%2C+Y">Yanina Fasano</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.02252v1-abstract-short" style="display: inline;"> We investigated magnetic vortices in two stoichiometric LiFeAs samples by means of scanning tunneling microscopy and spectroscopy. The vortices were revealed by measuring the local electronic density of states (LDOS) at zero bias conductance of samples in magnetic fields between 0.5 and 12 T. From single vortex spectroscopy we extract the Ginzburg-Landau coherence length of both samples as&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02252v1-abstract-full').style.display = 'inline'; document.getElementById('2210.02252v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.02252v1-abstract-full" style="display: none;"> We investigated magnetic vortices in two stoichiometric LiFeAs samples by means of scanning tunneling microscopy and spectroscopy. The vortices were revealed by measuring the local electronic density of states (LDOS) at zero bias conductance of samples in magnetic fields between 0.5 and 12 T. From single vortex spectroscopy we extract the Ginzburg-Landau coherence length of both samples as $4.4\pm0.5$ nm and $4.1\pm0.5$ nm, in accordance with previous findings. However, in contrast to previous reports, our study reveals that the reported hexagonal to square-like vortex lattice transition is absent up to 12 T both in field-cooling and zero-field-cooling processes. Remarkably, a highly ordered zero field cooled hexagonal vortex lattice is observed up to 8 T. We argue that several factors are likely to determine the structure of the vortex lattice in LiFeAs such as (i) details of the cooling procedure (ii) sample stoichiometry that alters the formation of nematic fluctuations, (iii) details of the order parameter and (iv) magnetoelastic coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.02252v1-abstract-full').style.display = 'none'; document.getElementById('2210.02252v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 106, 134507 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08986">arXiv:2209.08986</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08986">pdf</a>, <a href="https://arxiv.org/format/2209.08986">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevMaterials.6.114403">10.1103/PhysRevMaterials.6.114403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dilution of the magnetic lattice in the Kitaev candidate $伪$-RuCl$_3$ by Rh$^{3+}$ doping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bastien%2C+G">G. Bastien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinokurova%2C+E">E. Vinokurova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+M">M. Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bestha%2C+K+K">K. K. Bestha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Corredor%2C+L+T">L. T. Corredor</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kreutzer%2C+G">G. Kreutzer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lubk%2C+A">A. Lubk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doert%2C+T">Th. Doert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchner%2C+B">B. Buchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">A. Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08986v1-abstract-short" style="display: inline;"> Magnetic dilution of a well-established Kitaev candidate system is realized in the substitutional Ru$_{1-x}$Rh$_x$Cl$_3$ series ($x = 0.02-0.6$). Optimized syntheses protocols yield uniformly-doped single crystals and polycrystalline powders that are isostructural to the parental $伪$-RuCl$_3$ as per X-ray diffraction. The Rh content $x$ is accurately determined by the quantitative energy-dispersiv&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08986v1-abstract-full').style.display = 'inline'; document.getElementById('2209.08986v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08986v1-abstract-full" style="display: none;"> Magnetic dilution of a well-established Kitaev candidate system is realized in the substitutional Ru$_{1-x}$Rh$_x$Cl$_3$ series ($x = 0.02-0.6$). Optimized syntheses protocols yield uniformly-doped single crystals and polycrystalline powders that are isostructural to the parental $伪$-RuCl$_3$ as per X-ray diffraction. The Rh content $x$ is accurately determined by the quantitative energy-dispersive X-ray spectroscopy technique with standards. We determine the magnetic phase diagram of Ru$_{1-x}$Rh$_x$Cl$_3$ for in-plane magnetic fields from magnetization and specific-heat measurements as a function of $x$ and stacking periodicity, and identify the suppression of the magnetic order at $x \approx 0.2$ towards a disordered phase, which does not show any clear signature of freezing into a spin glass. Comparing with previous studies on the substitution series Ru$_{1-x}$Ir$_x$Cl$_3$, we propose that chemical pressure would contribute to the suppression of magnetic order especially in Ru$_{1-x}$Ir$_x$Cl$_3$ and that the zigzag magnetic ground state appears to be relatively robust with respect to the dilution of the Kitaev--$螕$--Heisenberg magnetic lattice. We also discovered a slight dependence of the magnetic properties on thermal cycling, which would be due to an incomplete structural transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08986v1-abstract-full').style.display = 'none'; document.getElementById('2209.08986v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.05832">arXiv:2208.05832</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.05832">pdf</a>, <a href="https://arxiv.org/format/2208.05832">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ac9d5e">10.1088/1367-2630/ac9d5e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong surface termination dependence of the electronic structure of polar superconductor LaFeAsO revealed by nano-ARPES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+S+W">Sung Won Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rhodes%2C+L+C">Luke C. Rhodes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Evtushinsky%2C+D+V">Daniil V. Evtushinsky</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kappenberger%2C+R">Rhea Kappenberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wurmehl%2C+S">Sabine Wurmehl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.05832v1-abstract-short" style="display: inline;"> The electronic structures of the iron-based superconductors have been intensively studied by using angleresolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05832v1-abstract-full').style.display = 'inline'; document.getElementById('2208.05832v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.05832v1-abstract-full" style="display: none;"> The electronic structures of the iron-based superconductors have been intensively studied by using angleresolved photoemission spectroscopy (ARPES). A considerable amount of research has been focused on the LaFeAsO family, showing the highest transition temperatures, where previous ARPES studies have found much larger Fermi surfaces than bulk theoretical calculations would predict. The discrepancy has been attributed to the presence of termination-dependent surface states. Here, using photoemission spectroscopy with a sub-micron focused beam spot (nano-ARPES) we have successfully measured the electronic structures of both the LaO and FeAs terminations in LaFeAsO. Our data reveal very different band dispersions and core-level spectra for different surface terminations, showing that previous macro-focus ARPES measurements were incomplete. Our results give direct evidence for the surface-driven electronic structure reconstruction in LaFeAsO, including formation of the termination-dependent surface states at the Fermi level. This new experimental technique, which we have shown to be very powerful when applied to this prototypical compound, can now be used to study various materials with different surface terminations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.05832v1-abstract-full').style.display = 'none'; document.getElementById('2208.05832v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 24 113018 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01550">arXiv:2208.01550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.01550">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.094417">10.1103/PhysRevB.107.094417 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fluctuating Fractionalized Spins in Quasi Two-dimensional Magnetic V0.85PS3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+V">Vivek Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+D">Deepu Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Singh%2C+B">Birender Singh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shemerliuk%2C+Y">Yuliia Shemerliuk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnami%2C+M">Mahdi Behnami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchner%2C+B">Bernd Buchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+P">Pradeep Kumar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01550v1-abstract-short" style="display: inline;"> Quantum spin liquid (QSL), a state characterized by exotic low energy fractionalized excitations and statistics is still elusive experimentally and may be gauged via indirect experimental signatures. Remnant of QSL phase may reflect in the spin dynamics as well as quanta of lattice vibrations, i.e., phonons, via the strong coupling of phonons with the underlying fractionalized excitations i.e., Ma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01550v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01550v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01550v1-abstract-full" style="display: none;"> Quantum spin liquid (QSL), a state characterized by exotic low energy fractionalized excitations and statistics is still elusive experimentally and may be gauged via indirect experimental signatures. Remnant of QSL phase may reflect in the spin dynamics as well as quanta of lattice vibrations, i.e., phonons, via the strong coupling of phonons with the underlying fractionalized excitations i.e., Majorana fermions. Inelastic light scattering (Raman) studies on V1-xPS3 single crystals evidences the spin fractionalization into Majorana fermions deep into the paramagnetic phase reflected in the emergence of a low frequency quasielastic response along with a broad magnetic continuum marked by a crossover temperature T* ~ 200 K from a pure paramagnetic state to fractionalized spins regime qualitatively gauged via dynamic Raman susceptibility. We further evidenced anomalies in the phonons self-energy parameters in particular phonon line broadening and line asymmetry evolution at this crossover temperature, attributed to the decaying of phonons into itinerant Majorana fermions. This anomalous scattering response is thus indicative of fluctuating fractionalized spins suggesting a phase proximate to the quantum spin liquid state in this quasi two-dimensional (2D) magnetic system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01550v1-abstract-full').style.display = 'none'; document.getElementById('2208.01550v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14421">arXiv:2207.14421</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14421">pdf</a>, <a href="https://arxiv.org/format/2207.14421">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.L022019">10.1103/PhysRevResearch.5.L022019 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional ferromagnetic extension of a topological insulator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kagerer%2C+P">P. Kagerer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fornari%2C+C+I">C. I. Fornari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchberger%2C+S">S. Buchberger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tschirner%2C+T">T. Tschirner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Veyrat%2C+L">L. Veyrat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kamp%2C+M">M. Kamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tcakaev%2C+A+V">A. V. Tcakaev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zabolotnyy%2C+V">V. Zabolotnyy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morelh%C3%A3o%2C+S+L">S. L. Morelh茫o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Geldiyev%2C+B">B. Geldiyev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+S">S. M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">A. Fedorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rienks%2C+E">E. Rienks</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gargiani%2C+P">P. Gargiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valvidares%2C+M">M. Valvidares</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Folkers%2C+L+C">L. C. Folkers</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">A. Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hinkov%2C+V">V. Hinkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claessen%2C+R">R. Claessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bentmann%2C+H">H. Bentmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reinert%2C+F">F. Reinert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14421v1-abstract-short" style="display: inline;"> Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a 3D topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface and not in the bulk, e.g. through proximity of a ferromagnetic (FM) layer. However, such a proximity-induced Dirac mass gap has not been observed, likely due to insufficien&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14421v1-abstract-full').style.display = 'inline'; document.getElementById('2207.14421v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14421v1-abstract-full" style="display: none;"> Inducing a magnetic gap at the Dirac point of the topological surface state (TSS) in a 3D topological insulator (TI) is a route to dissipationless charge and spin currents. Ideally, magnetic order is present only at the surface and not in the bulk, e.g. through proximity of a ferromagnetic (FM) layer. However, such a proximity-induced Dirac mass gap has not been observed, likely due to insufficient overlap of TSS and the FM subsystem. Here, we take a different approach, namely FM extension, using a thin film of the 3D TI Bi$_2$Te$_3$, interfaced with a monolayer of the lattice-matched van der Waals ferromagnet MnBi$_2$Te$_4$. Robust 2D ferromagnetism with out-of-plane anisotropy and a critical temperature of $\text{T}_\text{c}\approx$~15 K is demonstrated by X-ray magnetic dichroism and electrical transport measurements. Using angle-resolved photoelectron spectroscopy, we observe the opening of a sizable magnetic gap in the 2D FM phase, while the surface remains gapless in the paramagnetic phase above T$_c$. This sizable gap indicates a relocation of the TSS to the FM ordered Mn moments near the surface, which leads to a large mutual overlap. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14421v1-abstract-full').style.display = 'none'; document.getElementById('2207.14421v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5 (2023), L022019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.14416">arXiv:2207.14416</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.14416">pdf</a>, <a href="https://arxiv.org/format/2207.14416">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043011">10.1103/PhysRevResearch.5.043011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Suppression of nematicity by tensile strain in multilayer FeSe/SrTiO$_3$ films </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lou%2C+R">Rui Lou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suvorov%2C+O">Oleksandr Suvorov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grafe%2C+H">Hans-Joachim Grafe</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuibarov%2C+A">Andrii Kuibarov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Krivenkov%2C+M">Maxim Krivenkov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rader%2C+O">Oliver Rader</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borisenko%2C+S">Sergey Borisenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fedorov%2C+A">Alexander Fedorov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.14416v3-abstract-short" style="display: inline;"> The nematicity in multilayer FeSe/SrTiO$_3$ films has been previously suggested to be enhanced with decreasing film thickness. Motivated by this, there have been many discussions about the competing relation between nematicity and superconductivity. However, the criterion for determining the nematicity strength in FeSe remains highly debated. The understanding of nematicity and its relation to sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14416v3-abstract-full').style.display = 'inline'; document.getElementById('2207.14416v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.14416v3-abstract-full" style="display: none;"> The nematicity in multilayer FeSe/SrTiO$_3$ films has been previously suggested to be enhanced with decreasing film thickness. Motivated by this, there have been many discussions about the competing relation between nematicity and superconductivity. However, the criterion for determining the nematicity strength in FeSe remains highly debated. The understanding of nematicity and its relation to superconductivity in FeSe films is therefore still controversial. Here, we fabricate multilayer FeSe/SrTiO$_3$ films using molecular beam epitaxy and study the nematic properties by combining angle-resolved photoemission spectroscopy, nuclear magnetic resonance, and scanning tunneling microscopy experiments. We unambiguously demonstrate that, near the interface, the nematicity is suppressed by the SrTiO$_3$-induced tensile strain; in the bulk region further away from the interface, the strength of nematicity recovers to the bulk value. Our results not only solve the controversy about the nematicity in multilayer FeSe films, but also offer valuable insights into the relationship between nematicity and superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.14416v3-abstract-full').style.display = 'none'; document.getElementById('2207.14416v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, 043011 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04020">arXiv:2207.04020</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.04020">pdf</a>, <a href="https://arxiv.org/format/2207.04020">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.184421">10.1103/PhysRevB.107.184421 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong uniaxial pressure dependencies evidencing spin-lattice coupling and spin fluctuations in Cr$_2$Ge$_2$Te$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Spachmann%2C+S">S. Spachmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Selter%2C+S">S. Selter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">S. Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Klingeler%2C+R">R. Klingeler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04020v1-abstract-short" style="display: inline;"> Single crystals of Cr$_2$Ge$_2$Te$_6$ were studied by high-resolution capacitance dilatometry to obtain in-plane ($B\parallel ab$) and out-of-plane ($B\parallel c$) thermal expansion and magnetostriction at temperatures between 2 and 300 K and in magnetic fields up to 15 T. The anomalies in both response functions lead to the &#39;magnetoelastic&#39; phase diagrams and separate the paramagnetic (PM), ferr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04020v1-abstract-full').style.display = 'inline'; document.getElementById('2207.04020v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04020v1-abstract-full" style="display: none;"> Single crystals of Cr$_2$Ge$_2$Te$_6$ were studied by high-resolution capacitance dilatometry to obtain in-plane ($B\parallel ab$) and out-of-plane ($B\parallel c$) thermal expansion and magnetostriction at temperatures between 2 and 300 K and in magnetic fields up to 15 T. The anomalies in both response functions lead to the &#39;magnetoelastic&#39; phase diagrams and separate the paramagnetic (PM), ferromagnetic low-temperature/low-field (LTF) and aligned ferromagnetic (FM) phases. The presence of two distinct thermal expansion anomalies at small fields $B\parallel ab$ of different magnetic field dependence clearly supports the scenario of an intermediate region separating PM and LTF phases and is indicative of a tricritical point. Simulations of the magnetostriction using the Stoner-Wohlfarth model for uniaxial anisotropy demonstrate that the observed quadratic-in-field behavior in the LTF phase is in line with a rotation of the spins from the preferred $c$ direction into the $ab$ plane. Both the LTF and the PM phase close to T$_{\rm C}$ exhibit very strong pressure dependencies of the magnetization, ${\partial}\ln{M_{\rm ab}}/{\partial}p_{\rm ab}$, of several hundred %/GPa and also the transition from the LTF to the FM phase strongly depends on $p_{\rm ab}$ ($\sim -$280%/GPa), indicating a strong decrease of the uniaxial anisotropy under applied in-plane pressure. Our data clearly demonstrate the relevance of critical fluctuations and magnetoelastic coupling in Cr$_2$Ge$_2$Te$_6$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04020v1-abstract-full').style.display = 'none'; document.getElementById('2207.04020v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.13178">arXiv:2206.13178</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.13178">pdf</a>, <a href="https://arxiv.org/format/2206.13178">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.134432">10.1103/PhysRevB.106.134432 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Combined experimental and theoretical study of hydrostatic (He-gas) pressure effects in $伪$-RuCl$_3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wolf%2C+B">B. Wolf</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kaib%2C+D+A+S">D. A. S. Kaib</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Razpopov%2C+A">A. Razpopov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biswas%2C+S">S. Biswas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riedl%2C+K">K. Riedl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Winter%2C+S+M">S. M. Winter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">R. Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saito%2C+Y">Y. Saito</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hartmann%2C+S">S. Hartmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinokurova%2C+E">E. Vinokurova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Doert%2C+T">T. Doert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Isaeva%2C+A">A. Isaeva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bastien%2C+G">G. Bastien</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wolter%2C+A+U+B">A. U. B. Wolter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">B. B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lang%2C+M">M. Lang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.13178v1-abstract-short" style="display: inline;"> We report a detailed experimental and theoretical study on the effect of hydrostatic pressure on the structural and magnetic aspects of the layered honeycomb antiferromagent $伪$-RuCl$_{3}$. Magnetic susceptibility measurements performed under almost ideal hydrostatic-pressure conditions yield that the phase transition to zigzag-type antiferromagnetic order at $T_N$ = 7.3 K can be rapidly suppresse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13178v1-abstract-full').style.display = 'inline'; document.getElementById('2206.13178v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.13178v1-abstract-full" style="display: none;"> We report a detailed experimental and theoretical study on the effect of hydrostatic pressure on the structural and magnetic aspects of the layered honeycomb antiferromagent $伪$-RuCl$_{3}$. Magnetic susceptibility measurements performed under almost ideal hydrostatic-pressure conditions yield that the phase transition to zigzag-type antiferromagnetic order at $T_N$ = 7.3 K can be rapidly suppressed to about 6.1 K. A further suppression with increasing pressure is impeded due to the occurrence of a pressure-induced structural transition at $p \geq$ 104 MPa, accompanied by a strong dimerization of Ru-Ru bonds, which gives rise to a collapse of the magnetic susceptibility. Whereas the dimerization transition is strongly first order, as reflected by large discontinuous changes in $蠂$ and pronounced hysteresis effects, the magnetic transition under varying pressure and magnetic field also reveals indications for a weakly first-order transition. We assign this observation to a strong magnetoelastic coupling in this system. Measurements of $蠂$ under varying pressure in the paramagnetic regime ($T &gt; T_N$) and before dimerization ($p &lt;$ 100 MPa) reveal a considerable increase of $蠂$ with pressure. These experimental observations are consistent with the results of ab-initio Density Functional Theory (DFT) calculations on the pressure-dependent structure and the corresponding pressure-dependent magnetic model. Comparative susceptibility measurements on a second crystal showing two consecutive magnetic transitions instead of one, indicating the influence of stacking faults. Using different temperature-pressure protocols the effect of these stacking faults can be temporarily overcome, transforming the magnetic state from a multiple-$T_N$ into a single-$T_N$ state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.13178v1-abstract-full').style.display = 'none'; document.getElementById('2206.13178v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13667">arXiv:2205.13667</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13667">pdf</a>, <a href="https://arxiv.org/format/2205.13667">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.L220406">10.1103/PhysRevB.106.L220406 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Heat transport of the kagom茅 Heisenberg quantum spin liquid candidate YCu$_3$(OH)$_{6.5}$Br$_{2.5}$: localized magnetic excitations and spin gap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xiaochen Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnami%2C+M">Mahdi Behnami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yuan%2C+L">Long Yuan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+B">Boqiang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brenig%2C+W">Wolfram Brenig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yuesheng Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13667v2-abstract-short" style="display: inline;"> The spin-1/2 kagom茅 Heisenberg antiferromagnet is generally accepted as one of the most promising two-dimensional models to realize a quantum spin liquid state. Previous experimental efforts were almost exclusively on only one archetypal material, the herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which unfortunately suffers from the notorious orphan spins problem caused by magnetic disorders. Here we tu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13667v2-abstract-full').style.display = 'inline'; document.getElementById('2205.13667v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13667v2-abstract-full" style="display: none;"> The spin-1/2 kagom茅 Heisenberg antiferromagnet is generally accepted as one of the most promising two-dimensional models to realize a quantum spin liquid state. Previous experimental efforts were almost exclusively on only one archetypal material, the herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which unfortunately suffers from the notorious orphan spins problem caused by magnetic disorders. Here we turn to YCu$_3$(OH)$_{6.5}$Br$_{2.5}$, recently recognized as another host of a globally undistorted kagom茅 Cu$^{2+}$ lattice free from the orphan spins, thus a more feasible system for studying the intrinsic kagom茅 quantum spin liquid physics. Our high-resolution low-temperature thermal conductivity measurements yield a vanishing small residual linear term of $魏/T$ ($T\rightarrow 0$), and thus clearly rule out itinerant gapless fermionic excitations. Unusual scattering of phonons grows exponentially with temperature, suggesting thermally activated phonon-spin scattering and hence a gapped magnetic excitation, consistent with a $\mathbb{Z}_2$ quantum spin liquid ground state. Additionally, the analysis of magnetic field impact on the thermal conductivity reveals a field closing of the spin gap, while the excitations remain localized. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13667v2-abstract-full').style.display = 'none'; document.getElementById('2205.13667v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.13663">arXiv:2205.13663</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.13663">pdf</a>, <a href="https://arxiv.org/format/2205.13663">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fphy.2022.853717">10.3389/fphy.2022.853717 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Elastoresistivity of heavily hole doped 122 iron pnictides superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hong%2C+X">Xiaochen Hong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sykora%2C+S">Steffen Sykora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caglieris%2C+F">Federico Caglieris</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Behnami%2C+M">Mahdi Behnami</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morozov%2C+I">Igor Morozov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aswartham%2C+S">Saicharan Aswartham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Grinenko%2C+V">Vadim Grinenko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kihou%2C+K">Kunihiro Kihou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lee%2C+C">Chul-Ho Lee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=B%C3%BCchner%2C+B">Bernd B眉chner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hess%2C+C">Christian Hess</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.13663v1-abstract-short" style="display: inline;"> Nematicity in the heavily hole-doped iron pnictide superconductors remains controversial. Sizeable nematic fluctuations and even nematic orders far from a magnetic instability were declared in RbFe$_2$As$_2$ and its sister compounds. Here we report a systematic elastoresistance study of series of isovalent- and electron-doped KFe$_2$As$_2$ crystals. We found divergent elastoresistance upon cooling&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13663v1-abstract-full').style.display = 'inline'; document.getElementById('2205.13663v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.13663v1-abstract-full" style="display: none;"> Nematicity in the heavily hole-doped iron pnictide superconductors remains controversial. Sizeable nematic fluctuations and even nematic orders far from a magnetic instability were declared in RbFe$_2$As$_2$ and its sister compounds. Here we report a systematic elastoresistance study of series of isovalent- and electron-doped KFe$_2$As$_2$ crystals. We found divergent elastoresistance upon cooling for all the crystals along their [110] direction. The amplitude of elastoresistivity diverges if K is substituted with larger ions or if the system is driven towards a Lifshitz transition. However, we conclude none of them necessarily indicates an independent nematic critical point. Instead, the increased nematicity can be associated with another electronic criticality. In particular, we propose a mechanism how elastoresistivity is enhanced at a Lifshitz transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.13663v1-abstract-full').style.display = 'none'; document.getElementById('2205.13663v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Front. Phys. {\bf 10} 853717 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.07342">arXiv:2205.07342</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.07342">pdf</a>, <a href="https://arxiv.org/format/2205.07342">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/admi.202300935">10.1002/admi.202300935 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Temperature induced change of conformation of Sc2TbN@C80 on h-BN/Ni(111) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Stania%2C+R">R. Stania</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Seitsonen%2C+A+P">A. P. Seitsonen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+H+Y">H. Y. Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kunhardt%2C+D">D. Kunhardt</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Buchner%2C+B">B. Buchner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Popov%2C+A+A">A. A. Popov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muntwiler%2C+M">M. Muntwiler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greber%2C+T">T. Greber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.07342v1-abstract-short" style="display: inline;"> The conformation of molecules on surfaces is decisive for their functionality. For the case of the endofullerene paramagnet Sc2TbN@C80 the conformation is linked to an electric and a magnetic dipole moment. Therefore a workfunction change of a substrate with adsorbed molecules, qualifies the system to be magnetoelectric. One monolayer of Sc2TbN@C80 has been studied on h-BN/Ni(111). The molecules a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07342v1-abstract-full').style.display = 'inline'; document.getElementById('2205.07342v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.07342v1-abstract-full" style="display: none;"> The conformation of molecules on surfaces is decisive for their functionality. For the case of the endofullerene paramagnet Sc2TbN@C80 the conformation is linked to an electric and a magnetic dipole moment. Therefore a workfunction change of a substrate with adsorbed molecules, qualifies the system to be magnetoelectric. One monolayer of Sc2TbN@C80 has been studied on h-BN/Ni(111). The molecules assume a hexagonally close packed lattice aligned with the substrate high symmetry directions. The structure is incommensurate and arranges at a periodicity of about 4.3x4.3 substrate unit cells. At low temperatures a (2 x 2) superstructure is observed. Angular resolved valence band photoemission spectroscopy shows a temperature induced 0.3 eV shift on the C80 molecular orbitals to lower binding energies that is parallel to a workfunction increase. From comparison of the molecular orbital angular photoemission intensity distributions it is conjectured that the molecules undergo a change in conformation between 30 and 300 K. This phase transition is centred at 125 K as observed with high resolution x-ray photoelectron spectroscopy that shows the core levels of the atomic species on the molecules to shift parallel to the workfunction. The temperature dependence of the workfunction can be described with a two level model that accounts for the disordering with an excitation energy of 60 meV into a highly degenerate ensemble. The experimental findings are backed by density functional theory calculations for the diamagnetic sibling of Sc2TbN@C80 : Sc2YN@C80 that rationalize the incommensurate structure, show a permanent dipole moment of Sc2YN@C80 and a relation between the workfunction and the orientation of the endohedral cluster. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.07342v1-abstract-full').style.display = 'none'; document.getElementById('2205.07342v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages 6 figures</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Buchner%2C+B&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10