CINXE.COM
Search results for: Leishmania turanica
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Leishmania turanica</title> <meta name="description" content="Search results for: Leishmania turanica"> <meta name="keywords" content="Leishmania turanica"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Leishmania turanica" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Leishmania turanica"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 32</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Leishmania turanica</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Detection of Leishmania Mixed Infection from Phlebotomus papatasi in Central Iran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassibeh%20Hosseini-Vasoukolaei">Nassibeh Hosseini-Vasoukolaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ahmad%20Akhavan"> Amir Ahmad Akhavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Jeddi-Tehrani"> Mahmood Jeddi-Tehrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Khamesipour"> Ali Khamesipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Yaghoobi%20Ershadi"> Mohammad Reza Yaghoobi Ershadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamhawi%20Shaden"> Kamhawi Shaden</a>, <a href="https://publications.waset.org/abstracts/search?q=Valenzuela%20Jesus"> Valenzuela Jesus</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Mirhendi"> Hossein Mirhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Arandian"> Mohammad Hossein Arandian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zoonotic cutaneous leishmaniasis (ZCL) is an endemic disease in many rural areas of Iran. Sand flies were collected from rural areas of Esfahan province and were identified using valid identification keys. DNA was extracted from sand flies and Nested PCRs were done using specific primers. In this study, 44 out of 152 (28.9 %) sand flies were infected with L. majoralone. Eight sand flies showed mixed infection: four sand flies (2.6 %) were infected with L. major, L. turanicaand L. gerbili, one sand fly (0.7 %) was infected with L. major and L. turanica and three sand flies (2 %) were infected with L. turanicaand L. gerbili. Our results demonstrate the natural infection of P. papatasi sand fly with three species of L. major, L. turanica and L. gerbili which are circulating among R. opimusreservoir host and P. papatasi sand fly vector in central Iran. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phlebotomus%20papatasi" title="Phlebotomus papatasi">Phlebotomus papatasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20major" title=" Leishmania major"> Leishmania major</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20turanica" title=" Leishmania turanica"> Leishmania turanica</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20gerbili" title=" Leishmania gerbili"> Leishmania gerbili</a>, <a href="https://publications.waset.org/abstracts/search?q=mixed%20infection" title=" mixed infection"> mixed infection</a>, <a href="https://publications.waset.org/abstracts/search?q=Iran" title=" Iran"> Iran</a> </p> <a href="https://publications.waset.org/abstracts/41586/detection-of-leishmania-mixed-infection-from-phlebotomus-papatasi-in-central-iran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41586.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> A Comprehensive Analysis of LACK (Leishmania Homologue of Receptors for Activated C Kinase) in the Context of Visceral Leishmaniasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukrat%20Sinha">Sukrat Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhay%20Kumar"> Abhay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanthy%20Sundaram"> Shanthy Sundaram</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Leishmania homologue of activated C kinase (LACK) is known T cell epitope from soluble Leishmania antigens (SLA) that confers protection against Leishmania challenge. This antigen has been found to be highly conserved among Leishmania strains. LACK has been shown to be protective against L. donovani challenge. A comprehensive analysis of several LACK sequences was completed. The analysis shows a high level of conservation, lower variability and higher antigenicity in specific portions of the LACK protein. This information provides insights for the potential consideration of LACK as a putative candidate in the context of visceral Leishmaniasis vaccine target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title="bioinformatics">bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=genome%20assembly" title=" genome assembly"> genome assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmania%20activated%20protein%20kinase%20c%20%28lack%29" title="leishmania activated protein kinase c (lack)">leishmania activated protein kinase c (lack)</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/30204/a-comprehensive-analysis-of-lack-leishmania-homologue-of-receptors-for-activated-c-kinase-in-the-context-of-visceral-leishmaniasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Infection of Phlebotomus Sergenti with Leishmania Tropica in a Classical Focus of Leishmania Major in Tunisia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaouther%20Jaouadi">Kaouther Jaouadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jihene%20Bettaieb"> Jihene Bettaieb</a>, <a href="https://publications.waset.org/abstracts/search?q=Amira%20Bennour"> Amira Bennour</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghassen%20Kharroubi"> Ghassen Kharroubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadok%20Salem"> Sadok Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Afif%20Ben%20Salah"> Afif Ben Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Tunisia, chronic cutaneous leishmaniasis due to Leishmania (L) tropica is an important health problem. Its spreading has not been fully elucidated. Information on sandfly vectors, as well as their associated Leishmania species, is of paramount importance since vector dispersion is one of the major factors responsible for pathogen dissemination. In total, 650 sandflies were captured between June and August 2015 using sticky paper traps in the governorate of Sidi Bouzid, a classical focus of L. major in the Central-West of Tunisia. Polymerase chain reaction-restriction fragment length polymorphism analysis of the internal transcribed spacer 1 and sequencing were used for Leishmania detection and identification. Ninety-seven unfed females were tested for the presence of Leishmania parasite DNA. Six Phlebotomus sergenti were found positive for L. tropica. This finding enhances the understanding of the cycle extension of L. tropica outside its original focus of Tataouine in the South-East of the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20leishmaniasis" title="cutaneous leishmaniasis">cutaneous leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tropica" title=" Leishmania tropica"> Leishmania tropica</a>, <a href="https://publications.waset.org/abstracts/search?q=sandflies" title=" sandflies"> sandflies</a>, <a href="https://publications.waset.org/abstracts/search?q=Tunisia" title=" Tunisia"> Tunisia</a> </p> <a href="https://publications.waset.org/abstracts/127947/infection-of-phlebotomus-sergenti-with-leishmania-tropica-in-a-classical-focus-of-leishmania-major-in-tunisia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Epidemiology, Prevention and Treatment of Leishmaniasis in Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Mohammadi">Mohammad Reza Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Layegheh%20Daliri"> Layegheh Daliri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Leishmaniasis occurs in infectious diseases of Leishmania protozoa in Afghanistan, anthroponotic leishmaniasis and common cutaneous leishmaniasis (ZCL). Anthroponotic skin leishmania tropica may cause urban diseases and transmitted by Phlebotomus Sergenti. In different parts of Afghanistan, different species of Leishmania are observed. We report the epidemiological characteristics of prevention and treatment in this study. Methods: This study examines the epidemiology and prevention of religious diseases in Afghanistan. Knowledge gaps were analyzed and collected with our own data. Results: In Afghanistan, most of the Lishmania Tropic seekers are Four species of Leishmania in northern Afghanistan, including Leishmania Tropica, L. Major and L. Donovani, cause skin lesions, but L. Donovani and L. infantum are visible. Even combined prevention can significantly reduce the amount of infection. Conclusion: Skinny, as well as visceral leishmaniasis, can occur among the returnees from Afghanistan. Unusual and poor skin lesions can be created by L. Donovani. In most pathogenic areas, the transmission of common diseases between humans and animals. Home dogs are the main reservoir, transferring in some areas such as India and Sudan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leishmania%20donovani" title="leishmania donovani">leishmania donovani</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmania%20tropica" title=" leishmania tropica"> leishmania tropica</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=disease" title=" disease"> disease</a>, <a href="https://publications.waset.org/abstracts/search?q=epidemiology" title=" epidemiology"> epidemiology</a> </p> <a href="https://publications.waset.org/abstracts/142585/epidemiology-prevention-and-treatment-of-leishmaniasis-in-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Ribosomal Protein S4 Gene: Exploring the Presence in Syrian Strain of Leishmania Tropica Genome, Sequencing it and Evaluating Immune Response of pCI-S4 DNA Vaccine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alyaa%20Abdlwahab">Alyaa Abdlwahab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous leishmaniasis represents a serious health problem in Syria; this problem has become noticeably aggravated after the civil war in the country. Leishmania tropica parasite is the main cause of cutaneous leishmaniasis in Syria. In order to control the disease, we need an effective vaccine against leishmania parasite. DNA vaccination remains one of the favorable approaches that have been used to face cutaneous leishmaniasis. Ribosomal protein S4 is responsible for important roles in Leishmania parasite life. DNA vaccine based on S4 gene has been used against infections by many species of Leishmania parasite but leishmania tropica parasite, so this gene represents a good candidate for DNA vaccine construction. After proving the existence of ribosomal protein S4 gene in a Syrian strain of Leishmania tropica (LCED Syrian 01), sequencing it and cloning it into pCI plasmid, BALB/C mice were inoculated with pCI-S4 DNA vaccine. The immune response was determined by monitoring the lesion progression in inoculated BALB/C mice for six weeks after challenging mice with Leishmania tropica (LCED Syrian 01) parasites. IL-12, IFN-γ, and IL-4 were quantified in draining lymph nodes (DLNa) of the immunized BALB/C mice by using the RT-qPCR technique. The parasite burden was calculated in the final week for the footpad lesion and the DLNs of the mice. This study proved the existence and the expression of the ribosomal protein S4 gene in Leishmania tropica (LCED Syrian 01) promastigotes. The sequence of ribosomal protein cDNA S4 gene was determined and published in Genbank; the gene size was 822 bp. Expression was also demonstrated at the level of cDNA. Also, this study revealed that pCI-S4 DNA vaccine induces TH1\TH2 response in immunized mice; this response prevents partially developing a dermal lesion of Leishmania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ribosomal%20protein%20S4" title="ribosomal protein S4">ribosomal protein S4</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20vaccine" title=" DNA vaccine"> DNA vaccine</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tropica" title=" Leishmania tropica"> Leishmania tropica</a>, <a href="https://publications.waset.org/abstracts/search?q=BALB%5Cc" title=" BALB\c"> BALB\c</a> </p> <a href="https://publications.waset.org/abstracts/146394/ribosomal-protein-s4-gene-exploring-the-presence-in-syrian-strain-of-leishmania-tropica-genome-sequencing-it-and-evaluating-immune-response-of-pci-s4-dna-vaccine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Genomic Analysis of Whole Genome Sequencing of Leishmania Major</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatimazahrae%20Elbakri">Fatimazahrae Elbakri</a>, <a href="https://publications.waset.org/abstracts/search?q=Azeddine%20Ibrahimi"> Azeddine Ibrahimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Lemrani"> Meryem Lemrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dris%20Belghyti"> Dris Belghyti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis represents a major public health problem because of the number of cases recorded each year and the wide distribution of the disease. It is a parasitic disease of flagellated protozoa transmitted by the bite of certain species of sandfly, causing a spectrum of clinical pathology in humans ranging from disfiguring skin lesions to fatal visceral leishmaniasis. Cutaneous leishmaniasis due to Leishmania major is a polymorphic disease; in fact, the infection can be asymptomatic, localized, or disseminated. The objective of this work is to determine the genomic diversity that contributes to clinical variability by trying to identify the variation in chromosome number and to extract SNPs and SNPs and InDels; it is based on four sequences (WGS) of Leishmania major available on NCBI in Fastq form, from three countries: Tunisia, Algeria, and Israel, the analysis is set up from a pipeline to facilitate the discovery of genetic diversity, in particular SNP and chromosomal somy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leshmania%20major" title="Leshmania major">Leshmania major</a>, <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20Leishmania" title=" cutaneous Leishmania"> cutaneous Leishmania</a>, <a href="https://publications.waset.org/abstracts/search?q=NGS" title=" NGS"> NGS</a>, <a href="https://publications.waset.org/abstracts/search?q=genomic" title=" genomic"> genomic</a>, <a href="https://publications.waset.org/abstracts/search?q=somy" title=" somy"> somy</a>, <a href="https://publications.waset.org/abstracts/search?q=variant%20calling" title=" variant calling"> variant calling</a> </p> <a href="https://publications.waset.org/abstracts/170783/genomic-analysis-of-whole-genome-sequencing-of-leishmania-major" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170783.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Green Synthesis of Nano Liposomes Containing Berberine Chlorideagainst Leishmania major</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Fattahi%20Bafghi">Ali Fattahi Bafghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolghasem%20Siyadatpanah"> Abolghasem Siyadatpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Mirzaei"> Farzaneh Mirzaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Pournasir"> Fahimeh Pournasir</a>, <a href="https://publications.waset.org/abstracts/search?q=Roghayeh%20Norouzi"> Roghayeh Norouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20De%20Lourdes%20Pereira"> Maria De Lourdes Pereira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis caused by Leishmania major is one of the main infectious diseases that affect populations in developing countries around the world. We assessed the effectiveness of berberine chloride nano-liposome (BcNLs) against L. major promastigotes in vitro. Nano-liposomal berberine chloride was prepared using the thin-film hydration method and characterized based on encapsulation efficiency, size, and zeta potential. Anti-Leishmania effect of different concentrations (0.05-60 µg/ml) of BcNLs as studied in L. major [MRHO/IR/75/ER] at 24, 48, and 72 h using the hemocytometer technique. Berberine chloride was successfully loaded into nano-liposomes with an encapsulation efficiency of 85.54%. The surface charge of nanoparticles is neutral, and the morphology of nano-liposomal berberine chloride is spherical without any agglomeration. Cell viability assay was performed on the HFF cell line to show the biocompatibility of liposome nanoparticles. IC50 of BcNPs at 24, 48, and 72 h against L. major were found to be 7.6, 5.96, and 3.19 µg/ml, respectively. BcNLs showed a significant anti-Leishmania effect and induced a better and more tangible effect on the survival of L. major promastigotes and could be suitable candidates for further investigation. The results showed that the BcNLs agent is effective against L. major promastigotes and may be a promising alternative to current treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20major" title="Leishmania major">Leishmania major</a>, <a href="https://publications.waset.org/abstracts/search?q=berberine%20chloride" title=" berberine chloride"> berberine chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-liposomes" title=" nano-liposomes"> nano-liposomes</a>, <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20leishmaniasis" title=" cutaneous leishmaniasis"> cutaneous leishmaniasis</a> </p> <a href="https://publications.waset.org/abstracts/136889/green-synthesis-of-nano-liposomes-containing-berberine-chlorideagainst-leishmania-major" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Singh%20Dangi">Rohit Singh Dangi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kant%20Pal"> Ravi Kant Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20Sundd"> Monica Sundd</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acyl-coa%20binding%20protein%20%28ACBP%29" title="acyl-coa binding protein (ACBP)">acyl-coa binding protein (ACBP)</a>, <a href="https://publications.waset.org/abstracts/search?q=acyl-coa%20esters" title=" acyl-coa esters"> acyl-coa esters</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20structure" title=" crystal structure"> crystal structure</a>, <a href="https://publications.waset.org/abstracts/search?q=isothermal%20titration" title=" isothermal titration"> isothermal titration</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title=" calorimetry"> calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania" title=" Leishmania"> Leishmania</a> </p> <a href="https://publications.waset.org/abstracts/37502/insight-into-structure-and-functions-of-of-acyl-coa-binding-protein-of-leishmania-major" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Evaluation of Anti-Leishmanial Activity of Albaha Medicinal Plants against Leishmania amazonensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20S.%20Al-Sokari">Saeed S. Al-Sokari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20A.%20Awadh%20Ali"> Nasser A. Awadh Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Lianet%20Monzote"> Lianet Monzote</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis (CL) is endemic in at least 82 countries and considered to be a major public-health problem (1). The annual incidence of CL is 1–1.5 million cases of which 90% occur in only seven countries: Afghanistan, Algeria, Brazil, Iran, Peru, Saudi Arabia and Syria (2). In Saudi Arabia, the disease was first described in 1973 by Moursy and Shoura (3). Currently, CL is common in the human population in different localities, including the Eastern Province of Saudi Arabia and in particular the Al-Hassa Oasis that is a known endemic area for CL (4). Five methanolic extracts obtained from Achillea biebersteinii (flower leaf), Euphorbia antiquorm, Solanum incanum (leaf and fruit extracts), collected from Albaha region and selected from ethno-botanical data, were screened for their anti-leishmanial activity against Leishmania amazonensis (6). The cytotoxic activity against normal peritoneal macrophages from normal BALB/c mice was also determined (6). The five extracts had IC50 values ranging from < 12.5 to 37.8 µg/ml against promastigotes. Achillea biebersteinii flower, Euphorbia antiquorm, Solanum incanum leaf extracts showed anti-leishmanial activities with IC50 between < 12.5 - 26.9µg/mL and acceptable selectivity indices of 8 - 5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20extracts" title="plant extracts">plant extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=Albaha" title=" Albaha"> Albaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20amazonensis" title=" Leishmania amazonensis"> Leishmania amazonensis</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicinal" title=" Medicinal "> Medicinal </a> </p> <a href="https://publications.waset.org/abstracts/33181/evaluation-of-anti-leishmanial-activity-of-albaha-medicinal-plants-against-leishmania-amazonensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vrushali%20Guhe">Vrushali Guhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailza%20Singh"> Shailza Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ATG8" title="ATG8">ATG8</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title=" leishmaniasis"> leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title=" surface plasmon resonance"> surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=MD%20simulation" title=" MD simulation"> MD simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20docking" title=" molecular docking"> molecular docking</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide%20designing" title=" peptide designing"> peptide designing</a>, <a href="https://publications.waset.org/abstracts/search?q=therapeutics" title=" therapeutics"> therapeutics</a> </p> <a href="https://publications.waset.org/abstracts/169688/targeting-peptide-based-therapeutics-integrated-computational-and-experimental-studies-of-autophagic-regulation-in-host-parasite-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169688.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Treatment Outcome of Cutaneous Leishmaniasis and Its Associated Factors among Admitted Patients in All Africa Leprosy Rehabilitation and Training Center Hospital, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kebede%20Mairie">Kebede Mairie</a>, <a href="https://publications.waset.org/abstracts/search?q=Getahun%20Belete"> Getahun Belete</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitike%20Abeba"> Mitike Abeba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Leishmania aethiopica is a peculiar parasite causing cutaneous leishmaniasis in Ethiopia and its mainstay treatment is Sodium Stibogluconate. However, its treatment outcome in Ethiopia is not well documented. Objectives: To determine the treatment outcome of admitted cutaneous leishmaniasis patients and its associated factors in Addis Ababa, Ethiopia. Methods: A retrospective study was conducted from 1st November 2021 to 30th March 2022. Medical records of all cutaneous leishmaniasis-diagnosed and admitted patients who received parenteral sodium stibogluconate at All Africa Leprosy Rehabilitation and Training Center (ALERT) hospital, the main Leishmania treatment center in Ethiopia from July 2011 to September 2021 were reviewed. Results: A total of 827 charts of admitted cases from July 2011 to September 2021 were retrieved, but 667 (80.65%) were reviewed. Improvement in the treatment outcome was recorded in 93.36 % in the first course of SSG treatment and 96.23%, 94.62%, and 96.97% subsequently in the second, third and fourth treatment courses, respectively. Female gender and diffuse cutaneous leishmaniasis were the two predictive determinants in the treatment of cutaneous leishmaniasis. Conclusion: The study shows that parenteral sodium stibogluconate therapy treats hospitalized cutaneous leishmaniasis patients well, with female gender and diffuse cutaneous leishmaniasis having poor outcomes suggesting the need for a different approach for diffuse cutaneous leishmaniasis patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutaneous%20leishmaniasis" title="cutaneous leishmaniasis">cutaneous leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmania%20aethiopica" title=" leishmania aethiopica"> leishmania aethiopica</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20stibogluconate" title=" sodium stibogluconate"> sodium stibogluconate</a>, <a href="https://publications.waset.org/abstracts/search?q=diffuse%20cutaneous%20leishmaniasis" title=" diffuse cutaneous leishmaniasis"> diffuse cutaneous leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=pentostam" title=" pentostam"> pentostam</a> </p> <a href="https://publications.waset.org/abstracts/164278/treatment-outcome-of-cutaneous-leishmaniasis-and-its-associated-factors-among-admitted-patients-in-all-africa-leprosy-rehabilitation-and-training-center-hospital-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Peptide-Gold Nanocluster as an Optical Biosensor for Glycoconjugate Secreted from Leishmania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Prada">Y. A. Prada</a>, <a href="https://publications.waset.org/abstracts/search?q=Fanny%20Guzman"> Fanny Guzman</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20Cabanzo"> Rafael Cabanzo</a>, <a href="https://publications.waset.org/abstracts/search?q=John%20J.%20Castillo"> John J. Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Mejia-Ospino"> Enrique Mejia-Ospino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we show the important results about of synthesis of photoluminiscents gold nanoclusters using a small peptide as template for biosensing applications. Interestingly, we design one peptide (NBC2854) homologue to conservative domain from 215 250 residue of a galactolectin protein which can recognize the proteophosphoglycans (PPG) from Leishmania. Peptide was synthetized by multiple solid phase synthesis using FMoc group methodology in acid medium. Finally, the peptide was purified by High-Performance Liquid Chromatography using a Vydac C-18 preparative column and the detection was at 215 nm using a Photo Diode Array detector. Molecular mass of this peptide was confirmed by MALDI-TOF and to verify the α-helix structure we use Circular Dichroism. By means of the methodology used we obtained a novel fluorescents gold nanoclusters (AuNC) using NBC2854 as a template. In this work, we described an easy and fast microsonic method for the synthesis of AuNC with ≈ 3.0 nm of hydrodynamic size and photoemission at 630 nm. The presence of cysteine residue in the C-terminal of the peptide allows the formation of Au-S bond which confers stability to Peptide-based gold nanoclusters. Interactions between the peptide and gold nanoclusters were confirmed by X-ray Photoemission and Raman Spectroscopy. Notably, from the ultrafine spectra shown in the MALDI-TOF analysis which containing only 3-7 KDa species was assigned to Au₈-₁₈[NBC2854]₂ clusters. Finally, we evaluated the Peptide-gold nanocluster as an optical biosensor based on fluorescence spectroscopy and the fluorescence signal of PPG (0.1 µg-mL⁻¹ to 1000 µg-mL⁻¹) was amplified at the same wavelength emission (≈ 630 nm). This can suggest that there is a strong interaction between PPG and Pep@AuNC, therefore, the increase of the fluorescence intensity can be related to the association mechanism that take place when the target molecule is sensing by the Pep@AuNC conjugate. Further spectroscopic studies are necessary to evaluate the fluorescence mechanism involve in the sensing of the PPG by the Pep@AuNC. To our best knowledge the fabrication of an optical biosensor based on Pep@AuNC for sensing biomolecules such as Proteophosphoglycans which are secreted in abundance by parasites Leishmania. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensing" title="biosensing">biosensing</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania" title=" Leishmania"> Leishmania</a>, <a href="https://publications.waset.org/abstracts/search?q=peptide-gold%20nanoclusters" title=" peptide-gold nanoclusters"> peptide-gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=proteophosphoglycans" title=" proteophosphoglycans"> proteophosphoglycans</a> </p> <a href="https://publications.waset.org/abstracts/102599/peptide-gold-nanocluster-as-an-optical-biosensor-for-glycoconjugate-secreted-from-leishmania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Molecular Detection of Leishmania from the Phlebotomus Genus: Tendency towards Leishmaniasis Regression in Constantine, North-East of Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Frahtia">K. Frahtia</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Mihoubi"> I. Mihoubi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Picot"> S. Picot</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis is a group of parasitic disease with a varied clinical expression caused by flagellate protozoa of the Leishmania genus. These diseases are transmitted to humans and animals by the sting of a vector insect, the female sandfly. Among the groups of dipteral disease vectors, Phlebotominae occupy a prime position and play a significant role in human pathology, such as leishmaniasis that affects nearly 350 million people worldwide. The vector control operation launched by health services throughout the country proves to be effective since despite the prevalence of the disease remains high especially in rural areas, leishmaniasis appears to be declining in Algeria. In this context, this study mainly concerns molecular detection of Leishmania from the vector. Furthermore, a molecular diagnosis has also been made on skin samples taken from patients in the region of Constantine, located in the North-East of Algeria. Concerning the vector, 5858 sandflies were captured, including 4360 males and 1498 females. Male specimens were identified based on their morphological. The morphological identification highlighted the presence of the Phlebotomus genus with a prevalence of 93% against 7% represented by the Sergentomyia genus. About the identified species, P. perniciosus is the most abundant with 59.4% of the male identified population followed by P. longicuspis with 24.7% of the workforce. P. perfiliewi is poorly represented by 6.7% of specimens followed by P. papatasi with 2.2% and 1.5% S. dreyfussi. Concerning skin samples, 45/79 (56.96%) collected samples were found positive by real-time PCR. This rate appears to be in sharp decline compared to previous years (alert peak of 30,227 cases in 2005). Concerning the detection of Leishmania from sandflies by RT-PCR, the results show that 3/60 PCR performed genus are positive with melting temperatures corresponding to that of the reference strain (84.1 +/- 0.4 ° C for L. infantum). This proves that the vectors were parasitized. On the other side, identification by RT-PCR species did not give any results. This could be explained by the presence of an insufficient amount of leishmanian DNA in the vector, and therefore support the hypothesis of the regression of leishmaniasis in Constantine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Algeria" title="Algeria">Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20diagnostic" title=" molecular diagnostic"> molecular diagnostic</a>, <a href="https://publications.waset.org/abstracts/search?q=phlebotomus" title=" phlebotomus"> phlebotomus</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20PCR" title=" real time PCR"> real time PCR</a> </p> <a href="https://publications.waset.org/abstracts/44561/molecular-detection-of-leishmania-from-the-phlebotomus-genus-tendency-towards-leishmaniasis-regression-in-constantine-north-east-of-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Investigation of Leishmaniasis, Babesiosis, Ehrlichiosis, Dirofilariasis, and Hepatozoonosis in Referred Dogs to Veterinary Hospitals in Tehran, 2022</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Bolandmartabe">Mohamad Bolandmartabe</a>, <a href="https://publications.waset.org/abstracts/search?q=Nafiseh%20Hassani"> Nafiseh Hassani</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Abdi%20Darake"> Saeed Abdi Darake</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Asghari"> Maryam Asghari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dogs are highly susceptible to diseases, nutritional problems, toxins, and parasites, with parasitic infections being common and causing hardship in their lives. Some important internal parasites include worms (such as roundworms and tapeworms) and protozoa, which can lead to anemia in dogs. Important bloodborne parasites in dogs include microfilariae and adult forms of Dirofilaria immitis, Dipetalonema reconditum, Babesia, Trypanosoma, Hepatozoon, Leishmania, Ehrlichia, and Hemobartonella. Babesia and Hemobartonella are parasites that reside inside red blood cells and cause regenerative anemia by directly destroying the red blood cells. Hepatozoon, Leishmania, and Ehrlichia are also parasites that reside within white blood cells and can infiltrate other tissues, such as the liver and lymph nodes. Since intermediate hosts are more commonly found in the open environment, the prevalence of parasites in stray and free-roaming dogs is higher compared to pet dogs. Furthermore, pet dogs are less exposed to internal and external parasites due to better care, hygiene, and being predominantly indoors. Therefore, they are less likely to be affected by them. Among the parasites, Leishmania carries significant importance as it is shared between dogs and humans, causing a dangerous disease known as visceral Leishmaniasis or kala-azar and cutaneous Leishmaniasis. Furthermore, dogs can act as reservoirs and spread the disease agent within human communities. Therefore, timely and accurate diagnosis of these diseases in dogs can be highly beneficial in preventing their occurrence in humans. In this article, we employed the Giemsa staining technique under a light microscope for the identification of bloodborne parasites in dogs. However, considering the negative impact of these parasites on the natural life of dogs, the development of chronic diseases, and the gradual loss of the animal's well-being, rapid and timely diagnosis is essential. Serological methods and PCR are available for the diagnosis of certain parasites, which have high sensitivity and desirable characteristics. Therefore, this research aims to investigate the molecular aspects of bloodborne parasites in dogs referred to veterinary hospitals in Tehran city. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title="leishmaniasis">leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=babesiosis" title=" babesiosis"> babesiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=ehrlichiosis" title=" ehrlichiosis"> ehrlichiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=dirofilariasis" title=" dirofilariasis"> dirofilariasis</a>, <a href="https://publications.waset.org/abstracts/search?q=hepatozoonosis" title=" hepatozoonosis"> hepatozoonosis</a> </p> <a href="https://publications.waset.org/abstracts/169495/investigation-of-leishmaniasis-babesiosis-ehrlichiosis-dirofilariasis-and-hepatozoonosis-in-referred-dogs-to-veterinary-hospitals-in-tehran-2022" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Retrospective Evaluation of Vector-borne Infections in Cats Living in Germany (2012-2019)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sch%C3%A4fer">I. Schäfer</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kohn"> B. Kohn</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Volkmann"> M. Volkmann</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M%C3%BCller"> E. Müller</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Blood-feeding arthropods transmit parasitic, bacterial, or viral pathogens to domestic animals and wildlife. Vector-borne infections are gaining significance due to the increase of travel, import of domestic animals from abroad, and the changing climate in Europe. Aims of the study: The main objective of this retrospective study was to assess the prevalence of vector-borne infections in cats in which a ‘Feline Travel Profile’ had been conducted. Material and Methods: This retrospective study included test results from cats for which a ‘Feline Travel Profile’ established by LABOKLIN had been requested by veterinarians between April 2012 and December 2019. This profile contains direct detection methods via polymerase chain reaction (PCR) for Hepatozoon spp. and Dirofilaria spp. as well as indirect detection methods via immunofluorescence antibody test (IFAT) for Ehrlichia spp. and Leishmania spp. This profile was expanded to include an IFAT for Rickettsia spp. from July 2015 onwards. The prevalence of the different vector-borne infectious agents was calculated. Results: A total of 602 cats were tested using the ‘Feline Travel Profile’. Positive test results were as follows: Rickettsia spp. IFAT 54/442 (12.2%), Ehrlichia spp. IFAT 68/602 (11.3%), Leishmania spp. IFAT 21/602 (3.5%), Hepatozoon spp. PCR 51/595 (8.6%), and Dirofilaria spp. PCR 1/595 cats (0.2%). Co-infections with more than one pathogen could be detected in 22/602 cats. Conclusions: 170/602 cats (28.2%) were tested positive for at least one vector-borne pathogen. Infections with multiple pathogens could be detected in 3.7% of the cats. The data emphasizes the importance of considering vector-borne infections as potential differential diagnoses in cats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arthopod-transmitted%20infections" title="arthopod-transmitted infections">arthopod-transmitted infections</a>, <a href="https://publications.waset.org/abstracts/search?q=feline%20vector-borne%20infections" title=" feline vector-borne infections"> feline vector-borne infections</a>, <a href="https://publications.waset.org/abstracts/search?q=Germany" title=" Germany"> Germany</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20diagnostics" title=" laboratory diagnostics"> laboratory diagnostics</a> </p> <a href="https://publications.waset.org/abstracts/126367/retrospective-evaluation-of-vector-borne-infections-in-cats-living-in-germany-2012-2019" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Combining in vitro Protein Expression with AlphaLISA Technology to Study Protein-Protein Interaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shayli%20Varasteh%20Moradi">Shayli Varasteh Moradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wayne%20A.%20Johnston"> Wayne A. Johnston</a>, <a href="https://publications.waset.org/abstracts/search?q=Dejan%20Gagoski"> Dejan Gagoski</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirill%20Alexandrov"> Kirill Alexandrov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The demand for a rapid and more efficient technique to identify protein-protein interaction particularly in the areas of therapeutics and diagnostics development is growing. The method described here is a rapid in vitro protein-protein interaction analysis approach based on AlphaLISA technology combined with Leishmania tarentolae cell-free protein production (LTE) system. Cell-free protein synthesis allows the rapid production of recombinant proteins in a multiplexed format. Among available in vitro expression systems, LTE offers several advantages over other eukaryotic cell-free systems. It is based on a fast growing fermentable organism that is inexpensive in cultivation and lysate production. High integrity of proteins produced in this system and the ability to co-express multiple proteins makes it a desirable method for screening protein interactions. Following the translation of protein pairs in LTE system, the physical interaction between proteins of interests is analysed by AlphaLISA assay. The assay is performed using unpurified in vitro translation reaction and therefore can be readily multiplexed. This approach can be used in various research applications such as epitope mapping, antigen-antibody analysis and protein interaction network mapping. The intra-viral protein interaction network of Zika virus was studied using the developed technique. The viral proteins were co-expressed pair-wise in LTE and all possible interactions among viral proteins were tested using AlphaLISA. The assay resulted to the identification of 54 intra-viral protein-protein interactions from which 19 binary interactions were found to be novel. The presented technique provides a powerful tool for rapid analysis of protein-protein interaction with high sensitivity and throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlphaLISA%20technology" title="AlphaLISA technology">AlphaLISA technology</a>, <a href="https://publications.waset.org/abstracts/search?q=cell-free%20protein%20expression" title=" cell-free protein expression"> cell-free protein expression</a>, <a href="https://publications.waset.org/abstracts/search?q=epitope%20mapping" title=" epitope mapping"> epitope mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=Leishmania%20tarentolae" title=" Leishmania tarentolae"> Leishmania tarentolae</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-protein%20interaction" title=" protein-protein interaction"> protein-protein interaction</a> </p> <a href="https://publications.waset.org/abstracts/81407/combining-in-vitro-protein-expression-with-alphalisa-technology-to-study-protein-protein-interaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Pena%20Ribeiro">Victor Pena Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Arruda"> Caroline Arruda</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennyfer%20Andrea%20Aldana%20Mejia"> Jennyfer Andrea Aldana Mejia</a>, <a href="https://publications.waset.org/abstracts/search?q=Jairo%20Kenupp%20Bastos"> Jairo Kenupp Bastos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amastigote" title="amastigote">amastigote</a>, <a href="https://publications.waset.org/abstracts/search?q=brown%20propolis" title=" brown propolis"> brown propolis</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=promastigote" title=" promastigote"> promastigote</a> </p> <a href="https://publications.waset.org/abstracts/97355/brazilian-brown-propolis-as-a-natural-source-against-leishmania-amazonensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Exploring the Role of Immune-Modulators in Pathogen Recognition Receptor NOD2 Mediated Protection against Visceral Leishmaniasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Jibran%20Jawed">Junaid Jibran Jawed</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Saini"> Prasanta Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Majumdar"> Subrata Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Leishmania donovani infection causes severe host immune-suppression through the modulation of pathogen recognition receptors. Apart from TLRs (Toll Like Receptor), recent studies focus on the important contribution of NLR (NOD-Like Receptor) family member NOD1 and NOD2 as these receptors are capable of triggering host innate immunity. The aim of this study was to decipher the role of NOD1/NOD2 receptors during experimental visceral leishmaniasis (VL) and the important link between host failure and parasite evasion strategy. Method: The status of NOD1 and NOD2 receptors were analysed in uninfected and infected cells through western blotting and RT-PCR. The active contributions of these receptors in reducing parasite burden were confirmed by siRNA mediated silencing, and over-expression studies and the parasite numbers were calculated through microscopic examination of the Giemsa-stained slides. In-vivo studies were done by using non-toxic dose of Mw (Mycobacterium indicus pranii), Ara-LAM(Arabinoasylated lipoarabinomannan) along with MDP (Muramyl dipeptide) administration. Result: Leishmania donovani infection of the macrophages reduced the expression of NOD2 receptors whereas NOD1 remain unaffected. MDP, a NOD2-ligand, treatment during over-expression of NOD2, reduced the parasite burden effectively which was associated with increased pro-inflammatory cytokine generation and NO production. In experimental mouse model, Ara-LAM treatment increased the expression of NOD2 and in combination with MDP it showed active therapeutic potential against VL and found to be more effective than Mw which was already reported to be involved in NOD2 modulation. Conclusion: This work explores the essential contribution of NOD2 during experimental VL and mechanistic understanding of Ara-LAM + MDP combination therapy to work against this disease and highlighted NOD2 as an essential therapeutic target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ara-LAM%20%28Arabinoacylated%20Lipoarabinomannan%29" title="Ara-LAM (Arabinoacylated Lipoarabinomannan)">Ara-LAM (Arabinoacylated Lipoarabinomannan)</a>, <a href="https://publications.waset.org/abstracts/search?q=NOD2%20%28nucleotide%20binding%20oligomerization%20receptor%202%29" title=" NOD2 (nucleotide binding oligomerization receptor 2)"> NOD2 (nucleotide binding oligomerization receptor 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=MDP%20%28muramyl%20di%20peptide%29" title=" MDP (muramyl di peptide)"> MDP (muramyl di peptide)</a>, <a href="https://publications.waset.org/abstracts/search?q=visceral%20Leishmaniasis" title=" visceral Leishmaniasis"> visceral Leishmaniasis</a> </p> <a href="https://publications.waset.org/abstracts/80536/exploring-the-role-of-immune-modulators-in-pathogen-recognition-receptor-nod2-mediated-protection-against-visceral-leishmaniasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Clinical Significance of Cutaneous Leishmaniasis in Immigrant and Refugee Populations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Promise%20Ufomadu">Promise Ufomadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Edgar%20Rodriguez"> Edgar Rodriguez</a>, <a href="https://publications.waset.org/abstracts/search?q=Grace%20Lee"> Grace Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cutaneous Leishmaniasis (CL) is an infection caused by a variety of Leishmania species which are protozoan organisms that are typically carried by sandflies found in tropical regions. The parasite causes skin lesions that may resolve spontaneously but commonly become chronic and therefore necessitate thorough clinical attention. We present a 15-year-old female patient with CL of her bilateral dorsal hands, which resolved after a 28-day course of miltefosine. This case details the significance of compiling a thorough patient history and considering CL as a possible differential in patients from endemic regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title="leishmaniasis">leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=infection" title=" infection"> infection</a>, <a href="https://publications.waset.org/abstracts/search?q=immigrant" title=" immigrant"> immigrant</a>, <a href="https://publications.waset.org/abstracts/search?q=parasites" title=" parasites"> parasites</a>, <a href="https://publications.waset.org/abstracts/search?q=pediatrics" title=" pediatrics"> pediatrics</a> </p> <a href="https://publications.waset.org/abstracts/168690/the-clinical-significance-of-cutaneous-leishmaniasis-in-immigrant-and-refugee-populations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Anti-Leishmanial Compounds from the Seaweed Padina pavonica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nahal%20Najafi">Nahal Najafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Afsaneh%20Yegdaneh"> Afsaneh Yegdaneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedigheh%20Saberi"> Sedigheh Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Leishmaniasis poses a substantial global risk, affecting millions and resulting in thousands of cases each year in endemic regions. Challenges in current leishmaniasis treatments include drug resistance, high toxicity, and pancreatitis. Marine compounds, particularly brown algae, serve as a valuable source of inspiration for discovering treatments against Leishmania. Material and method: Padina pavonica was collected from the Persian Gulf. The seaweeds were dried and extracted with methanol: ethylacetate (1:1). The extract was partitioned to hexane (Hex), dicholoromethane (DCM), butanol, and water by Kupchan partitioning method. Hex partition was fractionated by silica gel column chromatography to 10 fractions (Fr. 1-10). Fr. 6 was further separated by the normal phase HPLC method to yield compounds 1-3. The structures of isolated compounds were elucidated by NMR, Mass, and other spectroscopic methods. Hex and DCM partitions, Fr. 6 and compounds 1-3, were tested for anti-leishmanicidal activity. RAW cell lines were cultured in enriched RPMI (10% FBS, 1% pen-strep) in a 37°C CO2 5% incubator, while promastigote cells were initially cultured in NNN culture and subsequently transferred to the aforementioned medium. Cytotoxicity was assessed using MTT tests, anti-promastigote activity was evaluated through Hemocytometer chamber promastigote counting, and the impact of amastigote damage was determined by counting amastigotes within 100 macrophages. Results: NMR and Mass identified isolated compounds as fucosterol and two sulfoquinovosyldiacylglycerols (SQDG). Among the samples tested, Fr.6 exhibited the highest cytotoxicity (CC50=60.24), while compound 2 showed the lowest cytotoxicity (CC50=21984). Compound 1 and dichloromethane fraction demonstrated the highest and lowest anti-promastigote activity (IC50=115.7, IC50=16.42, respectively), and compound 1 and hexane fraction exhibited the highest and lowest anti-amastigote activity (IC50=7.874, IC50=40.18, respectively). Conclusion: All six samples, including Hex and DCM partitions, Fr.6, and compounds 1-3, demonstrate a noteworthy correlation between rising concentration and time, with a statistically significant P-value of ≤0.05. Considering the higher selectivity index of compound 2 compared to others, it can be inferred that the presence of sulfur groups and unsaturated chains potentially contributes to these effects by impeding the DNA polymerase, which, of course, needs more research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padina" title="Padina">Padina</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmania" title=" leishmania"> leishmania</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfoquinovosyldiacylglycerol" title=" sulfoquinovosyldiacylglycerol"> sulfoquinovosyldiacylglycerol</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a> </p> <a href="https://publications.waset.org/abstracts/186826/anti-leishmanial-compounds-from-the-seaweed-padina-pavonica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186826.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Artemisia Species from Iran as Valuable Resources for Medicinal Uses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Naghavi">Mohammad Reza Naghavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Alaeimoghadam"> Farzad Alaeimoghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Ghafoori"> Hossein Ghafoori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artemisia species, which are medically beneficial, are widespread in temperate regions of both Northern and Southern hemispheres among which Iran is located. About 35 species of Artemisia are indigenous in Iran among them some are widespread in all or most provinces, yet some are restricted to some specific regions. In this review paper, initially, GC-Mass results of some experiments done in different provinces of Iran are mentioned among them some compounds are common among species, some others are mostly restricted to other species; after that, medical advantages based on some researches on species of this genus are reviewed; different qualities such as anti-leishmania, anti-bacteria, antiviral as well as anti-proliferative could be mentioned. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artemisia" title="artemisia">artemisia</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-Mass%20analysis" title=" GC-Mass analysis"> GC-Mass analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20advantage" title=" medical advantage"> medical advantage</a>, <a href="https://publications.waset.org/abstracts/search?q=antiviral" title=" antiviral "> antiviral </a> </p> <a href="https://publications.waset.org/abstracts/13738/artemisia-species-from-iran-as-valuable-resources-for-medicinal-uses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Invitro Study of Anti-Leishmanial Property of Nigella Sativa Methanalic Black Seed Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tawqeer%20Ali%20Syed">Tawqeer Ali Syed</a>, <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Chandra"> Prakash Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to evaluate the antileishmanial activity of Nigella sativa black seed extract. This well-known plant extract was taken from the botanical garden of Kashmir. Materials and Methods: The methanolic extracts of these plants were screened for their antileishmanial activity against Leishmania major using 3‑(4.5‑dimethylthiazol‑2yl)‑2.5‑diphenyltetrazolium bromide assay or MTT assay. Results: The methanolic extract of Nigella sativa showed potential antileishmanial activity at an inhibition% value of 80.29% ± 0.65%. IC 50 was calculated after 48 hours to be 964.3 µg/ml. Conclusion: Considering these results, these medicinal plants from Kashmir could serve as potential drug sources for antileishmanial compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MTT%20assay" title="MTT assay">MTT assay</a>, <a href="https://publications.waset.org/abstracts/search?q=antileishmanial" title=" antileishmanial"> antileishmanial</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20viability" title=" cell viability"> cell viability</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigella%20sativa" title=" Nigella sativa"> Nigella sativa</a> </p> <a href="https://publications.waset.org/abstracts/138432/invitro-study-of-anti-leishmanial-property-of-nigella-sativa-methanalic-black-seed-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Refractory Visceral Leishmaniasis Responding to Second-Line Therapy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preet%20Shah">Preet Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Shrivastav"> Om Shrivastav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction : In India, Leishmania donovani is the only parasite causing Leishmaniasis. The parasite infects the reticuloendothelial system and is found in the bone marrow, spleen and liver. Treatment of choice is amphotericin-B with sodium stibogluconate being an alternative. Miltefosine is useful in refractory cases. In our case, Leishmaniasis occurred in a person residing in western India (which is quite rare) and it failed to respond to two different drugs (again an uncommon feature) before it finally responded to a third one. Description: A 50 year old lady, a resident of western India, with no history of recent travel, presented with an ulcer on the left side of the nose since 8 months. She was apparently alright 8 months back, when she noticed a small ulcerated lesion on the left ala of the nose which was immediately biopsied. The biopsy revealed amastigotes of Leishmania for which she was administered intra-lesional sodium stibogluconate for 1 month (4 doses every 8 days).Despite this, there was no regression of the ulcer and hence she presented to us for further management. On examination, her vital parameters were normal. Barring an ulcer on the left side of the nose, rest of the examination findings were unremarkable. Complete blood count was normal. Ultrasound abdomen showed hepatomegaly. PET-CT scan showed increased metabolic activity in left ala of nose, hepatosplenomegaly and increased metabolic activity in spleen and bone marrow. Bone marrow biopsy was done which showed hypercellular marrow with erythroid preponderance. Considering a diagnosis of leishmaniasis which had so far been unresponsive to sodium stibogluconate, she was started on liposomal amphotericin-B. At the time of admission, her creatinine level was normal, but it started rising with the administration of liposomal amphotericin-B, hence the dose was reduced. Despite this, creatinine levels did not improve, and she started developing hypokalemia and hypomagnesemia as side effects of the drug, hence further reductions in the dosage were made. Despite a total of 3 weeks of liposomal amphotericin-B, there was no improvement in the ulcer. As had so far failed to respond to sodium stibogluconate and liposomal amphotericin-B, it was decided to start her on miltefosine. She received the miltefosine for a total of 12 weeks. At the end of this duration, there was a marked regression of the cutaneous lesion. Conclusion: Refractoriness to amphotericin-B in leishmaniasis may be seen in up to 5 % cases. Here, an alternative drug such as miltefosine is useful and hence we decided to use it, to which she responded adequately. Furthermore, although leishmaniasis is common in the eastern part of India, it is a relatively unknown entity in the western part of the country with the occurrence being very rare. Because of these 2 reasons, we consider our case to be a unique one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphotericin-b" title="amphotericin-b">amphotericin-b</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title=" leishmaniasis"> leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=miltefosine" title=" miltefosine"> miltefosine</a>, <a href="https://publications.waset.org/abstracts/search?q=tropical%20diseases" title=" tropical diseases"> tropical diseases</a> </p> <a href="https://publications.waset.org/abstracts/96027/refractory-visceral-leishmaniasis-responding-to-second-line-therapy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96027.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Molecular Characterization of Arginine Sensing Response in Unravelling Host-Pathogen Interactions in Leishmania</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evanka%20Madan">Evanka Madan</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Puri"> Madhu Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Zilberstein"> Dan Zilberstein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohini%20Muthuswami"> Rohini Muthuswami</a>, <a href="https://publications.waset.org/abstracts/search?q=Rentala%20Madhubala"> Rentala Madhubala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extensive interaction between the host and pathogen metabolic networks decidedly shapes the outcome of infection. Utilization of arginine by the host and pathogen is critical for determining the outcome of pathogenic infection. Infections with L. donovani, an intracellular parasite, will lead to an extensive competition of arginine between the host and the parasite donovani infection. One of the major amino acid (AA) sensing signaling pathways in mammalian cells are the mammalian target of rapamycin complex I (mTORC1) pathway. mTORC1, as a sensor of nutrient, controls numerous metabolic pathways. Arginine is critical for mTORC1 activation. SLC38A9 is the arginine sensor for the mTORC1, being activated during arginine sufficiency. L. donovani transport arginine via a high-affinity transporter (LdAAP3) that is rapidly up-regulated by arginine deficiency response (ADR) in intracellular amastigotes. This study, to author’s best knowledge, investigates the interaction between two arginine sensing systems that act in the same compartment, the lysosome. One is important for macrophage defense, and the other is essential for pathogen virulence. We hypothesize that the latter modulates lysosome arginine to prevent host defense response. The work presented here identifies an upstream regulatory role of LdAAP3 in regulating the expression of SLC38A9-mTORC1 pathway, and consequently, their function in L. donovani infected THP-1 cells cultured in 0.1 mM and 1.5 mM arginine. It was found that in physiological levels of arginine (0.1 mM), infecting THP-1 with Leishmania leads to increased levels of SLC38A9 and mTORC1 via an increase in the expression of RagA. However, the reversal was observed with LdAAP3 mutants, reflecting the positive regulatory role of LdAAP3 on the host SLC38A9. At the molecular level, upon infection, mTORC1 and RagA were found to be activated at the surface of phagolysosomes which was found to form a complex with phagolysosomal localized SLC38A9. To reveal the relevance of SLC38A9 under physiological levels of arginine, endogenous SLC38A9 was depleted and a substantial reduction in the expression of host mTORC1, its downstream active substrate, p-P70S6K1 and parasite LdAAP3, was observed, thereby showing that silencing SLC38A9 suppresses ADR. In brief, to author’s best knowledge, these results reveal an upstream regulatory role of LdAAP3 in manipulating SLC38A9 arginine sensing in host macrophages. Our study indicates that intra-macrophage survival of L. donovani depends on the availability and transport of extracellular arginine. An understanding of the sensing pathway of both parasite and host will open a new perspective on the molecular mechanism of host-parasite interaction and consequently, as a treatment for Leishmaniasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arginine%20sensing" title="arginine sensing">arginine sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=LdAAP3" title=" LdAAP3"> LdAAP3</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20donovani" title=" L. donovani"> L. donovani</a>, <a href="https://publications.waset.org/abstracts/search?q=mTORC1" title=" mTORC1"> mTORC1</a>, <a href="https://publications.waset.org/abstracts/search?q=SLC38A9" title=" SLC38A9"> SLC38A9</a>, <a href="https://publications.waset.org/abstracts/search?q=THP-1" title=" THP-1"> THP-1</a> </p> <a href="https://publications.waset.org/abstracts/109998/molecular-characterization-of-arginine-sensing-response-in-unravelling-host-pathogen-interactions-in-leishmania" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> An Optimal Control Model for the Dynamics of Visceral Leishmaniasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20M.%20Elmojtaba">Ibrahim M. Elmojtaba</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayan%20M.%20Altayeb"> Rayan M. Altayeb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visceral leishmaniasis (VL) is a vector-borne disease caused by the protozoa parasite of the genus leishmania. The transmission of the parasite to humans and animals occurs via the bite of adult female sandflies previously infected by biting and sucking blood of an infectious humans or animals. In this paper we use a previously proposed model, and then applied two optimal controls, namely treatment and vaccination to that model to investigate optimal strategies for controlling the spread of the disease using treatment and vaccination as the system control variables. The possible impact of using combinations of the two controls, either one at a time or two at a time on the spread of the disease is also examined. Our results provide a framework for vaccination and treatment strategies to reduce susceptible and infection individuals of VL in five years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visceral%20leishmaniasis" title="visceral leishmaniasis">visceral leishmaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=vaccination" title=" vaccination"> vaccination</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/39487/an-optimal-control-model-for-the-dynamics-of-visceral-leishmaniasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Synthesis and Structural Characterization of 6-Nitroindazole Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El%20Moctar%20Abeidi">Mohamed El Moctar Abeidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The indazole derivatives exhibit a wide spectrum of biological activities. They are known for their anti-tumor, antiplatelet, anti-viral, anti-microbial, anti-inflammatory, anti-leishmania and even anti-spermatogen. As part of our research on the synthesis of a number of heterocycles capable of exhibiting a biological and pharmacological property, due to our ongoing interest in the development of a simple and low-cost procedure for obtaining heterocyclic compounds that may have an interest for medicinal purposes. We present in this work the synthesis of 6-nitro-indazoles derivatives, using two different methods. the first method is the alkylation of Nitroindazole by two different alkylating agents under the conditions of solid/liquid phase transfer catalysis in N, N-dimethylformamide (DMF) in the presence of potassium carbonate (K₂CO₃) as a base, and tetra-n-butylammonium bromide (BTBA) as a catalyst. While the other method is the 1,3-dipolar cycloaddition, in this case, we have undertaken the preparation of bi-heterocyclic containing the 6-nitroindazole associate with group of isoxazoline, isoxazole or 1,2,3-Triazole under normal conditions and, under the catalytic conditions of the click chemistry we were also able to determine the structures without any ambiguity by the ¹H and ¹³C NMR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indazole" title="indazole">indazole</a>, <a href="https://publications.waset.org/abstracts/search?q=6-nitroindazole" title=" 6-nitroindazole"> 6-nitroindazole</a>, <a href="https://publications.waset.org/abstracts/search?q=isoxazole" title=" isoxazole"> isoxazole</a>, <a href="https://publications.waset.org/abstracts/search?q=1" title=" 1"> 1</a>, <a href="https://publications.waset.org/abstracts/search?q=2" title="2">2</a>, <a href="https://publications.waset.org/abstracts/search?q=3-Triazole" title="3-Triazole">3-Triazole</a> </p> <a href="https://publications.waset.org/abstracts/98087/synthesis-and-structural-characterization-of-6-nitroindazole-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Methanolic Extract of the Exudates of Aloe Otallensis and Its Effect on Leishmania Donovani Parasite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zerihun%20Tesfaye%20Nigusse">Zerihun Tesfaye Nigusse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study evaluates the antileishmanial activity of the methanolic extract of Aloe otallensis (A. otallensis) on the promastigote stage of Leishmaniadonovani (L. donovani) as compared to standard drugs and to screen its phytochemical constituents. Methods: Phytochemical screening was done by using the method mentioned by Evans and Trease on methanolic extract of the exudates of Aloe otallensis leaves. The extract was also evaluated for in vitro antileishmanial activity against L. donavani, which is found in the Parasitology Unit of Black Lion Hospital. The result was compared to standard drugs of sodium stibogluconate, milfostin and paramomycin. Results: The extract has good antileishmanial activity with an IC50 of 0.123 0 μg/mL on L. donovani (AM 563). The experimental data showed that relatively, it had better activity than paramomycin and milfostin but less activity than sodium stibogluconate. The data analyses were done by GraphPad Prism version 5 software after it was read by an ELISA reader at the wavelength of 650 nm. The phytochemical screening of the exudates of A. otallensis showed the presence of phenol, alkaloid and saponin. Conclusions: The methanol extract of the exudates of A.otallensishas a good anti- leishmaniasis activity and this may be attributed to phenol, alkaloid and saponin present in the plant. But it needs further analysis for the conformation of which constituent presents in high concentration to know which one has the strongest effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti%20leshimaniasis" title="anti leshimaniasis">anti leshimaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=aloe%20otallensis" title=" aloe otallensis"> aloe otallensis</a>, <a href="https://publications.waset.org/abstracts/search?q=leshimania%20ethiopica" title=" leshimania ethiopica"> leshimania ethiopica</a>, <a href="https://publications.waset.org/abstracts/search?q=IC50" title=" IC50"> IC50</a> </p> <a href="https://publications.waset.org/abstracts/188744/methanolic-extract-of-the-exudates-of-aloe-otallensis-and-its-effect-on-leishmania-donovani-parasite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Separation, Identification, and Measuring Gossypol in the Cottonseed Oil and Investigating the Performance of Drugs Prepared from the Combination of Plant Extract and Oil in the Treatment of Cutaneous Leishmaniasis Resistant to Drugs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Taghdisi">Sara Taghdisi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mirmohammadi"> M. Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mokhtarian"> M. Mokhtarian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In 2013, the World Health Organization announced the cases of Cutaneous leishmaniasis infection in Iran between 69,000 to 113,000. The most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them .The most prominent compound existing in different parts of the cotton plant is a yellow polyphenol called Gossypol. Gossypol is an extremely valuable compound and has anti-cancer properties. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 0.12+- 1.28. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. The extract of the green-leaf cotton boll of Jargoyeh varieties was tested as an ointment on the target group of patients suffering from Cutaneous leishmaniasis resistant to drugs esistant to drugs by our colleagues in the research team. The results showed the Pearson's correlation coefficient of 0.72 between the two variables of wound diameter and the extract use over time which indicated the positive effect of this extract on the treatment of Cutaneous leishmaniasis was resistant to drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cottonseed%20oil" title="cottonseed oil">cottonseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=gossypol" title=" gossypol"> gossypol</a>, <a href="https://publications.waset.org/abstracts/search?q=green-leaf" title=" green-leaf"> green-leaf</a> </p> <a href="https://publications.waset.org/abstracts/170536/separation-identification-and-measuring-gossypol-in-the-cottonseed-oil-and-investigating-the-performance-of-drugs-prepared-from-the-combination-of-plant-extract-and-oil-in-the-treatment-of-cutaneous-leishmaniasis-resistant-to-drugs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Hematological Profiles of Visceral Leishmaniasis Patients before and after Treatment of Anti-Leishmanial Drugs at University of Gondar Leishmania Research and Treatment Center Northwest, Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fitsumbrhan%20Tajebe">Fitsumbrhan Tajebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Fadil%20Murad"> Fadil Murad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitikie%20%20Tigabie"> Mitikie Tigabie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mareye%20Abebaw"> Mareye Abebaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Tadele%20Alemu"> Tadele Alemu</a>, <a href="https://publications.waset.org/abstracts/search?q=Sefanit%20Abate"> Sefanit Abate</a>, <a href="https://publications.waset.org/abstracts/search?q=Rezika%20Mohammedw"> Rezika Mohammedw</a>, <a href="https://publications.waset.org/abstracts/search?q=Arega%20Yeshanew"> Arega Yeshanew</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20Shiferaw"> Elias Shiferaw</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Visceral leshimaniasis is a parasitic disease characterized by a systemic infection of phagocytic cells. Hematological parameters of these patients may be affected by the progress of the disease or treatment. Thus, the current study aimed to assess the hematological profiles of visceral leishmaniasis patients before and after treatment. Method: An institutional based retrospective cohort study was conducted among visceral leishmaniasis patients at University of Gondar Comprehensive Specialized Referral Hospital Leishmaniasis Research and Treatment Center from 2013 to 2018. Hematological profiles before initiation and after completion of treatment were extracted from registration book. Descriptive statics was presented using frequency and percentage. Paired t-test and Wilcoxon Signed rank test were used for comparing mean difference for normally and non- normally distributed data, respectively. Spearman and Pearson correlation analysis was used to describe the correlation of hematological parameters with different variables. P value < 0.05 was considered as statistically significant. Result: Except absolute nerutrophil count, post treatment hematological parameters show a significant increment compared to pretreatment one. The prevalence of anemia, leucopenia and thrombocytopenia was 85.5%, 83.4% and 75.8% prior to treatment and it was 58.3%, 38.2% and 19.2% after treatment, respectively. Moreover, parasite load of the disease showed statistically significant negative correlation with hematological profiles mainly with white blood cell and red blood cell. Conclusion: Majority of hematological profiles of patients with active VL have been restored after treatment, which might be associated with treatment effect on parasite proliferation and concentration of parasite in visceral organ, which directly affect hematological profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=visceral%20leshimaniasis" title="visceral leshimaniasis">visceral leshimaniasis</a>, <a href="https://publications.waset.org/abstracts/search?q=hematological%20profile" title=" hematological profile"> hematological profile</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-leshimanial%20drug" title=" anti-leshimanial drug"> anti-leshimanial drug</a>, <a href="https://publications.waset.org/abstracts/search?q=Gondar" title=" Gondar"> Gondar</a> </p> <a href="https://publications.waset.org/abstracts/122906/hematological-profiles-of-visceral-leishmaniasis-patients-before-and-after-treatment-of-anti-leishmanial-drugs-at-university-of-gondar-leishmania-research-and-treatment-center-northwest-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Isolation, Identification and Measurement of Cottonseed Oil Gossypol in the Treatment of Drug-Resistant Cutaneous Leishmaniasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sara%20Taghdisi">Sara Taghdisi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrosadat%20Mirmohammadi"> Mehrosadat Mirmohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Mokhtarian"> Mostafa Mokhtarian</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Pazandeh"> Mohammad Hossein Pazandeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leishmaniasis is one of the 10 most important diseases of the World Health Organization with health problems in more than 90 countries. Over one billion people are at risk of these diseases on almost every continent. The present human study was performed to evaluate the therapeutic effect of cotton plant on cutaneous leishmaniasis leision. firstly, the cotton seeds were cleaned and grinded to smaller particles. In the second step, the seeds were oiled by cold press method. In order to separate bioactive compound, after saponification of the oil, its gossypol was hydrolyzed and crystalized. finally, the therapeutic effect of Cottonseed Oil on cutaneous leishmaniasis was investigated. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 1.28±0.12. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. This double-blind randomized controlled clinical trial was performed on 88 cases of leishmaniasis wounds. Patients were randomly divided into two groups of 44 cases. two groups received conventional treatment. In addition to the usual treatment (glucantime), the first group received cottonseed oil and the control group received placebo. The results of the present study showed that the surface of lesion before the intervention and in the first to fourth weeks after the intervention was not significantly different between the two groups (P-value> 0.05). But the surface of lesion in the Intervention group in the eighth and twelfth weeks was lower than the control group (P-value <0.05). This study showed that the improvement of leishmaniasis lesion using topical cotton plant mark in the eighth and twelfth weeks after the intervention was significantly more than the control group. Considering the most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them. Therefore, a plant base bioactive compound such as cottonseed oil can be useful whit fewer side effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cottonseed%20oil" title="cottonseed oil">cottonseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallization" title=" crystallization"> crystallization</a>, <a href="https://publications.waset.org/abstracts/search?q=gossypol" title=" gossypol"> gossypol</a>, <a href="https://publications.waset.org/abstracts/search?q=leishmaniasis" title=" leishmaniasis"> leishmaniasis</a> </p> <a href="https://publications.waset.org/abstracts/184861/isolation-identification-and-measurement-of-cottonseed-oil-gossypol-in-the-treatment-of-drug-resistant-cutaneous-leishmaniasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Leishmania%20turanica&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Leishmania%20turanica&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>