CINXE.COM
Variance - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Variance - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"3c70735e-6a77-4c86-9159-f9592dbdc6f6","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Variance","wgTitle":"Variance","wgCurRevisionId":1259503634,"wgRevisionId":1259503634,"wgArticleId":32344,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with incomplete citations","Articles with incomplete citations from March 2013","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from February 2012","Articles with unsourced statements from September 2016","Articles containing proofs","Moment (mathematics)","Statistical deviation and dispersion"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel": "wikitext","wgRelevantPageName":"Variance","wgRelevantArticleId":32344,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":60000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q175199","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness", "fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP", "ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Comparison_standard_deviations.svg/1200px-Comparison_standard_deviations.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="888"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Comparison_standard_deviations.svg/800px-Comparison_standard_deviations.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="592"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Comparison_standard_deviations.svg/640px-Comparison_standard_deviations.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="474"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Variance - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Variance"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Variance&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Variance"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Variance rootpage-Variance skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Variance" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Variance" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Variance" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Variance" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Discrete_random_variable" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Discrete_random_variable"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Discrete random variable</span> </div> </a> <ul id="toc-Discrete_random_variable-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Absolutely_continuous_random_variable" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Absolutely_continuous_random_variable"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Absolutely continuous random variable</span> </div> </a> <ul id="toc-Absolutely_continuous_random_variable-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Examples</span> </div> </a> <button aria-controls="toc-Examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Examples subsection</span> </button> <ul id="toc-Examples-sublist" class="vector-toc-list"> <li id="toc-Exponential_distribution" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Exponential_distribution"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Exponential distribution</span> </div> </a> <ul id="toc-Exponential_distribution-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Fair_die" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Fair_die"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Fair die</span> </div> </a> <ul id="toc-Fair_die-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Commonly_used_probability_distributions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Commonly_used_probability_distributions"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Commonly used probability distributions</span> </div> </a> <ul id="toc-Commonly_used_probability_distributions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Properties" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Properties</span> </div> </a> <button aria-controls="toc-Properties-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Properties subsection</span> </button> <ul id="toc-Properties-sublist" class="vector-toc-list"> <li id="toc-Basic_properties" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Basic_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Basic properties</span> </div> </a> <ul id="toc-Basic_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Issues_of_finiteness" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Issues_of_finiteness"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Issues of finiteness</span> </div> </a> <ul id="toc-Issues_of_finiteness-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Decomposition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Decomposition"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Decomposition</span> </div> </a> <ul id="toc-Decomposition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Calculation_from_the_CDF" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Calculation_from_the_CDF"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Calculation from the CDF</span> </div> </a> <ul id="toc-Calculation_from_the_CDF-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Characteristic_property" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Characteristic_property"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Characteristic property</span> </div> </a> <ul id="toc-Characteristic_property-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Units_of_measurement" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Units_of_measurement"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Units of measurement</span> </div> </a> <ul id="toc-Units_of_measurement-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Propagation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Propagation"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Propagation</span> </div> </a> <button aria-controls="toc-Propagation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Propagation subsection</span> </button> <ul id="toc-Propagation-sublist" class="vector-toc-list"> <li id="toc-Addition_and_multiplication_by_a_constant" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Addition_and_multiplication_by_a_constant"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Addition and multiplication by a constant</span> </div> </a> <ul id="toc-Addition_and_multiplication_by_a_constant-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Linear_combinations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Linear_combinations"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Linear combinations</span> </div> </a> <ul id="toc-Linear_combinations-sublist" class="vector-toc-list"> <li id="toc-Matrix_notation_for_the_variance_of_a_linear_combination" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Matrix_notation_for_the_variance_of_a_linear_combination"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2.1</span> <span>Matrix notation for the variance of a linear combination</span> </div> </a> <ul id="toc-Matrix_notation_for_the_variance_of_a_linear_combination-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Sum_of_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sum_of_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>Sum of variables</span> </div> </a> <ul id="toc-Sum_of_variables-sublist" class="vector-toc-list"> <li id="toc-Sum_of_uncorrelated_variables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Sum_of_uncorrelated_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.1</span> <span>Sum of uncorrelated variables</span> </div> </a> <ul id="toc-Sum_of_uncorrelated_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sum_of_correlated_variables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Sum_of_correlated_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2</span> <span>Sum of correlated variables</span> </div> </a> <ul id="toc-Sum_of_correlated_variables-sublist" class="vector-toc-list"> <li id="toc-Sum_of_correlated_variables_with_fixed_sample_size" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Sum_of_correlated_variables_with_fixed_sample_size"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2.1</span> <span>Sum of correlated variables with fixed sample size</span> </div> </a> <ul id="toc-Sum_of_correlated_variables_with_fixed_sample_size-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sum_of_uncorrelated_variables_with_random_sample_size" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Sum_of_uncorrelated_variables_with_random_sample_size"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.2.2</span> <span>Sum of uncorrelated variables with random sample size</span> </div> </a> <ul id="toc-Sum_of_uncorrelated_variables_with_random_sample_size-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Weighted_sum_of_variables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Weighted_sum_of_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3.3</span> <span>Weighted sum of variables</span> </div> </a> <ul id="toc-Weighted_sum_of_variables-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Product_of_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Product_of_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4</span> <span>Product of variables</span> </div> </a> <ul id="toc-Product_of_variables-sublist" class="vector-toc-list"> <li id="toc-Product_of_independent_variables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Product_of_independent_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.1</span> <span>Product of independent variables</span> </div> </a> <ul id="toc-Product_of_independent_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Product_of_statistically_dependent_variables" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Product_of_statistically_dependent_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.4.2</span> <span>Product of statistically dependent variables</span> </div> </a> <ul id="toc-Product_of_statistically_dependent_variables-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Arbitrary_functions" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Arbitrary_functions"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.5</span> <span>Arbitrary functions</span> </div> </a> <ul id="toc-Arbitrary_functions-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Population_variance_and_sample_variance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Population_variance_and_sample_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Population variance and sample variance</span> </div> </a> <button aria-controls="toc-Population_variance_and_sample_variance-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Population variance and sample variance subsection</span> </button> <ul id="toc-Population_variance_and_sample_variance-sublist" class="vector-toc-list"> <li id="toc-Population_variance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Population_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Population variance</span> </div> </a> <ul id="toc-Population_variance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sample_variance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sample_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Sample variance</span> </div> </a> <ul id="toc-Sample_variance-sublist" class="vector-toc-list"> <li id="toc-Biased_sample_variance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Biased_sample_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span><span><span>Biased sample variance</span></span></span> </div> </a> <ul id="toc-Biased_sample_variance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Unbiased_sample_variance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Unbiased_sample_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span><span><span>Unbiased sample variance</span></span></span> </div> </a> <ul id="toc-Unbiased_sample_variance-sublist" class="vector-toc-list"> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-4"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2.1</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Distribution_of_the_sample_variance" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Distribution_of_the_sample_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.3</span> <span>Distribution of the sample variance</span> </div> </a> <ul id="toc-Distribution_of_the_sample_variance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Samuelson's_inequality" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Samuelson's_inequality"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.4</span> <span>Samuelson's inequality</span> </div> </a> <ul id="toc-Samuelson's_inequality-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Relations_with_the_harmonic_and_arithmetic_means" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Relations_with_the_harmonic_and_arithmetic_means"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Relations with the harmonic and arithmetic means</span> </div> </a> <ul id="toc-Relations_with_the_harmonic_and_arithmetic_means-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Tests_of_equality_of_variances" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Tests_of_equality_of_variances"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Tests of equality of variances</span> </div> </a> <ul id="toc-Tests_of_equality_of_variances-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Moment_of_inertia" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Moment_of_inertia"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Moment of inertia</span> </div> </a> <ul id="toc-Moment_of_inertia-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Semivariance" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Semivariance"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Semivariance</span> </div> </a> <ul id="toc-Semivariance-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Etymology" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Etymology"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Etymology</span> </div> </a> <ul id="toc-Etymology-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generalizations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalizations"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Generalizations</span> </div> </a> <button aria-controls="toc-Generalizations-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalizations subsection</span> </button> <ul id="toc-Generalizations-sublist" class="vector-toc-list"> <li id="toc-For_complex_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#For_complex_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>For complex variables</span> </div> </a> <ul id="toc-For_complex_variables-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-For_vector-valued_random_variables" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#For_vector-valued_random_variables"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>For vector-valued random variables</span> </div> </a> <ul id="toc-For_vector-valued_random_variables-sublist" class="vector-toc-list"> <li id="toc-As_a_matrix" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#As_a_matrix"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2.1</span> <span>As a matrix</span> </div> </a> <ul id="toc-As_a_matrix-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_a_scalar" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#As_a_scalar"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2.2</span> <span>As a scalar</span> </div> </a> <ul id="toc-As_a_scalar-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <button aria-controls="toc-See_also-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle See also subsection</span> </button> <ul id="toc-See_also-sublist" class="vector-toc-list"> <li id="toc-Types_of_variance" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Types_of_variance"> <div class="vector-toc-text"> <span class="vector-toc-numb">11.1</span> <span>Types of variance</span> </div> </a> <ul id="toc-Types_of_variance-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Variance</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 63 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-63" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">63 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%AA%D8%A8%D8%A7%D9%8A%D9%86_(%D8%A5%D8%AD%D8%B5%D8%A7%D8%A1)" title="تباين (إحصاء) – Arabic" lang="ar" hreflang="ar" data-title="تباين (إحصاء)" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Varianza" title="Varianza – Asturian" lang="ast" hreflang="ast" data-title="Varianza" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Dispersiya" title="Dispersiya – Azerbaijani" lang="az" hreflang="az" data-title="Dispersiya" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AD%E0%A7%87%E0%A6%A6%E0%A6%BE%E0%A6%99%E0%A7%8D%E0%A6%95" title="ভেদাঙ্ক – Bangla" lang="bn" hreflang="bn" data-title="ভেদাঙ্ক" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/Pi%C3%A0n-%C4%AB-s%C3%B2%CD%98" title="Piàn-ī-sò͘ – Minnan" lang="nan" hreflang="nan" data-title="Piàn-ī-sò͘" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="Minnan" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%94%D1%8B%D1%81%D0%BF%D0%B5%D1%80%D1%81%D1%96%D1%8F_%D0%B2%D1%8B%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%B0%D0%B9_%D0%B2%D0%B5%D0%BB%D1%96%D1%87%D1%8B%D0%BD%D1%96" title="Дысперсія выпадковай велічыні – Belarusian" lang="be" hreflang="be" data-title="Дысперсія выпадковай велічыні" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_(%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F_%D0%BD%D0%B0_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D0%B8%D1%82%D0%B5)" title="Дисперсия (теория на вероятностите) – Bulgarian" lang="bg" hreflang="bg" data-title="Дисперсия (теория на вероятностите)" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Vari%C3%A0ncia" title="Variància – Catalan" lang="ca" hreflang="ca" data-title="Variància" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Rozptyl_(statistika)" title="Rozptyl (statistika) – Czech" lang="cs" hreflang="cs" data-title="Rozptyl (statistika)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Amrywiant" title="Amrywiant – Welsh" lang="cy" hreflang="cy" data-title="Amrywiant" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Varians" title="Varians – Danish" lang="da" hreflang="da" data-title="Varians" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de badge-Q17437798 badge-goodarticle mw-list-item" title="good article badge"><a href="https://de.wikipedia.org/wiki/Varianz_(Stochastik)" title="Varianz (Stochastik) – German" lang="de" hreflang="de" data-title="Varianz (Stochastik)" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Dispersioon" title="Dispersioon – Estonian" lang="et" hreflang="et" data-title="Dispersioon" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%94%CE%B9%CE%B1%CE%BA%CF%8D%CE%BC%CE%B1%CE%BD%CF%83%CE%B7" title="Διακύμανση – Greek" lang="el" hreflang="el" data-title="Διακύμανση" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Varianza" title="Varianza – Spanish" lang="es" hreflang="es" data-title="Varianza" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Varianco" title="Varianco – Esperanto" lang="eo" hreflang="eo" data-title="Varianco" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bariantza" title="Bariantza – Basque" lang="eu" hreflang="eu" data-title="Bariantza" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%88%D8%A7%D8%B1%DB%8C%D8%A7%D9%86%D8%B3" title="واریانس – Persian" lang="fa" hreflang="fa" data-title="واریانس" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Variance_(math%C3%A9matiques)" title="Variance (mathématiques) – French" lang="fr" hreflang="fr" data-title="Variance (mathématiques)" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Athraitheas" title="Athraitheas – Irish" lang="ga" hreflang="ga" data-title="Athraitheas" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Varianza" title="Varianza – Galician" lang="gl" hreflang="gl" data-title="Varianza" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B6%84%EC%82%B0" title="분산 – Korean" lang="ko" hreflang="ko" data-title="분산" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B4%D5%AB%D5%BD%D5%BA%D5%A5%D6%80%D5%BD%D5%AB%D5%A1_(%D5%BE%D5%AB%D5%B3%D5%A1%D5%AF%D5%A1%D5%A3%D6%80%D5%B8%D6%82%D5%A9%D5%B5%D5%B8%D6%82%D5%B6)" title="Դիսպերսիա (վիճակագրություն) – Armenian" lang="hy" hreflang="hy" data-title="Դիսպերսիա (վիճակագրություն)" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%B8%E0%A4%B0%E0%A4%A3" title="प्रसरण – Hindi" lang="hi" hreflang="hi" data-title="प्रसरण" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Varians" title="Varians – Indonesian" lang="id" hreflang="id" data-title="Varians" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Dreifni" title="Dreifni – Icelandic" lang="is" hreflang="is" data-title="Dreifni" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Varianza" title="Varianza – Italian" lang="it" hreflang="it" data-title="Varianza" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%95%D7%A0%D7%95%D7%AA" title="שונות – Hebrew" lang="he" hreflang="he" data-title="שונות" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%93%E1%83%98%E1%83%A1%E1%83%9E%E1%83%94%E1%83%A0%E1%83%A1%E1%83%98%E1%83%90" title="დისპერსია – Georgian" lang="ka" hreflang="ka" data-title="დისპერსია" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Muachano" title="Muachano – Swahili" lang="sw" hreflang="sw" data-title="Muachano" data-language-autonym="Kiswahili" data-language-local-name="Swahili" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Dispersija" title="Dispersija – Lithuanian" lang="lt" hreflang="lt" data-title="Dispersija" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Variancia" title="Variancia – Hungarian" lang="hu" hreflang="hu" data-title="Variancia" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D1%98%D0%B0%D0%BD%D1%81%D0%B0" title="Варијанса – Macedonian" lang="mk" hreflang="mk" data-title="Варијанса" data-language-autonym="Македонски" data-language-local-name="Macedonian" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Varians" title="Varians – Malay" lang="ms" hreflang="ms" data-title="Varians" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Variantie" title="Variantie – Dutch" lang="nl" hreflang="nl" data-title="Variantie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%88%86%E6%95%A3_(%E7%A2%BA%E7%8E%87%E8%AB%96)" title="分散 (確率論) – Japanese" lang="ja" hreflang="ja" data-title="分散 (確率論)" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Varians" title="Varians – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Varians" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Varians" title="Varians – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Varians" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Wariancja" title="Wariancja – Polish" lang="pl" hreflang="pl" data-title="Wariancja" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Vari%C3%A2ncia" title="Variância – Portuguese" lang="pt" hreflang="pt" data-title="Variância" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Varian%C8%9B%C4%83" title="Varianță – Romanian" lang="ro" hreflang="ro" data-title="Varianță" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D0%B8%D1%8F_%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%BE%D0%B9_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D1%8B" title="Дисперсия случайной величины – Russian" lang="ru" hreflang="ru" data-title="Дисперсия случайной величины" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Varianca" title="Varianca – Albanian" lang="sq" hreflang="sq" data-title="Varianca" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-scn mw-list-item"><a href="https://scn.wikipedia.org/wiki/Varianza" title="Varianza – Sicilian" lang="scn" hreflang="scn" data-title="Varianza" data-language-autonym="Sicilianu" data-language-local-name="Sicilian" class="interlanguage-link-target"><span>Sicilianu</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%80%E0%B7%92%E0%B6%A0%E0%B6%BD%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B6%AD%E0%B7%8F%E0%B7%80" title="විචල්යතාව – Sinhala" lang="si" hreflang="si" data-title="විචල්යතාව" data-language-autonym="සිංහල" data-language-local-name="Sinhala" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Variance" title="Variance – Simple English" lang="en-simple" hreflang="en-simple" data-title="Variance" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Rozptyl_(%C5%A1tatistika)" title="Rozptyl (štatistika) – Slovak" lang="sk" hreflang="sk" data-title="Rozptyl (štatistika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Varianca" title="Varianca – Slovenian" lang="sl" hreflang="sl" data-title="Varianca" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%DA%A4%D8%A7%D8%B1%DB%8C%D8%A7%D9%86%D8%B3" title="ڤاریانس – Central Kurdish" lang="ckb" hreflang="ckb" data-title="ڤاریانس" data-language-autonym="کوردی" data-language-local-name="Central Kurdish" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%92%D0%B0%D1%80%D0%B8%D1%98%D0%B0%D0%BD%D1%81%D0%B0" title="Варијанса – Serbian" lang="sr" hreflang="sr" data-title="Варијанса" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Varijansa" title="Varijansa – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Varijansa" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-su mw-list-item"><a href="https://su.wikipedia.org/wiki/Varian" title="Varian – Sundanese" lang="su" hreflang="su" data-title="Varian" data-language-autonym="Sunda" data-language-local-name="Sundanese" class="interlanguage-link-target"><span>Sunda</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Varianssi" title="Varianssi – Finnish" lang="fi" hreflang="fi" data-title="Varianssi" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Varians" title="Varians – Swedish" lang="sv" hreflang="sv" data-title="Varians" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Variance" title="Variance – Tagalog" lang="tl" hreflang="tl" data-title="Variance" data-language-autonym="Tagalog" data-language-local-name="Tagalog" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%B0%E0%AE%B5%E0%AE%B1%E0%AF%8D%E0%AE%AA%E0%AE%9F%E0%AE%BF" title="பரவற்படி – Tamil" lang="ta" hreflang="ta" data-title="பரவற்படி" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Varyans" title="Varyans – Turkish" lang="tr" hreflang="tr" data-title="Varyans" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%94%D0%B8%D1%81%D0%BF%D0%B5%D1%80%D1%81%D1%96%D1%8F_%D0%B2%D0%B8%D0%BF%D0%B0%D0%B4%D0%BA%D0%BE%D0%B2%D0%BE%D1%97_%D0%B2%D0%B5%D0%BB%D0%B8%D1%87%D0%B8%D0%BD%D0%B8" title="Дисперсія випадкової величини – Ukrainian" lang="uk" hreflang="uk" data-title="Дисперсія випадкової величини" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%AA%D9%81%D8%A7%D9%88%D8%AA" title="تفاوت – Urdu" lang="ur" hreflang="ur" data-title="تفاوت" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Ph%C6%B0%C6%A1ng_sai" title="Phương sai – Vietnamese" lang="vi" hreflang="vi" data-title="Phương sai" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%96%B9%E5%B7%AE" title="方差 – Wu" lang="wuu" hreflang="wuu" data-title="方差" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%96%B9%E5%B7%AE" title="方差 – Cantonese" lang="yue" hreflang="yue" data-title="方差" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%96%B9%E5%B7%AE" title="方差 – Chinese" lang="zh" hreflang="zh" data-title="方差" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q175199#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Variance" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Variance" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Variance"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Variance&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Variance&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Variance"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Variance&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Variance&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Variance" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Variance" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Variance&oldid=1259503634" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Variance&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Variance&id=1259503634&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVariance"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FVariance"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Variance&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Variance&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Variance" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q175199" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Statistical measure of how far values spread from their average</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">This article is about the mathematical concept. For other uses, see <a href="/wiki/Variance_(disambiguation)" class="mw-disambig" title="Variance (disambiguation)">Variance (disambiguation)</a>.</div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Comparison_standard_deviations.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Comparison_standard_deviations.svg/400px-Comparison_standard_deviations.svg.png" decoding="async" width="400" height="296" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Comparison_standard_deviations.svg/600px-Comparison_standard_deviations.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Comparison_standard_deviations.svg/800px-Comparison_standard_deviations.svg.png 2x" data-file-width="612" data-file-height="453" /></a><figcaption>Example of samples from two populations with the same mean but different variances. The red population has mean 100 and variance 100 (SD=10) while the blue population has mean 100 and variance 2500 (SD=50) where SD stands for Standard Deviation.</figcaption></figure> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a> and <a href="/wiki/Statistics" title="Statistics">statistics</a>, <b>variance</b> is the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of the <a href="/wiki/Squared_deviations_from_the_mean" title="Squared deviations from the mean">squared deviation from the mean</a> of a <a href="/wiki/Random_variable" title="Random variable">random variable</a>. The <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> (SD) is obtained as the square root of the variance. Variance is a measure of <a href="/wiki/Statistical_dispersion" title="Statistical dispersion">dispersion</a>, meaning it is a measure of how far a set of numbers is spread out from their average value. It is the second <a href="/wiki/Central_moment" title="Central moment">central moment</a> of a <a href="/wiki/Probability_distribution" title="Probability distribution">distribution</a>, and the <a href="/wiki/Covariance" title="Covariance">covariance</a> of the random variable with itself, and it is often represented by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle s^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle s^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58d7841cee3671436949ee789b84a848fd150bd3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.145ex; height:2.676ex;" alt="{\displaystyle s^{2}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3831b31094283191b52da8ac97d77b8cca27ae54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.606ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X)}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87916cb7c6ff96b31f09ae92a1525573b3c606d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.577ex; height:2.843ex;" alt="{\displaystyle V(X)}"></span>, or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {V} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">V</mi> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {V} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d9f217eb55f3da6570449ac874541613e264a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.467ex; height:2.843ex;" alt="{\displaystyle \mathbb {V} (X)}"></span>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>An advantage of variance as a measure of dispersion is that it is more amenable to algebraic manipulation than other measures of dispersion such as the <a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">expected absolute deviation</a>; for example, the variance of a sum of uncorrelated random variables is equal to the sum of their variances. A disadvantage of the variance for practical applications is that, unlike the standard deviation, its units differ from the random variable, which is why the standard deviation is more commonly reported as a measure of dispersion once the calculation is finished. Another disadvantage is that the variance is not finite for many distributions. </p><p>There are two distinct concepts that are both called "variance". One, as discussed above, is part of a theoretical <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> and is defined by an equation. The other variance is a characteristic of a set of observations. When variance is calculated from observations, those observations are typically measured from a real-world system. If all possible observations of the system are present, then the calculated variance is called the population variance. Normally, however, only a subset is available, and the variance calculated from this is called the sample variance. The variance calculated from a sample is considered an estimate of the full population variance. There are multiple ways to calculate an estimate of the population variance, as discussed in the section below. </p><p>The two kinds of variance are closely related. To see how, consider that a theoretical probability distribution can be used as a generator of hypothetical observations. If an infinite number of observations are generated using a distribution, then the sample variance calculated from that infinite set will match the value calculated using the distribution's equation for variance. Variance has a central role in statistics, where some ideas that use it include <a href="/wiki/Descriptive_statistics" title="Descriptive statistics">descriptive statistics</a>, <a href="/wiki/Statistical_inference" title="Statistical inference">statistical inference</a>, <a href="/wiki/Hypothesis_testing" class="mw-redirect" title="Hypothesis testing">hypothesis testing</a>, <a href="/wiki/Goodness_of_fit" title="Goodness of fit">goodness of fit</a>, and <a href="/wiki/Monte_Carlo_method" title="Monte Carlo method">Monte Carlo sampling</a>. </p> <style data-mw-deduplicate="TemplateStyles:r886046785">.mw-parser-output .toclimit-2 .toclevel-1 ul,.mw-parser-output .toclimit-3 .toclevel-2 ul,.mw-parser-output .toclimit-4 .toclevel-3 ul,.mw-parser-output .toclimit-5 .toclevel-4 ul,.mw-parser-output .toclimit-6 .toclevel-5 ul,.mw-parser-output .toclimit-7 .toclevel-6 ul{display:none}</style><div class="toclimit-3"><meta property="mw:PageProp/toc" /></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Variance_visualisation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Variance_visualisation.svg/220px-Variance_visualisation.svg.png" decoding="async" width="220" height="352" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/64/Variance_visualisation.svg/330px-Variance_visualisation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/64/Variance_visualisation.svg/440px-Variance_visualisation.svg.png 2x" data-file-width="512" data-file-height="819" /></a><figcaption>Geometric visualisation of the variance of an arbitrary distribution (2, 4, 4, 4, 5, 5, 7, 9): <div><ol><li>A frequency distribution is constructed.</li><li>The centroid of the distribution gives its mean.</li><li>A square with sides equal to the difference of each value from the mean is formed for each value.</li><li>Arranging the squares into a rectangle with one side equal to the number of values, <i>n</i>, results in the other side being the distribution's variance, <i>σ</i><sup>2</sup>.</li></ol></div></figcaption></figure> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The variance of a random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is the <a href="/wiki/Expected_value" title="Expected value">expected value</a> of the <a href="/wiki/Squared_deviations_from_the_mean" title="Squared deviations from the mean">squared deviation from the mean</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\operatorname {E} [X]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\operatorname {E} [X]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce1b41598b8e8f45f57c1550ebb8d5c7ab8e1210" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.357ex; height:2.843ex;" alt="{\displaystyle \mu =\operatorname {E} [X]}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[(X-\mu )^{2}\right].}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[(X-\mu )^{2}\right].}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55622d2a1cf5e46f2926ab389a8e3438edb53731" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.96ex; height:3.343ex;" alt="{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[(X-\mu )^{2}\right].}"></span></dd></dl> <p>This definition encompasses random variables that are generated by processes that are <a href="/wiki/Discrete_random_variable" class="mw-redirect" title="Discrete random variable">discrete</a>, <a href="/wiki/Continuous_random_variable" class="mw-redirect" title="Continuous random variable">continuous</a>, <a href="/wiki/Cantor_distribution" title="Cantor distribution">neither</a>, or mixed. The variance can also be thought of as the <a href="/wiki/Covariance" title="Covariance">covariance</a> of a random variable with itself: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\operatorname {Cov} (X,X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\operatorname {Cov} (X,X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6df8498bba86383d7d165590f515b929746f243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.223ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X)=\operatorname {Cov} (X,X).}"></span></dd></dl> <p>The variance is also equivalent to the second <a href="/wiki/Cumulant" title="Cumulant">cumulant</a> of a probability distribution that generates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. The variance is typically designated as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3831b31094283191b52da8ac97d77b8cca27ae54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.606ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X)}"></span>, or sometimes as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87916cb7c6ff96b31f09ae92a1525573b3c606d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.577ex; height:2.843ex;" alt="{\displaystyle V(X)}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {V} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">V</mi> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {V} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d9f217eb55f3da6570449ac874541613e264a32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.467ex; height:2.843ex;" alt="{\displaystyle \mathbb {V} (X)}"></span>, or symbolically as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{X}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{X}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dc251c95dd253ad7b843b78551904bcc902a4a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.96ex; height:3.176ex;" alt="{\displaystyle \sigma _{X}^{2}}"></span> or simply <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span> (pronounced "<a href="/wiki/Sigma" title="Sigma">sigma</a> squared"). The expression for the variance can be expanded as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} \left[(X-\operatorname {E} [X])^{2}\right]\\[4pt]&=\operatorname {E} \left[X^{2}-2X\operatorname {E} [X]+\operatorname {E} [X]^{2}\right]\\[4pt]&=\operatorname {E} \left[X^{2}\right]-2\operatorname {E} [X]\operatorname {E} [X]+\operatorname {E} [X]^{2}\\[4pt]&=\operatorname {E} \left[X^{2}\right]-2\operatorname {E} [X]^{2}+\operatorname {E} [X]^{2}\\[4pt]&=\operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>X</mi> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} \left[(X-\operatorname {E} [X])^{2}\right]\\[4pt]&=\operatorname {E} \left[X^{2}-2X\operatorname {E} [X]+\operatorname {E} [X]^{2}\right]\\[4pt]&=\operatorname {E} \left[X^{2}\right]-2\operatorname {E} [X]\operatorname {E} [X]+\operatorname {E} [X]^{2}\\[4pt]&=\operatorname {E} \left[X^{2}\right]-2\operatorname {E} [X]^{2}+\operatorname {E} [X]^{2}\\[4pt]&=\operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d291d3f008cc0d3c5d8509643d2937fdcbec5cab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.171ex; width:41.271ex; height:21.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} \left[(X-\operatorname {E} [X])^{2}\right]\\[4pt]&=\operatorname {E} \left[X^{2}-2X\operatorname {E} [X]+\operatorname {E} [X]^{2}\right]\\[4pt]&=\operatorname {E} \left[X^{2}\right]-2\operatorname {E} [X]\operatorname {E} [X]+\operatorname {E} [X]^{2}\\[4pt]&=\operatorname {E} \left[X^{2}\right]-2\operatorname {E} [X]^{2}+\operatorname {E} [X]^{2}\\[4pt]&=\operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}\end{aligned}}}"></span></dd></dl> <p>In other words, the variance of <span class="texhtml mvar" style="font-style:italic;">X</span> is equal to the mean of the square of <span class="texhtml mvar" style="font-style:italic;">X</span> minus the square of the mean of <span class="texhtml mvar" style="font-style:italic;">X</span>. This equation should not be used for computations using <a href="/wiki/Floating_point_arithmetic" class="mw-redirect" title="Floating point arithmetic">floating point arithmetic</a>, because it suffers from <a href="/wiki/Catastrophic_cancellation" title="Catastrophic cancellation">catastrophic cancellation</a> if the two components of the equation are similar in magnitude. For other numerically stable alternatives, see <a href="/wiki/Algorithms_for_calculating_variance" title="Algorithms for calculating variance">algorithms for calculating variance</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Discrete_random_variable">Discrete random variable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=2" title="Edit section: Discrete random variable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the generator of random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is <a href="/wiki/Discrete_probability_distribution" class="mw-redirect" title="Discrete probability distribution">discrete</a> with <a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{1}\mapsto p_{1},x_{2}\mapsto p_{2},\ldots ,x_{n}\mapsto p_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">↦<!-- ↦ --></mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{1}\mapsto p_{1},x_{2}\mapsto p_{2},\ldots ,x_{n}\mapsto p_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c259d1285a81d86926fb09f6e98496be8f591de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.206ex; height:2.176ex;" alt="{\displaystyle x_{1}\mapsto p_{1},x_{2}\mapsto p_{2},\ldots ,x_{n}\mapsto p_{n}}"></span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\sum _{i=1}^{n}p_{i}\cdot (x_{i}-\mu )^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\sum _{i=1}^{n}p_{i}\cdot (x_{i}-\mu )^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2577f2b00102ca127d8867a756b85e17d97eab5f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:27.977ex; height:6.843ex;" alt="{\displaystyle \operatorname {Var} (X)=\sum _{i=1}^{n}p_{i}\cdot (x_{i}-\mu )^{2},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is the expected value. That is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\sum _{i=1}^{n}p_{i}x_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\sum _{i=1}^{n}p_{i}x_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08f719b1efbe2b627558dfdb100de85c00bb1c81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.988ex; height:6.843ex;" alt="{\displaystyle \mu =\sum _{i=1}^{n}p_{i}x_{i}.}"></span></dd></dl> <p>(When such a discrete <a href="/wiki/Weighted_variance" class="mw-redirect" title="Weighted variance">weighted variance</a> is specified by weights whose sum is not 1, then one divides by the sum of the weights.) </p><p>The variance of a collection of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> equally likely values can be written as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)={\frac {1}{n}}\sum _{i=1}^{n}(x_{i}-\mu )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)={\frac {1}{n}}\sum _{i=1}^{n}(x_{i}-\mu )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19ef17d39c9f602273a87764fc6e29231142259f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.913ex; height:6.843ex;" alt="{\displaystyle \operatorname {Var} (X)={\frac {1}{n}}\sum _{i=1}^{n}(x_{i}-\mu )^{2}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is the average value. That is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu ={\frac {1}{n}}\sum _{i=1}^{n}x_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu ={\frac {1}{n}}\sum _{i=1}^{n}x_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31fd7c979845aff9a76f818809864adcfa1b4d0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.636ex; height:6.843ex;" alt="{\displaystyle \mu ={\frac {1}{n}}\sum _{i=1}^{n}x_{i}.}"></span></dd></dl> <p>The variance of a set of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> equally likely values can be equivalently expressed, without directly referring to the mean, in terms of squared deviations of all pairwise squared distances of points from each other:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)={\frac {1}{n^{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n}{\frac {1}{2}}(x_{i}-x_{j})^{2}={\frac {1}{n^{2}}}\sum _{i}\sum _{j>i}(x_{i}-x_{j})^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>></mo> <mi>i</mi> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)={\frac {1}{n^{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n}{\frac {1}{2}}(x_{i}-x_{j})^{2}={\frac {1}{n^{2}}}\sum _{i}\sum _{j>i}(x_{i}-x_{j})^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/150e621e4aab780be581bbc278c972e13f318748" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:58.52ex; height:7.176ex;" alt="{\displaystyle \operatorname {Var} (X)={\frac {1}{n^{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n}{\frac {1}{2}}(x_{i}-x_{j})^{2}={\frac {1}{n^{2}}}\sum _{i}\sum _{j>i}(x_{i}-x_{j})^{2}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Absolutely_continuous_random_variable">Absolutely continuous random variable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=3" title="Edit section: Absolutely continuous random variable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If the random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> has a <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/202945cce41ecebb6f643f31d119c514bec7a074" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.418ex; height:2.843ex;" alt="{\displaystyle f(x)}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/71a82805d469cdfa7856c11d6ee756acd1dc7174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.88ex; height:2.843ex;" alt="{\displaystyle F(x)}"></span> is the corresponding <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (X)=\sigma ^{2}&=\int _{\mathbb {R} }(x-\mu )^{2}f(x)\,dx\\[4pt]&=\int _{\mathbb {R} }x^{2}f(x)\,dx-2\mu \int _{\mathbb {R} }xf(x)\,dx+\mu ^{2}\int _{\mathbb {R} }f(x)\,dx\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-2\mu \int _{\mathbb {R} }x\,dF(x)+\mu ^{2}\int _{\mathbb {R} }\,dF(x)\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-2\mu \cdot \mu +\mu ^{2}\cdot 1\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-\mu ^{2},\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.7em 0.7em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mi>μ<!-- μ --></mi> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>μ<!-- μ --></mi> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>μ<!-- μ --></mi> <mo>⋅<!-- ⋅ --></mo> <mi>μ<!-- μ --></mi> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>⋅<!-- ⋅ --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (X)=\sigma ^{2}&=\int _{\mathbb {R} }(x-\mu )^{2}f(x)\,dx\\[4pt]&=\int _{\mathbb {R} }x^{2}f(x)\,dx-2\mu \int _{\mathbb {R} }xf(x)\,dx+\mu ^{2}\int _{\mathbb {R} }f(x)\,dx\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-2\mu \int _{\mathbb {R} }x\,dF(x)+\mu ^{2}\int _{\mathbb {R} }\,dF(x)\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-2\mu \cdot \mu +\mu ^{2}\cdot 1\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-\mu ^{2},\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdf3ec706581db5951e939cb3993a5c8289d7da4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.804ex; margin-bottom: -0.201ex; width:63.474ex; height:33.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (X)=\sigma ^{2}&=\int _{\mathbb {R} }(x-\mu )^{2}f(x)\,dx\\[4pt]&=\int _{\mathbb {R} }x^{2}f(x)\,dx-2\mu \int _{\mathbb {R} }xf(x)\,dx+\mu ^{2}\int _{\mathbb {R} }f(x)\,dx\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-2\mu \int _{\mathbb {R} }x\,dF(x)+\mu ^{2}\int _{\mathbb {R} }\,dF(x)\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-2\mu \cdot \mu +\mu ^{2}\cdot 1\\[4pt]&=\int _{\mathbb {R} }x^{2}\,dF(x)-\mu ^{2},\end{aligned}}}"></span></dd></dl> <p>or equivalently, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\int _{\mathbb {R} }x^{2}f(x)\,dx-\mu ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\int _{\mathbb {R} }x^{2}f(x)\,dx-\mu ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15af4223be86b41d179dfd36b2ecbc27fd2d467a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:29.481ex; height:5.676ex;" alt="{\displaystyle \operatorname {Var} (X)=\int _{\mathbb {R} }x^{2}f(x)\,dx-\mu ^{2},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> is the expected value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\int _{\mathbb {R} }xf(x)\,dx=\int _{\mathbb {R} }x\,dF(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>x</mi> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msub> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <mi>x</mi> <mspace width="thinmathspace" /> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\int _{\mathbb {R} }xf(x)\,dx=\int _{\mathbb {R} }x\,dF(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7740952e7f25ebe7f046edf481de1739cc994a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.935ex; height:5.676ex;" alt="{\displaystyle \mu =\int _{\mathbb {R} }xf(x)\,dx=\int _{\mathbb {R} }x\,dF(x).}"></span></dd></dl> <p>In these formulas, the integrals with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/845c817e348381a13f3fad5184169ce0e021c685" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.546ex; height:2.176ex;" alt="{\displaystyle dx}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle dF(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle dF(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c065fcd7517b20d2163ac5e66595b0cc3f363d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.096ex; height:2.843ex;" alt="{\displaystyle dF(x)}"></span> are <a href="/wiki/Lebesgue_integral" title="Lebesgue integral">Lebesgue</a> and <a href="/wiki/Lebesgue%E2%80%93Stieltjes_integration" title="Lebesgue–Stieltjes integration">Lebesgue–Stieltjes</a> integrals, respectively. </p><p>If the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{2}f(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{2}f(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e5f450c6a9653e07085668d4d1c8360f346c606" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.801ex; height:3.176ex;" alt="{\displaystyle x^{2}f(x)}"></span> is <a href="/wiki/Riemann-integrable" class="mw-redirect" title="Riemann-integrable">Riemann-integrable</a> on every finite interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [a,b]\subset \mathbb {R} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">]</mo> <mo>⊂<!-- ⊂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [a,b]\subset \mathbb {R} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c16929783780dae7bb2272902a6ee9345436b481" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.978ex; height:2.843ex;" alt="{\displaystyle [a,b]\subset \mathbb {R} ,}"></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\int _{-\infty }^{+\infty }x^{2}f(x)\,dx-\mu ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\int _{-\infty }^{+\infty }x^{2}f(x)\,dx-\mu ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f035ba6ca0cc51be0ff67275a2d0866e0f520a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.387ex; height:6.176ex;" alt="{\displaystyle \operatorname {Var} (X)=\int _{-\infty }^{+\infty }x^{2}f(x)\,dx-\mu ^{2},}"></span></dd></dl> <p>where the integral is an <a href="/wiki/Improper_Riemann_integral" class="mw-redirect" title="Improper Riemann integral">improper Riemann integral</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Examples">Examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=4" title="Edit section: Examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Exponential_distribution">Exponential distribution</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=5" title="Edit section: Exponential distribution"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Exponential_distribution" title="Exponential distribution">exponential distribution</a> with parameter <span class="texhtml mvar" style="font-style:italic;">λ</span> is a continuous distribution whose <a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x)=\lambda e^{-\lambda x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>λ<!-- λ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x)=\lambda e^{-\lambda x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/523a6735ac5e9b3991646b12ddbcf0cfe5da6af5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.364ex; height:3.176ex;" alt="{\displaystyle f(x)=\lambda e^{-\lambda x}}"></span></dd></dl> <p>on the interval <span class="texhtml">[0, ∞)</span>. Its mean can be shown to be </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [X]=\int _{0}^{\infty }x\lambda e^{-\lambda x}\,dx={\frac {1}{\lambda }}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>x</mi> <mi>λ<!-- λ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [X]=\int _{0}^{\infty }x\lambda e^{-\lambda x}\,dx={\frac {1}{\lambda }}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df94d1e04be55285495cdd70755f439ef7ead6c8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:28.729ex; height:5.843ex;" alt="{\displaystyle \operatorname {E} [X]=\int _{0}^{\infty }x\lambda e^{-\lambda x}\,dx={\frac {1}{\lambda }}.}"></span></dd></dl> <p>Using <a href="/wiki/Integration_by_parts" title="Integration by parts">integration by parts</a> and making use of the expected value already calculated, we have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} \left[X^{2}\right]&=\int _{0}^{\infty }x^{2}\lambda e^{-\lambda x}\,dx\\&=\left[-x^{2}e^{-\lambda x}\right]_{0}^{\infty }+\int _{0}^{\infty }2xe^{-\lambda x}\,dx\\&=0+{\frac {2}{\lambda }}\operatorname {E} [X]\\&={\frac {2}{\lambda ^{2}}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>λ<!-- λ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mrow> <mo>[</mo> <mrow> <mo>−<!-- − --></mo> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>x</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mn>2</mn> <mi>x</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>x</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} \left[X^{2}\right]&=\int _{0}^{\infty }x^{2}\lambda e^{-\lambda x}\,dx\\&=\left[-x^{2}e^{-\lambda x}\right]_{0}^{\infty }+\int _{0}^{\infty }2xe^{-\lambda x}\,dx\\&=0+{\frac {2}{\lambda }}\operatorname {E} [X]\\&={\frac {2}{\lambda ^{2}}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8587695ae357a1966cc5e079b79a062459ceed0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.732ex; margin-bottom: -0.273ex; width:40.408ex; height:23.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} \left[X^{2}\right]&=\int _{0}^{\infty }x^{2}\lambda e^{-\lambda x}\,dx\\&=\left[-x^{2}e^{-\lambda x}\right]_{0}^{\infty }+\int _{0}^{\infty }2xe^{-\lambda x}\,dx\\&=0+{\frac {2}{\lambda }}\operatorname {E} [X]\\&={\frac {2}{\lambda ^{2}}}.\end{aligned}}}"></span></dd></dl> <p>Thus, the variance of <span class="texhtml mvar" style="font-style:italic;">X</span> is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}={\frac {2}{\lambda ^{2}}}-\left({\frac {1}{\lambda }}\right)^{2}={\frac {1}{\lambda ^{2}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>λ<!-- λ --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}={\frac {2}{\lambda ^{2}}}-\left({\frac {1}{\lambda }}\right)^{2}={\frac {1}{\lambda ^{2}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5064d28d7da067a7a675ae68d992b83bc339c32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:48.872ex; height:6.509ex;" alt="{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[X^{2}\right]-\operatorname {E} [X]^{2}={\frac {2}{\lambda ^{2}}}-\left({\frac {1}{\lambda }}\right)^{2}={\frac {1}{\lambda ^{2}}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Fair_die">Fair die</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=6" title="Edit section: Fair die"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A fair <a href="/wiki/Dice" title="Dice">six-sided die</a> can be modeled as a discrete random variable, <span class="texhtml mvar" style="font-style:italic;">X</span>, with outcomes 1 through 6, each with equal probability 1/6. The expected value of <span class="texhtml mvar" style="font-style:italic;">X</span> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1+2+3+4+5+6)/6=7/2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mn>3</mn> <mo>+</mo> <mn>4</mn> <mo>+</mo> <mn>5</mn> <mo>+</mo> <mn>6</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>6</mn> <mo>=</mo> <mn>7</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1+2+3+4+5+6)/6=7/2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b2a6f31747999588a8d94bed5be1edf77da6b6c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.544ex; height:2.843ex;" alt="{\displaystyle (1+2+3+4+5+6)/6=7/2.}"></span> Therefore, the variance of <span class="texhtml mvar" style="font-style:italic;">X</span> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\sum _{i=1}^{6}{\frac {1}{6}}\left(i-{\frac {7}{2}}\right)^{2}\\[5pt]&={\frac {1}{6}}\left((-5/2)^{2}+(-3/2)^{2}+(-1/2)^{2}+(1/2)^{2}+(3/2)^{2}+(5/2)^{2}\right)\\[5pt]&={\frac {35}{12}}\approx 2.92.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mi>i</mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>7</mn> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo stretchy="false">(</mo> <mn>5</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>35</mn> <mn>12</mn> </mfrac> </mrow> <mo>≈<!-- ≈ --></mo> <mn>2.92.</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\sum _{i=1}^{6}{\frac {1}{6}}\left(i-{\frac {7}{2}}\right)^{2}\\[5pt]&={\frac {1}{6}}\left((-5/2)^{2}+(-3/2)^{2}+(-1/2)^{2}+(1/2)^{2}+(3/2)^{2}+(5/2)^{2}\right)\\[5pt]&={\frac {35}{12}}\approx 2.92.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b1b6a74f544d9422366dc015805d67149030ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.411ex; margin-bottom: -0.26ex; width:73.704ex; height:20.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\sum _{i=1}^{6}{\frac {1}{6}}\left(i-{\frac {7}{2}}\right)^{2}\\[5pt]&={\frac {1}{6}}\left((-5/2)^{2}+(-3/2)^{2}+(-1/2)^{2}+(1/2)^{2}+(3/2)^{2}+(5/2)^{2}\right)\\[5pt]&={\frac {35}{12}}\approx 2.92.\end{aligned}}}"></span></dd></dl> <p>The general formula for the variance of the outcome, <span class="texhtml mvar" style="font-style:italic;">X</span>, of an <span class="nowrap"><span class="texhtml mvar" style="font-style:italic;">n</span>-sided</span> die is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} \left(X^{2}\right)-(\operatorname {E} (X))^{2}\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}i^{2}-\left({\frac {1}{n}}\sum _{i=1}^{n}i\right)^{2}\\[5pt]&={\frac {(n+1)(2n+1)}{6}}-\left({\frac {n+1}{2}}\right)^{2}\\[4pt]&={\frac {n^{2}-1}{12}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>i</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mn>12</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} \left(X^{2}\right)-(\operatorname {E} (X))^{2}\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}i^{2}-\left({\frac {1}{n}}\sum _{i=1}^{n}i\right)^{2}\\[5pt]&={\frac {(n+1)(2n+1)}{6}}-\left({\frac {n+1}{2}}\right)^{2}\\[4pt]&={\frac {n^{2}-1}{12}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a476607e0a4d7f3ba660d8f260abd520b2ffbed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.813ex; margin-bottom: -0.191ex; width:41.418ex; height:27.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (X)&=\operatorname {E} \left(X^{2}\right)-(\operatorname {E} (X))^{2}\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}i^{2}-\left({\frac {1}{n}}\sum _{i=1}^{n}i\right)^{2}\\[5pt]&={\frac {(n+1)(2n+1)}{6}}-\left({\frac {n+1}{2}}\right)^{2}\\[4pt]&={\frac {n^{2}-1}{12}}.\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Commonly_used_probability_distributions">Commonly used probability distributions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=7" title="Edit section: Commonly used probability distributions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following table lists the variance for some commonly used probability distributions. </p> <table class="wikitable"> <tbody><tr> <th>Name of the probability distribution </th> <th>Probability distribution function </th> <th>Mean </th> <th>Variance </th></tr> <tr> <td><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr \,(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr \,(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5cfded0f1a9d4d9e910721f1db0d5fe285c50336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.488ex; height:6.176ex;" alt="{\displaystyle \Pr \,(X=k)={\binom {n}{k}}p^{k}(1-p)^{n-k}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d6eb41e0e5e136f594b1a703d2f371d9a5e0c27" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.009ex;" alt="{\displaystyle np}"></span> </td> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle np(1-p)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mi>p</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle np(1-p)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57f093250a1d822df677a03ac8aa78c6a8029866" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.546ex; height:2.843ex;" alt="{\displaystyle np(1-p)}"></span> </th></tr> <tr> <td><a href="/wiki/Geometric_distribution" title="Geometric distribution">Geometric distribution</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Pr \,(X=k)=(1-p)^{k-1}p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">Pr</mo> <mspace width="thinmathspace" /> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Pr \,(X=k)=(1-p)^{k-1}p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03c0bb391655492da40b2163cce8788e71963fba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.419ex; height:3.176ex;" alt="{\displaystyle \Pr \,(X=k)=(1-p)^{k-1}p}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31025cccb5c9d719d490bfc933e8d7b6b6f2b425" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:2.006ex; height:5.676ex;" alt="{\displaystyle {\frac {1}{p}}}"></span> </td> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(1-p)}{p^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(1-p)}{p^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2c1f7f678ee206bafd902eced1042cdac0476c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:7.818ex; height:6.343ex;" alt="{\displaystyle {\frac {(1-p)}{p^{2}}}}"></span> </th></tr> <tr> <td><a href="/wiki/Normal_distribution" title="Normal distribution">Normal distribution</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f\left(x\mid \mu ,\sigma ^{2}\right)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mi>μ<!-- μ --></mi> <mo>,</mo> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </msqrt> </mfrac> </mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f\left(x\mid \mu ,\sigma ^{2}\right)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad3430627369da98fb50d7b816c5a40c5f83dead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:30.508ex; height:7.176ex;" alt="{\displaystyle f\left(x\mid \mu ,\sigma ^{2}\right)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fd47b2a39f7a7856952afec1f1db72c67af6161" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.402ex; height:2.176ex;" alt="{\displaystyle \mu }"></span> </td> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a5c55e536acf250c1d3e0f754be5692b843ef5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.385ex; height:2.676ex;" alt="{\displaystyle \sigma ^{2}}"></span> </th></tr> <tr> <td><a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">Uniform distribution (continuous)</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x\mid a,b)={\begin{cases}{\frac {1}{b-a}}&{\text{for }}a\leq x\leq b,\\[3pt]0&{\text{for }}x<a{\text{ or }}x>b\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing="0.5em 0.2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>a</mi> <mo>≤<!-- ≤ --></mo> <mi>x</mi> <mo>≤<!-- ≤ --></mo> <mi>b</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for </mtext> </mrow> <mi>x</mi> <mo><</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> or </mtext> </mrow> <mi>x</mi> <mo>></mo> <mi>b</mi> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x\mid a,b)={\begin{cases}{\frac {1}{b-a}}&{\text{for }}a\leq x\leq b,\\[3pt]0&{\text{for }}x<a{\text{ or }}x>b\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a49d9ce0f31f14565d14be7083c467987eb0823f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.037ex; height:7.509ex;" alt="{\displaystyle f(x\mid a,b)={\begin{cases}{\frac {1}{b-a}}&{\text{for }}a\leq x\leq b,\\[3pt]0&{\text{for }}x<a{\text{ or }}x>b\end{cases}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {a+b}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {a+b}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1325e0aa44cdaf4b2e765a44c7109e6b9ed74e77" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.904ex; height:5.343ex;" alt="{\displaystyle {\frac {a+b}{2}}}"></span> </td> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {(b-a)^{2}}{12}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>b</mi> <mo>−<!-- − --></mo> <mi>a</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mn>12</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {(b-a)^{2}}{12}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58f0bcceb78ee2cc3a1c7e62e60115121ff7b3f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.767ex; height:5.843ex;" alt="{\displaystyle {\frac {(b-a)^{2}}{12}}}"></span> </th></tr> <tr> <td><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential distribution</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(x\mid \lambda )=\lambda e^{-\lambda x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>∣<!-- ∣ --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>λ<!-- λ --></mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> <mi>x</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(x\mid \lambda )=\lambda e^{-\lambda x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56767add7c350560f686d96ca592cb7863d5af4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.656ex; height:3.176ex;" alt="{\displaystyle f(x\mid \lambda )=\lambda e^{-\lambda x}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>λ<!-- λ --></mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d496a9397007733fdbbb2f98433e7aab4e51ff4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:2.191ex; height:5.343ex;" alt="{\displaystyle {\frac {1}{\lambda }}}"></span> </td> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\lambda ^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\lambda ^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f565ce78bf61e51d870d9a5b27453c3c329aa00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:3.246ex; height:5.509ex;" alt="{\displaystyle {\frac {1}{\lambda ^{2}}}}"></span> </th></tr> <tr> <td><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f(k\mid \lambda )={\frac {e^{-\lambda }\lambda ^{k}}{k!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>∣<!-- ∣ --></mo> <mi>λ<!-- λ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>λ<!-- λ --></mi> </mrow> </msup> <msup> <mi>λ<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f(k\mid \lambda )={\frac {e^{-\lambda }\lambda ^{k}}{k!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b251319d91159ff545299d505a4f5a13b5164323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:17.523ex; height:5.843ex;" alt="{\displaystyle f(k\mid \lambda )={\frac {e^{-\lambda }\lambda ^{k}}{k!}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> </td> <th><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>λ<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span> </th></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Properties">Properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=8" title="Edit section: Properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Basic_properties">Basic properties</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=9" title="Edit section: Basic properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Variance is non-negative because the squares are positive or zero: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)\geq 0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>≥<!-- ≥ --></mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)\geq 0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf12089c608197b05fbbb71f7be7cb02af94705c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.514ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X)\geq 0.}"></span></dd></dl> <p>The variance of a constant is zero. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (a)=0.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (a)=0.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33f335d1c4d5c088ed87e514c80611edd7e18829" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.764ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (a)=0.}"></span></dd></dl> <p>Conversely, if the variance of a random variable is 0, then it is <a href="/wiki/Almost_surely" title="Almost surely">almost surely</a> a constant. That is, it always has the same value: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=0\iff \exists a:P(X=a)=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mspace width="thickmathspace" /> <mo stretchy="false">⟺<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>a</mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>=</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=0\iff \exists a:P(X=a)=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abe1404579b36d15c542a82edb428f663ad95a33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:37.995ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X)=0\iff \exists a:P(X=a)=1.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Issues_of_finiteness">Issues of finiteness</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=10" title="Edit section: Issues of finiteness"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If a distribution does not have a finite expected value, as is the case for the <a href="/wiki/Cauchy_distribution" title="Cauchy distribution">Cauchy distribution</a>, then the variance cannot be finite either. However, some distributions may not have a finite variance, despite their expected value being finite. An example is a <a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto distribution</a> whose <a href="/wiki/Pareto_index" title="Pareto index">index</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1<k\leq 2.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo><</mo> <mi>k</mi> <mo>≤<!-- ≤ --></mo> <mn>2.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1<k\leq 2.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf79d6da876de8456bae1cf1c777e058750c1091" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:10.38ex; height:2.343ex;" alt="{\displaystyle 1<k\leq 2.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Decomposition">Decomposition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=11" title="Edit section: Decomposition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The general formula for variance decomposition or the <a href="/wiki/Law_of_total_variance" title="Law of total variance">law of total variance</a> is: If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> are two random variables, and the variance of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> exists, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} [X]=\operatorname {E} (\operatorname {Var} [X\mid Y])+\operatorname {Var} (\operatorname {E} [X\mid Y]).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} [X]=\operatorname {E} (\operatorname {Var} [X\mid Y])+\operatorname {Var} (\operatorname {E} [X\mid Y]).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d096b66af734c89681ab5cb61b24fbea63a48669" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.064ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} [X]=\operatorname {E} (\operatorname {Var} [X\mid Y])+\operatorname {Var} (\operatorname {E} [X\mid Y]).}"></span></dd></dl> <p>The <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditional expectation</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} (X\mid Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} (X\mid Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94b5fb7371b8db99b7ad0fd5de6ab1c3ecf42e25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.083ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} (X\mid Y)}"></span> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> given <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span>, and the <a href="/wiki/Conditional_variance" title="Conditional variance">conditional variance</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X\mid Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X\mid Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dbe17d220a51a3af9ba84647e80264430b0380c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.317ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X\mid Y)}"></span> may be understood as follows. Given any particular value <i>y</i> of the random variable <i>Y</i>, there is a conditional expectation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} (X\mid Y=y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} (X\mid Y=y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6fe14a7b532adeab36e12fa00e5dadec6f030bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.337ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} (X\mid Y=y)}"></span> given the event <i>Y</i> = <i>y</i>. This quantity depends on the particular value <i>y</i>; it is a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g(y)=\operatorname {E} (X\mid Y=y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>g</mi> <mo stretchy="false">(</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo>=</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g(y)=\operatorname {E} (X\mid Y=y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed7355ec30103427625825b46ce5a2b32e8f0720" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.516ex; height:2.843ex;" alt="{\displaystyle g(y)=\operatorname {E} (X\mid Y=y)}"></span>. That same function evaluated at the random variable <i>Y</i> is the conditional expectation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} (X\mid Y)=g(Y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} (X\mid Y)=g(Y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46b944ee40b552c371cc3ad5e27fc8580ca987e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.527ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} (X\mid Y)=g(Y).}"></span> </p><p>In particular, if <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> is a discrete random variable assuming possible values <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle y_{1},y_{2},y_{3}\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle y_{1},y_{2},y_{3}\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9aeab75b048368377a479084c9deb90135e70e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.759ex; height:2.009ex;" alt="{\displaystyle y_{1},y_{2},y_{3}\ldots }"></span> with corresponding probabilities <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p_{1},p_{2},p_{3}\ldots ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>…<!-- … --></mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p_{1},p_{2},p_{3}\ldots ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39c4c22daf5a5ac3eebefadc0d7c711e77ae63f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:12.973ex; height:2.009ex;" alt="{\displaystyle p_{1},p_{2},p_{3}\ldots ,}"></span>, then in the formula for total variance, the first term on the right-hand side becomes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} (\operatorname {Var} [X\mid Y])=\sum _{i}p_{i}\sigma _{i}^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} (\operatorname {Var} [X\mid Y])=\sum _{i}p_{i}\sigma _{i}^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc52b9938aac880c80b76dfe0bacc302c1d0f1d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.035ex; height:5.509ex;" alt="{\displaystyle \operatorname {E} (\operatorname {Var} [X\mid Y])=\sum _{i}p_{i}\sigma _{i}^{2},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{i}^{2}=\operatorname {Var} [X\mid Y=y_{i}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{i}^{2}=\operatorname {Var} [X\mid Y=y_{i}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f02e555171b20f14167f31a43ad480f720a6fa6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.322ex; height:3.176ex;" alt="{\displaystyle \sigma _{i}^{2}=\operatorname {Var} [X\mid Y=y_{i}]}"></span>. Similarly, the second term on the right-hand side becomes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (\operatorname {E} [X\mid Y])=\sum _{i}p_{i}\mu _{i}^{2}-\left(\sum _{i}p_{i}\mu _{i}\right)^{2}=\sum _{i}p_{i}\mu _{i}^{2}-\mu ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (\operatorname {E} [X\mid Y])=\sum _{i}p_{i}\mu _{i}^{2}-\left(\sum _{i}p_{i}\mu _{i}\right)^{2}=\sum _{i}p_{i}\mu _{i}^{2}-\mu ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/069ee9f564216faf173487039b77447b1ef07da2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:58.156ex; height:8.009ex;" alt="{\displaystyle \operatorname {Var} (\operatorname {E} [X\mid Y])=\sum _{i}p_{i}\mu _{i}^{2}-\left(\sum _{i}p_{i}\mu _{i}\right)^{2}=\sum _{i}p_{i}\mu _{i}^{2}-\mu ^{2},}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu _{i}=\operatorname {E} [X\mid Y=y_{i}]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>∣<!-- ∣ --></mo> <mi>Y</mi> <mo>=</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu _{i}=\operatorname {E} [X\mid Y=y_{i}]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0df777aa646f81fb52b31a3e13f983747fac39dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.904ex; height:2.843ex;" alt="{\displaystyle \mu _{i}=\operatorname {E} [X\mid Y=y_{i}]}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\sum _{i}p_{i}\mu _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\sum _{i}p_{i}\mu _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5608bc64d9ce0b831602c9effd2858f09184c11f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.413ex; height:5.509ex;" alt="{\displaystyle \mu =\sum _{i}p_{i}\mu _{i}}"></span>. Thus the total variance is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} [X]=\sum _{i}p_{i}\sigma _{i}^{2}+\left(\sum _{i}p_{i}\mu _{i}^{2}-\mu ^{2}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msubsup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} [X]=\sum _{i}p_{i}\sigma _{i}^{2}+\left(\sum _{i}p_{i}\mu _{i}^{2}-\mu ^{2}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5653ed0b0a55e26b4763766d3e118bc05ed569f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:39.304ex; height:7.509ex;" alt="{\displaystyle \operatorname {Var} [X]=\sum _{i}p_{i}\sigma _{i}^{2}+\left(\sum _{i}p_{i}\mu _{i}^{2}-\mu ^{2}\right).}"></span></dd></dl> <p>A similar formula is applied in <a href="/wiki/Analysis_of_variance" title="Analysis of variance">analysis of variance</a>, where the corresponding formula is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {MS}}_{\text{total}}={\mathit {MS}}_{\text{between}}+{\mathit {MS}}_{\text{within}};}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>total</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>between</mtext> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>within</mtext> </mrow> </msub> <mo>;</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {MS}}_{\text{total}}={\mathit {MS}}_{\text{between}}+{\mathit {MS}}_{\text{within}};}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a7a84214961cf86916ca8ee1666fbcf00bdce23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:31.249ex; height:2.509ex;" alt="{\displaystyle {\mathit {MS}}_{\text{total}}={\mathit {MS}}_{\text{between}}+{\mathit {MS}}_{\text{within}};}"></span></dd></dl> <p>here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {MS}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {MS}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4e461028f10f21a95bae1e21ebd2e9160a6e5d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.165ex; width:3.556ex; height:2.176ex;" alt="{\displaystyle {\mathit {MS}}}"></span> refers to the Mean of the Squares. In <a href="/wiki/Linear_regression" title="Linear regression">linear regression</a> analysis the corresponding formula is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {MS}}_{\text{total}}={\mathit {MS}}_{\text{regression}}+{\mathit {MS}}_{\text{residual}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>total</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>regression</mtext> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">M</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>residual</mtext> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {MS}}_{\text{total}}={\mathit {MS}}_{\text{regression}}+{\mathit {MS}}_{\text{residual}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22c3cff69f89eef009229709c86bbb1f51378e91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:33.484ex; height:2.843ex;" alt="{\displaystyle {\mathit {MS}}_{\text{total}}={\mathit {MS}}_{\text{regression}}+{\mathit {MS}}_{\text{residual}}.}"></span></dd></dl> <p>This can also be derived from the additivity of variances, since the total (observed) score is the sum of the predicted score and the error score, where the latter two are uncorrelated. </p><p>Similar decompositions are possible for the sum of squared deviations (sum of squares, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {SS}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {SS}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/721de9cfcb1cf206795b93f5e10f687686b08d37" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.165ex; width:2.778ex; height:2.176ex;" alt="{\displaystyle {\mathit {SS}}}"></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {SS}}_{\text{total}}={\mathit {SS}}_{\text{between}}+{\mathit {SS}}_{\text{within}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>total</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>between</mtext> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>within</mtext> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {SS}}_{\text{total}}={\mathit {SS}}_{\text{between}}+{\mathit {SS}}_{\text{within}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a1eed4de5a6610e4e1bb92af5a3de715a74984d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:28.915ex; height:2.509ex;" alt="{\displaystyle {\mathit {SS}}_{\text{total}}={\mathit {SS}}_{\text{between}}+{\mathit {SS}}_{\text{within}},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathit {SS}}_{\text{total}}={\mathit {SS}}_{\text{regression}}+{\mathit {SS}}_{\text{residual}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>total</mtext> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>regression</mtext> </mrow> </msub> <mo>+</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> <mi class="MJX-tex-mathit" mathvariant="italic">S</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>residual</mtext> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathit {SS}}_{\text{total}}={\mathit {SS}}_{\text{regression}}+{\mathit {SS}}_{\text{residual}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4a6ec650dfcc82e723163b0e457ec40dac072f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:31.149ex; height:2.843ex;" alt="{\displaystyle {\mathit {SS}}_{\text{total}}={\mathit {SS}}_{\text{regression}}+{\mathit {SS}}_{\text{residual}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Calculation_from_the_CDF">Calculation from the CDF</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=12" title="Edit section: Calculation from the CDF"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The population variance for a non-negative random variable can be expressed in terms of the <a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> <i>F</i> using </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\int _{0}^{\infty }u(1-F(u))\,du-\left(\int _{0}^{\infty }(1-F(u))\,du\right)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mi>u</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> <mo>−<!-- − --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>u</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\int _{0}^{\infty }u(1-F(u))\,du-\left(\int _{0}^{\infty }(1-F(u))\,du\right)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/964cbabacdab496101363f6ea1040545bbe13638" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:47.157ex; height:6.509ex;" alt="{\displaystyle 2\int _{0}^{\infty }u(1-F(u))\,du-\left(\int _{0}^{\infty }(1-F(u))\,du\right)^{2}.}"></span></dd></dl> <p>This expression can be used to calculate the variance in situations where the CDF, but not the <a href="/wiki/Probability_density_function" title="Probability density function">density</a>, can be conveniently expressed. </p> <div class="mw-heading mw-heading3"><h3 id="Characteristic_property">Characteristic property</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=13" title="Edit section: Characteristic property"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The second <a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moment</a> of a random variable attains the minimum value when taken around the first moment (i.e., mean) of the random variable, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {argmin} _{m}\,\mathrm {E} \left(\left(X-m\right)^{2}\right)=\mathrm {E} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>X</mi> <mo>−<!-- − --></mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {argmin} _{m}\,\mathrm {E} \left(\left(X-m\right)^{2}\right)=\mathrm {E} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a99d78c5139beab8ca4b9ab425d44dc3c3ca2c0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:32.114ex; height:4.843ex;" alt="{\displaystyle \mathrm {argmin} _{m}\,\mathrm {E} \left(\left(X-m\right)^{2}\right)=\mathrm {E} (X)}"></span>. Conversely, if a continuous function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> satisfies <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {argmin} _{m}\,\mathrm {E} (\varphi (X-m))=\mathrm {E} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">g</mi> <mi mathvariant="normal">m</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mo stretchy="false">(</mo> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">E</mi> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {argmin} _{m}\,\mathrm {E} (\varphi (X-m))=\mathrm {E} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/674166967a53912a5b64b9cc711ac5628ae0603a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.227ex; height:2.843ex;" alt="{\displaystyle \mathrm {argmin} _{m}\,\mathrm {E} (\varphi (X-m))=\mathrm {E} (X)}"></span> for all random variables <i>X</i>, then it is necessarily of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi (x)=ax^{2}+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>φ<!-- φ --></mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi (x)=ax^{2}+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb80aff82a0a6c354f6853d2749d1b15d5182dbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.209ex; height:3.176ex;" alt="{\displaystyle \varphi (x)=ax^{2}+b}"></span>, where <span class="nowrap"><i>a</i> > 0</span>. This also holds in the multidimensional case.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Units_of_measurement">Units of measurement</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=14" title="Edit section: Units of measurement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Unlike the <a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">expected absolute deviation</a>, the variance of a variable has units that are the square of the units of the variable itself. For example, a variable measured in meters will have a variance measured in meters squared. For this reason, describing data sets via their <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> or <a href="/wiki/Root_mean_square_deviation" title="Root mean square deviation">root mean square deviation</a> is often preferred over using the variance. In the dice example the standard deviation is <span class="texhtml"><span class="nowrap">√<span style="border-top:1px solid; padding:0 0.1em;">2.9</span></span> ≈ 1.7</span>, slightly larger than the expected absolute deviation of 1.5. </p><p>The standard deviation and the expected absolute deviation can both be used as an indicator of the "spread" of a distribution. The standard deviation is more amenable to algebraic manipulation than the expected absolute deviation, and, together with variance and its generalization <a href="/wiki/Covariance" title="Covariance">covariance</a>, is used frequently in theoretical statistics; however the expected absolute deviation tends to be more <a href="/wiki/Robust_statistics" title="Robust statistics">robust</a> as it is less sensitive to <a href="/wiki/Outlier" title="Outlier">outliers</a> arising from <a href="/wiki/Measurement_error" class="mw-redirect" title="Measurement error">measurement anomalies</a> or an unduly <a href="/wiki/Heavy-tailed_distribution" title="Heavy-tailed distribution">heavy-tailed distribution</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Propagation">Propagation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=15" title="Edit section: Propagation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Addition_and_multiplication_by_a_constant">Addition and multiplication by a constant</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=16" title="Edit section: Addition and multiplication by a constant"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Variance is <a href="/wiki/Invariant_(mathematics)" title="Invariant (mathematics)">invariant</a> with respect to changes in a <a href="/wiki/Location_parameter" title="Location parameter">location parameter</a>. That is, if a constant is added to all values of the variable, the variance is unchanged: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X+a)=\operatorname {Var} (X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X+a)=\operatorname {Var} (X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/90d40f17ef7fbd178524fe56b40fd9b121735797" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.028ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X+a)=\operatorname {Var} (X).}"></span></dd></dl> <p>If all values are scaled by a constant, the variance is scaled by the square of that constant: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (aX)=a^{2}\operatorname {Var} (X).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (aX)=a^{2}\operatorname {Var} (X).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f190a373d4865ab5198791cd50f4d1a79bc46e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:22.859ex; height:3.176ex;" alt="{\displaystyle \operatorname {Var} (aX)=a^{2}\operatorname {Var} (X).}"></span></dd></dl> <p>The variance of a sum of two random variables is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (aX+bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)+2ab\,\operatorname {Cov} (X,Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>X</mi> <mo>+</mo> <mi>b</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace" /> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (aX+bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)+2ab\,\operatorname {Cov} (X,Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1c2cb28c6bab195377b61f4179ce045d118ff51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.172ex; height:3.176ex;" alt="{\displaystyle \operatorname {Var} (aX+bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)+2ab\,\operatorname {Cov} (X,Y)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (aX-bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)-2ab\,\operatorname {Cov} (X,Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>X</mi> <mo>−<!-- − --></mo> <mi>b</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace" /> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (aX-bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)-2ab\,\operatorname {Cov} (X,Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22797430c98193ae86f45fb95f8f46dee1e578fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.172ex; height:3.176ex;" alt="{\displaystyle \operatorname {Var} (aX-bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)-2ab\,\operatorname {Cov} (X,Y)}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} (X,Y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} (X,Y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f99a32fa2061ab27dc810adbfd65256dfad7873" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.665ex; height:2.843ex;" alt="{\displaystyle \operatorname {Cov} (X,Y)}"></span> is the <a href="/wiki/Covariance" title="Covariance">covariance</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Linear_combinations">Linear combinations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=17" title="Edit section: Linear combinations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, for the sum of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X_{1},\dots ,X_{N}\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X_{1},\dots ,X_{N}\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1d2adbbf3dda1aa04b277e7a8cc231b5c537d29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.097ex; height:2.843ex;" alt="{\displaystyle \{X_{1},\dots ,X_{N}\}}"></span>, the variance becomes: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\sum _{i,j=1}^{N}\operatorname {Cov} (X_{i},X_{j})=\sum _{i=1}^{N}\operatorname {Var} (X_{i})+\sum _{i\neq j}\operatorname {Cov} (X_{i},X_{j}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>≠<!-- ≠ --></mo> <mi>j</mi> </mrow> </munder> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\sum _{i,j=1}^{N}\operatorname {Cov} (X_{i},X_{j})=\sum _{i=1}^{N}\operatorname {Var} (X_{i})+\sum _{i\neq j}\operatorname {Cov} (X_{i},X_{j}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff8f221ade1daa5b3e7e56f4892bde0e3e62ea6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:68.611ex; height:7.843ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\sum _{i,j=1}^{N}\operatorname {Cov} (X_{i},X_{j})=\sum _{i=1}^{N}\operatorname {Var} (X_{i})+\sum _{i\neq j}\operatorname {Cov} (X_{i},X_{j}),}"></span></dd></dl> <p>see also general <a href="/wiki/Bienaym%C3%A9%27s_identity" title="Bienaymé's identity">Bienaymé's identity</a>. </p><p>These results lead to the variance of a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} \left(\sum _{i=1}^{N}a_{i}X_{i}\right)&=\sum _{i,j=1}^{N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+\sum _{i\not =j}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i<j\leq N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j}).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>≠</mo> <mi>j</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo><</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>N</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} \left(\sum _{i=1}^{N}a_{i}X_{i}\right)&=\sum _{i,j=1}^{N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+\sum _{i\not =j}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i<j\leq N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j}).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c91273fd3499f6172ed9baf853d3d3ae8d02c62d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.171ex; width:64.418ex; height:23.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} \left(\sum _{i=1}^{N}a_{i}X_{i}\right)&=\sum _{i,j=1}^{N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+\sum _{i\not =j}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})\\&=\sum _{i=1}^{N}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i<j\leq N}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j}).\end{aligned}}}"></span></dd></dl> <p>If the random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/095354f6fc8975a8f25e90cf2ec91ef55ad3e13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.772ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{N}}"></span> are such that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} (X_{i},X_{j})=0\ ,\ \forall \ (i\neq j),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> <mtext> </mtext> <mo>,</mo> <mtext> </mtext> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mtext> </mtext> <mo stretchy="false">(</mo> <mi>i</mi> <mo>≠<!-- ≠ --></mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} (X_{i},X_{j})=0\ ,\ \forall \ (i\neq j),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/508264a0f19071c0795e32539ad6307aba5e1ec8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:28.114ex; height:3.009ex;" alt="{\displaystyle \operatorname {Cov} (X_{i},X_{j})=0\ ,\ \forall \ (i\neq j),}"></span></dd></dl> <p>then they are said to be <a href="/wiki/Covariance#Definition" title="Covariance">uncorrelated</a>. It follows immediately from the expression given earlier that if the random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{N}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{N}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/095354f6fc8975a8f25e90cf2ec91ef55ad3e13a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.772ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{N}}"></span> are uncorrelated, then the variance of their sum is equal to the sum of their variances, or, expressed symbolically: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\sum _{i=1}^{N}\operatorname {Var} (X_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\sum _{i=1}^{N}\operatorname {Var} (X_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bad61298d72f1a127eb7a57b05531d133b8bc583" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.802ex; height:7.509ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\sum _{i=1}^{N}\operatorname {Var} (X_{i}).}"></span></dd></dl> <p>Since independent random variables are always uncorrelated (see <a href="/wiki/Covariance#Uncorrelatedness_and_independence" title="Covariance">Covariance § Uncorrelatedness and independence</a>), the equation above holds in particular when the random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\dots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\dots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38ed92ce88f900210607bbb8f4d66e14d52d7a17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\dots ,X_{n}}"></span> are independent. Thus, independence is sufficient but not necessary for the variance of the sum to equal the sum of the variances. </p> <div class="mw-heading mw-heading4"><h4 id="Matrix_notation_for_the_variance_of_a_linear_combination">Matrix notation for the variance of a linear combination</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=18" title="Edit section: Matrix notation for the variance of a linear combination"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Define <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> as a column vector of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X_{1},\ldots ,X_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X_{1},\ldots ,X_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac794f5521dcce89913085a6d566e7cdb615dbb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.299ex; height:2.509ex;" alt="{\displaystyle X_{1},\ldots ,X_{n}}"></span>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> as a column vector of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> scalars <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{1},\ldots ,c_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>…<!-- … --></mo> <mo>,</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{1},\ldots ,c_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22c1ec95175219801d58be5c63f155486225aa0d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.465ex; height:2.009ex;" alt="{\displaystyle c_{1},\ldots ,c_{n}}"></span>. Therefore, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\mathsf {T}}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\mathsf {T}}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdd22bb751e19f19fa11e658372aa132b3e8e19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.338ex; height:2.676ex;" alt="{\displaystyle c^{\mathsf {T}}X}"></span> is a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of these random variables, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\mathsf {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\mathsf {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d8339888edf8b560bd1f5adb6ba9b9a5c0bf0b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.358ex; height:2.676ex;" alt="{\displaystyle c^{\mathsf {T}}}"></span> denotes the <a href="/wiki/Transpose" title="Transpose">transpose</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span>. Also let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> be the <a href="/wiki/Covariance_matrix" title="Covariance matrix">covariance matrix</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>. The variance of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c^{\mathsf {T}}X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c^{\mathsf {T}}X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebdd22bb751e19f19fa11e658372aa132b3e8e19" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.338ex; height:2.676ex;" alt="{\displaystyle c^{\mathsf {T}}X}"></span> is then given by:<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(c^{\mathsf {T}}X\right)=c^{\mathsf {T}}\Sigma c.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi>X</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="sans-serif">T</mi> </mrow> </mrow> </msup> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mi>c</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(c^{\mathsf {T}}X\right)=c^{\mathsf {T}}\Sigma c.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2ae8e554c65d3040564b2a001d8f68b9c0cca00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.074ex; height:3.343ex;" alt="{\displaystyle \operatorname {Var} \left(c^{\mathsf {T}}X\right)=c^{\mathsf {T}}\Sigma c.}"></span></dd></dl> <p>This implies that the variance of the mean can be written as (with a column vector of ones) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left({\bar {x}}\right)=\operatorname {Var} \left({\frac {1}{n}}1'X\right)={\frac {1}{n^{2}}}1'\Sigma 1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <msup> <mn>1</mn> <mo>′</mo> </msup> <mi>X</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msup> <mn>1</mn> <mo>′</mo> </msup> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left({\bar {x}}\right)=\operatorname {Var} \left({\frac {1}{n}}1'X\right)={\frac {1}{n^{2}}}1'\Sigma 1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2c6ecc76e9f619d07c12a7e265a6e040748a870" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.069ex; height:6.176ex;" alt="{\displaystyle \operatorname {Var} \left({\bar {x}}\right)=\operatorname {Var} \left({\frac {1}{n}}1'X\right)={\frac {1}{n^{2}}}1'\Sigma 1.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Sum_of_variables">Sum of variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=19" title="Edit section: Sum of variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Sum_of_uncorrelated_variables">Sum of uncorrelated variables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=20" title="Edit section: Sum of uncorrelated variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bienaym%C3%A9%27s_identity" title="Bienaymé's identity">Bienaymé's identity</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Sum_of_normally_distributed_random_variables" title="Sum of normally distributed random variables">Sum of normally distributed random variables</a></div> <p>One reason for the use of the variance in preference to other measures of dispersion is that the variance of the sum (or the difference) of <a href="/wiki/Uncorrelated" class="mw-redirect" title="Uncorrelated">uncorrelated</a> random variables is the sum of their variances: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\operatorname {Var} (X_{i}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\operatorname {Var} (X_{i}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e68daf39a0d384d9074c3f5137a633137e9bd4fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:29.802ex; height:7.509ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\operatorname {Var} (X_{i}).}"></span></dd></dl> <p>This statement is called the <a href="/wiki/Ir%C3%A9n%C3%A9e-Jules_Bienaym%C3%A9" title="Irénée-Jules Bienaymé">Bienaymé</a> formula<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> and was discovered in 1853.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> It is often made with the stronger condition that the variables are <a href="/wiki/Statistical_independence" class="mw-redirect" title="Statistical independence">independent</a>, but being uncorrelated suffices. So if all the variables have the same variance σ<sup>2</sup>, then, since division by <i>n</i> is a linear transformation, this formula immediately implies that the variance of their mean is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left({\overline {X}}\right)=\operatorname {Var} \left({\frac {1}{n}}\sum _{i=1}^{n}X_{i}\right)={\frac {1}{n^{2}}}\sum _{i=1}^{n}\operatorname {Var} \left(X_{i}\right)={\frac {1}{n^{2}}}n\sigma ^{2}={\frac {\sigma ^{2}}{n}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>n</mi> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left({\overline {X}}\right)=\operatorname {Var} \left({\frac {1}{n}}\sum _{i=1}^{n}X_{i}\right)={\frac {1}{n^{2}}}\sum _{i=1}^{n}\operatorname {Var} \left(X_{i}\right)={\frac {1}{n^{2}}}n\sigma ^{2}={\frac {\sigma ^{2}}{n}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/21c0b88174feb6e4a724100c44a36b588748496f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:64.397ex; height:7.509ex;" alt="{\displaystyle \operatorname {Var} \left({\overline {X}}\right)=\operatorname {Var} \left({\frac {1}{n}}\sum _{i=1}^{n}X_{i}\right)={\frac {1}{n^{2}}}\sum _{i=1}^{n}\operatorname {Var} \left(X_{i}\right)={\frac {1}{n^{2}}}n\sigma ^{2}={\frac {\sigma ^{2}}{n}}.}"></span></dd></dl> <p>That is, the variance of the mean decreases when <i>n</i> increases. This formula for the variance of the mean is used in the definition of the <a href="/wiki/Standard_error_(statistics)" class="mw-redirect" title="Standard error (statistics)">standard error</a> of the sample mean, which is used in the <a href="/wiki/Central_limit_theorem" title="Central limit theorem">central limit theorem</a>. </p><p>To prove the initial statement, it suffices to show that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X+Y)=\operatorname {Var} (X)+\operatorname {Var} (Y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X+Y)=\operatorname {Var} (X)+\operatorname {Var} (Y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4ef9929bc5c51b4e63b180f37cc9b7f4c927d25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.812ex; height:2.843ex;" alt="{\displaystyle \operatorname {Var} (X+Y)=\operatorname {Var} (X)+\operatorname {Var} (Y).}"></span></dd></dl> <p>The general result then follows by induction. Starting with the definition, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (X+Y)&=\operatorname {E} \left[(X+Y)^{2}\right]-(\operatorname {E} [X+Y])^{2}\\[5pt]&=\operatorname {E} \left[X^{2}+2XY+Y^{2}\right]-(\operatorname {E} [X]+\operatorname {E} [Y])^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>X</mi> <mi>Y</mi> <mo>+</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (X+Y)&=\operatorname {E} \left[(X+Y)^{2}\right]-(\operatorname {E} [X+Y])^{2}\\[5pt]&=\operatorname {E} \left[X^{2}+2XY+Y^{2}\right]-(\operatorname {E} [X]+\operatorname {E} [Y])^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19f68b26d8eddd872d85cb9b846a7b8253c30a18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:54.892ex; height:8.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (X+Y)&=\operatorname {E} \left[(X+Y)^{2}\right]-(\operatorname {E} [X+Y])^{2}\\[5pt]&=\operatorname {E} \left[X^{2}+2XY+Y^{2}\right]-(\operatorname {E} [X]+\operatorname {E} [Y])^{2}.\end{aligned}}}"></span></dd></dl> <p>Using the linearity of the <a href="/wiki/Expectation_Operator" class="mw-redirect" title="Expectation Operator">expectation operator</a> and the assumption of independence (or uncorrelatedness) of <i>X</i> and <i>Y</i>, this further simplifies as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (X+Y)&=\operatorname {E} \left[X^{2}\right]+2\operatorname {E} [XY]+\operatorname {E} \left[Y^{2}\right]-\left(\operatorname {E} [X]^{2}+2\operatorname {E} [X]\operatorname {E} [Y]+\operatorname {E} [Y]^{2}\right)\\[5pt]&=\operatorname {E} \left[X^{2}\right]+\operatorname {E} \left[Y^{2}\right]-\operatorname {E} [X]^{2}-\operatorname {E} [Y]^{2}\\[5pt]&=\operatorname {Var} (X)+\operatorname {Var} (Y).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <mo stretchy="false">]</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>Y</mi> <mo stretchy="false">]</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>Y</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>X</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>Y</mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (X+Y)&=\operatorname {E} \left[X^{2}\right]+2\operatorname {E} [XY]+\operatorname {E} \left[Y^{2}\right]-\left(\operatorname {E} [X]^{2}+2\operatorname {E} [X]\operatorname {E} [Y]+\operatorname {E} [Y]^{2}\right)\\[5pt]&=\operatorname {E} \left[X^{2}\right]+\operatorname {E} \left[Y^{2}\right]-\operatorname {E} [X]^{2}-\operatorname {E} [Y]^{2}\\[5pt]&=\operatorname {Var} (X)+\operatorname {Var} (Y).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a17cef95ad7c7877b877c4e7bb2b3788ff2dde00" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:76.689ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (X+Y)&=\operatorname {E} \left[X^{2}\right]+2\operatorname {E} [XY]+\operatorname {E} \left[Y^{2}\right]-\left(\operatorname {E} [X]^{2}+2\operatorname {E} [X]\operatorname {E} [Y]+\operatorname {E} [Y]^{2}\right)\\[5pt]&=\operatorname {E} \left[X^{2}\right]+\operatorname {E} \left[Y^{2}\right]-\operatorname {E} [X]^{2}-\operatorname {E} [Y]^{2}\\[5pt]&=\operatorname {Var} (X)+\operatorname {Var} (Y).\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Sum_of_correlated_variables">Sum of correlated variables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=21" title="Edit section: Sum of correlated variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading5"><h5 id="Sum_of_correlated_variables_with_fixed_sample_size">Sum of correlated variables with fixed sample size</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=22" title="Edit section: Sum of correlated variables with fixed sample size"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Bienaym%C3%A9%27s_identity" title="Bienaymé's identity">Bienaymé's identity</a></div> <p>In general, the variance of the sum of <span class="texhtml">n</span> variables is the sum of their <a href="/wiki/Covariance" title="Covariance">covariances</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\sum _{j=1}^{n}\operatorname {Cov} \left(X_{i},X_{j}\right)=\sum _{i=1}^{n}\operatorname {Var} \left(X_{i}\right)+2\sum _{1\leq i<j\leq n}\operatorname {Cov} \left(X_{i},X_{j}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> <mo><</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\sum _{j=1}^{n}\operatorname {Cov} \left(X_{i},X_{j}\right)=\sum _{i=1}^{n}\operatorname {Var} \left(X_{i}\right)+2\sum _{1\leq i<j\leq n}\operatorname {Cov} \left(X_{i},X_{j}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/974c9cacd4371f83a7ef278601631041e4a42af1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:76.989ex; height:7.676ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)=\sum _{i=1}^{n}\sum _{j=1}^{n}\operatorname {Cov} \left(X_{i},X_{j}\right)=\sum _{i=1}^{n}\operatorname {Var} \left(X_{i}\right)+2\sum _{1\leq i<j\leq n}\operatorname {Cov} \left(X_{i},X_{j}\right).}"></span></dd></dl> <p>(Note: The second equality comes from the fact that <span class="texhtml">Cov(<i>X</i><sub><i>i</i></sub>,<i>X</i><sub><i>i</i></sub>) = Var(<i>X</i><sub><i>i</i></sub>)</span>.) </p><p>Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Cov} (\cdot ,\cdot )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mo>⋅<!-- ⋅ --></mo> <mo>,</mo> <mo>⋅<!-- ⋅ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Cov} (\cdot ,\cdot )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e280e766551e0749bd549df4d840de083c6ab13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.205ex; height:2.843ex;" alt="{\displaystyle \operatorname {Cov} (\cdot ,\cdot )}"></span> is the <a href="/wiki/Covariance" title="Covariance">covariance</a>, which is zero for independent random variables (if it exists). The formula states that the variance of a sum is equal to the sum of all elements in the covariance matrix of the components. The next expression states equivalently that the variance of the sum is the sum of the diagonal of covariance matrix plus two times the sum of its upper triangular elements (or its lower triangular elements); this emphasizes that the covariance matrix is symmetric. This formula is used in the theory of <a href="/wiki/Cronbach%27s_alpha" title="Cronbach's alpha">Cronbach's alpha</a> in <a href="/wiki/Classical_test_theory" title="Classical test theory">classical test theory</a>. </p><p>So, if the variables have equal variance <i>σ</i><sup>2</sup> and the average <a href="/wiki/Correlation" title="Correlation">correlation</a> of distinct variables is <i>ρ</i>, then the variance of their mean is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left({\overline {X}}\right)={\frac {\sigma ^{2}}{n}}+{\frac {n-1}{n}}\rho \sigma ^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mi>ρ<!-- ρ --></mi> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left({\overline {X}}\right)={\frac {\sigma ^{2}}{n}}+{\frac {n-1}{n}}\rho \sigma ^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9eb173470dbe05e1ff815cc36db82757a13df04b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:28.351ex; height:5.676ex;" alt="{\displaystyle \operatorname {Var} \left({\overline {X}}\right)={\frac {\sigma ^{2}}{n}}+{\frac {n-1}{n}}\rho \sigma ^{2}.}"></span></dd></dl> <p>This implies that the variance of the mean increases with the average of the correlations. In other words, additional correlated observations are not as effective as additional independent observations at reducing the <a href="/wiki/Standard_error" title="Standard error">uncertainty of the mean</a>. Moreover, if the variables have unit variance, for example if they are standardized, then this simplifies to </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left({\overline {X}}\right)={\frac {1}{n}}+{\frac {n-1}{n}}\rho .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mi>ρ<!-- ρ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left({\overline {X}}\right)={\frac {1}{n}}+{\frac {n-1}{n}}\rho .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/58457bec69a9c38892ad52fa091f3c4d2b78f503" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.976ex; height:5.176ex;" alt="{\displaystyle \operatorname {Var} \left({\overline {X}}\right)={\frac {1}{n}}+{\frac {n-1}{n}}\rho .}"></span></dd></dl> <p>This formula is used in the <a href="/wiki/Spearman%E2%80%93Brown_prediction_formula" title="Spearman–Brown prediction formula">Spearman–Brown prediction formula</a> of classical test theory. This converges to <i>ρ</i> if <i>n</i> goes to infinity, provided that the average correlation remains constant or converges too. So for the variance of the mean of standardized variables with equal correlations or converging average correlation we have </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{n\to \infty }\operatorname {Var} \left({\overline {X}}\right)=\rho .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>ρ<!-- ρ --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{n\to \infty }\operatorname {Var} \left({\overline {X}}\right)=\rho .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e88cbba0a3d795799b11d84cec6dab69fb21cc3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:18.331ex; height:4.843ex;" alt="{\displaystyle \lim _{n\to \infty }\operatorname {Var} \left({\overline {X}}\right)=\rho .}"></span></dd></dl> <p>Therefore, the variance of the mean of a large number of standardized variables is approximately equal to their average correlation. This makes clear that the sample mean of correlated variables does not generally converge to the population mean, even though the <a href="/wiki/Law_of_large_numbers" title="Law of large numbers">law of large numbers</a> states that the sample mean will converge for independent variables. </p> <div class="mw-heading mw-heading5"><h5 id="Sum_of_uncorrelated_variables_with_random_sample_size">Sum of uncorrelated variables with random sample size</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=23" title="Edit section: Sum of uncorrelated variables with random sample size"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are cases when a sample is taken without knowing, in advance, how many observations will be acceptable according to some criterion. In such cases, the sample size <span class="texhtml">N</span> is a random variable whose variation adds to the variation of <span class="texhtml">X</span>, such that, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\operatorname {E} \left[N\right]\operatorname {Var} (X)+\operatorname {Var} (N)(\operatorname {E} \left[X\right])^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mi>N</mi> <mo>]</mo> </mrow> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mi>X</mi> <mo>]</mo> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\operatorname {E} \left[N\right]\operatorname {Var} (X)+\operatorname {Var} (N)(\operatorname {E} \left[X\right])^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6964bc1704783f6ecc80ed1370b84719c52e4b86" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:48.247ex; height:7.509ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{N}X_{i}\right)=\operatorname {E} \left[N\right]\operatorname {Var} (X)+\operatorname {Var} (N)(\operatorname {E} \left[X\right])^{2}}"></span><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></dd></dl> <p>which follows from the <a href="/wiki/Law_of_total_variance" title="Law of total variance">law of total variance</a>. </p><p>If <span class="texhtml">N</span> has a <a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} [N]=\operatorname {Var} (N)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <mi>N</mi> <mo stretchy="false">]</mo> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} [N]=\operatorname {Var} (N)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c09780cf49339279202c5155f367541bd5978065" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.729ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} [N]=\operatorname {Var} (N)}"></span> with estimator <span class="texhtml">n</span> = <span class="texhtml">N</span>. So, the estimator of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82e29bbd51850052673fd8abde2cef0bd3c9ca62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:13.965ex; height:7.509ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i=1}^{n}X_{i}\right)}"></span> becomes <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n{S_{x}}^{2}+n{\bar {X}}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>n</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n{S_{x}}^{2}+n{\bar {X}}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdcdb1d253071f4e5c27837ba8af2ad1e33e7c5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.316ex; height:3.343ex;" alt="{\displaystyle n{S_{x}}^{2}+n{\bar {X}}^{2}}"></span>, giving <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {SE} ({\bar {X}})={\sqrt {\frac {{S_{x}}^{2}+{\bar {X}}^{2}}{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>SE</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mfrac> <mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>X</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mi>n</mi> </mfrac> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {SE} ({\bar {X}})={\sqrt {\frac {{S_{x}}^{2}+{\bar {X}}^{2}}{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc1e272162c369441d1ec64680a1efded4c410ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.449ex; height:7.676ex;" alt="{\displaystyle \operatorname {SE} ({\bar {X}})={\sqrt {\frac {{S_{x}}^{2}+{\bar {X}}^{2}}{n}}}}"></span> (see <a href="/wiki/Standard_error#Standard_error_of_the_sample_mean" title="Standard error">standard error of the sample mean</a>). </p> <div class="mw-heading mw-heading4"><h4 id="Weighted_sum_of_variables">Weighted sum of variables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=24" title="Edit section: Weighted sum of variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Weighted_arithmetic_mean#Variance" title="Weighted arithmetic mean">Variance of a weighted arithmetic mean</a></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Not to be confused with <a href="/wiki/Weighted_variance" class="mw-redirect" title="Weighted variance">Weighted variance</a>.</div> <p>The scaling property and the Bienaymé formula, along with the property of the <a href="/wiki/Covariance" title="Covariance">covariance</a> <span class="texhtml">Cov(<i>aX</i>, <i>bY</i>) = <i>ab</i> Cov(<i>X</i>, <i>Y</i>)</span> jointly imply that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (aX\pm bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)\pm 2ab\,\operatorname {Cov} (X,Y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mi>X</mi> <mo>±<!-- ± --></mo> <mi>b</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>±<!-- ± --></mo> <mn>2</mn> <mi>a</mi> <mi>b</mi> <mspace width="thinmathspace" /> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (aX\pm bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)\pm 2ab\,\operatorname {Cov} (X,Y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0abba860360f85422ad1d5da5866ce2a305153d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:58.818ex; height:3.176ex;" alt="{\displaystyle \operatorname {Var} (aX\pm bY)=a^{2}\operatorname {Var} (X)+b^{2}\operatorname {Var} (Y)\pm 2ab\,\operatorname {Cov} (X,Y).}"></span></dd></dl> <p>This implies that in a weighted sum of variables, the variable with the largest weight will have a disproportionally large weight in the variance of the total. For example, if <i>X</i> and <i>Y</i> are uncorrelated and the weight of <i>X</i> is two times the weight of <i>Y</i>, then the weight of the variance of <i>X</i> will be four times the weight of the variance of <i>Y</i>. </p><p>The expression above can be extended to a weighted sum of multiple variables: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left(\sum _{i}^{n}a_{i}X_{i}\right)=\sum _{i=1}^{n}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i}\sum _{<j\leq n}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mn>2</mn> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>≤<!-- ≤ --></mo> <mi>i</mi> </mrow> </munder> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo><</mo> <mi>j</mi> <mo>≤<!-- ≤ --></mo> <mi>n</mi> </mrow> </munder> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left(\sum _{i}^{n}a_{i}X_{i}\right)=\sum _{i=1}^{n}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i}\sum _{<j\leq n}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/531e86a8cfc325ce7d97a0e849d82c9469934099" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:63.621ex; height:7.676ex;" alt="{\displaystyle \operatorname {Var} \left(\sum _{i}^{n}a_{i}X_{i}\right)=\sum _{i=1}^{n}a_{i}^{2}\operatorname {Var} (X_{i})+2\sum _{1\leq i}\sum _{<j\leq n}a_{i}a_{j}\operatorname {Cov} (X_{i},X_{j})}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Product_of_variables">Product of variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=25" title="Edit section: Product of variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Product_of_independent_variables">Product of independent variables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=26" title="Edit section: Product of independent variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If two variables X and Y are <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">independent</a>, the variance of their product is given by<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (XY)=[\operatorname {E} (X)]^{2}\operatorname {Var} (Y)+[\operatorname {E} (Y)]^{2}\operatorname {Var} (X)+\operatorname {Var} (X)\operatorname {Var} (Y).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (XY)=[\operatorname {E} (X)]^{2}\operatorname {Var} (Y)+[\operatorname {E} (Y)]^{2}\operatorname {Var} (X)+\operatorname {Var} (X)\operatorname {Var} (Y).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/217846baaed2d1a73bd83728419c8199c66c06f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:65.213ex; height:3.176ex;" alt="{\displaystyle \operatorname {Var} (XY)=[\operatorname {E} (X)]^{2}\operatorname {Var} (Y)+[\operatorname {E} (Y)]^{2}\operatorname {Var} (X)+\operatorname {Var} (X)\operatorname {Var} (Y).}"></span></dd></dl> <p>Equivalently, using the basic properties of expectation, it is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (XY)=\operatorname {E} \left(X^{2}\right)\operatorname {E} \left(Y^{2}\right)-[\operatorname {E} (X)]^{2}[\operatorname {E} (Y)]^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (XY)=\operatorname {E} \left(X^{2}\right)\operatorname {E} \left(Y^{2}\right)-[\operatorname {E} (X)]^{2}[\operatorname {E} (Y)]^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f81d984aa103aed089cc56c27406c845fa50da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:45.017ex; height:3.343ex;" alt="{\displaystyle \operatorname {Var} (XY)=\operatorname {E} \left(X^{2}\right)\operatorname {E} \left(Y^{2}\right)-[\operatorname {E} (X)]^{2}[\operatorname {E} (Y)]^{2}.}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Product_of_statistically_dependent_variables">Product of statistically dependent variables</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=27" title="Edit section: Product of statistically dependent variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, if two variables are statistically dependent, then the variance of their product is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {Var} (XY)={}&\operatorname {E} \left[X^{2}Y^{2}\right]-[\operatorname {E} (XY)]^{2}\\[5pt]={}&\operatorname {Cov} \left(X^{2},Y^{2}\right)+\operatorname {E} (X^{2})\operatorname {E} \left(Y^{2}\right)-[\operatorname {E} (XY)]^{2}\\[5pt]={}&\operatorname {Cov} \left(X^{2},Y^{2}\right)+\left(\operatorname {Var} (X)+[\operatorname {E} (X)]^{2}\right)\left(\operatorname {Var} (Y)+[\operatorname {E} (Y)]^{2}\right)\\[5pt]&-[\operatorname {Cov} (X,Y)+\operatorname {E} (X)\operatorname {E} (Y)]^{2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mi>Y</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">[</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>−<!-- − --></mo> <mo stretchy="false">[</mo> <mi>Cov</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>Y</mi> <mo stretchy="false">)</mo> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {Var} (XY)={}&\operatorname {E} \left[X^{2}Y^{2}\right]-[\operatorname {E} (XY)]^{2}\\[5pt]={}&\operatorname {Cov} \left(X^{2},Y^{2}\right)+\operatorname {E} (X^{2})\operatorname {E} \left(Y^{2}\right)-[\operatorname {E} (XY)]^{2}\\[5pt]={}&\operatorname {Cov} \left(X^{2},Y^{2}\right)+\left(\operatorname {Var} (X)+[\operatorname {E} (X)]^{2}\right)\left(\operatorname {Var} (Y)+[\operatorname {E} (Y)]^{2}\right)\\[5pt]&-[\operatorname {Cov} (X,Y)+\operatorname {E} (X)\operatorname {E} (Y)]^{2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f71664172a74f8d3dbf6f1b17addf168e55f11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.005ex; margin-top: -0.182ex; width:69.875ex; height:17.176ex;" alt="{\displaystyle {\begin{aligned}\operatorname {Var} (XY)={}&\operatorname {E} \left[X^{2}Y^{2}\right]-[\operatorname {E} (XY)]^{2}\\[5pt]={}&\operatorname {Cov} \left(X^{2},Y^{2}\right)+\operatorname {E} (X^{2})\operatorname {E} \left(Y^{2}\right)-[\operatorname {E} (XY)]^{2}\\[5pt]={}&\operatorname {Cov} \left(X^{2},Y^{2}\right)+\left(\operatorname {Var} (X)+[\operatorname {E} (X)]^{2}\right)\left(\operatorname {Var} (Y)+[\operatorname {E} (Y)]^{2}\right)\\[5pt]&-[\operatorname {Cov} (X,Y)+\operatorname {E} (X)\operatorname {E} (Y)]^{2}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Arbitrary_functions">Arbitrary functions</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=28" title="Edit section: Arbitrary functions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Uncertainty_propagation" class="mw-redirect" title="Uncertainty propagation">Uncertainty propagation</a></div> <p>The <a href="/wiki/Delta_method" title="Delta method">delta method</a> uses second-order <a href="/wiki/Taylor_expansion" class="mw-redirect" title="Taylor expansion">Taylor expansions</a> to approximate the variance of a function of one or more random variables: see <a href="/wiki/Taylor_expansions_for_the_moments_of_functions_of_random_variables" title="Taylor expansions for the moments of functions of random variables">Taylor expansions for the moments of functions of random variables</a>. For example, the approximate variance of a function of one variable is given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left[f(X)\right]\approx \left(f'(\operatorname {E} \left[X\right])\right)^{2}\operatorname {Var} \left[X\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>≈<!-- ≈ --></mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mi>X</mi> <mo>]</mo> </mrow> <mo stretchy="false">)</mo> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mi>X</mi> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left[f(X)\right]\approx \left(f'(\operatorname {E} \left[X\right])\right)^{2}\operatorname {Var} \left[X\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c58412ffa8fdf818b89bafb3318c4ace7cd8e9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.29ex; height:3.509ex;" alt="{\displaystyle \operatorname {Var} \left[f(X)\right]\approx \left(f'(\operatorname {E} \left[X\right])\right)^{2}\operatorname {Var} \left[X\right]}"></span></dd></dl> <p>provided that <i>f</i> is twice differentiable and that the mean and variance of <i>X</i> are finite. </p> <div class="mw-heading mw-heading2"><h2 id="Population_variance_and_sample_variance">Population variance and sample variance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=29" title="Edit section: Population variance and sample variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><span class="anchor" id="Estimation"></span> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Unbiased_estimation_of_standard_deviation" title="Unbiased estimation of standard deviation">Unbiased estimation of standard deviation</a></div> <p>Real-world observations such as the measurements of yesterday's rain throughout the day typically cannot be complete sets of all possible observations that could be made. As such, the variance calculated from the finite set will in general not match the variance that would have been calculated from the full population of possible observations. This means that one <a href="/wiki/Estimation_theory" title="Estimation theory">estimates</a> the mean and variance from a limited set of observations by using an <a href="/wiki/Estimator" title="Estimator">estimator</a> equation. The estimator is a function of the <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">sample</a> of <i>n</i> <a href="/wiki/Observations" class="mw-redirect" title="Observations">observations</a> drawn without observational bias from the whole <a href="/wiki/Statistical_population" title="Statistical population">population</a> of potential observations. In this example, the sample would be the set of actual measurements of yesterday's rainfall from available rain gauges within the geography of interest. </p><p>The simplest estimators for population mean and population variance are simply the mean and variance of the sample, the <b>sample mean</b> and <b>(uncorrected) sample variance</b> – these are <a href="/wiki/Consistent_estimator" title="Consistent estimator">consistent estimators</a> (they converge to the value of the whole population as the number of samples increases) but can be improved. Most simply, the sample variance is computed as the sum of <a href="/wiki/Squared_deviations" class="mw-redirect" title="Squared deviations">squared deviations</a> about the (sample) mean, divided by <i>n</i> as the number of samples<i>.</i> However, using values other than <i>n</i> improves the estimator in various ways. Four common values for the denominator are <i>n,</i> <i>n</i> − 1, <i>n</i> + 1, and <i>n</i> − 1.5: <i>n</i> is the simplest (the variance of the sample), <i>n</i> − 1 eliminates bias,<sup id="cite_ref-bessel_10-0" class="reference"><a href="#cite_note-bessel-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> <i>n</i> + 1 minimizes <a href="/wiki/Mean_squared_error" title="Mean squared error">mean squared error</a> for the normal distribution,<sup id="cite_ref-Kourouklis_11-0" class="reference"><a href="#cite_note-Kourouklis-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> and <i>n</i> − 1.5 mostly eliminates bias in <a href="/wiki/Unbiased_estimation_of_standard_deviation" title="Unbiased estimation of standard deviation">unbiased estimation of standard deviation</a> for the normal distribution.<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> </p><p>Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a <a href="/wiki/Biased_estimator" class="mw-redirect" title="Biased estimator">biased estimator</a>: it underestimates the variance by a factor of (<i>n</i> − 1) / <i>n</i>; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by <i>n</i> -1 instead of <i>n</i>, is called <i><a href="/wiki/Bessel%27s_correction" title="Bessel's correction">Bessel's correction</a></i>.<sup id="cite_ref-bessel_10-1" class="reference"><a href="#cite_note-bessel-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> The resulting estimator is unbiased and is called the <b>(corrected) sample variance</b> or <b>unbiased sample variance</b>. If the mean is determined in some other way than from the same samples used to estimate the variance, then this bias does not arise, and the variance can safely be estimated as that of the samples about the (independently known) mean. </p><p>Secondly, the sample variance does not generally minimize <a href="/wiki/Mean_squared_error" title="Mean squared error">mean squared error</a> between sample variance and population variance. Correcting for bias often makes this worse: one can always choose a scale factor that performs better than the corrected sample variance, though the optimal scale factor depends on the <a href="/wiki/Excess_kurtosis" class="mw-redirect" title="Excess kurtosis">excess kurtosis</a> of the population (see <a href="/wiki/Mean_squared_error#Variance" title="Mean squared error">mean squared error: variance</a>) and introduces bias. This always consists of scaling down the unbiased estimator (dividing by a number larger than <i>n</i> − 1) and is a simple example of a <a href="/wiki/Shrinkage_estimator" class="mw-redirect" title="Shrinkage estimator">shrinkage estimator</a>: one "shrinks" the unbiased estimator towards zero. For the normal distribution, dividing by <i>n</i> + 1 (instead of <i>n</i> − 1 or <i>n</i>) minimizes mean squared error.<sup id="cite_ref-Kourouklis_11-1" class="reference"><a href="#cite_note-Kourouklis-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup> The resulting estimator is biased, however, and is known as the <b>biased sample variation</b>. </p> <div class="mw-heading mw-heading3"><h3 id="Population_variance">Population variance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=30" title="Edit section: Population variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, the <i><b>population variance</b></i> of a <i>finite</i> <a href="/wiki/Statistical_population" title="Statistical population">population</a> of size <i>N</i> with values <i>x</i><sub><i>i</i></sub> is given by<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sigma ^{2}&={\frac {1}{N}}\sum _{i=1}^{N}\left(x_{i}-\mu \right)^{2}={\frac {1}{N}}\sum _{i=1}^{N}\left(x_{i}^{2}-2\mu x_{i}+\mu ^{2}\right)\\[5pt]&=\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)-2\mu \left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)+\mu ^{2}\\[5pt]&=\operatorname {E} [x_{i}^{2}]-\mu ^{2}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mn>2</mn> <mi>μ<!-- μ --></mi> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mn>2</mn> <mi>μ<!-- μ --></mi> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sigma ^{2}&={\frac {1}{N}}\sum _{i=1}^{N}\left(x_{i}-\mu \right)^{2}={\frac {1}{N}}\sum _{i=1}^{N}\left(x_{i}^{2}-2\mu x_{i}+\mu ^{2}\right)\\[5pt]&=\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)-2\mu \left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)+\mu ^{2}\\[5pt]&=\operatorname {E} [x_{i}^{2}]-\mu ^{2}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d8f04ba4fd2a13a7b441c81247699e86cacf140" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.838ex; width:49.97ex; height:20.843ex;" alt="{\displaystyle {\begin{aligned}\sigma ^{2}&={\frac {1}{N}}\sum _{i=1}^{N}\left(x_{i}-\mu \right)^{2}={\frac {1}{N}}\sum _{i=1}^{N}\left(x_{i}^{2}-2\mu x_{i}+\mu ^{2}\right)\\[5pt]&=\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)-2\mu \left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)+\mu ^{2}\\[5pt]&=\operatorname {E} [x_{i}^{2}]-\mu ^{2}\end{aligned}}}"></span>where the population mean is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \mu =\operatorname {E} [x_{i}]={\frac {1}{N}}\sum _{i=1}^{N}x_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \mu =\operatorname {E} [x_{i}]={\frac {1}{N}}\sum _{i=1}^{N}x_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b0708485ad21c14cc61f7362b541ec051259965" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:23.157ex; height:3.676ex;" alt="{\textstyle \mu =\operatorname {E} [x_{i}]={\frac {1}{N}}\sum _{i=1}^{N}x_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {E} [x_{i}^{2}]=\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {E} [x_{i}^{2}]=\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/047142dbd47b7305aed1b4b65530ce6e8e9e9a3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:21.942ex; height:4.843ex;" alt="{\textstyle \operatorname {E} [x_{i}^{2}]=\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {E} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {E} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/414ab779dab2da9c0f43662bfb75df8301a8cfa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\textstyle \operatorname {E} }"></span> is the <a href="/wiki/Expected_value" title="Expected value">expectation value</a> operator. </p><p>The population variance can also be computed using<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma ^{2}={\frac {1}{N^{2}}}\sum _{i<j}\left(x_{i}-x_{j}\right)^{2}={\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}-x_{j}\right)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo><</mo> <mi>j</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma ^{2}={\frac {1}{N^{2}}}\sum _{i<j}\left(x_{i}-x_{j}\right)^{2}={\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}-x_{j}\right)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/942579caf5952caa0d1b8de2693b71fd5d5c0420" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:47.269ex; height:7.676ex;" alt="{\displaystyle \sigma ^{2}={\frac {1}{N^{2}}}\sum _{i<j}\left(x_{i}-x_{j}\right)^{2}={\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}-x_{j}\right)^{2}.}"></span></dd></dl> <p>(The right side has duplicate terms in the sum while the middle side has only unique terms to sum.) This is true because<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}&{\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}-x_{j}\right)^{2}\\[5pt]={}&{\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}^{2}-2x_{i}x_{j}+x_{j}^{2}\right)\\[5pt]={}&{\frac {1}{2N}}\sum _{j=1}^{N}\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)-\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)\left({\frac {1}{N}}\sum _{j=1}^{N}x_{j}\right)+{\frac {1}{2N}}\sum _{i=1}^{N}\left({\frac {1}{N}}\sum _{j=1}^{N}x_{j}^{2}\right)\\[5pt]={}&{\frac {1}{2}}\left(\sigma ^{2}+\mu ^{2}\right)-\mu ^{2}+{\frac {1}{2}}\left(\sigma ^{2}+\mu ^{2}\right)\\[5pt]={}&\sigma ^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <msup> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mn>2</mn> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> </mrow> </munderover> <msubsup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&{\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}-x_{j}\right)^{2}\\[5pt]={}&{\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}^{2}-2x_{i}x_{j}+x_{j}^{2}\right)\\[5pt]={}&{\frac {1}{2N}}\sum _{j=1}^{N}\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)-\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)\left({\frac {1}{N}}\sum _{j=1}^{N}x_{j}\right)+{\frac {1}{2N}}\sum _{i=1}^{N}\left({\frac {1}{N}}\sum _{j=1}^{N}x_{j}^{2}\right)\\[5pt]={}&{\frac {1}{2}}\left(\sigma ^{2}+\mu ^{2}\right)-\mu ^{2}+{\frac {1}{2}}\left(\sigma ^{2}+\mu ^{2}\right)\\[5pt]={}&\sigma ^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b6736d90655f71bb3794e52d6f2a18567fe1dd1" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -17.671ex; width:77.633ex; height:36.509ex;" alt="{\displaystyle {\begin{aligned}&{\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}-x_{j}\right)^{2}\\[5pt]={}&{\frac {1}{2N^{2}}}\sum _{i,j=1}^{N}\left(x_{i}^{2}-2x_{i}x_{j}+x_{j}^{2}\right)\\[5pt]={}&{\frac {1}{2N}}\sum _{j=1}^{N}\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}^{2}\right)-\left({\frac {1}{N}}\sum _{i=1}^{N}x_{i}\right)\left({\frac {1}{N}}\sum _{j=1}^{N}x_{j}\right)+{\frac {1}{2N}}\sum _{i=1}^{N}\left({\frac {1}{N}}\sum _{j=1}^{N}x_{j}^{2}\right)\\[5pt]={}&{\frac {1}{2}}\left(\sigma ^{2}+\mu ^{2}\right)-\mu ^{2}+{\frac {1}{2}}\left(\sigma ^{2}+\mu ^{2}\right)\\[5pt]={}&\sigma ^{2}.\end{aligned}}}"></span>The population variance matches the variance of the generating probability distribution. In this sense, the concept of population can be extended to continuous random variables with infinite populations. </p> <div class="mw-heading mw-heading3"><h3 id="Sample_variance">Sample variance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=31" title="Edit section: Sample variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Sample_standard_deviation" class="mw-redirect" title="Sample standard deviation">Sample standard deviation</a></div> <div class="mw-heading mw-heading4"><h4 id="Biased_sample_variance"><style data-mw-deduplicate="TemplateStyles:r1238216509">.mw-parser-output .vanchor>:target~.vanchor-text{background-color:#b1d2ff}@media screen{html.skin-theme-clientpref-night .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .vanchor>:target~.vanchor-text{background-color:#0f4dc9}}</style><span class="vanchor"><span id="Biased_sample_variance"></span><span class="vanchor-text">Biased sample variance</span></span></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=32" title="Edit section: Biased sample variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In many practical situations, the true variance of a population is not known <i>a priori</i> and must be computed somehow. When dealing with extremely large populations, it is not possible to count every object in the population, so the computation must be performed on a <a href="/wiki/Sample_(statistics)" class="mw-redirect" title="Sample (statistics)">sample</a> of the population.<sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> This is generally referred to as <b>sample variance</b> or <b>empirical variance</b>. Sample variance can also be applied to the estimation of the variance of a continuous distribution from a sample of that distribution. </p><p>We take a <a href="/wiki/Statistical_sample" class="mw-redirect" title="Statistical sample">sample with replacement</a> of <i>n</i> values <i>Y</i><sub>1</sub>, ..., <i>Y</i><sub><i>n</i></sub> from the population of size <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d21d55fc102ec49600d3d5522a59ae4561acc22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\textstyle N}"></span>, where <i>n</i> < <i>N</i>, and estimate the variance on the basis of this sample.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> Directly taking the variance of the sample data gives the average of the <a href="/wiki/Squared_deviations" class="mw-redirect" title="Squared deviations">squared deviations</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {S}}_{Y}^{2}={\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}=\left({\frac {1}{n}}\sum _{i=1}^{n}Y_{i}^{2}\right)-{\overline {Y}}^{2}={\frac {1}{n^{2}}}\sum _{i,j\,:\,i<j}\left(Y_{i}-Y_{j}\right)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mspace width="thinmathspace" /> <mo>:</mo> <mspace width="thinmathspace" /> <mi>i</mi> <mo><</mo> <mi>j</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {S}}_{Y}^{2}={\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}=\left({\frac {1}{n}}\sum _{i=1}^{n}Y_{i}^{2}\right)-{\overline {Y}}^{2}={\frac {1}{n^{2}}}\sum _{i,j\,:\,i<j}\left(Y_{i}-Y_{j}\right)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e492822ea56399766290d5fff033fd64ef40a211" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:69.029ex; height:7.676ex;" alt="{\displaystyle {\tilde {S}}_{Y}^{2}={\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}=\left({\frac {1}{n}}\sum _{i=1}^{n}Y_{i}^{2}\right)-{\overline {Y}}^{2}={\frac {1}{n^{2}}}\sum _{i,j\,:\,i<j}\left(Y_{i}-Y_{j}\right)^{2}.}"></span><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup></dd></dl> <p>(See the section <a class="mw-selflink-fragment" href="#Population_variance">Population variance</a> for the derivation of this formula.) Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {Y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {Y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e430df50efa67ea2e08d9c37afd5fe1434803b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.163ex; height:2.843ex;" alt="{\displaystyle {\overline {Y}}}"></span> denotes the <a href="/wiki/Sample_mean" class="mw-redirect" title="Sample mean">sample mean</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {Y}}={\frac {1}{n}}\sum _{i=1}^{n}Y_{i}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {Y}}={\frac {1}{n}}\sum _{i=1}^{n}Y_{i}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e02b291ecb1006229a3dc875c81dc657696c656" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.419ex; height:6.843ex;" alt="{\displaystyle {\overline {Y}}={\frac {1}{n}}\sum _{i=1}^{n}Y_{i}.}"></span></dd></dl> <p>Since the <i>Y</i><sub><i>i</i></sub> are selected randomly, both <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {Y}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {Y}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e430df50efa67ea2e08d9c37afd5fe1434803b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:2.163ex; height:2.843ex;" alt="{\displaystyle {\overline {Y}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {S}}_{Y}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {S}}_{Y}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b73e9e6c485b1e3d6ec58d70b88d2ecc48199bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.059ex; height:3.676ex;" alt="{\displaystyle {\tilde {S}}_{Y}^{2}}"></span> are <a href="/wiki/Random_variable" title="Random variable">random variables</a>. Their expected values can be evaluated by averaging over the ensemble of all possible samples {<i>Y</i><sub><i>i</i></sub>} of size <i>n</i> from the population. For <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tilde {S}}_{Y}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tilde {S}}_{Y}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b73e9e6c485b1e3d6ec58d70b88d2ecc48199bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.059ex; height:3.676ex;" alt="{\displaystyle {\tilde {S}}_{Y}^{2}}"></span> this gives: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\operatorname {E} [{\tilde {S}}_{Y}^{2}]&=\operatorname {E} \left[{\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\frac {1}{n}}\sum _{j=1}^{n}Y_{j}\right)^{2}\right]\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\operatorname {E} \left[Y_{i}^{2}-{\frac {2}{n}}Y_{i}\sum _{j=1}^{n}Y_{j}+{\frac {1}{n^{2}}}\sum _{j=1}^{n}Y_{j}\sum _{k=1}^{n}Y_{k}\right]\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left(\operatorname {E} \left[Y_{i}^{2}\right]-{\frac {2}{n}}\left(\sum _{j\neq i}\operatorname {E} \left[Y_{i}Y_{j}\right]+\operatorname {E} \left[Y_{i}^{2}\right]\right)+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\sum _{k\neq j}^{n}\operatorname {E} \left[Y_{j}Y_{k}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\operatorname {E} \left[Y_{j}^{2}\right]\right)\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left({\frac {n-2}{n}}\operatorname {E} \left[Y_{i}^{2}\right]-{\frac {2}{n}}\sum _{j\neq i}\operatorname {E} \left[Y_{i}Y_{j}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\sum _{k\neq j}^{n}\operatorname {E} \left[Y_{j}Y_{k}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\operatorname {E} \left[Y_{j}^{2}\right]\right)\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left[{\frac {n-2}{n}}\left(\sigma ^{2}+\mu ^{2}\right)-{\frac {2}{n}}(n-1)\mu ^{2}+{\frac {1}{n^{2}}}n(n-1)\mu ^{2}+{\frac {1}{n}}\left(\sigma ^{2}+\mu ^{2}\right)\right]\\[5pt]&={\frac {n-1}{n}}\sigma ^{2}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.8em 0.8em 0.8em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>≠<!-- ≠ --></mo> <mi>i</mi> </mrow> </munder> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>≠<!-- ≠ --></mo> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>]</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>≠<!-- ≠ --></mo> <mi>i</mi> </mrow> </munder> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>≠<!-- ≠ --></mo> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>]</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>n</mi> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\operatorname {E} [{\tilde {S}}_{Y}^{2}]&=\operatorname {E} \left[{\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\frac {1}{n}}\sum _{j=1}^{n}Y_{j}\right)^{2}\right]\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\operatorname {E} \left[Y_{i}^{2}-{\frac {2}{n}}Y_{i}\sum _{j=1}^{n}Y_{j}+{\frac {1}{n^{2}}}\sum _{j=1}^{n}Y_{j}\sum _{k=1}^{n}Y_{k}\right]\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left(\operatorname {E} \left[Y_{i}^{2}\right]-{\frac {2}{n}}\left(\sum _{j\neq i}\operatorname {E} \left[Y_{i}Y_{j}\right]+\operatorname {E} \left[Y_{i}^{2}\right]\right)+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\sum _{k\neq j}^{n}\operatorname {E} \left[Y_{j}Y_{k}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\operatorname {E} \left[Y_{j}^{2}\right]\right)\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left({\frac {n-2}{n}}\operatorname {E} \left[Y_{i}^{2}\right]-{\frac {2}{n}}\sum _{j\neq i}\operatorname {E} \left[Y_{i}Y_{j}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\sum _{k\neq j}^{n}\operatorname {E} \left[Y_{j}Y_{k}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\operatorname {E} \left[Y_{j}^{2}\right]\right)\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left[{\frac {n-2}{n}}\left(\sigma ^{2}+\mu ^{2}\right)-{\frac {2}{n}}(n-1)\mu ^{2}+{\frac {1}{n^{2}}}n(n-1)\mu ^{2}+{\frac {1}{n}}\left(\sigma ^{2}+\mu ^{2}\right)\right]\\[5pt]&={\frac {n-1}{n}}\sigma ^{2}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2989afb3adc2778995be8c7952e3965f43cf6281" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -24.671ex; width:94.349ex; height:50.509ex;" alt="{\displaystyle {\begin{aligned}\operatorname {E} [{\tilde {S}}_{Y}^{2}]&=\operatorname {E} \left[{\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\frac {1}{n}}\sum _{j=1}^{n}Y_{j}\right)^{2}\right]\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\operatorname {E} \left[Y_{i}^{2}-{\frac {2}{n}}Y_{i}\sum _{j=1}^{n}Y_{j}+{\frac {1}{n^{2}}}\sum _{j=1}^{n}Y_{j}\sum _{k=1}^{n}Y_{k}\right]\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left(\operatorname {E} \left[Y_{i}^{2}\right]-{\frac {2}{n}}\left(\sum _{j\neq i}\operatorname {E} \left[Y_{i}Y_{j}\right]+\operatorname {E} \left[Y_{i}^{2}\right]\right)+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\sum _{k\neq j}^{n}\operatorname {E} \left[Y_{j}Y_{k}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\operatorname {E} \left[Y_{j}^{2}\right]\right)\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left({\frac {n-2}{n}}\operatorname {E} \left[Y_{i}^{2}\right]-{\frac {2}{n}}\sum _{j\neq i}\operatorname {E} \left[Y_{i}Y_{j}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\sum _{k\neq j}^{n}\operatorname {E} \left[Y_{j}Y_{k}\right]+{\frac {1}{n^{2}}}\sum _{j=1}^{n}\operatorname {E} \left[Y_{j}^{2}\right]\right)\\[5pt]&={\frac {1}{n}}\sum _{i=1}^{n}\left[{\frac {n-2}{n}}\left(\sigma ^{2}+\mu ^{2}\right)-{\frac {2}{n}}(n-1)\mu ^{2}+{\frac {1}{n^{2}}}n(n-1)\mu ^{2}+{\frac {1}{n}}\left(\sigma ^{2}+\mu ^{2}\right)\right]\\[5pt]&={\frac {n-1}{n}}\sigma ^{2}.\end{aligned}}}"></span></dd></dl> <p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sigma ^{2}=\operatorname {E} [Y_{i}^{2}]-\mu ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msubsup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">]</mo> <mo>−<!-- − --></mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sigma ^{2}=\operatorname {E} [Y_{i}^{2}]-\mu ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/576fabda8f2071ae145c54421c8d3140e5ce3d1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.611ex; height:3.176ex;" alt="{\textstyle \sigma ^{2}=\operatorname {E} [Y_{i}^{2}]-\mu ^{2}}"></span> derived in the section <a class="mw-selflink-fragment" href="#Population_variance">Population variance</a> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \operatorname {E} [Y_{i}Y_{j}]=\operatorname {E} [Y_{i}]\operatorname {E} [Y_{j}]=\mu ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">[</mo> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">]</mo> <mo>=</mo> <msup> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \operatorname {E} [Y_{i}Y_{j}]=\operatorname {E} [Y_{i}]\operatorname {E} [Y_{j}]=\mu ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c406ba73149488a80669d078b4e6d7a82de6fcf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:26.491ex; height:3.176ex;" alt="{\textstyle \operatorname {E} [Y_{i}Y_{j}]=\operatorname {E} [Y_{i}]\operatorname {E} [Y_{j}]=\mu ^{2}}"></span> due to independency of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Y_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Y_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b48694270212208c6f289fd3f5cd0c85a2ab1426" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.15ex; height:2.509ex;" alt="{\textstyle Y_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle Y_{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle Y_{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02a4b2f7eb2c69df5fdb8cd314c92dbd9a5d5999" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.26ex; height:2.843ex;" alt="{\textstyle Y_{j}}"></span> are used. </p><p>Hence <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\tilde {S}}_{Y}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\tilde {S}}_{Y}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e69541f85f0c07f6aea67a03fb4c79bbfd214f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.059ex; height:3.676ex;" alt="{\textstyle {\tilde {S}}_{Y}^{2}}"></span> gives an estimate of the population variance that is biased by a factor of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {n-1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {n-1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ea4ca4017d66db2f1faec987c897159541c02fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.923ex; height:3.509ex;" alt="{\textstyle {\frac {n-1}{n}}}"></span> as the expectation value of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\tilde {S}}_{Y}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\tilde {S}}_{Y}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e69541f85f0c07f6aea67a03fb4c79bbfd214f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.059ex; height:3.676ex;" alt="{\textstyle {\tilde {S}}_{Y}^{2}}"></span> is smaller than the population variance (true variance) by that factor. For this reason, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\tilde {S}}_{Y}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\tilde {S}}_{Y}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e69541f85f0c07f6aea67a03fb4c79bbfd214f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.059ex; height:3.676ex;" alt="{\textstyle {\tilde {S}}_{Y}^{2}}"></span> is referred to as the <i>biased sample variance</i>. </p> <div class="mw-heading mw-heading4"><h4 id="Unbiased_sample_variance"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238216509"><span class="vanchor"><span id="Unbiased_sample_variance"></span><span class="vanchor-text">Unbiased sample variance</span></span></h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=33" title="Edit section: Unbiased sample variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Correcting for this bias yields the <i>unbiased sample variance</i>, denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b6401d5d0155afb1406770d1eb80badce4e08ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.576ex; height:2.676ex;" alt="{\displaystyle S^{2}}"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{2}={\frac {n}{n-1}}{\tilde {S}}_{Y}^{2}={\frac {n}{n-1}}\left[{\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}\right]={\frac {1}{n-1}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>S</mi> <mo stretchy="false">~<!-- ~ --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>Y</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{2}={\frac {n}{n-1}}{\tilde {S}}_{Y}^{2}={\frac {n}{n-1}}\left[{\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}\right]={\frac {1}{n-1}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac7aceabda7de5a66183e73abc088ff3ac4e3e5b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:69.185ex; height:7.509ex;" alt="{\displaystyle S^{2}={\frac {n}{n-1}}{\tilde {S}}_{Y}^{2}={\frac {n}{n-1}}\left[{\frac {1}{n}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}\right]={\frac {1}{n-1}}\sum _{i=1}^{n}\left(Y_{i}-{\overline {Y}}\right)^{2}}"></span></dd></dl> <p>Either estimator may be simply referred to as the <i>sample variance</i> when the version can be determined by context. The same proof is also applicable for samples taken from a continuous probability distribution. </p><p>The use of the term <i>n</i> − 1 is called <a href="/wiki/Bessel%27s_correction" title="Bessel's correction">Bessel's correction</a>, and it is also used in <a href="/wiki/Sample_covariance" class="mw-redirect" title="Sample covariance">sample covariance</a> and the <a href="/wiki/Sample_standard_deviation" class="mw-redirect" title="Sample standard deviation">sample standard deviation</a> (the square root of variance). The square root is a <a href="/wiki/Concave_function" title="Concave function">concave function</a> and thus introduces negative bias (by <a href="/wiki/Jensen%27s_inequality" title="Jensen's inequality">Jensen's inequality</a>), which depends on the distribution, and thus the corrected sample standard deviation (using Bessel's correction) is biased. The <a href="/wiki/Unbiased_estimation_of_standard_deviation" title="Unbiased estimation of standard deviation">unbiased estimation of standard deviation</a> is a technically involved problem, though for the normal distribution using the term <i>n</i> − 1.5 yields an almost unbiased estimator. </p><p>The unbiased sample variance is a <a href="/wiki/U-statistic" title="U-statistic">U-statistic</a> for the function <i>ƒ</i>(<i>y</i><sub>1</sub>, <i>y</i><sub>2</sub>) = (<i>y</i><sub>1</sub> − <i>y</i><sub>2</sub>)<sup>2</sup>/2, meaning that it is obtained by averaging a 2-sample statistic over 2-element subsets of the population. </p> <div class="mw-heading mw-heading5"><h5 id="Example">Example</h5><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=34" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a set of numbers {10, 15, 30, 45, 57, 52 63, 72, 81, 93, 102, 105}, if this set is the whole data population for some measurement, then variance is the population variance 932.743 as the sum of the squared deviations about the mean of this set, divided by 12 as the number of the set members. If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in <a href="/wiki/Microsoft_Excel" title="Microsoft Excel">Microsoft Excel</a> gives the unbiased sample variance while VAR.P is for population variance. </p> <div class="mw-heading mw-heading4"><h4 id="Distribution_of_the_sample_variance">Distribution of the sample variance</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=35" title="Edit section: Distribution of the sample variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:254px;max-width:254px"><div class="trow"><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Scaled_chi_squared.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Scaled_chi_squared.svg/250px-Scaled_chi_squared.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/60/Scaled_chi_squared.svg/375px-Scaled_chi_squared.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/60/Scaled_chi_squared.svg/500px-Scaled_chi_squared.svg.png 2x" data-file-width="270" data-file-height="270" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:252px;max-width:252px"><div class="thumbimage"><span typeof="mw:File"><a href="/wiki/File:Scaled_chi_squared_cdf.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Scaled_chi_squared_cdf.svg/250px-Scaled_chi_squared_cdf.svg.png" decoding="async" width="250" height="250" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/Scaled_chi_squared_cdf.svg/375px-Scaled_chi_squared_cdf.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/97/Scaled_chi_squared_cdf.svg/500px-Scaled_chi_squared_cdf.svg.png 2x" data-file-width="270" data-file-height="270" /></a></span></div><div class="thumbcaption">Distribution and cumulative distribution of <i>S</i><sup>2</sup>/σ<sup>2</sup>, for various values of <i>ν</i> = <i>n</i> − 1, when the <i>y<sub>i</sub></i> are independent normally distributed.</div></div></div></div></div> <p>Being a function of <a href="/wiki/Random_variable" title="Random variable">random variables</a>, the sample variance is itself a random variable, and it is natural to study its distribution. In the case that <i>Y</i><sub><i>i</i></sub> are independent observations from a <a href="/wiki/Normal_distribution" title="Normal distribution">normal distribution</a>, <a href="/wiki/Cochran%27s_theorem" title="Cochran's theorem">Cochran's theorem</a> shows that the <a class="mw-selflink-fragment" href="#Unbiased_sample_variance">unbiased sample variance</a> <i>S</i><sup>2</sup> follows a scaled <a href="/wiki/Chi-squared_distribution" title="Chi-squared distribution">chi-squared distribution</a> (see also: <a href="/wiki/Chi-squared_distribution#Asymptotic_properties" title="Chi-squared distribution">asymptotic properties</a> and an <a href="/wiki/Chi-squared_distribution#Cochran's_theorem" title="Chi-squared distribution">elementary proof</a>):<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n-1){\frac {S^{2}}{\sigma ^{2}}}\sim \chi _{n-1}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>∼<!-- ∼ --></mo> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n-1){\frac {S^{2}}{\sigma ^{2}}}\sim \chi _{n-1}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c522c2caf2e7b7f26762ea9ab2491c18c78e334" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:18.491ex; height:6.009ex;" alt="{\displaystyle (n-1){\frac {S^{2}}{\sigma ^{2}}}\sim \chi _{n-1}^{2}}"></span></dd></dl> <p>where <i>σ</i><sup>2</sup> is the <a class="mw-selflink-fragment" href="#Population_variance">population variance</a>. As a direct consequence, it follows that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left(S^{2}\right)=\operatorname {E} \left({\frac {\sigma ^{2}}{n-1}}\chi _{n-1}^{2}\right)=\sigma ^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left(S^{2}\right)=\operatorname {E} \left({\frac {\sigma ^{2}}{n-1}}\chi _{n-1}^{2}\right)=\sigma ^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b0c99d43b24651bc5bcd008d0ae354208412230" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:31.529ex; height:6.343ex;" alt="{\displaystyle \operatorname {E} \left(S^{2}\right)=\operatorname {E} \left({\frac {\sigma ^{2}}{n-1}}\chi _{n-1}^{2}\right)=\sigma ^{2},}"></span></dd></dl> <p>and<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} \left[S^{2}\right]=\operatorname {Var} \left({\frac {\sigma ^{2}}{n-1}}\chi _{n-1}^{2}\right)={\frac {\sigma ^{4}}{(n-1)^{2}}}\operatorname {Var} \left(\chi _{n-1}^{2}\right)={\frac {2\sigma ^{4}}{n-1}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <msubsup> <mi>χ<!-- χ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} \left[S^{2}\right]=\operatorname {Var} \left({\frac {\sigma ^{2}}{n-1}}\chi _{n-1}^{2}\right)={\frac {\sigma ^{4}}{(n-1)^{2}}}\operatorname {Var} \left(\chi _{n-1}^{2}\right)={\frac {2\sigma ^{4}}{n-1}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bb1ae4124eef0e05850fa73406d8082bb13d79d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:62.96ex; height:6.509ex;" alt="{\displaystyle \operatorname {Var} \left[S^{2}\right]=\operatorname {Var} \left({\frac {\sigma ^{2}}{n-1}}\chi _{n-1}^{2}\right)={\frac {\sigma ^{4}}{(n-1)^{2}}}\operatorname {Var} \left(\chi _{n-1}^{2}\right)={\frac {2\sigma ^{4}}{n-1}}.}"></span></dd></dl> <p>If <i>Y</i><sub><i>i</i></sub> are independent and identically distributed, but not necessarily normally distributed, then<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left[S^{2}\right]=\sigma ^{2},\quad \operatorname {Var} \left[S^{2}\right]={\frac {\sigma ^{4}}{n}}\left(\kappa -1+{\frac {2}{n-1}}\right)={\frac {1}{n}}\left(\mu _{4}-{\frac {n-3}{n-1}}\sigma ^{4}\right),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mspace width="1em" /> <mi>Var</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>]</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>κ<!-- κ --></mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>μ<!-- μ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left[S^{2}\right]=\sigma ^{2},\quad \operatorname {Var} \left[S^{2}\right]={\frac {\sigma ^{4}}{n}}\left(\kappa -1+{\frac {2}{n-1}}\right)={\frac {1}{n}}\left(\mu _{4}-{\frac {n-3}{n-1}}\sigma ^{4}\right),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3df338ff9496ec301869054c8032cc7f01a86f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:71.9ex; height:6.343ex;" alt="{\displaystyle \operatorname {E} \left[S^{2}\right]=\sigma ^{2},\quad \operatorname {Var} \left[S^{2}\right]={\frac {\sigma ^{4}}{n}}\left(\kappa -1+{\frac {2}{n-1}}\right)={\frac {1}{n}}\left(\mu _{4}-{\frac {n-3}{n-1}}\sigma ^{4}\right),}"></span></dd></dl> <p>where <i>κ</i> is the <a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a> of the distribution and <i>μ</i><sub>4</sub> is the fourth <a href="/wiki/Central_moment" title="Central moment">central moment</a>. </p><p>If the conditions of the <a href="/wiki/Law_of_large_numbers" title="Law of large numbers">law of large numbers</a> hold for the squared observations, <i>S</i><sup>2</sup> is a <a href="/wiki/Consistent_estimator" title="Consistent estimator">consistent estimator</a> of <i>σ</i><sup>2</sup>. One can see indeed that the variance of the estimator tends asymptotically to zero. An asymptotically equivalent formula was given in Kenney and Keeping (1951:164), Rose and Smith (2002:264), and Weisstein (n.d.).<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Samuelson's_inequality"><span id="Samuelson.27s_inequality"></span>Samuelson's inequality</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=36" title="Edit section: Samuelson's inequality"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Samuelson%27s_inequality" title="Samuelson's inequality">Samuelson's inequality</a> is a result that states bounds on the values that individual observations in a sample can take, given that the sample mean and (biased) variance have been calculated.<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> Values must lie within the limits <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\bar {y}}\pm \sigma _{Y}(n-1)^{1/2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>y</mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo>±<!-- ± --></mo> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\bar {y}}\pm \sigma _{Y}(n-1)^{1/2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/761b3ac9e0eaf440eef58f9b0b441016fbc5f7e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.508ex; height:3.343ex;" alt="{\displaystyle {\bar {y}}\pm \sigma _{Y}(n-1)^{1/2}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Relations_with_the_harmonic_and_arithmetic_means">Relations with the harmonic and arithmetic means</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=37" title="Edit section: Relations with the harmonic and arithmetic means"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>It has been shown<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> that for a sample {<i>y</i><sub><i>i</i></sub>} of positive real numbers, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{y}^{2}\leq 2y_{\max }(A-H),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>≤<!-- ≤ --></mo> <mn>2</mn> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo>−<!-- − --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{y}^{2}\leq 2y_{\max }(A-H),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9d4df5285a9696f98f49be101a435335dd0217a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.179ex; height:3.176ex;" alt="{\displaystyle \sigma _{y}^{2}\leq 2y_{\max }(A-H),}"></span></dd></dl> <p>where <i>y</i><sub>max</sub> is the maximum of the sample, <i>A</i> is the arithmetic mean, <i>H</i> is the <a href="/wiki/Harmonic_mean" title="Harmonic mean">harmonic mean</a> of the sample and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{y}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{y}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/690d699292b74ee1b030d5720a17595baaea5227" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.385ex; height:3.176ex;" alt="{\displaystyle \sigma _{y}^{2}}"></span> is the (biased) variance of the sample. </p><p>This bound has been improved, and it is known that variance is bounded by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{y}^{2}\leq {\frac {y_{\max }(A-H)(y_{\max }-A)}{y_{\max }-H}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>≤<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo>−<!-- − --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>−<!-- − --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">max</mo> </mrow> </msub> <mo>−<!-- − --></mo> <mi>H</mi> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{y}^{2}\leq {\frac {y_{\max }(A-H)(y_{\max }-A)}{y_{\max }-H}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e0652ca840b7184add200251e57d271663980546" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.676ex; height:6.176ex;" alt="{\displaystyle \sigma _{y}^{2}\leq {\frac {y_{\max }(A-H)(y_{\max }-A)}{y_{\max }-H}},}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{y}^{2}\geq {\frac {y_{\min }(A-H)(A-y_{\min })}{H-y_{\min }}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>≥<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>A</mi> <mo>−<!-- − --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>H</mi> <mo>−<!-- − --></mo> <msub> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mo movablelimits="true" form="prefix">min</mo> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{y}^{2}\geq {\frac {y_{\min }(A-H)(A-y_{\min })}{H-y_{\min }}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce18ba5d5a4867e6a261e021882edc48091f156" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:30.039ex; height:6.176ex;" alt="{\displaystyle \sigma _{y}^{2}\geq {\frac {y_{\min }(A-H)(A-y_{\min })}{H-y_{\min }}},}"></span></dd></dl> <p>where <i>y</i><sub>min</sub> is the minimum of the sample.<sup id="cite_ref-Sharma2008_25-0" class="reference"><a href="#cite_note-Sharma2008-25"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Tests_of_equality_of_variances">Tests of equality of variances</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=38" title="Edit section: Tests of equality of variances"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/F-test_of_equality_of_variances" title="F-test of equality of variances">F-test of equality of variances</a> and the <a href="/wiki/Chi_square_test" class="mw-redirect" title="Chi square test">chi square tests</a> are adequate when the sample is normally distributed. Non-normality makes testing for the equality of two or more variances more difficult. </p><p>Several non parametric tests have been proposed: these include the Barton–David–Ansari–Freund–Siegel–Tukey test, the <a href="/w/index.php?title=Capon_test&action=edit&redlink=1" class="new" title="Capon test (page does not exist)">Capon test</a>, <a href="/wiki/Mood_test" class="mw-redirect" title="Mood test">Mood test</a>, the <a href="/w/index.php?title=Klotz_test&action=edit&redlink=1" class="new" title="Klotz test (page does not exist)">Klotz test</a> and the <a href="/w/index.php?title=Sukhatme_test&action=edit&redlink=1" class="new" title="Sukhatme test (page does not exist)">Sukhatme test</a>. The Sukhatme test applies to two variances and requires that both <a href="/wiki/Median" title="Median">medians</a> be known and equal to zero. The Mood, Klotz, Capon and Barton–David–Ansari–Freund–Siegel–Tukey tests also apply to two variances. They allow the median to be unknown but do require that the two medians are equal. </p><p>The <a href="/w/index.php?title=Lehmann_test&action=edit&redlink=1" class="new" title="Lehmann test (page does not exist)">Lehmann test</a> is a parametric test of two variances. Of this test there are several variants known. Other tests of the equality of variances include the <a href="/w/index.php?title=Box_test&action=edit&redlink=1" class="new" title="Box test (page does not exist)">Box test</a>, the <a href="/w/index.php?title=Box%E2%80%93Anderson_test&action=edit&redlink=1" class="new" title="Box–Anderson test (page does not exist)">Box–Anderson test</a> and the <a href="/w/index.php?title=Moses_test&action=edit&redlink=1" class="new" title="Moses test (page does not exist)">Moses test</a>. </p><p>Resampling methods, which include the <a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">bootstrap</a> and the <a href="/wiki/Resampling_(statistics)" title="Resampling (statistics)">jackknife</a>, may be used to test the equality of variances. </p> <div class="mw-heading mw-heading2"><h2 id="Moment_of_inertia">Moment of inertia</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=39" title="Edit section: Moment of inertia"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Moment_(physics)#Examples" title="Moment (physics)">Moment (physics) § Examples</a></div> <p>The variance of a probability distribution is analogous to the <a href="/wiki/Moment_of_inertia" title="Moment of inertia">moment of inertia</a> in <a href="/wiki/Classical_mechanics" title="Classical mechanics">classical mechanics</a> of a corresponding mass distribution along a line, with respect to rotation about its center of mass.<sup id="cite_ref-pearson_26-0" class="reference"><a href="#cite_note-pearson-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> It is because of this analogy that such things as the variance are called <i><a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">moments</a></i> of <a href="/wiki/Probability_distribution" title="Probability distribution">probability distributions</a>.<sup id="cite_ref-pearson_26-1" class="reference"><a href="#cite_note-pearson-26"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> The covariance matrix is related to the <a href="/wiki/Moment_of_inertia_tensor" class="mw-redirect" title="Moment of inertia tensor">moment of inertia tensor</a> for multivariate distributions. The moment of inertia of a cloud of <i>n</i> points with a covariance matrix of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e1f558f53cda207614abdf90162266c70bc5c1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Sigma }"></span> is given by<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (February 2012)">citation needed</span></a></i>]</sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=n\left(\mathbf {1} _{3\times 3}\operatorname {tr} (\Sigma )-\Sigma \right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>×<!-- × --></mo> <mn>3</mn> </mrow> </msub> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi mathvariant="normal">Σ<!-- Σ --></mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=n\left(\mathbf {1} _{3\times 3}\operatorname {tr} (\Sigma )-\Sigma \right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23aeae0f18eb77eb0b5b539c39036ef804dedd8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.596ex; height:2.843ex;" alt="{\displaystyle I=n\left(\mathbf {1} _{3\times 3}\operatorname {tr} (\Sigma )-\Sigma \right).}"></span></dd></dl> <p>This difference between moment of inertia in physics and in statistics is clear for points that are gathered along a line. Suppose many points are close to the <i>x</i> axis and distributed along it. The covariance matrix might look like </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Sigma ={\begin{bmatrix}10&0&0\\0&0.1&0\\0&0&0.1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">Σ<!-- Σ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>10</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0.1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0.1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Sigma ={\begin{bmatrix}10&0&0\\0&0.1&0\\0&0&0.1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8f9c8a5ac3479228a8d5d1a2fd8abcdd7bfa559" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:22.189ex; height:9.176ex;" alt="{\displaystyle \Sigma ={\begin{bmatrix}10&0&0\\0&0.1&0\\0&0&0.1\end{bmatrix}}.}"></span></dd></dl> <p>That is, there is the most variance in the <i>x</i> direction. Physicists would consider this to have a low moment <i>about</i> the <i>x</i> axis so the moment-of-inertia tensor is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I=n{\begin{bmatrix}0.2&0&0\\0&10.1&0\\0&0&10.1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0.2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>10.1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>10.1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I=n{\begin{bmatrix}0.2&0&0\\0&10.1&0\\0&0&10.1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2bdc76899ff6a6d6e31be2ee16e8f8b2e86626fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:26.049ex; height:9.176ex;" alt="{\displaystyle I=n{\begin{bmatrix}0.2&0&0\\0&10.1&0\\0&0&10.1\end{bmatrix}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Semivariance">Semivariance</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=40" title="Edit section: Semivariance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <i>semivariance</i> is calculated in the same manner as the variance but only those observations that fall below the mean are included in the calculation:<span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\text{Semivariance}}={1 \over {n}}\sum _{i:x_{i}<\mu }(x_{i}-\mu )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtext>Semivariance</mtext> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </mfrac> </mrow> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>:</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo><</mo> <mi>μ<!-- μ --></mi> </mrow> </munder> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\text{Semivariance}}={1 \over {n}}\sum _{i:x_{i}<\mu }(x_{i}-\mu )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e82c53257186179e1aa4e6017b06974392fe4f6" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.187ex; height:6.676ex;" alt="{\displaystyle {\text{Semivariance}}={1 \over {n}}\sum _{i:x_{i}<\mu }(x_{i}-\mu )^{2}}"></span>It is also described as a specific measure in different fields of application. For skewed distributions, the semivariance can provide additional information that a variance does not.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup> </p><p>For inequalities associated with the semivariance, see <a href="/wiki/Chebyshev%27s_inequality#Semivariances" title="Chebyshev's inequality">Chebyshev's inequality § Semivariances</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Etymology">Etymology</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=41" title="Edit section: Etymology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The term <i>variance</i> was first introduced by <a href="/wiki/Ronald_Fisher" title="Ronald Fisher">Ronald Fisher</a> in his 1918 paper <i><a href="/wiki/The_Correlation_Between_Relatives_on_the_Supposition_of_Mendelian_Inheritance" class="mw-redirect" title="The Correlation Between Relatives on the Supposition of Mendelian Inheritance">The Correlation Between Relatives on the Supposition of Mendelian Inheritance</a></i>:<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup> </p> <blockquote><p>The great body of available statistics show us that the deviations of a <a href="/wiki/Biometry" class="mw-redirect" title="Biometry">human measurement</a> from its mean follow very closely the <a href="/wiki/Normal_distribution" title="Normal distribution">Normal Law of Errors</a>, and, therefore, that the variability may be uniformly measured by the <a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a> corresponding to the <a href="/wiki/Square_root" title="Square root">square root</a> of the <a href="/wiki/Mean_square_error" class="mw-redirect" title="Mean square error">mean square error</a>. When there are two independent causes of variability capable of producing in an otherwise uniform population distributions with standard deviations <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa0e56273a1cb32709b442e2421e9f947522b84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.382ex; height:2.009ex;" alt="{\displaystyle \sigma _{1}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d4b9cd9efc54bcfd04e0a2231913c13f10798d9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.382ex; height:2.009ex;" alt="{\displaystyle \sigma _{2}}"></span>, it is found that the distribution, when both causes act together, has a standard deviation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\sigma _{1}^{2}+\sigma _{2}^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>σ<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\sigma _{1}^{2}+\sigma _{2}^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53a6a8619359d82a541d41cb7541cf58d26d06f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:9.934ex; height:4.843ex;" alt="{\displaystyle {\sqrt {\sigma _{1}^{2}+\sigma _{2}^{2}}}}"></span>. It is therefore desirable in analysing the causes of variability to deal with the square of the standard deviation as the measure of variability. We shall term this quantity the Variance...</p></blockquote> <div class="mw-heading mw-heading2"><h2 id="Generalizations">Generalizations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=42" title="Edit section: Generalizations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="For_complex_variables">For complex variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=43" title="Edit section: For complex variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span> is a scalar <a href="/wiki/Complex_number" title="Complex number">complex</a>-valued random variable, with values in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6ff6a3dc2982018ff20f1d2c927afc74a217be6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.325ex; height:2.509ex;" alt="{\displaystyle \mathbb {C} ,}"></span> then its variance is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left[(x-\mu )(x-\mu )^{*}\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>x</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left[(x-\mu )(x-\mu )^{*}\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7cc7933557809745e2928b688000d26478bde22" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.34ex; height:2.843ex;" alt="{\displaystyle \operatorname {E} \left[(x-\mu )(x-\mu )^{*}\right],}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x^{*}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>∗<!-- ∗ --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x^{*}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5be23ee5d433f8b576e63bcb47518128ee0b6bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.384ex; height:2.343ex;" alt="{\displaystyle x^{*}}"></span> is the <a href="/wiki/Complex_conjugate" title="Complex conjugate">complex conjugate</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d07e9f568a88785ae48006ac3c4b951020f1699a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.977ex; height:1.676ex;" alt="{\displaystyle x.}"></span> This variance is a real scalar. </p> <div class="mw-heading mw-heading3"><h3 id="For_vector-valued_random_variables">For vector-valued random variables</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=44" title="Edit section: For vector-valued random variables"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="As_a_matrix">As a matrix</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=45" title="Edit section: As a matrix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a <a href="/wiki/Vector_space" title="Vector space">vector</a>-valued random variable, with values in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {R} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {R} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7035fcb9fe3ebecc6bc9f372f82d0352202c8bf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {R} ^{n},}"></span> and thought of as a column vector, then a natural generalization of variance is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left[(X-\mu )(X-\mu )^{\operatorname {T} }\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left[(X-\mu )(X-\mu )^{\operatorname {T} }\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83bab02d13f2da96c2bbc93990454fa364ffea6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.651ex; height:3.343ex;" alt="{\displaystyle \operatorname {E} \left[(X-\mu )(X-\mu )^{\operatorname {T} }\right],}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mu =\operatorname {E} (X)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>μ<!-- μ --></mi> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mu =\operatorname {E} (X)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b3420d758f17b6d9a2b49e7677f65645b9c0a2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.872ex; height:2.843ex;" alt="{\displaystyle \mu =\operatorname {E} (X)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\operatorname {T} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\operatorname {T} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2408e30ccbab737f85d16ce1474206ed49bd3b8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.416ex; height:2.676ex;" alt="{\displaystyle X^{\operatorname {T} }}"></span> is the transpose of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/09ba32eeb405f7f5f2bac1eb12987c47d2fd42df" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.627ex; height:2.509ex;" alt="{\displaystyle X,}"></span> and so is a row vector. The result is a <a href="/wiki/Positive_definite_matrix" class="mw-redirect" title="Positive definite matrix">positive semi-definite square matrix</a>, commonly referred to as the <a href="/wiki/Variance-covariance_matrix" class="mw-redirect" title="Variance-covariance matrix">variance-covariance matrix</a> (or simply as the <i>covariance matrix</i>). </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> is a vector- and complex-valued random variable, with values in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{n},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{n},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0370e52054a4ddcb753d34ec7eeff4115b90359f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.543ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{n},}"></span> then the <a href="/wiki/Covariance_matrix#Complex_random_vectors" title="Covariance matrix">covariance matrix is</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left[(X-\mu )(X-\mu )^{\dagger }\right],}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> </mrow> <mo>]</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left[(X-\mu )(X-\mu )^{\dagger }\right],}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9b430afe926947268de35955a46b5977edadd6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.194ex; height:3.343ex;" alt="{\displaystyle \operatorname {E} \left[(X-\mu )(X-\mu )^{\dagger }\right],}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b31335fa0abde1543f245fe140e1516948435d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.959ex; height:2.676ex;" alt="{\displaystyle X^{\dagger }}"></span> is the <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba76c5a460c4a0bb1639a193bc1830f0a773e03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.627ex; height:2.176ex;" alt="{\displaystyle X.}"></span><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (September 2016)">citation needed</span></a></i>]</sup> This matrix is also positive semi-definite and square. </p> <div class="mw-heading mw-heading4"><h4 id="As_a_scalar">As a scalar</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=46" title="Edit section: As a scalar"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Another generalization of variance for vector-valued random variables <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span>, which results in a scalar value rather than in a matrix, is the <a href="/wiki/Generalized_variance" title="Generalized variance">generalized variance</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \det(C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \det(C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a93a2ca222df1a71e95b777f743fead3fb07fba6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.805ex; height:2.843ex;" alt="{\displaystyle \det(C)}"></span>, the <a href="/wiki/Determinant" title="Determinant">determinant</a> of the covariance matrix. The generalized variance can be shown to be related to the multidimensional scatter of points around their mean.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p><p>A different generalization is obtained by considering the equation for the scalar variance, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[(X-\mu )^{2}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Var</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[(X-\mu )^{2}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06e01a0d2205e0db3118b14c3f6f06cfc5addc52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.313ex; height:3.343ex;" alt="{\displaystyle \operatorname {Var} (X)=\operatorname {E} \left[(X-\mu )^{2}\right]}"></span>, and reinterpreting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X-\mu )^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X-\mu )^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd537fb7e2bf23e58aa29204958c13efbb1ced12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.086ex; height:3.176ex;" alt="{\displaystyle (X-\mu )^{2}}"></span> as the squared <a href="/wiki/Euclidean_distance" title="Euclidean distance">Euclidean distance</a> between the random variable and its mean, or, simply as the scalar product of the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X-\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X-\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134206ca398b6f084bea88bd05fc9809a81f64e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.222ex; height:2.676ex;" alt="{\displaystyle X-\mu }"></span> with itself. This results in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {E} \left[(X-\mu )^{\operatorname {T} }(X-\mu )\right]=\operatorname {tr} (C),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">E</mi> <mo>⁡<!-- --></mo> <mrow> <mo>[</mo> <mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>X</mi> <mo>−<!-- − --></mo> <mi>μ<!-- μ --></mi> <mo stretchy="false">)</mo> </mrow> <mo>]</mo> </mrow> <mo>=</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {E} \left[(X-\mu )^{\operatorname {T} }(X-\mu )\right]=\operatorname {tr} (C),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/483e02bc316e8ecfeac1c71f1b2464b4ece2f45c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:30.141ex; height:3.343ex;" alt="{\displaystyle \operatorname {E} \left[(X-\mu )^{\operatorname {T} }(X-\mu )\right]=\operatorname {tr} (C),}"></span> which is the <a href="/wiki/Trace_(linear_algebra)" title="Trace (linear algebra)">trace</a> of the covariance matrix. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=47" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239009302">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/40px-Wiktionary-logo-en-v2.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/60px-Wiktionary-logo-en-v2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/99/Wiktionary-logo-en-v2.svg/80px-Wiktionary-logo-en-v2.svg.png 2x" data-file-width="512" data-file-height="512" /></span></span></div> <div class="side-box-text plainlist">Look up <i><b><a href="https://en.wiktionary.org/wiki/variance" class="extiw" title="wiktionary:variance">variance</a></b></i> in Wiktionary, the free dictionary.</div></div> </div> <ul><li><a href="/wiki/Bhatia%E2%80%93Davis_inequality" title="Bhatia–Davis inequality">Bhatia–Davis inequality</a></li> <li><a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a></li> <li><a href="/wiki/Homoscedasticity" class="mw-redirect" title="Homoscedasticity">Homoscedasticity</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a> for computing a <a href="/wiki/Frequency_spectrum" class="mw-redirect" title="Frequency spectrum">frequency spectrum</a> with spectral magnitudes in % of variance or in <a href="/wiki/Decibel" title="Decibel">dB</a></li> <li><a href="/wiki/Modern_portfolio_theory" title="Modern portfolio theory">Modern portfolio theory</a></li> <li><a href="/wiki/Popoviciu%27s_inequality_on_variances" title="Popoviciu's inequality on variances">Popoviciu's inequality on variances</a></li> <li><a href="/wiki/Statistical_dispersion" title="Statistical dispersion">Measures for statistical dispersion</a></li> <li><a href="/wiki/Variance-stabilizing_transformation" title="Variance-stabilizing transformation">Variance-stabilizing transformation</a></li></ul> <div class="mw-heading mw-heading3"><h3 id="Types_of_variance">Types of variance</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=48" title="Edit section: Types of variance"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Correlation" title="Correlation">Correlation</a></li> <li><a href="/wiki/Distance_variance" class="mw-redirect" title="Distance variance">Distance variance</a></li> <li><a href="/wiki/Explained_variance" class="mw-redirect" title="Explained variance">Explained variance</a></li> <li><a href="/wiki/Pooled_variance" title="Pooled variance">Pooled variance</a></li> <li><a href="/wiki/Pseudo-variance" class="mw-redirect" title="Pseudo-variance">Pseudo-variance</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Variance&action=edit&section=49" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFWasserman2005" class="citation book cs1">Wasserman, Larry (2005). <i>All of Statistics: a concise course in statistical inference</i>. Springer texts in statistics. p. 51. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-1-4419-2322-6" title="Special:BookSources/978-1-4419-2322-6"><bdi>978-1-4419-2322-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=All+of+Statistics%3A+a+concise+course+in+statistical+inference&rft.pages=51&rft.pub=Springer+texts+in+statistics&rft.date=2005&rft.isbn=978-1-4419-2322-6&rft.aulast=Wasserman&rft.aufirst=Larry&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuli_ZhangHuaiyu_WuLei_Cheng2012" class="citation conference cs1">Yuli Zhang; Huaiyu Wu; Lei Cheng (June 2012). <i>Some new deformation formulas about variance and covariance</i>. Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012). pp. 987–992.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Some+new+deformation+formulas+about+variance+and+covariance&rft.pages=987-992&rft.date=2012-06&rft.au=Yuli+Zhang&rft.au=Huaiyu+Wu&rft.au=Lei+Cheng&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaganShepp1998" class="citation journal cs1">Kagan, A.; Shepp, L. A. (1998). "Why the variance?". <i>Statistics & Probability Letters</i>. <b>38</b> (4): 329–333. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0167-7152%2898%2900041-8">10.1016/S0167-7152(98)00041-8</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Statistics+%26+Probability+Letters&rft.atitle=Why+the+variance%3F&rft.volume=38&rft.issue=4&rft.pages=329-333&rft.date=1998&rft_id=info%3Adoi%2F10.1016%2FS0167-7152%2898%2900041-8&rft.aulast=Kagan&rft.aufirst=A.&rft.au=Shepp%2C+L.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJohnsonWichern2001" class="citation book cs1">Johnson, Richard; Wichern, Dean (2001). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/appliedmultivari00john_130"><i>Applied Multivariate Statistical Analysis</i></a></span>. Prentice Hall. p. <a rel="nofollow" class="external text" href="https://archive.org/details/appliedmultivari00john_130/page/n96">76</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-13-187715-1" title="Special:BookSources/0-13-187715-1"><bdi>0-13-187715-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applied+Multivariate+Statistical+Analysis&rft.pages=76&rft.pub=Prentice+Hall&rft.date=2001&rft.isbn=0-13-187715-1&rft.aulast=Johnson&rft.aufirst=Richard&rft.au=Wichern%2C+Dean&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fappliedmultivari00john_130&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><a href="/wiki/Michel_Lo%C3%A8ve" title="Michel Loève">Loève, M.</a> (1977) "Probability Theory", <i>Graduate Texts in Mathematics</i>, Volume 45, 4th edition, Springer-Verlag, p. 12.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="/wiki/Ir%C3%A9n%C3%A9e-Jules_Bienaym%C3%A9" title="Irénée-Jules Bienaymé">Bienaymé, I.-J.</a> (1853) "Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés", <i>Comptes rendus de l'Académie des sciences Paris</i>, 37, p. 309–317; digital copy available <a rel="nofollow" class="external autonumber" href="http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-2994&I=313">[1]</a></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="/wiki/Ir%C3%A9n%C3%A9e-Jules_Bienaym%C3%A9" title="Irénée-Jules Bienaymé">Bienaymé, I.-J.</a> (1867) "Considérations à l'appui de la découverte de Laplace sur la loi de probabilité dans la méthode des moindres carrés", <i>Journal de Mathématiques Pures et Appliquées, Série 2</i>, Tome 12, p. 158–167; digital copy available <a rel="nofollow" class="external autonumber" href="http://gallica.bnf.fr/ark:/12148/bpt6k16411c/f166.image.n19">[2]</a><a rel="nofollow" class="external autonumber" href="http://sites.mathdoc.fr/JMPA/PDF/JMPA_1867_2_12_A10_0.pdf">[3]</a></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Cornell, J R, and Benjamin, C A, <i>Probability, Statistics, and Decisions for Civil Engineers,</i> McGraw-Hill, NY, 1970, pp.178-9.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoodman1960" class="citation journal cs1"><a href="/wiki/Leo_Goodman" title="Leo Goodman">Goodman, Leo A.</a> (December 1960). "On the Exact Variance of Products". <i>Journal of the American Statistical Association</i>. <b>55</b> (292): 708–713. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2281592">10.2307/2281592</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2281592">2281592</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=On+the+Exact+Variance+of+Products&rft.volume=55&rft.issue=292&rft.pages=708-713&rft.date=1960-12&rft_id=info%3Adoi%2F10.2307%2F2281592&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2281592%23id-name%3DJSTOR&rft.aulast=Goodman&rft.aufirst=Leo+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-bessel-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-bessel_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bessel_10-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReichmann1961" class="citation book cs1">Reichmann, W. J. (1961). "Appendix 8". <i>Use and Abuse of Statistics</i> (Reprinted 1964–1970 by Pelican ed.). London: Methuen.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Appendix+8&rft.btitle=Use+and+Abuse+of+Statistics&rft.place=London&rft.edition=Reprinted+1964%E2%80%931970+by+Pelican&rft.pub=Methuen&rft.date=1961&rft.aulast=Reichmann&rft.aufirst=W.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-Kourouklis-11"><span class="mw-cite-backlink">^ <a href="#cite_ref-Kourouklis_11-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Kourouklis_11-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKourouklis2012" class="citation journal cs1">Kourouklis, Stavros (2012). <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/23339501">"A New Estimator of the Variance Based on Minimizing Mean Squared Error"</a>. <i>The American Statistician</i>. <b>66</b> (4): 234–236. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0003-1305">0003-1305</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Statistician&rft.atitle=A+New+Estimator+of+the+Variance+Based+on+Minimizing+Mean+Squared+Error&rft.volume=66&rft.issue=4&rft.pages=234-236&rft.date=2012&rft.issn=0003-1305&rft.aulast=Kourouklis&rft.aufirst=Stavros&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F23339501&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBrugger1969" class="citation journal cs1">Brugger, R. M. (1969). "A Note on Unbiased Estimation of the Standard Deviation". <i>The American Statistician</i>. <b>23</b> (4): 32–32. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00031305.1969.1048186">10.1080/00031305.1969.1048186</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+American+Statistician&rft.atitle=A+Note+on+Unbiased+Estimation+of+the+Standard+Deviation&rft.volume=23&rft.issue=4&rft.pages=32-32&rft.date=1969&rft_id=info%3Adoi%2F10.1080%2F00031305.1969.1048186&rft.aulast=Brugger&rft.aufirst=R.+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuli_ZhangHuaiyu_WuLei_Cheng2012" class="citation conference cs1">Yuli Zhang; Huaiyu Wu; Lei Cheng (June 2012). <i>Some new deformation formulas about variance and covariance</i>. Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012). pp. 987–992.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Some+new+deformation+formulas+about+variance+and+covariance&rft.pages=987-992&rft.date=2012-06&rft.au=Yuli+Zhang&rft.au=Huaiyu+Wu&rft.au=Lei+Cheng&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text">Navidi, William (2006) <i>Statistics for Engineers and Scientists</i>, McGraw-Hill, p. 14.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">Montgomery, D. C. and Runger, G. C. (1994) <i>Applied statistics and probability for engineers</i>, page 201. John Wiley & Sons New York</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYuli_ZhangHuaiyu_WuLei_Cheng2012" class="citation conference cs1">Yuli Zhang; Huaiyu Wu; Lei Cheng (June 2012). <i>Some new deformation formulas about variance and covariance</i>. Proceedings of 4th International Conference on Modelling, Identification and Control(ICMIC2012). pp. 987–992.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=conference&rft.btitle=Some+new+deformation+formulas+about+variance+and+covariance&rft.pages=987-992&rft.date=2012-06&rft.au=Yuli+Zhang&rft.au=Huaiyu+Wu&rft.au=Lei+Cheng&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Knight K. (2000), <i>Mathematical Statistics</i>, Chapman and Hall, New York. (proposition 2.11)</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Casella and Berger (2002) <i>Statistical Inference</i>, Example 7.3.3, p. 331 <sup class="noprint Inline-Template" style="white-space:nowrap;">[<i><a href="/wiki/Wikipedia:Citing_sources#What_information_to_include" title="Wikipedia:Citing sources"><span title="A complete citation is needed. (March 2013)">full citation needed</span></a></i>]</sup></span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">Mood, A. M., Graybill, F. A., and Boes, D.C. (1974) <i>Introduction to the Theory of Statistics</i>, 3rd Edition, McGraw-Hill, New York, p. 229</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKenneyKeeping1951" class="citation book cs1">Kenney, John F.; Keeping, E.S. (1951). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20181117022434/http://krishikosh.egranth.ac.in/bitstream/1/2025521/1/G2257.pdf"><i>Mathematics of Statistics. Part Two</i></a> <span class="cs1-format">(PDF)</span> (2nd ed.). Princeton, New Jersey: D. Van Nostrand Company, Inc. Archived from <a rel="nofollow" class="external text" href="http://krishikosh.egranth.ac.in/bitstream/1/2025521/1/G2257.pdf">the original</a> <span class="cs1-format">(PDF)</span> on Nov 17, 2018 – via KrishiKosh.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematics+of+Statistics.+Part+Two.&rft.place=Princeton%2C+New+Jersey&rft.edition=2nd&rft.pub=D.+Van+Nostrand+Company%2C+Inc.&rft.date=1951&rft.aulast=Kenney&rft.aufirst=John+F.&rft.au=Keeping%2C+E.S.&rft_id=http%3A%2F%2Fkrishikosh.egranth.ac.in%2Fbitstream%2F1%2F2025521%2F1%2FG2257.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text">Rose, Colin; Smith, Murray D. (2002). "<a rel="nofollow" class="external text" href="http://www.mathstatica.com/book/Mathematical_Statistics_with_Mathematica.pdf">Mathematical Statistics with Mathematica</a>". Springer-Verlag, New York.</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Weisstein, Eric W. "<a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/SampleVarianceDistribution.html">Sample Variance Distribution</a>". MathWorld Wolfram.</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSamuelson1968" class="citation journal cs1">Samuelson, Paul (1968). "How Deviant Can You Be?". <i><a href="/wiki/Journal_of_the_American_Statistical_Association" title="Journal of the American Statistical Association">Journal of the American Statistical Association</a></i>. <b>63</b> (324): 1522–1525. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F01621459.1968.10480944">10.1080/01621459.1968.10480944</a>. <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2285901">2285901</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.atitle=How+Deviant+Can+You+Be%3F&rft.volume=63&rft.issue=324&rft.pages=1522-1525&rft.date=1968&rft_id=info%3Adoi%2F10.1080%2F01621459.1968.10480944&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2285901%23id-name%3DJSTOR&rft.aulast=Samuelson&rft.aufirst=Paul&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMercer2000" class="citation journal cs1">Mercer, A. McD. (2000). <a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjmaa.1999.6688">"Bounds for A–G, A–H, G–H, and a family of inequalities of Ky Fan's type, using a general method"</a>. <i>J. Math. Anal. Appl</i>. <b>243</b> (1): 163–173. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjmaa.1999.6688">10.1006/jmaa.1999.6688</a></span>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Math.+Anal.+Appl.&rft.atitle=Bounds+for+A%E2%80%93G%2C+A%E2%80%93H%2C+G%E2%80%93H%2C+and+a+family+of+inequalities+of+Ky+Fan%27s+type%2C+using+a+general+method&rft.volume=243&rft.issue=1&rft.pages=163-173&rft.date=2000&rft_id=info%3Adoi%2F10.1006%2Fjmaa.1999.6688&rft.aulast=Mercer&rft.aufirst=A.+McD.&rft_id=https%3A%2F%2Fdoi.org%2F10.1006%252Fjmaa.1999.6688&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-Sharma2008-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-Sharma2008_25-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSharma2008" class="citation journal cs1">Sharma, R. (2008). "Some more inequalities for arithmetic mean, harmonic mean and variance". <i>Journal of Mathematical Inequalities</i>. <b>2</b> (1): 109–114. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a> <span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.551.9397">10.1.1.551.9397</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.7153%2Fjmi-02-11">10.7153/jmi-02-11</a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Mathematical+Inequalities&rft.atitle=Some+more+inequalities+for+arithmetic+mean%2C+harmonic+mean+and+variance&rft.volume=2&rft.issue=1&rft.pages=109-114&rft.date=2008&rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.551.9397%23id-name%3DCiteSeerX&rft_id=info%3Adoi%2F10.7153%2Fjmi-02-11&rft.aulast=Sharma&rft.aufirst=R.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-pearson-26"><span class="mw-cite-backlink">^ <a href="#cite_ref-pearson_26-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-pearson_26-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMagnello" class="citation web cs1">Magnello, M. Eileen. <a rel="nofollow" class="external text" href="https://rutherfordjournal.org/article010107.html">"Karl Pearson and the Origins of Modern Statistics: An Elastician becomes a Statistician"</a>. <i>The Rutherford Journal</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=The+Rutherford+Journal&rft.atitle=Karl+Pearson+and+the+Origins+of+Modern+Statistics%3A+An+Elastician+becomes+a+Statistician&rft.aulast=Magnello&rft.aufirst=M.+Eileen&rft_id=https%3A%2F%2Frutherfordjournal.org%2Farticle010107.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFamaFrench2010" class="citation web cs1">Fama, Eugene F.; French, Kenneth R. (2010-04-21). <a rel="nofollow" class="external text" href="https://famafrench.dimensional.com/questions-answers/qa-semi-variance-a-better-risk-measure.aspx">"Q&A: Semi-Variance: A Better Risk Measure?"</a>. <i>Fama/French Forum</i>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=Fama%2FFrench+Forum&rft.atitle=Q%26A%3A+Semi-Variance%3A+A+Better+Risk+Measure%3F&rft.date=2010-04-21&rft.aulast=Fama&rft.aufirst=Eugene+F.&rft.au=French%2C+Kenneth+R.&rft_id=https%3A%2F%2Ffamafrench.dimensional.com%2Fquestions-answers%2Fqa-semi-variance-a-better-risk-measure.aspx&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="/wiki/Ronald_Fisher" title="Ronald Fisher">Ronald Fisher</a> (1918) <a rel="nofollow" class="external text" href="http://digital.library.adelaide.edu.au/dspace/bitstream/2440/15097/1/9.pdf">The correlation between relatives on the supposition of Mendelian Inheritance</a></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKocherlakotaKocherlakota2004" class="citation book cs1">Kocherlakota, S.; Kocherlakota, K. (2004). "Generalized Variance". <i>Encyclopedia of Statistical Sciences</i>. Wiley Online Library. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2F0471667196.ess0869">10.1002/0471667196.ess0869</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-471-66719-6" title="Special:BookSources/0-471-66719-6"><bdi>0-471-66719-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Generalized+Variance&rft.btitle=Encyclopedia+of+Statistical+Sciences&rft.pub=Wiley+Online+Library&rft.date=2004&rft_id=info%3Adoi%2F10.1002%2F0471667196.ess0869&rft.isbn=0-471-66719-6&rft.aulast=Kocherlakota&rft.aufirst=S.&rft.au=Kocherlakota%2C+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3AVariance" class="Z3988"></span></span> </li> </ol></div></div> <div style="clear:both;" class=""></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Theory_of_probability_distributions" style="padding:3px"><table class="nowraplinks mw-collapsible uncollapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Theory_of_probability_distributions" title="Template:Theory of probability distributions"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Theory_of_probability_distributions" title="Template talk:Theory of probability distributions"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Theory_of_probability_distributions" title="Special:EditPage/Template:Theory of probability distributions"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Theory_of_probability_distributions" style="font-size:114%;margin:0 4em">Theory of <a href="/wiki/Probability_distribution" title="Probability distribution">probability distributions</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Probability_mass_function" title="Probability mass function">probability mass function</a> (pmf)</li> <li><a href="/wiki/Probability_density_function" title="Probability density function">probability density function</a> (pdf)</li> <li><a href="/wiki/Cumulative_distribution_function" title="Cumulative distribution function">cumulative distribution function</a> (cdf)</li> <li><a href="/wiki/Quantile_function" title="Quantile function">quantile function</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="3" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Loglogisticpdf_no-labels.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Loglogisticpdf_no-labels.svg/90px-Loglogisticpdf_no-labels.svg.png" decoding="async" width="90" height="68" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Loglogisticpdf_no-labels.svg/135px-Loglogisticpdf_no-labels.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Loglogisticpdf_no-labels.svg/180px-Loglogisticpdf_no-labels.svg.png 2x" data-file-width="1300" data-file-height="975" /></a></span></div></td></tr><tr><td colspan="2" class="navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Raw_moment" class="mw-redirect" title="Raw moment">raw moment</a></li> <li><a href="/wiki/Central_moment" title="Central moment">central moment</a></li> <li><a href="/wiki/Expected_value" title="Expected value">mean</a></li> <li><a class="mw-selflink selflink">variance</a></li> <li><a href="/wiki/Standard_deviation" title="Standard deviation">standard deviation</a></li> <li><a href="/wiki/Skewness" title="Skewness">skewness</a></li> <li><a href="/wiki/Kurtosis" title="Kurtosis">kurtosis</a></li> <li><a href="/wiki/L-moment" title="L-moment">L-moment</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Moment-generating_function" title="Moment-generating function">moment-generating function</a> (mgf)</li> <li><a href="/wiki/Characteristic_function_(probability_theory)" title="Characteristic function (probability theory)">characteristic function</a></li> <li><a href="/wiki/Probability-generating_function" title="Probability-generating function">probability-generating function</a> (pgf)</li> <li><a href="/wiki/Cumulant" title="Cumulant">cumulant</a></li> <li><a href="/wiki/Combinant" title="Combinant">combinant</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Statistics" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Statistics" title="Template:Statistics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Statistics" title="Template talk:Statistics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Statistics" title="Special:EditPage/Template:Statistics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Statistics" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistics" title="Statistics">Statistics</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><a href="/wiki/Outline_of_statistics" title="Outline of statistics">Outline</a></li> <li><a href="/wiki/List_of_statistics_articles" title="List of statistics articles">Index</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible uncollapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Descriptive_statistics" style="font-size:114%;margin:0 4em"><a href="/wiki/Descriptive_statistics" title="Descriptive statistics">Descriptive statistics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Continuous_probability_distribution" class="mw-redirect" title="Continuous probability distribution">Continuous data</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Central_tendency" title="Central tendency">Center</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Mean" title="Mean">Mean</a> <ul><li><a href="/wiki/Arithmetic_mean" title="Arithmetic mean">Arithmetic</a></li> <li><a href="/wiki/Arithmetic%E2%80%93geometric_mean" title="Arithmetic–geometric mean">Arithmetic-Geometric</a></li> <li><a href="/wiki/Contraharmonic_mean" title="Contraharmonic mean">Contraharmonic</a></li> <li><a href="/wiki/Cubic_mean" title="Cubic mean">Cubic</a></li> <li><a href="/wiki/Generalized_mean" title="Generalized mean">Generalized/power</a></li> <li><a href="/wiki/Geometric_mean" title="Geometric mean">Geometric</a></li> <li><a href="/wiki/Harmonic_mean" title="Harmonic mean">Harmonic</a></li> <li><a href="/wiki/Heronian_mean" title="Heronian mean">Heronian</a></li> <li><a href="/wiki/Heinz_mean" title="Heinz mean">Heinz</a></li> <li><a href="/wiki/Lehmer_mean" title="Lehmer mean">Lehmer</a></li></ul></li> <li><a href="/wiki/Median" title="Median">Median</a></li> <li><a href="/wiki/Mode_(statistics)" title="Mode (statistics)">Mode</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_dispersion" title="Statistical dispersion">Dispersion</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Average_absolute_deviation" title="Average absolute deviation">Average absolute deviation</a></li> <li><a href="/wiki/Coefficient_of_variation" title="Coefficient of variation">Coefficient of variation</a></li> <li><a href="/wiki/Interquartile_range" title="Interquartile range">Interquartile range</a></li> <li><a href="/wiki/Percentile" title="Percentile">Percentile</a></li> <li><a href="/wiki/Range_(statistics)" title="Range (statistics)">Range</a></li> <li><a href="/wiki/Standard_deviation" title="Standard deviation">Standard deviation</a></li> <li><a class="mw-selflink-fragment" href="#Sample_variance">Variance</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Shape_of_the_distribution" class="mw-redirect" title="Shape of the distribution">Shape</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Central_limit_theorem" title="Central limit theorem">Central limit theorem</a></li> <li><a href="/wiki/Moment_(mathematics)" title="Moment (mathematics)">Moments</a> <ul><li><a href="/wiki/Kurtosis" title="Kurtosis">Kurtosis</a></li> <li><a href="/wiki/L-moment" title="L-moment">L-moments</a></li> <li><a href="/wiki/Skewness" title="Skewness">Skewness</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Count_data" title="Count data">Count data</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Index_of_dispersion" title="Index of dispersion">Index of dispersion</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Summary tables</th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Frequency_distribution" class="mw-redirect" title="Frequency distribution">Frequency distribution</a></li> <li><a href="/wiki/Grouped_data" title="Grouped data">Grouped data</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Dependence</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Pearson_correlation_coefficient" title="Pearson correlation coefficient">Pearson product-moment correlation</a></li> <li><a href="/wiki/Rank_correlation" title="Rank correlation">Rank correlation</a> <ul><li><a href="/wiki/Kendall_rank_correlation_coefficient" title="Kendall rank correlation coefficient">Kendall's τ</a></li> <li><a href="/wiki/Spearman%27s_rank_correlation_coefficient" title="Spearman's rank correlation coefficient">Spearman's ρ</a></li></ul></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_graphics" title="Statistical graphics">Graphics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bar_chart" title="Bar chart">Bar chart</a></li> <li><a href="/wiki/Biplot" title="Biplot">Biplot</a></li> <li><a href="/wiki/Box_plot" title="Box plot">Box plot</a></li> <li><a href="/wiki/Control_chart" title="Control chart">Control chart</a></li> <li><a href="/wiki/Correlogram" title="Correlogram">Correlogram</a></li> <li><a href="/wiki/Fan_chart_(statistics)" title="Fan chart (statistics)">Fan chart</a></li> <li><a href="/wiki/Forest_plot" title="Forest plot">Forest plot</a></li> <li><a href="/wiki/Histogram" title="Histogram">Histogram</a></li> <li><a href="/wiki/Pie_chart" title="Pie chart">Pie chart</a></li> <li><a href="/wiki/Q%E2%80%93Q_plot" title="Q–Q plot">Q–Q plot</a></li> <li><a href="/wiki/Radar_chart" title="Radar chart">Radar chart</a></li> <li><a href="/wiki/Run_chart" title="Run chart">Run chart</a></li> <li><a href="/wiki/Scatter_plot" title="Scatter plot">Scatter plot</a></li> <li><a href="/wiki/Stem-and-leaf_display" title="Stem-and-leaf display">Stem-and-leaf display</a></li> <li><a href="/wiki/Violin_plot" title="Violin plot">Violin plot</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Data_collection" style="font-size:114%;margin:0 4em"><a href="/wiki/Data_collection" title="Data collection">Data collection</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Design_of_experiments" title="Design of experiments">Study design</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Effect_size" title="Effect size">Effect size</a></li> <li><a href="/wiki/Missing_data" title="Missing data">Missing data</a></li> <li><a href="/wiki/Optimal_design" class="mw-redirect" title="Optimal design">Optimal design</a></li> <li><a href="/wiki/Statistical_population" title="Statistical population">Population</a></li> <li><a href="/wiki/Replication_(statistics)" title="Replication (statistics)">Replication</a></li> <li><a href="/wiki/Sample_size_determination" title="Sample size determination">Sample size determination</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Statistical_power" class="mw-redirect" title="Statistical power">Statistical power</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survey_methodology" title="Survey methodology">Survey methodology</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sampling_(statistics)" title="Sampling (statistics)">Sampling</a> <ul><li><a href="/wiki/Cluster_sampling" title="Cluster sampling">Cluster</a></li> <li><a href="/wiki/Stratified_sampling" title="Stratified sampling">Stratified</a></li></ul></li> <li><a href="/wiki/Opinion_poll" title="Opinion poll">Opinion poll</a></li> <li><a href="/wiki/Questionnaire" title="Questionnaire">Questionnaire</a></li> <li><a href="/wiki/Standard_error" title="Standard error">Standard error</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Experiment" title="Experiment">Controlled experiments</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blocking_(statistics)" title="Blocking (statistics)">Blocking</a></li> <li><a href="/wiki/Factorial_experiment" title="Factorial experiment">Factorial experiment</a></li> <li><a href="/wiki/Interaction_(statistics)" title="Interaction (statistics)">Interaction</a></li> <li><a href="/wiki/Random_assignment" title="Random assignment">Random assignment</a></li> <li><a href="/wiki/Randomized_controlled_trial" title="Randomized controlled trial">Randomized controlled trial</a></li> <li><a href="/wiki/Randomized_experiment" title="Randomized experiment">Randomized experiment</a></li> <li><a href="/wiki/Scientific_control" title="Scientific control">Scientific control</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Adaptive designs</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adaptive_clinical_trial" class="mw-redirect" title="Adaptive clinical trial">Adaptive clinical trial</a></li> <li><a href="/wiki/Stochastic_approximation" title="Stochastic approximation">Stochastic approximation</a></li> <li><a href="/wiki/Up-and-Down_Designs" class="mw-redirect" title="Up-and-Down Designs">Up-and-down designs</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Observational_study" title="Observational study">Observational studies</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohort_study" title="Cohort study">Cohort study</a></li> <li><a href="/wiki/Cross-sectional_study" title="Cross-sectional study">Cross-sectional study</a></li> <li><a href="/wiki/Natural_experiment" title="Natural experiment">Natural experiment</a></li> <li><a href="/wiki/Quasi-experiment" title="Quasi-experiment">Quasi-experiment</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Statistical_inference" style="font-size:114%;margin:0 4em"><a href="/wiki/Statistical_inference" title="Statistical inference">Statistical inference</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Statistical_theory" title="Statistical theory">Statistical theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Population_(statistics)" class="mw-redirect" title="Population (statistics)">Population</a></li> <li><a href="/wiki/Statistic" title="Statistic">Statistic</a></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a></li> <li><a href="/wiki/Sampling_distribution" title="Sampling distribution">Sampling distribution</a> <ul><li><a href="/wiki/Order_statistic" title="Order statistic">Order statistic</a></li></ul></li> <li><a href="/wiki/Empirical_distribution_function" title="Empirical distribution function">Empirical distribution</a> <ul><li><a href="/wiki/Density_estimation" title="Density estimation">Density estimation</a></li></ul></li> <li><a href="/wiki/Statistical_model" title="Statistical model">Statistical model</a> <ul><li><a href="/wiki/Model_specification" class="mw-redirect" title="Model specification">Model specification</a></li> <li><a href="/wiki/Lp_space" title="Lp space">L<sup><i>p</i></sup> space</a></li></ul></li> <li><a href="/wiki/Statistical_parameter" title="Statistical parameter">Parameter</a> <ul><li><a href="/wiki/Location_parameter" title="Location parameter">location</a></li> <li><a href="/wiki/Scale_parameter" title="Scale parameter">scale</a></li> <li><a href="/wiki/Shape_parameter" title="Shape parameter">shape</a></li></ul></li> <li><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric family</a> <ul><li><a href="/wiki/Likelihood_function" title="Likelihood function">Likelihood</a> <a href="/wiki/Monotone_likelihood_ratio" title="Monotone likelihood ratio"><span style="font-size:85%;">(monotone)</span></a></li> <li><a href="/wiki/Location%E2%80%93scale_family" title="Location–scale family">Location–scale family</a></li> <li><a href="/wiki/Exponential_family" title="Exponential family">Exponential family</a></li></ul></li> <li><a href="/wiki/Completeness_(statistics)" title="Completeness (statistics)">Completeness</a></li> <li><a href="/wiki/Sufficient_statistic" title="Sufficient statistic">Sufficiency</a></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Statistical functional</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/U-statistic" title="U-statistic">U</a></li> <li><a href="/wiki/V-statistic" title="V-statistic">V</a></li></ul></li> <li><a href="/wiki/Optimal_decision" title="Optimal decision">Optimal decision</a> <ul><li><a href="/wiki/Loss_function" title="Loss function">loss function</a></li></ul></li> <li><a href="/wiki/Efficiency_(statistics)" title="Efficiency (statistics)">Efficiency</a></li> <li><a href="/wiki/Statistical_distance" title="Statistical distance">Statistical distance</a> <ul><li><a href="/wiki/Divergence_(statistics)" title="Divergence (statistics)">divergence</a></li></ul></li> <li><a href="/wiki/Asymptotic_theory_(statistics)" title="Asymptotic theory (statistics)">Asymptotics</a></li> <li><a href="/wiki/Robust_statistics" title="Robust statistics">Robustness</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Frequentist_inference" title="Frequentist inference">Frequentist inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Point_estimation" title="Point estimation">Point estimation</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Estimating_equations" title="Estimating equations">Estimating equations</a> <ul><li><a href="/wiki/Maximum_likelihood" class="mw-redirect" title="Maximum likelihood">Maximum likelihood</a></li> <li><a href="/wiki/Method_of_moments_(statistics)" title="Method of moments (statistics)">Method of moments</a></li> <li><a href="/wiki/M-estimator" title="M-estimator">M-estimator</a></li> <li><a href="/wiki/Minimum_distance_estimation" class="mw-redirect" title="Minimum distance estimation">Minimum distance</a></li></ul></li> <li><a href="/wiki/Bias_of_an_estimator" title="Bias of an estimator">Unbiased estimators</a> <ul><li><a href="/wiki/Minimum-variance_unbiased_estimator" title="Minimum-variance unbiased estimator">Mean-unbiased minimum-variance</a> <ul><li><a href="/wiki/Rao%E2%80%93Blackwell_theorem" title="Rao–Blackwell theorem">Rao–Blackwellization</a></li> <li><a href="/wiki/Lehmann%E2%80%93Scheff%C3%A9_theorem" title="Lehmann–Scheffé theorem">Lehmann–Scheffé theorem</a></li></ul></li> <li><a href="/wiki/Median-unbiased_estimator" class="mw-redirect" title="Median-unbiased estimator">Median unbiased</a></li></ul></li> <li><a href="/wiki/Plug-in_principle" class="mw-redirect" title="Plug-in principle">Plug-in</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Interval_estimation" title="Interval estimation">Interval estimation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Confidence_interval" title="Confidence interval">Confidence interval</a></li> <li><a href="/wiki/Pivotal_quantity" title="Pivotal quantity">Pivot</a></li> <li><a href="/wiki/Likelihood_interval" class="mw-redirect" title="Likelihood interval">Likelihood interval</a></li> <li><a href="/wiki/Prediction_interval" title="Prediction interval">Prediction interval</a></li> <li><a href="/wiki/Tolerance_interval" title="Tolerance interval">Tolerance interval</a></li> <li><a href="/wiki/Resampling_(statistics)" title="Resampling (statistics)">Resampling</a> <ul><li><a href="/wiki/Bootstrapping_(statistics)" title="Bootstrapping (statistics)">Bootstrap</a></li> <li><a href="/wiki/Jackknife_resampling" title="Jackknife resampling">Jackknife</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Statistical_hypothesis_testing" class="mw-redirect" title="Statistical hypothesis testing">Testing hypotheses</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/One-_and_two-tailed_tests" title="One- and two-tailed tests">1- & 2-tails</a></li> <li><a href="/wiki/Power_(statistics)" title="Power (statistics)">Power</a> <ul><li><a href="/wiki/Uniformly_most_powerful_test" title="Uniformly most powerful test">Uniformly most powerful test</a></li></ul></li> <li><a href="/wiki/Permutation_test" title="Permutation test">Permutation test</a> <ul><li><a href="/wiki/Randomization_test" class="mw-redirect" title="Randomization test">Randomization test</a></li></ul></li> <li><a href="/wiki/Multiple_comparisons" class="mw-redirect" title="Multiple comparisons">Multiple comparisons</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Parametric_statistics" title="Parametric statistics">Parametric tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio</a></li> <li><a href="/wiki/Score_test" title="Score test">Score/Lagrange multiplier</a></li> <li><a href="/wiki/Wald_test" title="Wald test">Wald</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/List_of_statistical_tests" title="List of statistical tests">Specific tests</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Z-test" title="Z-test"><i>Z</i>-test <span style="font-size:85%;">(normal)</span></a></li> <li><a href="/wiki/Student%27s_t-test" title="Student's t-test">Student's <i>t</i>-test</a></li> <li><a href="/wiki/F-test" title="F-test"><i>F</i>-test</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Goodness_of_fit" title="Goodness of fit">Goodness of fit</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chi-squared_test" title="Chi-squared test">Chi-squared</a></li> <li><a href="/wiki/G-test" title="G-test"><i>G</i>-test</a></li> <li><a href="/wiki/Kolmogorov%E2%80%93Smirnov_test" title="Kolmogorov–Smirnov test">Kolmogorov–Smirnov</a></li> <li><a href="/wiki/Anderson%E2%80%93Darling_test" title="Anderson–Darling test">Anderson–Darling</a></li> <li><a href="/wiki/Lilliefors_test" title="Lilliefors test">Lilliefors</a></li> <li><a href="/wiki/Jarque%E2%80%93Bera_test" title="Jarque–Bera test">Jarque–Bera</a></li> <li><a href="/wiki/Shapiro%E2%80%93Wilk_test" title="Shapiro–Wilk test">Normality <span style="font-size:85%;">(Shapiro–Wilk)</span></a></li> <li><a href="/wiki/Likelihood-ratio_test" title="Likelihood-ratio test">Likelihood-ratio test</a></li> <li><a href="/wiki/Model_selection" title="Model selection">Model selection</a> <ul><li><a href="/wiki/Cross-validation_(statistics)" title="Cross-validation (statistics)">Cross validation</a></li> <li><a href="/wiki/Akaike_information_criterion" title="Akaike information criterion">AIC</a></li> <li><a href="/wiki/Bayesian_information_criterion" title="Bayesian information criterion">BIC</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Rank_statistics" class="mw-redirect" title="Rank statistics">Rank statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Sign_test" title="Sign test">Sign</a> <ul><li><a href="/wiki/Sample_median" class="mw-redirect" title="Sample median">Sample median</a></li></ul></li> <li><a href="/wiki/Wilcoxon_signed-rank_test" title="Wilcoxon signed-rank test">Signed rank <span style="font-size:85%;">(Wilcoxon)</span></a> <ul><li><a href="/wiki/Hodges%E2%80%93Lehmann_estimator" title="Hodges–Lehmann estimator">Hodges–Lehmann estimator</a></li></ul></li> <li><a href="/wiki/Mann%E2%80%93Whitney_U_test" title="Mann–Whitney U test">Rank sum <span style="font-size:85%;">(Mann–Whitney)</span></a></li> <li><a href="/wiki/Nonparametric_statistics" title="Nonparametric statistics">Nonparametric</a> <a href="/wiki/Analysis_of_variance" title="Analysis of variance">anova</a> <ul><li><a href="/wiki/Kruskal%E2%80%93Wallis_test" title="Kruskal–Wallis test">1-way <span style="font-size:85%;">(Kruskal–Wallis)</span></a></li> <li><a href="/wiki/Friedman_test" title="Friedman test">2-way <span style="font-size:85%;">(Friedman)</span></a></li> <li><a href="/wiki/Jonckheere%27s_trend_test" title="Jonckheere's trend test">Ordered alternative <span style="font-size:85%;">(Jonckheere–Terpstra)</span></a></li></ul></li> <li><a href="/wiki/Van_der_Waerden_test" title="Van der Waerden test">Van der Waerden test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Bayesian_inference" title="Bayesian inference">Bayesian inference</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bayesian_probability" title="Bayesian probability">Bayesian probability</a> <ul><li><a href="/wiki/Prior_probability" title="Prior probability">prior</a></li> <li><a href="/wiki/Posterior_probability" title="Posterior probability">posterior</a></li></ul></li> <li><a href="/wiki/Credible_interval" title="Credible interval">Credible interval</a></li> <li><a href="/wiki/Bayes_factor" title="Bayes factor">Bayes factor</a></li> <li><a href="/wiki/Bayes_estimator" title="Bayes estimator">Bayesian estimator</a> <ul><li><a href="/wiki/Maximum_a_posteriori_estimation" title="Maximum a posteriori estimation">Maximum posterior estimator</a></li></ul></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="CorrelationRegression_analysis" style="font-size:114%;margin:0 4em"><div class="hlist"><ul><li><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></li><li><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></li></ul></div></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Correlation_and_dependence" class="mw-redirect" title="Correlation and dependence">Correlation</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pearson_product-moment_correlation_coefficient" class="mw-redirect" title="Pearson product-moment correlation coefficient">Pearson product-moment</a></li> <li><a href="/wiki/Partial_correlation" title="Partial correlation">Partial correlation</a></li> <li><a href="/wiki/Confounding" title="Confounding">Confounding variable</a></li> <li><a href="/wiki/Coefficient_of_determination" title="Coefficient of determination">Coefficient of determination</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Regression_analysis" title="Regression analysis">Regression analysis</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Errors_and_residuals" title="Errors and residuals">Errors and residuals</a></li> <li><a href="/wiki/Regression_validation" title="Regression validation">Regression validation</a></li> <li><a href="/wiki/Mixed_model" title="Mixed model">Mixed effects models</a></li> <li><a href="/wiki/Simultaneous_equations_model" title="Simultaneous equations model">Simultaneous equations models</a></li> <li><a href="/wiki/Multivariate_adaptive_regression_splines" class="mw-redirect" title="Multivariate adaptive regression splines">Multivariate adaptive regression splines (MARS)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Linear_regression" title="Linear regression">Linear regression</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Simple_linear_regression" title="Simple linear regression">Simple linear regression</a></li> <li><a href="/wiki/Ordinary_least_squares" title="Ordinary least squares">Ordinary least squares</a></li> <li><a href="/wiki/General_linear_model" title="General linear model">General linear model</a></li> <li><a href="/wiki/Bayesian_linear_regression" title="Bayesian linear regression">Bayesian regression</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em">Non-standard predictors</th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonlinear_regression" title="Nonlinear regression">Nonlinear regression</a></li> <li><a href="/wiki/Nonparametric_regression" title="Nonparametric regression">Nonparametric</a></li> <li><a href="/wiki/Semiparametric_regression" title="Semiparametric regression">Semiparametric</a></li> <li><a href="/wiki/Isotonic_regression" title="Isotonic regression">Isotonic</a></li> <li><a href="/wiki/Robust_regression" title="Robust regression">Robust</a></li> <li><a href="/wiki/Heteroscedasticity" class="mw-redirect" title="Heteroscedasticity">Heteroscedasticity</a></li> <li><a href="/wiki/Homoscedasticity" class="mw-redirect" title="Homoscedasticity">Homoscedasticity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Generalized_linear_model" title="Generalized linear model">Generalized linear model</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Exponential_family" title="Exponential family">Exponential families</a></li> <li><a href="/wiki/Logistic_regression" title="Logistic regression">Logistic <span style="font-size:85%;">(Bernoulli)</span></a> / <a href="/wiki/Binomial_regression" title="Binomial regression">Binomial</a> / <a href="/wiki/Poisson_regression" title="Poisson regression">Poisson regressions</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Partition_of_sums_of_squares" title="Partition of sums of squares">Partition of variance</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Analysis_of_variance" title="Analysis of variance">Analysis of variance (ANOVA, anova)</a></li> <li><a href="/wiki/Analysis_of_covariance" title="Analysis of covariance">Analysis of covariance</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Multivariate ANOVA</a></li> <li><a href="/wiki/Degrees_of_freedom_(statistics)" title="Degrees of freedom (statistics)">Degrees of freedom</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Categorical_/_Multivariate_/_Time-series_/_Survival_analysis" style="font-size:114%;margin:0 4em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a> / <a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a> / <a href="/wiki/Time_series" title="Time series">Time-series</a> / <a href="/wiki/Survival_analysis" title="Survival analysis">Survival analysis</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Categorical_variable" title="Categorical variable">Categorical</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cohen%27s_kappa" title="Cohen's kappa">Cohen's kappa</a></li> <li><a href="/wiki/Contingency_table" title="Contingency table">Contingency table</a></li> <li><a href="/wiki/Graphical_model" title="Graphical model">Graphical model</a></li> <li><a href="/wiki/Poisson_regression" title="Poisson regression">Log-linear model</a></li> <li><a href="/wiki/McNemar%27s_test" title="McNemar's test">McNemar's test</a></li> <li><a href="/wiki/Cochran%E2%80%93Mantel%E2%80%93Haenszel_statistics" title="Cochran–Mantel–Haenszel statistics">Cochran–Mantel–Haenszel statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Multivariate_statistics" title="Multivariate statistics">Multivariate</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/General_linear_model" title="General linear model">Regression</a></li> <li><a href="/wiki/Multivariate_analysis_of_variance" title="Multivariate analysis of variance">Manova</a></li> <li><a href="/wiki/Principal_component_analysis" title="Principal component analysis">Principal components</a></li> <li><a href="/wiki/Canonical_correlation" title="Canonical correlation">Canonical correlation</a></li> <li><a href="/wiki/Linear_discriminant_analysis" title="Linear discriminant analysis">Discriminant analysis</a></li> <li><a href="/wiki/Cluster_analysis" title="Cluster analysis">Cluster analysis</a></li> <li><a href="/wiki/Statistical_classification" title="Statistical classification">Classification</a></li> <li><a href="/wiki/Structural_equation_modeling" title="Structural equation modeling">Structural equation model</a> <ul><li><a href="/wiki/Factor_analysis" title="Factor analysis">Factor analysis</a></li></ul></li> <li><a href="/wiki/Multivariate_distribution" class="mw-redirect" title="Multivariate distribution">Multivariate distributions</a> <ul><li><a href="/wiki/Elliptical_distribution" title="Elliptical distribution">Elliptical distributions</a> <ul><li><a href="/wiki/Multivariate_normal_distribution" title="Multivariate normal distribution">Normal</a></li></ul></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Time_series" title="Time series">Time-series</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Decomposition_of_time_series" title="Decomposition of time series">Decomposition</a></li> <li><a href="/wiki/Trend_estimation" class="mw-redirect" title="Trend estimation">Trend</a></li> <li><a href="/wiki/Stationary_process" title="Stationary process">Stationarity</a></li> <li><a href="/wiki/Seasonal_adjustment" title="Seasonal adjustment">Seasonal adjustment</a></li> <li><a href="/wiki/Exponential_smoothing" title="Exponential smoothing">Exponential smoothing</a></li> <li><a href="/wiki/Cointegration" title="Cointegration">Cointegration</a></li> <li><a href="/wiki/Structural_break" title="Structural break">Structural break</a></li> <li><a href="/wiki/Granger_causality" title="Granger causality">Granger causality</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Specific tests</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dickey%E2%80%93Fuller_test" title="Dickey–Fuller test">Dickey–Fuller</a></li> <li><a href="/wiki/Johansen_test" title="Johansen test">Johansen</a></li> <li><a href="/wiki/Ljung%E2%80%93Box_test" title="Ljung–Box test">Q-statistic <span style="font-size:85%;">(Ljung–Box)</span></a></li> <li><a href="/wiki/Durbin%E2%80%93Watson_statistic" title="Durbin–Watson statistic">Durbin–Watson</a></li> <li><a href="/wiki/Breusch%E2%80%93Godfrey_test" title="Breusch–Godfrey test">Breusch–Godfrey</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Time_domain" title="Time domain">Time domain</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Autocorrelation" title="Autocorrelation">Autocorrelation (ACF)</a> <ul><li><a href="/wiki/Partial_autocorrelation_function" title="Partial autocorrelation function">partial (PACF)</a></li></ul></li> <li><a href="/wiki/Cross-correlation" title="Cross-correlation">Cross-correlation (XCF)</a></li> <li><a href="/wiki/Autoregressive%E2%80%93moving-average_model" class="mw-redirect" title="Autoregressive–moving-average model">ARMA model</a></li> <li><a href="/wiki/Box%E2%80%93Jenkins_method" title="Box–Jenkins method">ARIMA model <span style="font-size:85%;">(Box–Jenkins)</span></a></li> <li><a href="/wiki/Autoregressive_conditional_heteroskedasticity" title="Autoregressive conditional heteroskedasticity">Autoregressive conditional heteroskedasticity (ARCH)</a></li> <li><a href="/wiki/Vector_autoregression" title="Vector autoregression">Vector autoregression (VAR)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Frequency_domain" title="Frequency domain">Frequency domain</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Spectral_density_estimation" title="Spectral density estimation">Spectral density estimation</a></li> <li><a href="/wiki/Fourier_analysis" title="Fourier analysis">Fourier analysis</a></li> <li><a href="/wiki/Least-squares_spectral_analysis" title="Least-squares spectral analysis">Least-squares spectral analysis</a></li> <li><a href="/wiki/Wavelet" title="Wavelet">Wavelet</a></li> <li><a href="/wiki/Whittle_likelihood" title="Whittle likelihood">Whittle likelihood</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Survival_analysis" title="Survival analysis">Survival</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Survival_function" title="Survival function">Survival function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kaplan%E2%80%93Meier_estimator" title="Kaplan–Meier estimator">Kaplan–Meier estimator (product limit)</a></li> <li><a href="/wiki/Proportional_hazards_model" title="Proportional hazards model">Proportional hazards models</a></li> <li><a href="/wiki/Accelerated_failure_time_model" title="Accelerated failure time model">Accelerated failure time (AFT) model</a></li> <li><a href="/wiki/First-hitting-time_model" title="First-hitting-time model">First hitting time</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;"><a href="/wiki/Failure_rate" title="Failure rate">Hazard function</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nelson%E2%80%93Aalen_estimator" title="Nelson–Aalen estimator">Nelson–Aalen estimator</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;font-weight:normal;">Test</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Log-rank_test" class="mw-redirect" title="Log-rank test">Log-rank test</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Applications" style="font-size:114%;margin:0 4em"><a href="/wiki/List_of_fields_of_application_of_statistics" title="List of fields of application of statistics">Applications</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Biostatistics" title="Biostatistics">Biostatistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bioinformatics" title="Bioinformatics">Bioinformatics</a></li> <li><a href="/wiki/Clinical_trial" title="Clinical trial">Clinical trials</a> / <a href="/wiki/Clinical_study_design" title="Clinical study design">studies</a></li> <li><a href="/wiki/Epidemiology" title="Epidemiology">Epidemiology</a></li> <li><a href="/wiki/Medical_statistics" title="Medical statistics">Medical statistics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Engineering_statistics" title="Engineering statistics">Engineering statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Chemometrics" title="Chemometrics">Chemometrics</a></li> <li><a href="/wiki/Methods_engineering" title="Methods engineering">Methods engineering</a></li> <li><a href="/wiki/Probabilistic_design" title="Probabilistic design">Probabilistic design</a></li> <li><a href="/wiki/Statistical_process_control" title="Statistical process control">Process</a> / <a href="/wiki/Quality_control" title="Quality control">quality control</a></li> <li><a href="/wiki/Reliability_engineering" title="Reliability engineering">Reliability</a></li> <li><a href="/wiki/System_identification" title="System identification">System identification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Social_statistics" title="Social statistics">Social statistics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Actuarial_science" title="Actuarial science">Actuarial science</a></li> <li><a href="/wiki/Census" title="Census">Census</a></li> <li><a href="/wiki/Crime_statistics" title="Crime statistics">Crime statistics</a></li> <li><a href="/wiki/Demographic_statistics" title="Demographic statistics">Demography</a></li> <li><a href="/wiki/Econometrics" title="Econometrics">Econometrics</a></li> <li><a href="/wiki/Jurimetrics" title="Jurimetrics">Jurimetrics</a></li> <li><a href="/wiki/National_accounts" title="National accounts">National accounts</a></li> <li><a href="/wiki/Official_statistics" title="Official statistics">Official statistics</a></li> <li><a href="/wiki/Population_statistics" class="mw-redirect" title="Population statistics">Population statistics</a></li> <li><a href="/wiki/Psychometrics" title="Psychometrics">Psychometrics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:12.5em"><a href="/wiki/Spatial_analysis" title="Spatial analysis">Spatial statistics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cartography" title="Cartography">Cartography</a></li> <li><a href="/wiki/Environmental_statistics" title="Environmental statistics">Environmental statistics</a></li> <li><a href="/wiki/Geographic_information_system" title="Geographic information system">Geographic information system</a></li> <li><a href="/wiki/Geostatistics" title="Geostatistics">Geostatistics</a></li> <li><a href="/wiki/Kriging" title="Kriging">Kriging</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span><b><a href="/wiki/Category:Statistics" title="Category:Statistics">Category</a></b></li> <li><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="Commons page"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/12px-Commons-logo.svg.png" decoding="async" width="12" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/18px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span><b><a href="https://commons.wikimedia.org/wiki/Category:Statistics" class="extiw" title="commons:Category:Statistics">Commons</a></b></li> <li><span class="noviewer" typeof="mw:File"><span title="WikiProject"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/16px-People_icon.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/24px-People_icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/37/People_icon.svg/32px-People_icon.svg.png 2x" data-file-width="100" data-file-height="100" /></span></span> <b><a href="/wiki/Wikipedia:WikiProject_Statistics" title="Wikipedia:WikiProject Statistics">WikiProject</a></b></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q175199#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4078739-4">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.ndl.go.jp/auth/ndlna/00561029">Japan</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7f75645df9‐sw5fb Cached time: 20241125150634 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.250 seconds Real time usage: 1.615 seconds Preprocessor visited node count: 4737/1000000 Post‐expand include size: 196853/2097152 bytes Template argument size: 3938/2097152 bytes Highest expansion depth: 14/100 Expensive parser function count: 14/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 105289/5000000 bytes Lua time usage: 0.620/10.000 seconds Lua memory usage: 7167725/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1038.324 1 -total 27.17% 282.086 1 Template:Reflist 14.85% 154.219 12 Template:Navbox 14.53% 150.849 1 Template:Short_description 13.93% 144.671 5 Template:Cite_book 11.55% 119.956 2 Template:Pagetype 9.15% 95.057 1 Template:Theory_of_probability_distributions 8.93% 92.723 1 Template:Statistics 8.41% 87.272 1 Template:Navbox_with_collapsible_groups 6.89% 71.583 1 Template:About --> <!-- Saved in parser cache with key enwiki:pcache:idhash:32344-0!canonical and timestamp 20241125150634 and revision id 1259503634. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Variance&oldid=1259503634">https://en.wikipedia.org/w/index.php?title=Variance&oldid=1259503634</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Moment_(mathematics)" title="Category:Moment (mathematics)">Moment (mathematics)</a></li><li><a href="/wiki/Category:Statistical_deviation_and_dispersion" title="Category:Statistical deviation and dispersion">Statistical deviation and dispersion</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_incomplete_citations" title="Category:All articles with incomplete citations">All articles with incomplete citations</a></li><li><a href="/wiki/Category:Articles_with_incomplete_citations_from_March_2013" title="Category:Articles with incomplete citations from March 2013">Articles with incomplete citations from March 2013</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_February_2012" title="Category:Articles with unsourced statements from February 2012">Articles with unsourced statements from February 2012</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_September_2016" title="Category:Articles with unsourced statements from September 2016">Articles with unsourced statements from September 2016</a></li><li><a href="/wiki/Category:Articles_containing_proofs" title="Category:Articles containing proofs">Articles containing proofs</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 25 November 2024, at 15:06<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Variance&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f7b5ccf54-m7hn4","wgBackendResponseTime":160,"wgPageParseReport":{"limitreport":{"cputime":"1.250","walltime":"1.615","ppvisitednodes":{"value":4737,"limit":1000000},"postexpandincludesize":{"value":196853,"limit":2097152},"templateargumentsize":{"value":3938,"limit":2097152},"expansiondepth":{"value":14,"limit":100},"expensivefunctioncount":{"value":14,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":105289,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 1038.324 1 -total"," 27.17% 282.086 1 Template:Reflist"," 14.85% 154.219 12 Template:Navbox"," 14.53% 150.849 1 Template:Short_description"," 13.93% 144.671 5 Template:Cite_book"," 11.55% 119.956 2 Template:Pagetype"," 9.15% 95.057 1 Template:Theory_of_probability_distributions"," 8.93% 92.723 1 Template:Statistics"," 8.41% 87.272 1 Template:Navbox_with_collapsible_groups"," 6.89% 71.583 1 Template:About"]},"scribunto":{"limitreport-timeusage":{"value":"0.620","limit":"10.000"},"limitreport-memusage":{"value":7167725,"limit":52428800},"limitreport-logs":"table#1 {\n}\n"},"cachereport":{"origin":"mw-api-ext.codfw.main-7f75645df9-sw5fb","timestamp":"20241125150634","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Variance","url":"https:\/\/en.wikipedia.org\/wiki\/Variance","sameAs":"http:\/\/www.wikidata.org\/entity\/Q175199","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q175199","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-06-30T08:05:34Z","dateModified":"2024-11-25T15:06:32Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/f\/f9\/Comparison_standard_deviations.svg","headline":"expectation of the squared deviation of a random variable from its mean"}</script> </body> </html>