CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–23 of 23 results for author: <span class="mathjax">Haneda, K</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&query=Haneda%2C+K">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Haneda, K"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Haneda%2C+K&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Haneda, K"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19795">arXiv:2411.19795</a> <span> [<a href="https://arxiv.org/pdf/2411.19795">pdf</a>, <a href="https://arxiv.org/format/2411.19795">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Spatial-Temporal Channel Statistics from Measurement Data at D Band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Weragama%2C+C">Chathuri Weragama</a>, <a href="/search/eess?searchtype=author&query=Kokkoniemi%2C+J">Joonas Kokkoniemi</a>, <a href="/search/eess?searchtype=author&query=De+Guzman%2C+M+F">Mar Francis De Guzman</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=K%C3%BFosti%2C+P">Pekka K每osti</a>, <a href="/search/eess?searchtype=author&query=Juntti%2C+M">Markku Juntti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19795v1-abstract-short" style="display: inline;"> Millimeter-Wave (mmWave) (30-300 GHz) and D band (110-170 GHz) frequencies are poised to play a pivotal role in the advancement of sixth-generation (6G) systems and beyond with increased demand for greater bandwidth and capacity. This paper focuses on deriving a generalized channel impulse response for mmWave communications, considering both outdoor and indoor locations for line-of-sight (LOS) and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19795v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19795v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19795v1-abstract-full" style="display: none;"> Millimeter-Wave (mmWave) (30-300 GHz) and D band (110-170 GHz) frequencies are poised to play a pivotal role in the advancement of sixth-generation (6G) systems and beyond with increased demand for greater bandwidth and capacity. This paper focuses on deriving a generalized channel impulse response for mmWave communications, considering both outdoor and indoor locations for line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The analysis is based on statistical insights obtained from measurements conducted at distinct locations with a center frequency of 142 GHz, examining parameters such as path gain, delay, number of paths (NoP), and angle distributions. Whereas different distributions serve as candidate models for the gain of LOS communications, only specific distributions accurately describe the NLOS gain, LOS and NLOS delay, LOS and NLOS NoP, and LOS and NLOS angular distributions. The channel is modeled based on geometry-based stochastic channel modeling (GBSM) with parameters derived from the statistical analysis. The maximum excess delay is used as a metric to evaluate the performance of the proposed model against empirical data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19795v1-abstract-full').style.display = 'none'; document.getElementById('2411.19795v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2403.18713</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14220">arXiv:2405.14220</a> <span> [<a href="https://arxiv.org/pdf/2405.14220">pdf</a>, <a href="https://arxiv.org/format/2405.14220">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Study of 5G base station antenna array performance for self-interference reduction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xue%2C+B">Bing Xue</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14220v1-abstract-short" style="display: inline;"> The study of 5G base station antenna array performance for self-interference reduction is derived. The line of sight signal channel model and Rayleigh channel model are developed. The relevant calculations for channel capacities are shown. This is the pre-material for this study. More results and conclusions will be presented soon. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14220v1-abstract-full" style="display: none;"> The study of 5G base station antenna array performance for self-interference reduction is derived. The line of sight signal channel model and Rayleigh channel model are developed. The relevant calculations for channel capacities are shown. This is the pre-material for this study. More results and conclusions will be presented soon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14220v1-abstract-full').style.display = 'none'; document.getElementById('2405.14220v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages short paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11863">arXiv:2405.11863</a> <span> [<a href="https://arxiv.org/pdf/2405.11863">pdf</a>, <a href="https://arxiv.org/format/2405.11863">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Permittivity Characterization of Human Skin Based on a Quasi-optical System at Sub-THz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xue%2C+B">Bing Xue</a>, <a href="/search/eess?searchtype=author&query=Tuomela%2C+J">Juha Tuomela</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a>, <a href="/search/eess?searchtype=author&query=Ala-Laurinaho%2C+J">Juha Ala-Laurinaho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11863v1-abstract-short" style="display: inline;"> This paper introduces a novel approach to experimentally characterize effective human skin permittivity at sub-Terahertz (sub-THz) frequencies, specifically from $140$~to $210$~GHz, utilizing a quasi-optical measurement system. To ensure accurate measurement of the reflection coefficients of human skin, a planar, rigid, and thick reference plate with a low-loss dielectric is utilized to flatten th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11863v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11863v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11863v1-abstract-full" style="display: none;"> This paper introduces a novel approach to experimentally characterize effective human skin permittivity at sub-Terahertz (sub-THz) frequencies, specifically from $140$~to $210$~GHz, utilizing a quasi-optical measurement system. To ensure accurate measurement of the reflection coefficients of human skin, a planar, rigid, and thick reference plate with a low-loss dielectric is utilized to flatten the human skin surface. A permittivity characterization method is proposed to reduce permittivity estimation deviations resulting from the pressure effects on the phase displacements of skins under the measurements but also to ensure repeatability of the measurement. In practical permittivity characterizations, the complex permittivities of the finger, palm, and arm of seven volunteers show small standard deviations for the repeated measurements, respectively, while those show significant variations across different regions of the skins and for different persons. The proposed measurement system holds significant potential for future skin permittivity estimation in sub-THz bands, facilitating further studies on human-electromagnetic-wave interactions based on the measured permittivity values. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11863v1-abstract-full').style.display = 'none'; document.getElementById('2405.11863v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages for Journal paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06106">arXiv:2405.06106</a> <span> [<a href="https://arxiv.org/pdf/2405.06106">pdf</a>, <a href="https://arxiv.org/format/2405.06106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Human Skin Permittivity Characterization for Mobile Handset Evaluation at Sub-THz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xue%2C+B">Bing Xue</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a>, <a href="/search/eess?searchtype=author&query=Ala-Laurinaho%2C+J">Juha Ala-Laurinaho</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06106v2-abstract-short" style="display: inline;"> This manuscript proposes a method for characterizing the complex permittivity of the human finger skin based on an open-ended waveguide covered with a thin dielectric sheet at sub-terahertz frequencies. The measurement system is initially analyzed through full-wave simulations with a detailed finger model. Next, the model is simplified by replacing the finger with an infinite sheet of human skin t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06106v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06106v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06106v2-abstract-full" style="display: none;"> This manuscript proposes a method for characterizing the complex permittivity of the human finger skin based on an open-ended waveguide covered with a thin dielectric sheet at sub-terahertz frequencies. The measurement system is initially analyzed through full-wave simulations with a detailed finger model. Next, the model is simplified by replacing the finger with an infinite sheet of human skin to calculate the forward electromagnetic problem related to the permittivity characterization. Following this, a radial basis network is employed to train the inverse problem solver. Finally, the complex permittivities of finger skins are characterized for 10 volunteers. The variations in complex relative permittivity across different individuals and skin regions are analyzed, revealing a deviation of $<\pm 1.5$ for both the dielectric constants and loss factors across 140 to 220 GHz. Repeated measurements at the same location on the finger demonstrate good repeatability with a relative estimation uncertainty $<\pm 1.5\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06106v2-abstract-full').style.display = 'none'; document.getElementById('2405.06106v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, EuMW 2024 conference paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.06099">arXiv:2405.06099</a> <span> [<a href="https://arxiv.org/pdf/2405.06099">pdf</a>, <a href="https://arxiv.org/format/2405.06099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Complex Permittivity Characterization of Low-Loss Dielectric Slabs at Sub-THz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xue%2C+B">Bing Xue</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a>, <a href="/search/eess?searchtype=author&query=Tuomela%2C+J">Juha Tuomela</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.06099v2-abstract-short" style="display: inline;"> This manuscript presents a novel method for characterizing the permittivities of low-loss dielectric slabs in sub-terahertz (sub-THz) frequencies, specifically above 100 GHz using a quasi-optical system. The algorithm is introduced with detailed derivations, and the measurement sensitivity is analyzed through simulations. Subsequently, the method's validity is established via simulations, demonstr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06099v2-abstract-full').style.display = 'inline'; document.getElementById('2405.06099v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.06099v2-abstract-full" style="display: none;"> This manuscript presents a novel method for characterizing the permittivities of low-loss dielectric slabs in sub-terahertz (sub-THz) frequencies, specifically above 100 GHz using a quasi-optical system. The algorithm is introduced with detailed derivations, and the measurement sensitivity is analyzed through simulations. Subsequently, the method's validity is established via simulations, demonstrating high accuracy (error 0.1% for the loss tangent) for a 30 mm thick plate material and relatively lower accuracy (error <5% for the loss tangent) for a 6 mm thick plate material. Notably, this accuracy surpasses that of the approach presented in [1] when the same window width is used to extract signals. Furthermore, a comparison between the permittivities of plexiglass with a 30 mm thickness characterized by the proposed method and the approach in [1] reveals a maximum difference in the dielectric constant of 0.011 and in loss tangent of 0.00071 from 140 to 220 GHz. Finally, the relative complex permittivities of plexiglass at 142.86 GHz obtained by both methods are compared with the reference values provided in [2], exhibiting differences of 0.06 in the dielectric constant. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.06099v2-abstract-full').style.display = 'none'; document.getElementById('2405.06099v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, for IEEE paper form paper submission</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18713">arXiv:2403.18713</a> <span> [<a href="https://arxiv.org/pdf/2403.18713">pdf</a>, <a href="https://arxiv.org/format/2403.18713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Characterization of Spatial-Temporal Channel Statistics from Indoor Measurement Data at D Band </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Weragama%2C+C">Chathuri Weragama</a>, <a href="/search/eess?searchtype=author&query=Kokkoniemi%2C+J">Joonas Kokkoniemi</a>, <a href="/search/eess?searchtype=author&query=De+Guzman%2C+M+F">Mar Francis De Guzman</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Kyosti%2C+P">Pekka Kyosti</a>, <a href="/search/eess?searchtype=author&query=Juntti%2C+M">Markku Juntti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18713v1-abstract-short" style="display: inline;"> Millimeter-wave (mmWave) and D Band (110--170~GHz) frequencies are poised to play a pivotal role in the advancement of sixth-generation (6G) systems and beyond, owing to their ability to enhance performance metrics such as capacity, ultra-low latency, and spectral efficiency. This paper concentrates on deriving statistical insights into power, delay, and the number of paths based on measurements c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18713v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18713v1-abstract-full" style="display: none;"> Millimeter-wave (mmWave) and D Band (110--170~GHz) frequencies are poised to play a pivotal role in the advancement of sixth-generation (6G) systems and beyond, owing to their ability to enhance performance metrics such as capacity, ultra-low latency, and spectral efficiency. This paper concentrates on deriving statistical insights into power, delay, and the number of paths based on measurements conducted across four distinct locations at a center frequency of 143.1 GHz. The findings underscore the suitability of various distributions in characterizing power behavior in line-of-sight (LOS) scenarios, including lognormal, Nakagami, gamma, and beta distributions, whereas the loglogistic distribution gives the optimal fit for power distribution in non-line-of-sight (NLOS) scenarios. Moreover, the exponential distribution shows to be the most appropriate model for the delay distribution in both LOS and NLOS scenarios. In terms of the number of paths, observations indicate a tendency for the highest concentration within the 10 m to 30 m distance range between the transmitter (Tx) and receiver (Rx). These insights shed light on the statistical nature of D band propagation characteristics, which are vital for informing the design and optimization of future 6G communication systems <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18713v1-abstract-full').style.display = 'none'; document.getElementById('2403.18713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 22 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.03159">arXiv:2210.03159</a> <span> [<a href="https://arxiv.org/pdf/2210.03159">pdf</a>, <a href="https://arxiv.org/format/2210.03159">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2023.3276502">10.1109/TAP.2023.3276502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ray-Optics Simulations of Outdoor-to-Indoor Multipath Channels at 4 and 14 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Koivum%C3%A4ki%2C+P">Pasi Koivum盲ki</a>, <a href="/search/eess?searchtype=author&query=Karttunen%2C+A">Aki Karttunen</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.03159v2-abstract-short" style="display: inline;"> Radio wave propagation simulations based on the ray-optical approximation have been widely adopted in coverage analysis for a range of situations, including the outdoor-to-indoor scenario. This work presents O2I ray-tracing simulations utilizing a complete office building floor plan in the form of a laser-scanned point cloud. The simulated radio channels are compared to their measured counterparts… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03159v2-abstract-full').style.display = 'inline'; document.getElementById('2210.03159v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.03159v2-abstract-full" style="display: none;"> Radio wave propagation simulations based on the ray-optical approximation have been widely adopted in coverage analysis for a range of situations, including the outdoor-to-indoor scenario. This work presents O2I ray-tracing simulations utilizing a complete office building floor plan in the form of a laser-scanned point cloud. The simulated radio channels are compared to their measured counterparts at 4 and 14 GHz in terms of path loss and delay and angular spreads. Validation of channel simulations for the O2I case is rare, and so far non-existent for above-$6$~GHz bands. This work reveals the importance of a floor plan model in accurately simulating the channel; it is confirmed that path loss can be replicated with a simple interior path loss model in place of a detailed building interior model, but neglecting to model the interior results in high delay and angular spread errors. By modeling the interior, the ray-tracing simulations achieve relative mean error of under 10% for delay and angular spreads. Finally, effects of multi-layer insulating window on propagation simulations are reported. Noticeable variation of the penetration loss on a small change of the incident angle of a propagation path causes large changes in estimated coverage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.03159v2-abstract-full').style.display = 'none'; document.getElementById('2210.03159v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.02480">arXiv:2208.02480</a> <span> [<a href="https://arxiv.org/pdf/2208.02480">pdf</a>, <a href="https://arxiv.org/format/2208.02480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> On the Feasibility of Out-of-Band Spatial Channel Information for Millimeter-Wave Beam Search </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+P">Peize Zhang</a>, <a href="/search/eess?searchtype=author&query=Ky%C3%B6sti%2C+P">Pekka Ky枚sti</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Koivum%C3%A4ki%2C+P">Pasi Koivum盲ki</a>, <a href="/search/eess?searchtype=author&query=Fan%2C+W">Wei Fan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.02480v2-abstract-short" style="display: inline;"> The rollout of millimeter-wave (mmWave) cellular network enables us to realize the full potential of 5G/6G with vastly improved throughput and ultra-low latency. MmWave communication relies on highly directional transmission, which significantly increase the training overhead for fine beam alignment. The concept of using out-of-band spatial information to aid mmWave beam search is developed when m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02480v2-abstract-full').style.display = 'inline'; document.getElementById('2208.02480v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.02480v2-abstract-full" style="display: none;"> The rollout of millimeter-wave (mmWave) cellular network enables us to realize the full potential of 5G/6G with vastly improved throughput and ultra-low latency. MmWave communication relies on highly directional transmission, which significantly increase the training overhead for fine beam alignment. The concept of using out-of-band spatial information to aid mmWave beam search is developed when multi-band systems operating in parallel. The feasibility of leveraging low-band channel information for coarse estimation of high-band beam directions strongly depends on the spatial congruence between two frequency bands. In this paper, we try to provide insights into the answers of two important questions. First, how similar is the power angular spectra (PAS) of radio channels between two well-separated frequency bands? Then, what is the impact of practical system configurations on spatial channel similarity? Specifically, the beam direction-based metric is proposed to measure the power loss and number of false directions if out-of-band spatial information is used instead of in-band information. This metric is more practical and useful than comparing normalized PAS directly. Point cloud ray-tracing and measurement results across multiple frequency bands and environments show that the degree of spatial similarity of beamformed channels is related to antenna beamwidth, frequency gap, and radio link conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.02480v2-abstract-full').style.display = 'none'; document.getElementById('2208.02480v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01966">arXiv:2208.01966</a> <span> [<a href="https://arxiv.org/pdf/2208.01966">pdf</a>, <a href="https://arxiv.org/format/2208.01966">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Impacts of Real Hands on 5G Millimeter-Wave Cellphone Antennas: Measurements and Electromagnetic Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xue%2C+B">Bing Xue</a>, <a href="/search/eess?searchtype=author&query=Koivumaki%2C+P">Pasi Koivumaki</a>, <a href="/search/eess?searchtype=author&query=Vaha-Savo%2C+L">Lauri Vaha-Savo</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01966v1-abstract-short" style="display: inline;"> Penetration of cellphones into markets requires their robust operation in time-varying radio environments, especially for millimeter-wave communications. Hands and fingers of a human cause significant changes in the physical environments of cellphones, which influence the communication qualities to a large extent. In this paper, electromagnetic models of real hands and cellphone antennas are devel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01966v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01966v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01966v1-abstract-full" style="display: none;"> Penetration of cellphones into markets requires their robust operation in time-varying radio environments, especially for millimeter-wave communications. Hands and fingers of a human cause significant changes in the physical environments of cellphones, which influence the communication qualities to a large extent. In this paper, electromagnetic models of real hands and cellphone antennas are developed, and their efficacy is verified through measurements for the first time in the literature. Referential cellphone antenna arrays at $28$ and $39$~GHz are designed. Their radiation properties are evaluated through near-field scanning of the two prototypes, first in free space for calibration of the antenna measurement system and for building simplified models of the cellphone arrays. Next, radiation measurements are set up with real hands so that they are compared with electromagnetic simulations of the interaction between hands and simplified models of the arrays. The comparison showed a close agreement in terms of spherical coverage, indicating the efficacy of the hand and antenna array models along with the measurement approach. The repeatability of the measurements is $0.5$~dB difference in terms of cumulative distributions of the spherical coverage at the median level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01966v1-abstract-full').style.display = 'none'; document.getElementById('2208.01966v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 17 figures, Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.06185">arXiv:2207.06185</a> <span> [<a href="https://arxiv.org/pdf/2207.06185">pdf</a>, <a href="https://arxiv.org/format/2207.06185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2023.3284368">10.1109/TAP.2023.3284368 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electromagnetic-Thermal Analyses of Distributed Antennas Embedded into a Load Bearing Wall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=V%C3%A4h%C3%A4-Savo%2C+L">Lauri V盲h盲-Savo</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a>, <a href="/search/eess?searchtype=author&query=L%C3%BC%2C+X">Xiaoshu L眉</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.06185v2-abstract-short" style="display: inline;"> The importance of indoor mobile connectivity has increased during the last years, especially during the Covid-19 pandemic. In contrast, new energy-efficient buildings contain structures like low-emissive windows and multi-layered thermal insulations which all block radio signals effectively. To solve this problem with indoor connectivity, we study passive antenna systems embedded in walls of low-e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06185v2-abstract-full').style.display = 'inline'; document.getElementById('2207.06185v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.06185v2-abstract-full" style="display: none;"> The importance of indoor mobile connectivity has increased during the last years, especially during the Covid-19 pandemic. In contrast, new energy-efficient buildings contain structures like low-emissive windows and multi-layered thermal insulations which all block radio signals effectively. To solve this problem with indoor connectivity, we study passive antenna systems embedded in walls of low-energy buildings. We provide analytical models of a load bearing wall along with numerical and empirical evaluations of wideband back-to-back antenna spiral antenna system in terms of electromagnetic- and thermal insulation. The antenna systems are optimized to operate well when embedded into load bearing walls. Unit cell models of the antenna embedded load bearing wall, which are called signal-transmissive walls in this paper, are developed to analyze their electromagnetic and thermal insulation properties. We show that our signal-transmissive wall improves the electromagnetic transmission compared to a raw load bearing wall over a wide bandwidth of 2.6-8 GHz, covering most of the cellular new radio frequency range 1, without compromising the thermal insulation capability of the wall demanded by the building regulation. Optimized antenna deployment is shown with 22 dB improvement in electromagnetic transmission through the load bearing wall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.06185v2-abstract-full').style.display = 'none'; document.getElementById('2207.06185v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 13 figures, submitted to IEEE Transactions on Antennas and Propagation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.10783">arXiv:2205.10783</a> <span> [<a href="https://arxiv.org/pdf/2205.10783">pdf</a>, <a href="https://arxiv.org/format/2205.10783">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> 6G Radio Requirements to Support Integrated Communication, Localization, and Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wymeersch%2C+H">Henk Wymeersch</a>, <a href="/search/eess?searchtype=author&query=P%C3%A4rssinen%2C+A">Aarno P盲rssinen</a>, <a href="/search/eess?searchtype=author&query=Abrudan%2C+T+E">Traian E. Abrudan</a>, <a href="/search/eess?searchtype=author&query=Wolfgang%2C+A">Andreas Wolfgang</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Sarajlic%2C+M">Muris Sarajlic</a>, <a href="/search/eess?searchtype=author&query=Leinonen%2C+M+E">Marko E. Leinonen</a>, <a href="/search/eess?searchtype=author&query=Keskin%2C+M+F">Musa Furkan Keskin</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+H">Hui Chen</a>, <a href="/search/eess?searchtype=author&query=Lindberg%2C+S">Simon Lindberg</a>, <a href="/search/eess?searchtype=author&query=Ky%C3%B6sti%2C+P">Pekka Ky枚sti</a>, <a href="/search/eess?searchtype=author&query=Svensson%2C+T">Tommy Svensson</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+X">Xinxin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.10783v1-abstract-short" style="display: inline;"> 6G will be characterized by extreme use cases, not only for communication, but also for localization, and sensing. The use cases can be directly mapped to requirements in terms of standard key performance indicators (KPIs), such as data rate, latency, or localization accuracy. The goal of this paper is to go one step further and map these standard KPIs to requirements on signals, on hardware archi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10783v1-abstract-full').style.display = 'inline'; document.getElementById('2205.10783v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.10783v1-abstract-full" style="display: none;"> 6G will be characterized by extreme use cases, not only for communication, but also for localization, and sensing. The use cases can be directly mapped to requirements in terms of standard key performance indicators (KPIs), such as data rate, latency, or localization accuracy. The goal of this paper is to go one step further and map these standard KPIs to requirements on signals, on hardware architectures, and on deployments. Based on this, system solutions can be identified that can support several use cases simultaneously. Since there are several ways to meet the KPIs, there is no unique solution and preferable configurations will be discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.10783v1-abstract-full').style.display = 'none'; document.getElementById('2205.10783v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12228">arXiv:2111.12228</a> <span> [<a href="https://arxiv.org/pdf/2111.12228">pdf</a>, <a href="https://arxiv.org/format/2111.12228">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2022.3149665">10.1109/TAP.2022.3149665 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial intelligence enabled radio propagation for communications-Part II: Scenario identification and channel modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Huang%2C+C">Chen Huang</a>, <a href="/search/eess?searchtype=author&query=He%2C+R">Ruisi He</a>, <a href="/search/eess?searchtype=author&query=Ai%2C+B">Bo Ai</a>, <a href="/search/eess?searchtype=author&query=Molisch%2C+A+F">Andreas F. Molisch</a>, <a href="/search/eess?searchtype=author&query=Lau%2C+B+K">Buon Kiong Lau</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+C">Cheng-Xiang Wang</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+M">Mi Yang</a>, <a href="/search/eess?searchtype=author&query=Oestges%2C+C">Claude Oestges</a>, <a href="/search/eess?searchtype=author&query=Zhong%2C+Z">Zhangdui Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12228v1-abstract-short" style="display: inline;"> This two-part paper investigates the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. In Part I, we introduced AI and ML as well as provided a comprehensive survey on ML enabled channel characterization and antenna-channel optimization, and in this part (Part II) we review state-of-the-art literature on scenario iden… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12228v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12228v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12228v1-abstract-full" style="display: none;"> This two-part paper investigates the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. In Part I, we introduced AI and ML as well as provided a comprehensive survey on ML enabled channel characterization and antenna-channel optimization, and in this part (Part II) we review state-of-the-art literature on scenario identification and channel modeling here. In particular, the key ideas of ML for scenario identification and channel modeling/prediction are presented, and the widely used ML methods for propagation scenario identification and channel modeling and prediction are analyzed and compared. Based on the state-of-art, the future challenges of AI/ML-based channel data processing techniques are given as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12228v1-abstract-full').style.display = 'none'; document.getElementById('2111.12228v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.12227">arXiv:2111.12227</a> <span> [<a href="https://arxiv.org/pdf/2111.12227">pdf</a>, <a href="https://arxiv.org/format/2111.12227">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2022.3149663">10.1109/TAP.2022.3149663 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial intelligence enabled radio propagation for communications-Part I: Channel characterization and antenna-channel optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Huang%2C+C">Chen Huang</a>, <a href="/search/eess?searchtype=author&query=He%2C+R">Ruisi He</a>, <a href="/search/eess?searchtype=author&query=Ai%2C+B">Bo Ai</a>, <a href="/search/eess?searchtype=author&query=Molisch%2C+A+F">Andreas F. Molisch</a>, <a href="/search/eess?searchtype=author&query=Lau%2C+B+K">Buon Kiong Lau</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+B">Bo Liu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+C">Cheng-Xiang Wang</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+M">Mi Yang</a>, <a href="/search/eess?searchtype=author&query=Oestges%2C+C">Claude Oestges</a>, <a href="/search/eess?searchtype=author&query=Zhong%2C+Z">Zhangdui Zhong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.12227v1-abstract-short" style="display: inline;"> To provide higher data rates, as well as better coverage, cost efficiency, security, adaptability, and scalability, the 5G and beyond 5G networks are developed with various artificial intelligence techniques. In this two-part paper, we investigate the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. It firstly provid… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12227v1-abstract-full').style.display = 'inline'; document.getElementById('2111.12227v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.12227v1-abstract-full" style="display: none;"> To provide higher data rates, as well as better coverage, cost efficiency, security, adaptability, and scalability, the 5G and beyond 5G networks are developed with various artificial intelligence techniques. In this two-part paper, we investigate the application of artificial intelligence (AI) and in particular machine learning (ML) to the study of wireless propagation channels. It firstly provides a comprehensive overview of ML for channel characterization and ML-based antenna-channel optimization in this first part, and then it gives a state-of-the-art literature review of channel scenario identification and channel modeling in Part II. Fundamental results and key concepts of ML for communication networks are presented, and widely used ML methods for channel data processing, propagation channel estimation, and characterization are analyzed and compared. A discussion of challenges and future research directions for ML-enabled next generation networks of the topics covered in this part rounds off the paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.12227v1-abstract-full').style.display = 'none'; document.getElementById('2111.12227v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.13023">arXiv:2106.13023</a> <span> [<a href="https://arxiv.org/pdf/2106.13023">pdf</a>, <a href="https://arxiv.org/format/2106.13023">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Integration of Communication and Sensing in 6G: a Joint Industrial and Academic Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wymeersch%2C+H">Henk Wymeersch</a>, <a href="/search/eess?searchtype=author&query=Shrestha%2C+D">Deep Shrestha</a>, <a href="/search/eess?searchtype=author&query=de+Lima%2C+C+M">Carlos Morais de Lima</a>, <a href="/search/eess?searchtype=author&query=Yajnanarayana%2C+V">Vijaya Yajnanarayana</a>, <a href="/search/eess?searchtype=author&query=Richerzhagen%2C+B">Bj枚rn Richerzhagen</a>, <a href="/search/eess?searchtype=author&query=Keskin%2C+M+F">Musa Furkan Keskin</a>, <a href="/search/eess?searchtype=author&query=Schindhelm%2C+K">Kim Schindhelm</a>, <a href="/search/eess?searchtype=author&query=Ramirez%2C+A">Alejandro Ramirez</a>, <a href="/search/eess?searchtype=author&query=Wolfgang%2C+A">Andreas Wolfgang</a>, <a href="/search/eess?searchtype=author&query=de+Guzman%2C+M+F">Mar Francis de Guzman</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Svensson%2C+T">Tommy Svensson</a>, <a href="/search/eess?searchtype=author&query=Baldemair%2C+R">Robert Baldemair</a>, <a href="/search/eess?searchtype=author&query=Parkvall%2C+S">Stefan Parkvall</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.13023v1-abstract-short" style="display: inline;"> 6G will likely be the first generation of mobile communication that will feature tight integration of localization and sensing with communication functionalities. Among several worldwide initiatives, the Hexa-X flagship project stands out as it brings together 25 key players from adjacent industries and academia, and has among its explicit goals to research fundamentally new radio access technolog… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13023v1-abstract-full').style.display = 'inline'; document.getElementById('2106.13023v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.13023v1-abstract-full" style="display: none;"> 6G will likely be the first generation of mobile communication that will feature tight integration of localization and sensing with communication functionalities. Among several worldwide initiatives, the Hexa-X flagship project stands out as it brings together 25 key players from adjacent industries and academia, and has among its explicit goals to research fundamentally new radio access technologies and high-resolution localization and sensing. Such features will not only enable novel use cases requiring extreme localization performance, but also provide a means to support and improve communication functionalities. This paper provides an overview of the Hexa-X vision alongside the envisioned use cases. To close the required performance gap of these use cases with respect to 5G, several technical enablers will be discussed, together with the associated research challenges for the coming years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.13023v1-abstract-full').style.display = 'none'; document.getElementById('2106.13023v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13209">arXiv:2009.13209</a> <span> [<a href="https://arxiv.org/pdf/2009.13209">pdf</a>, <a href="https://arxiv.org/format/2009.13209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Large-Scale Parameters of Spatio-Temporal Short-Range Indoor Backhaul Channels at 140 GHz </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Nguyen%2C+S+L+H">Sinh L. H. Nguyen</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=J%C3%A4rvel%C3%A4ineny%2C+J">Jan J盲rvel盲ineny</a>, <a href="/search/eess?searchtype=author&query=Karttuneny%2C+A">Aki Karttuneny</a>, <a href="/search/eess?searchtype=author&query=Putkonen%2C+J">Jyri Putkonen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13209v1-abstract-short" style="display: inline;"> The use of above-100 GHz radio frequencies would be one of promising approaches to enhance the fifth-generation cellular further. Any air interface and cellular network designs require channel models, for which measured evidence of largescale parameters such as pathloss, delay and angular spreads, is crucial. This paper provides the evidence from quasi-static spatiotemporal channel sounding campai… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13209v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13209v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13209v1-abstract-full" style="display: none;"> The use of above-100 GHz radio frequencies would be one of promising approaches to enhance the fifth-generation cellular further. Any air interface and cellular network designs require channel models, for which measured evidence of largescale parameters such as pathloss, delay and angular spreads, is crucial. This paper provides the evidence from quasi-static spatiotemporal channel sounding campaigns at two indoor hotspot (InH) scenarios at 140 GHz band, assuming short-range backhaul connectivity. The measured two InH sites are shopping mall and airport check-in hall. Our estimated omni-directional large-scale parameters from the measurements are found in good match with those of the Third Generation Partnership Project (3GPP) for new radios (NR) channel model in InH scenario, despite the difference of assumed link types and radio frequency range. The 3GPP NR channel model is meant for access links and said to be valid up to 100 GHz, while our measurements cover shortrange backhaul scenarios at 140 GHz. We found more deviation between our estimated large-scale parameters and those of the 3GPP NR channel model in the airport than in the shopping mall. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13209v1-abstract-full').style.display = 'none'; document.getElementById('2009.13209v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06318">arXiv:2009.06318</a> <span> [<a href="https://arxiv.org/pdf/2009.06318">pdf</a>, <a href="https://arxiv.org/format/2009.06318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TAP.2021.3076535">10.1109/TAP.2021.3076535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Empirical Evaluation of a 28 GHz Antenna Array on a 5G Mobile Phone Using a Body Phantom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=V%C3%A4h%C3%A4-Savo%2C+L">Lauri V盲h盲-Savo</a>, <a href="/search/eess?searchtype=author&query=Cziezerski%2C+C">Christian Cziezerski</a>, <a href="/search/eess?searchtype=author&query=Heino%2C+M">Mikko Heino</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a>, <a href="/search/eess?searchtype=author&query=Hazmi%2C+A">Ali Hazmi</a>, <a href="/search/eess?searchtype=author&query=Tian%2C+R">Ruiyuan Tian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06318v3-abstract-short" style="display: inline;"> Implementation of an antenna array on a 5G mobile phone chassis is crucial in ensuring the radio link quality especially at millimeter-waves. However, we generally lack the ability to design antennas under practical operational conditions involving body effects of a mobile user in a repeatable manner. We developed numerical and physical phantoms of a human body for evaluation of mobile handset ant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06318v3-abstract-full').style.display = 'inline'; document.getElementById('2009.06318v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06318v3-abstract-full" style="display: none;"> Implementation of an antenna array on a 5G mobile phone chassis is crucial in ensuring the radio link quality especially at millimeter-waves. However, we generally lack the ability to design antennas under practical operational conditions involving body effects of a mobile user in a repeatable manner. We developed numerical and physical phantoms of a human body for evaluation of mobile handset antennas at 28 GHz. While the numerical phantom retains a realistic and accurate body shape, our physical phantom has much simpler hexagonal cross-section to represent a body. Gains of the phased antenna array configuration on a mobile phone chassis, called co-located array is numerically and experimentally evaluated. The array is formed by placing two sets of 4-element dual-polarized patch antenna arrays, called two modules, at two locations of a mobile phone chassis. Modules are intended to collect the maximum amount of energy to the single transceiver chain. Spherical coverage of the realized gain by the array shows that the experimental statistics of the realized gains across entire solid angles agree with numerical simulations. We thereby demonstrate that our antenna evaluation method reproduces the reality and our phantom serves repeatable tests of antenna array prototypes at 28 GHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06318v3-abstract-full').style.display = 'none'; document.getElementById('2009.06318v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 12 figures, submitted to IEEE Transactions on Antennas and Propagation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.08491">arXiv:2006.08491</a> <span> [<a href="https://arxiv.org/pdf/2006.08491">pdf</a>, <a href="https://arxiv.org/format/2006.08491">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Standardization of Propagation Models: 800 MHz to 100 GHz -- A Historical Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Tataria%2C+H">Harsh Tataria</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Molisch%2C+A+F">Andreas F. Molisch</a>, <a href="/search/eess?searchtype=author&query=Shafi%2C+M">Mansoor Shafi</a>, <a href="/search/eess?searchtype=author&query=Tufvesson%2C+F">Fredrik Tufvesson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.08491v1-abstract-short" style="display: inline;"> Propagation models constitute a fundamental building block of wireless communications research. Before we build and operate real systems, we must understand the science of radio propagation, and develop channel models that both reflect the important propagation processes and allow a fair comparison of different systems. In the past five decades, wireless systems have gone through five generations,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08491v1-abstract-full').style.display = 'inline'; document.getElementById('2006.08491v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.08491v1-abstract-full" style="display: none;"> Propagation models constitute a fundamental building block of wireless communications research. Before we build and operate real systems, we must understand the science of radio propagation, and develop channel models that both reflect the important propagation processes and allow a fair comparison of different systems. In the past five decades, wireless systems have gone through five generations, from supporting voice applications to enhanced mobile broadband. To meet the ever increasing data rate demands of wireless systems, frequency bands covering a wide range from 800 MHz to 100 GHz have been allocated for use. The standardization of these systems started in the early/mid 1980's in Europe by the European Telecommunications Standards Institute with the advent of Global System for Mobile Communications. This motivated the development of the first standardized propagation model by the European Cooperation in Science and Technology (COST) 207 working group. These standardization activities were continued and expanded for the third, fourth, and fifth generations of COST, as well as by the Third Generation Partnership Project, and the International Telecommunication Union. This paper presents a historical overview of the standardized propagation models covering first to fifth-generation systems. In particular, we discuss the evolution and standardization of pathloss models, as well as large and small-scale fading parameters for single antenna and multiple antenna systems. Furthermore, we present insights into the progress of deterministic modelling across the five generations of systems, as well as discuss more advanced modelling components needed for the detailed simulations of millimeter-wave channels. A comprehensive bibliography at the end of the paper will aid the interested reader to dig deeper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.08491v1-abstract-full').style.display = 'none'; document.getElementById('2006.08491v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited journal paper (in print); 19 pages, 13 figures and 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.01865">arXiv:1907.01865</a> <span> [<a href="https://arxiv.org/pdf/1907.01865">pdf</a>, <a href="https://arxiv.org/ps/1907.01865">ps</a>, <a href="https://arxiv.org/format/1907.01865">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of Low Complexity Massive MIMO Techniques Under Realistic Channel Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Bashar%2C+M">Manijeh Bashar</a>, <a href="/search/eess?searchtype=author&query=Burr%2C+A+G">Alister G. Burr</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Cumanan%2C+K">Kanapathippillai Cumanan</a>, <a href="/search/eess?searchtype=author&query=Molu%2C+M+M">Mehdi M. Molu</a>, <a href="/search/eess?searchtype=author&query=Khalily%2C+M">Mohsen Khalily</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+P">Pei Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.01865v1-abstract-short" style="display: inline;"> A low complexity massive multiple-input multiple-output (MIMO) technique is studied with a geometry-based stochastic channel model, called COST 2100 model. We propose to exploit the discrete-time Fourier transform of the antenna correlation function to perform user scheduling. The proposed algorithm relies on a trade off between the number of occupied bins of the eigenvalue spectrum of the channel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01865v1-abstract-full').style.display = 'inline'; document.getElementById('1907.01865v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.01865v1-abstract-full" style="display: none;"> A low complexity massive multiple-input multiple-output (MIMO) technique is studied with a geometry-based stochastic channel model, called COST 2100 model. We propose to exploit the discrete-time Fourier transform of the antenna correlation function to perform user scheduling. The proposed algorithm relies on a trade off between the number of occupied bins of the eigenvalue spectrum of the channel covariance matrix for each user and spectral overlap among the selected users. We next show that linear precoding design can be performed based only on the channel correlation matrix. The proposed scheme exploits the angular bins of the eigenvalue spectrum of the channel covariance matrix to build up an "approximate eigenchannels" for the users. We investigate the reduction of average system throughput with no channel state information at the transmitter (CSIT). Analysis and numerical results show that while the throughput slightly decreases due to the absence of CSIT, the complexity of the system is reduced significantly. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.01865v1-abstract-full').style.display = 'none'; document.getElementById('1907.01865v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE TVT 2019, 7 pages, 4 figures,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.00386">arXiv:1809.00386</a> <span> [<a href="https://arxiv.org/pdf/1809.00386">pdf</a>, <a href="https://arxiv.org/ps/1809.00386">ps</a>, <a href="https://arxiv.org/format/1809.00386">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> A Study of Dynamic Multipath Clusters at 60 GHz in a Large Indoor Environment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Bashar%2C+M">Manijeh Bashar</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Burr%2C+A+G">Alister G. Burr</a>, <a href="/search/eess?searchtype=author&query=Cumanan%2C+K">Kanapathippillai Cumanan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.00386v1-abstract-short" style="display: inline;"> The available geometry-based stochastic channel models (GSCMs) at millimetre-wave (mmWave) frequencies do not necessarily retain spatial consistency for simulated channels, which is essential for small cells with ultra-dense users. In this paper, we work on cluster parameterization for the COST 2100 channel model using mobile channel simulations at 61 GHz in Helsinki Airport. The paper considers a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00386v1-abstract-full').style.display = 'inline'; document.getElementById('1809.00386v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.00386v1-abstract-full" style="display: none;"> The available geometry-based stochastic channel models (GSCMs) at millimetre-wave (mmWave) frequencies do not necessarily retain spatial consistency for simulated channels, which is essential for small cells with ultra-dense users. In this paper, we work on cluster parameterization for the COST 2100 channel model using mobile channel simulations at 61 GHz in Helsinki Airport. The paper considers a ray-tracer which has been optimized to match measurements, to obtain double-directional channels at mmWave frequencies. A joint clustering-tracking framework is used to determine cluster parameters for the COST 2100 channel model. The KPowerMeans algorithm and the Kalman filter are exploited to identify the cluster positions and to predict and track cluster positions respectively. The results confirm that the joint clustering-and-tracking is a suitable tool for cluster identification and tracking for our ray-tracer results. The movement of cluster centroids, cluster lifetime and number of clusters per snapshot are investigated for this set of ray-tracer results. Simulation results show that the multipath components (MPCs) are grouped into clusters at mmWave frequencies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.00386v1-abstract-full').style.display = 'none'; document.getElementById('1809.00386v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 12 figures, The IEEE GLOBECOM 2018 Workshops: Channel models and measurements for mmWave bands</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.01577">arXiv:1804.01577</a> <span> [<a href="https://arxiv.org/pdf/1804.01577">pdf</a>, <a href="https://arxiv.org/format/1804.01577">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Antenna Systems for Wireless Capsule Endoscope: Design, Analysis and Experimental Validation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Miah%2C+M+S">Md. Suzan Miah</a>, <a href="/search/eess?searchtype=author&query=khan%2C+A+N">Ahsan Noor khan</a>, <a href="/search/eess?searchtype=author&query=Icheln%2C+C">Clemens Icheln</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Takizawa%2C+K">Ken-ichi Takizawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.01577v1-abstract-short" style="display: inline;"> Wireless capsule endoscopy (WCE) systems are used to capture images of the human digestive tract for medical applications. The antenna is one of the most important components in a WCE system. In this paper, we provide novel small antenna solutions for a WCE system operating at the 433 MHz ISM band. The in-body capsule transmitter uses an ultrawideband outer-wall conformal loop antenna, whereas the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01577v1-abstract-full').style.display = 'inline'; document.getElementById('1804.01577v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.01577v1-abstract-full" style="display: none;"> Wireless capsule endoscopy (WCE) systems are used to capture images of the human digestive tract for medical applications. The antenna is one of the most important components in a WCE system. In this paper, we provide novel small antenna solutions for a WCE system operating at the 433 MHz ISM band. The in-body capsule transmitter uses an ultrawideband outer-wall conformal loop antenna, whereas the on-body receiver uses a printed monopole antenna with a partial ground plane. A colon-equivalent tissue phantom and CST Gustav voxel human body model were used for the numerical studies of the capsule antenna. The simulation results in the colon-tissue phantom were validated through in-vitro measurements using a liquid phantom. According to the phantom simulations, the capsule antenna has -10 dB impedance matching from 309 to 1104 MHz. The ultrawideband characteristic enables the capsule antenna to tolerate the detuning effects due to electronic modules in the capsule and due to the proximity of various different tissues in gastrointestinal tracts. The on-body antenna was numerically evaluated on the colon-tissue phantom and the CST Gustav voxel human body model, followed by in-vitro and ex-vivo measurements for validation. The on-body antenna exceeds -10 dB impedance matching from 390 MHz to 500 MHz both in simulations and measurements. Finally, this paper reports numerical and experimental studies of the path loss for the radio link between an in-body capsule transmitter and an on-body receiver using our antenna solutions. The path loss both in simulations and measurements is less than 50 dB for any capsule orientation and location. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.01577v1-abstract-full').style.display = 'none'; document.getElementById('1804.01577v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 19 figures, Journal, IEEE Transactions on Antennas and Propagation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.00847">arXiv:1804.00847</a> <span> [<a href="https://arxiv.org/pdf/1804.00847">pdf</a>, <a href="https://arxiv.org/format/1804.00847">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Modeling the Multipath Cross-Polarization Ratio for Above-6 GHz Radio Links </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Karttunen%2C+A">Aki Karttunen</a>, <a href="/search/eess?searchtype=author&query=J%C3%A4rvel%C3%A4inen%2C+J">Jan J盲rvel盲inen</a>, <a href="/search/eess?searchtype=author&query=Nguyen%2C+S+L+H">Sinh Le Hong Nguyen</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.00847v1-abstract-short" style="display: inline;"> In this paper, we parameterize an excess loss-based multipath component (MPC) cross-polarization ratio (XPR) model in indoor and outdoor environments for above-6 GHz frequency bands. The results are based on 28 measurement campaigns in several frequency bands ranging from 15 to 80 GHz. A conventional XPR model of an MPC assuming a constant mean value fits our measurements very poorly and moreover… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.00847v1-abstract-full').style.display = 'inline'; document.getElementById('1804.00847v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.00847v1-abstract-full" style="display: none;"> In this paper, we parameterize an excess loss-based multipath component (MPC) cross-polarization ratio (XPR) model in indoor and outdoor environments for above-6 GHz frequency bands. The results are based on 28 measurement campaigns in several frequency bands ranging from 15 to 80 GHz. A conventional XPR model of an MPC assuming a constant mean value fits our measurements very poorly and moreover overestimates the depolarization effect. Our measurements revealed a clear trend that the MPC XPR is inversely proportional to an excess loss in reference to the free-space path loss. The model is physically sound as a higher excess loss is attributed to more lossy interactions or to a greater number of interactions with objects, leading to a greater chance of depolarization. The measurements furthermore showed that the MPC XPR is not strongly frequency or environment dependent. In our MPC XPR model, an MPC with zero-dB excess loss has a mean XPR of 28 dB. The mean XPR decreases half-a-dB as the excess loss increases by every dB and the standard deviation around the mean is 6 dB. The model is applicable to existing channel models to reproduce realistic MPC XPRs for the above 6-GHz radio links. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.00847v1-abstract-full').style.display = 'none'; document.getElementById('1804.00847v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to IEEE Transactions on Wireless Communications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08591">arXiv:1802.08591</a> <span> [<a href="https://arxiv.org/pdf/1802.08591">pdf</a>, <a href="https://arxiv.org/format/1802.08591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Total Array Gains of Millimeter-Wave Mobile Phone Antennas Under Practical Conditions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Heino%2C+M">Mikko Heino</a>, <a href="/search/eess?searchtype=author&query=J%C3%A4rvel%C3%A4inen%2C+J">Jan J盲rvel盲inen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08591v1-abstract-short" style="display: inline;"> This paper studies a gain of an antenna array embedded on a mobile device operating at a millimeter-wave radio frequency. Assuming that mobile phones at millimeter-wave range operate with a single baseband unit and analog beamforming like phased arrays, we define a total array gain denoting a path gain of the phased antenna array in excess to the omni-directional path gain. The total array gain ci… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08591v1-abstract-full').style.display = 'inline'; document.getElementById('1802.08591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08591v1-abstract-full" style="display: none;"> This paper studies a gain of an antenna array embedded on a mobile device operating at a millimeter-wave radio frequency. Assuming that mobile phones at millimeter-wave range operate with a single baseband unit and analog beamforming like phased arrays, we define a total array gain denoting a path gain of the phased antenna array in excess to the omni-directional path gain. The total array gain circumvents the ambiguity of conventional array gain which cannot be uniquely defined as there are multiple choices of a reference single-element antenna in an array. Two types of 8-element patch antenna arrays implemented on a mobile phone chassis, i.e., uniform linear array (ULA) and distributed array (DA) both operating at 60 GHz, are studied. The gain evaluated in a small-cell scenario in an airport shows that DA achieves higher median and outage gain by up to 8 and 6 dB than ULA when different orientations of the mobile phone are considered along with body torso and finger shadowing. There are always postures of the mobile phone where ULA cannot see the line-of-sight due to directionality of the patch antenna and of body and finger shadowing, leading to outage gain of -15 dB in the worst case. The DA has much smaller variation of the gain across different orientations of the phone, even when the human torso shadowing and user's finger effects are considered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08591v1-abstract-full').style.display = 'none'; document.getElementById('1802.08591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Publication in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring 2018), Porto, Portugal, June 2018</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publication in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring 2018), Porto, Portugal, June 2018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09438">arXiv:1712.09438</a> <span> [<a href="https://arxiv.org/pdf/1712.09438">pdf</a>, <a href="https://arxiv.org/format/1712.09438">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Comparing Radio Propagation Channels Between 28 and 140 GHz Bands in a Shopping Mall </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Nguyen%2C+S+L+H">Sinh Le Hong Nguyen</a>, <a href="/search/eess?searchtype=author&query=Jarvelainen%2C+J">Jan Jarvelainen</a>, <a href="/search/eess?searchtype=author&query=Karttunen%2C+A">Aki Karttunen</a>, <a href="/search/eess?searchtype=author&query=Haneda%2C+K">Katsuyuki Haneda</a>, <a href="/search/eess?searchtype=author&query=Putkonen%2C+J">Jyri Putkonen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09438v1-abstract-short" style="display: inline;"> In this paper, we compare the radio propagation channels characteristics between 28 and 140 GHz bands based on the wideband (several GHz) and directional channel sounding in a shopping mall environment. The measurements and data processing are conducted in such a way to meet requirements for a fair comparison of large- and small- scale channel parameters between the two bands. Our results reveal t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09438v1-abstract-full').style.display = 'inline'; document.getElementById('1712.09438v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09438v1-abstract-full" style="display: none;"> In this paper, we compare the radio propagation channels characteristics between 28 and 140 GHz bands based on the wideband (several GHz) and directional channel sounding in a shopping mall environment. The measurements and data processing are conducted in such a way to meet requirements for a fair comparison of large- and small- scale channel parameters between the two bands. Our results reveal that there is high spatial-temporal correlation between 28 and 140 GHz channels, similar numbers of strong multipath components, and only small variations in the large-scale parameters between the two bands. Furthermore, when including the weak paths there are higher total numbers of clusters and paths in 28 GHz as compared to those in 140 GHz bands. With these similarities, it would be very interesting to investigate the potentials of using 140 GHz band in the future mobile radio communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09438v1-abstract-full').style.display = 'none'; document.getElementById('1712.09438v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been accepted to the 2018 12th European Conference on Antennas and Propagation (EuCAP), London, UK, April 2018</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>