CINXE.COM

Search results for: cespitulactam peroxide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: cespitulactam peroxide</title> <meta name="description" content="Search results for: cespitulactam peroxide"> <meta name="keywords" content="cespitulactam peroxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="cespitulactam peroxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="cespitulactam peroxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 221</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: cespitulactam peroxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Novel Verticillane-Type Diterpenoid from the Formosan Soft Coral Cespitularia taeniata</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Chi%20Lin">Yu-Chi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Sheng%20Lin"> Yun-Sheng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ching%20Liaw"> Chia-Ching Liaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Yu%20Chen"> Ching-Yu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Liang%20Chao"> Chien-Liang Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang-Hung%20Chou"> Chang-Hung Chou</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya-Ching%20Shen"> Ya-Ching Shen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel diterpenoid, cespitulactam peroxide (1), was isolated from the Formosan Soft Coral Cespitularia taeniata. Compound 1 possesses a verticillene skeleton having a γ-lactam fused with 1,2-dioxetane ring system. The structure of 1 was elucidated on the basis of spectroscopic analyses, especially HRMS and 2D NMR experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cespitularia%20hypotentaculata" title="Cespitularia hypotentaculata">Cespitularia hypotentaculata</a>, <a href="https://publications.waset.org/abstracts/search?q=diterpenoid" title=" diterpenoid"> diterpenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide" title=" cespitulactam peroxide"> cespitulactam peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-lactam" title=" γ-lactam"> γ-lactam</a> </p> <a href="https://publications.waset.org/abstracts/15211/novel-verticillane-type-diterpenoid-from-the-formosan-soft-coral-cespitularia-taeniata" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15211.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">593</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Sonochemical Zinc Oxide and Layered Hydroxy Zinc Acetate Synthesis in Fenton-Like Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Durata%20Haciu">Durata Haciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozgur%20Birer"> Ozgur Birer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zinc acetate solution is sonicated at high power in water and in ethanol in the absence and presence of various peroxides. In the absence of peroxides, the products are zinc oxide and layered hydroxy zinc acetate in water and in ethanol, respectively. Layered basic zinc acetate are prepared for the first time using sonochemical methods. The addition of peroxides alters the reaction mechanisms. In water, insoluble peroxides produce zinc oxides while the water soluble peroxide, i.e.hydrogen peroxide, completely destroyed the structure and casted a doubt on the accepted peroxide initiated mechanism of reactions. In ethanol,peroxide addition caused the reaction mechanism to change and some oxide formation is observed. The reaction mechanism is sensitive to water/ethanol amounts as well as the peroxide to zinc ion mole ratio.Thin zinc oxide wafers (ca. 30 nm) with band gaps of 3.24 eV were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound" title="ultrasound">ultrasound</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxy%20zinc%20acetate" title=" hydroxy zinc acetate"> hydroxy zinc acetate</a>, <a href="https://publications.waset.org/abstracts/search?q=fenton" title=" fenton"> fenton</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20initiation" title=" peroxide initiation "> peroxide initiation </a> </p> <a href="https://publications.waset.org/abstracts/59279/sonochemical-zinc-oxide-and-layered-hydroxy-zinc-acetate-synthesis-in-fenton-like-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> Hydrogen Peroxide: A Future for Well Stimulation and Heavy Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meet%20Bhatia">Meet Bhatia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Well stimulation and heavy oil recovery continue to be a hot topic in our industry, particularly with formation damage and viscous oil respectively. Cyclic steam injection has been recognised for most of the operations related to heavy oil recovery. However, the cost of implementation is high and operation is time-consuming, moreover most of the viscous oil reservoirs such as oil sands, Bitumen deposits and oil shales require additional treatment of well stimulation. The use of hydrogen peroxide can efficiently replace the cyclic steam injection process as it can be used for both well stimulation and heavy oil recovery simultaneously. The decomposition of Hydrogen peroxide produces oxygen, superheated steam and heat. The increase in temperature causes clays to shrink, destroy carbonates and remove emulsion thus it can efficiently remove the near wellbore damage. The paper includes mechanisms, parameters to be considered and the challenges during the treatment for the effective hydrogen peroxide injection for both conventional and heavy oil reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title="hydrogen peroxide">hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20stimulation" title=" well stimulation"> well stimulation</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20oil%20recovery" title=" heavy oil recovery"> heavy oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20injection" title=" steam injection"> steam injection</a> </p> <a href="https://publications.waset.org/abstracts/67125/hydrogen-peroxide-a-future-for-well-stimulation-and-heavy-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zohreh%20Rashmei">Zohreh Rashmei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma" title="plasma">plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20coli" title=" E. coli"> E. coli</a> </p> <a href="https://publications.waset.org/abstracts/123051/effect-of-hydrogen-peroxide-concentration-produced-by-cold-atmospheric-plasma-on-inactivation-of-escherichia-coli-in-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> Interventions to Control Listeria Monocytogenes on Sliced Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alanna%20Goodman">Alanna Goodman</a>, <a href="https://publications.waset.org/abstracts/search?q=Kayla%20Murray"> Kayla Murray</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Warriner"> Keith Warriner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following reports on a comparative study on the efficacy of different decontamination technologies to decrease Listeria monocytogenes inoculated onto white sliced mushrooms and assesses the fate of residual levels during posttreatment storage under aerobic conditions at 8uC. The treatments were chemical (hydrogen peroxide, peroxyacetic acid, ozonated water, electrolyzed water, chitosan, lactic acid), biological (Listeria bacteriophages), and physical (UV-C, UV:hydrogen peroxide). None of the treatments achieved .1.2 log CFU reduction in L. monocytogenes levels; bacteriophages at a multiplicity of infection of 100 and 3% (vol/vol) hydrogen peroxide were the most effective of the treatments tested. However, growth of residual L. monocytogenes during posttreatment storage attained levels equal to or greater than levels in the nontreated controls. The growth of L. monocytogenes was inhibited on mushrooms treated with chitosan, electrolyzed water, peroxyacetic acid, or UV. Yet, L. monocytogenes inoculated onto mushrooms and treated with UV:hydrogen peroxide decreased during posttreatment storage, through a combination of sublethal injury and dehydration of the mushroom surface. Although mushrooms treated with UV:hydrogen peroxide became darker during storage, the samples were visually acceptable relative to controls. In conclusion, of the treatments evaluated, UV:hydrogen peroxide holds promise to control L. monocytogenes on mushroom surfaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listeria%20monocytogenes" title="listeria monocytogenes">listeria monocytogenes</a>, <a href="https://publications.waset.org/abstracts/search?q=sliced%20mushrooms" title=" sliced mushrooms"> sliced mushrooms</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriophages" title=" bacteriophages"> bacteriophages</a>, <a href="https://publications.waset.org/abstracts/search?q=UV" title=" UV"> UV</a>, <a href="https://publications.waset.org/abstracts/search?q=sanitizers" title=" sanitizers"> sanitizers</a> </p> <a href="https://publications.waset.org/abstracts/29760/interventions-to-control-listeria-monocytogenes-on-sliced-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29760.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Application of Hydrogen Peroxide and Polialuminum Chloride to Treat Palm Oil Mill Wastewater by Electrocoagulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Nasrullah">M. Nasrullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Norsita"> Siti Norsita</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhveer%20Singh"> Lakhveer Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20W.%20Zulrisam"> A. W. Zulrisam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mimi%20Sakinah"> Mimi Sakinah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of this study were to investigate the effects of polyaluminum chloride (PAC) and hydrogen peroxide on COD removal by electrocoagulation. The current density was varied between 30-80 mA cm−2, polyaluminum chloride (1-3 g L-1) as coagulant aid and 1 and 2 percent of hydrogen peroxide as an oxidizing agent. It has been shown that 86.67% of COD was removed by the iron electrode in 180 min while 81.11% of COD was removed by the aluminum electrode in 210 min which indicate that iron was more effective than aluminum. As much as 88.25% COD was removed by using 80 mA cm−2 as compared to 72.86% by using 30 mA cm−2 in 240 min. When PAC and H2O2 increased, the percent of COD removal was increasing as well. The highest removal efficiency of 95.08% was achieved by adding 2% of H2O2 in addition of 3 g L−1 PAC. The general results demonstrate that electrocoagulation is very efficient and able to achieve more than 70% COD removal in 180 min at current density 30-80 mAcm-2 depending on the concentration of H2O2 and coagulant aid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrocaogulation" title="electrocaogulation">electrocaogulation</a>, <a href="https://publications.waset.org/abstracts/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=polialuminum%20chloride" title=" polialuminum chloride"> polialuminum chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20oxygen%20demand" title=" chemical oxygen demand"> chemical oxygen demand</a> </p> <a href="https://publications.waset.org/abstracts/39820/application-of-hydrogen-peroxide-and-polialuminum-chloride-to-treat-palm-oil-mill-wastewater-by-electrocoagulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Electrodeposited Silver Nanostructures: A Non-Enzymatic Sensor for Hydrogen Peroxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mandana%20Amiri">Mandana Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sima%20Nouhi"> Sima Nouhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Yashar%20Azizan-Kalandaragh"> Yashar Azizan-Kalandaragh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Silver nanostructures have been successfully fabricated by using electrodeposition method onto indium-tin-oxide (ITO) substrate. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and ultraviolet-visible spectroscopy (UV-Vis) techniques were employed for characterization of silver nanostructures. The results show nanostructures with different morphology and electrochemical properties can be obtained by various the deposition potentials and times. Electrochemical behavior of the nanostructures has been studied by using cyclic voltammetry. Silver nanostructures exhibits good electrocatalytic activity towards the reduction of H<sub>2</sub>O<sub>2</sub>. The presented electrode can be employed as sensing element for hydrogen peroxide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20sensor" title="electrochemical sensor">electrochemical sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodeposition" title=" electrodeposition"> electrodeposition</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanostructures" title=" silver nanostructures "> silver nanostructures </a> </p> <a href="https://publications.waset.org/abstracts/21938/electrodeposited-silver-nanostructures-a-non-enzymatic-sensor-for-hydrogen-peroxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">512</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Synthesis of Cationic Bleach Activator for Textile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Altay">Pelin Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Shafei"> Ahmed El-Shafei</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20J.%20Hauser"> Peter J. Hauser</a>, <a href="https://publications.waset.org/abstracts/search?q=Nevin%20Cigdem%20Gursoy"> Nevin Cigdem Gursoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exceedingly high temperatures are used (around 95 °C) to perform hydrogen peroxide bleaching of cotton fabrics in textile industry, which results in high energy consumption and also gives rise to significant fiber damage. Activated bleach systems have the potential to produce more efficient bleaching through increased oxidation rates with reducing energy cost, saving time and causing less fiber damage as compared to conventional hot peroxide bleaching. In this study, a cationic bleach activator was synthesized using caprolactam as a leaving group and triethylamine as a cationic group to establish an activated peroxide system for low temperature bleaching. Cationic bleach activator was characterized by FTIR, 1H NMR and mass spectrometry. The bleaching performance of the prototype cationic bleach activator was evaluated and optimizing the bleach recipe was performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleach%20activator" title="bleach activator">bleach activator</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20bleaching" title=" cotton bleaching"> cotton bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide%20bleaching" title=" hydrogen peroxide bleaching"> hydrogen peroxide bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20bleaching" title=" low temperature bleaching"> low temperature bleaching</a> </p> <a href="https://publications.waset.org/abstracts/56078/synthesis-of-cationic-bleach-activator-for-textile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Simple Rheological Method to Estimate the Branch Structures of Polyethylene under Reactive Modification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Golriz">Mahdi Golriz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to estimate the change in molecular structure of linear low-density polyethylene (LLDPE) during peroxide modification can be detected by a simple rheological method. For this purpose a commercial grade LLDPE (Exxon MobileTM LL4004EL) was reacted with different doses of dicumyl peroxide (DCP). The samples were analyzed by size-exclusion chromatography coupled with a light scattering detector. The dynamic shear oscillatory measurements showed a deviation of the δ-׀G ׀٭curve from that of the linear LLDPE, which can be attributed to the presence of long-chain branching (LCB). By the use of a simple rheological method that utilizes melt rheology, transformations in molecular architecture induced on an originally linear low density polyethylene during the early stages of reactive modification were indicated. Reasonable and consistent estimates are obtained, concerning the degree of LCB, the volume fraction of the various molecular species produced in peroxide modification of LLDPE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=linear%20low-density%20polyethylene" title="linear low-density polyethylene">linear low-density polyethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20modification" title=" peroxide modification"> peroxide modification</a>, <a href="https://publications.waset.org/abstracts/search?q=long-chain%20branching" title=" long-chain branching"> long-chain branching</a>, <a href="https://publications.waset.org/abstracts/search?q=rheological%20method" title=" rheological method"> rheological method</a> </p> <a href="https://publications.waset.org/abstracts/123353/simple-rheological-method-to-estimate-the-branch-structures-of-polyethylene-under-reactive-modification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Physicochemical Analysis of Soxhlet Extracted Oils from Selected Northern Nigerian Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulhamid%20Abubakar">Abdulhamid Abubakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sani%20Ibrahim"> Sani Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fakai%20I.%20Musa"> Fakai I. Musa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study is to investigate the potential use of the selected seed oils. The oil was extracted using Soxhlet apparatus and the physicochemical characteristics of the oil determined using standard methods. The following results were obtained for the physicochemical parameters analysed: for Egusi seed oil, Oil yield 53.20%, Saponification value 178.03±1.25 mgKOH/g, iodine value 49.10±0.32 g I2/100 g, acid value 4.30±0.86 mgKOH/g, and Peroxide value 5.80±0.27 meq/kg were obtained. For Pawpaw seed oil, Oil yield 40.10%, Saponification value 24.13±3.93 mgKOH/g, iodine value 24.87±0.19 g I2/100g, acid value 9.46±0.40 mgKOH/g, and Peroxide value 3.12±1.22 meq/kg were obtained. For Sweet orange seed oil, oil yield 43.10%, Saponification value 106.30±2.37 mgKOH/g, Iodine value 37.08±0.04 g I2/100g, acid value 7.59±0.77 mgKOH/g, and Peroxide value 2.21±0.46 meq/kg were obtained. From the obtained values of the determined parameters, the oils can be extracted from the three selected seeds in commercial quantities and that the egusi and sweet orange seed oils may be utilized in the industrial soap production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carica%20papaya" title="Carica papaya">Carica papaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Citrus%20sinensis" title=" Citrus sinensis"> Citrus sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical" title=" physicochemical"> physicochemical</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20value" title=" iodine value"> iodine value</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20value" title=" peroxide value"> peroxide value</a> </p> <a href="https://publications.waset.org/abstracts/15152/physicochemical-analysis-of-soxhlet-extracted-oils-from-selected-northern-nigerian-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Definition of Quality Indicators for Damascus Rose Oil (Rosa damascena) Flora of Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serebryanaya%20Fatima">Serebryanaya Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=Essaih%20Hind"> Essaih Hind</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Rosa damascena (Rosa damascena Mill.) is an interesting medicinal plant; it is famous in different countries and has medicinal use in many cultures. The main groups of pharmacological actions of rose oil are connected with anti-inflammatory, antifungal activity, also antioxidant and antibacterial, and antiparasitic properties. We have prepared the quality indicators analysis of the Damascus rose oil. An iodine number, acid number, and oil peroxide number were determined. The following indicators of the quality of rose oil have been studied. The determination was carried out according to the pharmacopoeic methods of analysis of essential oils, the definition of peroxide number (1,971%), iodine number (3,365%), and acid number (0,0526%). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosa%20damascene" title="Rosa damascene">Rosa damascene</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20damascena%20Mill." title=" Rosa damascena Mill."> Rosa damascena Mill.</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine%20number" title=" iodine number"> iodine number</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20number" title=" acid number"> acid number</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20peroxide%20number" title=" oil peroxide number"> oil peroxide number</a> </p> <a href="https://publications.waset.org/abstracts/159900/definition-of-quality-indicators-for-damascus-rose-oil-rosa-damascena-flora-of-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Javanmard">M. Javanmard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0&ndash;10%), carbon dioxide (0-10%), and temperature (4-26 &deg;C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p &lt; 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO<sub>2</sub> percentage caused the peroxide value to decrease, but did not significantly affect other indices (p &ge; 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 &deg;C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shelled%20walnut" title="shelled walnut">shelled walnut</a>, <a href="https://publications.waset.org/abstracts/search?q=MAP" title=" MAP"> MAP</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20temperature" title=" storage temperature"> storage temperature</a> </p> <a href="https://publications.waset.org/abstracts/20267/effect-of-modified-atmosphere-packaging-and-storage-temperatures-on-quality-of-shelled-raw-walnuts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> The Impact of Initiators on Fast Drying Traffic Marking Paint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Taheri">Maryam Taheri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Jahanfar"> Mehdi Jahanfar</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenji%20Ogino"> Kenji Ogino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast drying traffic marking paint comprising a solvent-borne resin, a filler, a pigment and a solvent that is especially suitable for colder ambient (temperatures near freezing) applications, where waterborne traffic paint cannot be used. Acrylic resins based on methyl methacrylate, butyl acrylate, acrylic acid, and styrene were synthesized in different solvents using organic peroxide initiators such as peroxyester, peroxyketal, dialkylperoxide and azo. After polymerization, the molecular weight (Mw), polydispersity index= PDI (Mw/Mn), viscosity, total residual monomer and APHA color were evaluated and results of organic peroxide initiators (t- butyl and t-amyl derivatives) were also compared with the azo initiator. The Mw, PDI, viscosity, mass conversation and APHA color of resins with t-amyl derivatives of organic peroxide initiators are very proper. The results of the traffic marking paints test such as non-volatile matter, no- pick- up time, hiding power, resistance to wear and water resistance study that produced with these resins also confirm this. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20drying%20traffic%20marking%20paint" title="fast drying traffic marking paint">fast drying traffic marking paint</a>, <a href="https://publications.waset.org/abstracts/search?q=acrylic%20resin" title=" acrylic resin"> acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20peroxide%20initiator" title=" organic peroxide initiator"> organic peroxide initiator</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxyester" title=" peroxyester"> peroxyester</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxyketal" title=" peroxyketal"> peroxyketal</a>, <a href="https://publications.waset.org/abstracts/search?q=dialkylperoxide%20and%20azo%20initiator" title=" dialkylperoxide and azo initiator"> dialkylperoxide and azo initiator</a> </p> <a href="https://publications.waset.org/abstracts/82325/the-impact-of-initiators-on-fast-drying-traffic-marking-paint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82325.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Contribution of Hydrogen Peroxide in the Selective Aspect of Prostate Cancer Treatment by Cold Atmospheric Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxime%20Moreau">Maxime Moreau</a>, <a href="https://publications.waset.org/abstracts/search?q=Silv%C3%A8re%20Baron"> Silvère Baron</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Marc%20Lobaccaro"> Jean-Marc Lobaccaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Karine%20Charlet"> Karine Charlet</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%A9bastien%20Menecier"> Sébastien Menecier</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Perisse"> Frédéric Perisse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold Atmospheric Plasma (CAP) is an ionized gas generated at atmospheric pressure with the temperature of heavy particles (molecules, ions, atoms) close to the room temperature. Recent studies have shown that both in-vitro and in-vivo plasma exposition to many cancer cell lines are efficient to induce the apoptotic way of cell death. In some other works, normal cell lines seem to be less impacted by plasma than cancer cell lines. This is called selectivity of plasma. It is highly likely that the generated RNOS (Reactive Nitrogen Oxygen Species) in the plasma jet, but also in the medium, play a key-role in this selectivity. In this study, two CAP devices will be compared to electrical power, chemical species composition and their efficiency to kill cancer cells. A particular focus on the action of hydrogen peroxide will be made. The experiments will take place as described next for both devices: electrical and spectroscopic characterization for different voltages, plasma treatment of normal and cancer cells to compare the CAP efficiency between cell lines and to show that death is induced by an oxidative stress. To enlighten the importance of hydrogen peroxide, an inhibitor of H2O2 will be added in cell culture medium before treatment and a comparison will be made between the results of cell viability in this case and those from a simple plasma exposition. Besides, H2O2 production will be measured by only treating medium with plasma. Cell lines will also be exposed to different concentrations of hydrogen peroxide in order to characterize the cytotoxic threshold for cells and to make a comparison with the quantity of H2O2 produced by CAP devices. Finally, the activity of catalase for different cell lines will be quantified. This enzyme is an important antioxidant agent against hydrogen peroxide. A correlation between cells response to plasma exposition and this activity could be a strong argument in favor of the predominant role of H2O2 to explain the selectivity of plasma cancer treatment by cold atmospheric plasma. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cold%20atmospheric%20plasma" title="cold atmospheric plasma">cold atmospheric plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=selectivity" title=" selectivity"> selectivity</a> </p> <a href="https://publications.waset.org/abstracts/153096/contribution-of-hydrogen-peroxide-in-the-selective-aspect-of-prostate-cancer-treatment-by-cold-atmospheric-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> A Homogeneous Catalytic System for Decolorization of a Mixture of Orange G Acid and Naphthol Blue-Black Dye Based on Hydrogen Peroxide and a Recyclable DAWSON Type Heteropolyanion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ouahiba%20Bechiri">Ouahiba Bechiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostefa%20Abbessi"> Mostefa Abbessi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The color removal from industrial effluents is a major concern in wastewater treatment. The main objective of this work was to study the decolorization of a mixture of Orange G acid (OG) and naphthol blue black dye (NBB) in aqueous solution by hydrogen peroxide using [H1,5Fe1,5P2W12Mo6O61,23H2O] as catalyst. [H1,5Fe1,5P2 W12Mo6O61,23H2O] is a recyclable DAWSON type heteropolyanion. Effects of various experimental parameters of the oxidation reaction of the dye were investigated. The studied parameters were: the initial pH, H2O2 concentration, the catalyst mass and the temperature. The optimum conditions had been determined, and it was found that efficiency of degradation obtained after 15 minutes of reaction was about 100%. The optimal parameters were: initial pH = 3; [H2O2]0 = 0.08 mM; catalyst mass = 0.05g; for a concentration of dyes = 30mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dawson%20type%20heteropolyanion" title="Dawson type heteropolyanion">Dawson type heteropolyanion</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthol%20blue-black" title=" naphthol blue-black"> naphthol blue-black</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20degradation" title=" dye degradation"> dye degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20G%20acid" title=" orange G acid"> orange G acid</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a> </p> <a href="https://publications.waset.org/abstracts/20122/a-homogeneous-catalytic-system-for-decolorization-of-a-mixture-of-orange-g-acid-and-naphthol-blue-black-dye-based-on-hydrogen-peroxide-and-a-recyclable-dawson-type-heteropolyanion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Akbari%20Khorami">H. Akbari Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Wild"> P. Wild</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Djilali"> N. Djilali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20deposition" title="chemical deposition">chemical deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber-optic%20sensor" title=" fiber-optic sensor"> fiber-optic sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide%20vapor" title=" hydrogen peroxide vapor"> hydrogen peroxide vapor</a>, <a href="https://publications.waset.org/abstracts/search?q=prussian%20blue" title=" prussian blue"> prussian blue</a> </p> <a href="https://publications.waset.org/abstracts/35449/fiber-optic-sensors-for-hydrogen-peroxide-vapor-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Strength &amp; Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shashank%20Gupta">Shashank Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiva%20Garg"> Shiva Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AAC" title="AAC">AAC</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20curing" title=" steam curing"> steam curing</a> </p> <a href="https://publications.waset.org/abstracts/13434/strength-density-of-an-autoclaved-aerated-concrete-using-various-air-entraining-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Effect of Tooth Bleaching Agents on Enamel Demineralisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Najlaa%20Yousef%20Qusti">Najlaa Yousef Qusti</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20J.%20Brookes"> Steven J. Brookes</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20A.%20Brunton"> Paul A. Brunton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Tooth discoloration can be an aesthetic problem, and tooth whitening using carbamide peroxide bleaching agents are a popular treatment option. However, there are concerns about possible adverse effects such as demineralisation of the bleached enamel; however, the cause of this demineralisation is unclear. Introduction: Teeth can become stained or discoloured over time. Tooth whitening is an aesthetic solution for tooth discoloration. Bleaching solutions of 10% carbamide peroxide (CP) have become the standard agent used in dentist-prescribed and home-applied ’vital bleaching techniques’. These materials release hydrogen peroxide (H₂O₂), the active whitening agent. However, there is controversy in the literature regarding the effect of bleaching agents on enamel integrity and enamel mineral content. The purpose of this study was to establish if carbamide peroxide bleaching agents affect the acid solubility of enamel (i.e., make teeth more prone to demineralisation). Materials and Methods: Twelve human premolar teeth were sectioned longitudinally along the midline and varnished to leave the natural enamel surface exposed. The baseline behavior of each tooth half in relation to its demineralisation in acid was established by sequential exposure to 4 vials containing 1ml of 10mM acetic acid (1 minute/vial). This was followed by exposure to 10% CP for 8 hours. After washing in distilled water, the tooth half was sequentially exposed to 4 further vials containing acid to test if the acid susceptibility of the enamel had been affected. The corresponding tooth half acted as a control and was exposed to distilled water instead of CP. The mineral loss was determined by measuring [Ca²⁺] and [PO₄³⁻] released in each vial using a calcium ion-selective electrode and the phosphomolybdenum blue method, respectively. The effect of bleaching on the tooth surfaces was also examined using SEM. Results: Exposure to carbamide peroxide did not significantly alter the susceptibility of enamel to acid attack, and SEM of the enamel surface revealed a slight alteration in surface appearance. SEM images of the control enamel surface showed a flat enamel surface with some shallow pits, whereas the bleached enamel appeared with an increase in surface porosity and some areas of mild erosion. Conclusions: Exposure to H₂O₂ equivalent to 10% CP does not significantly increase subsequent acid susceptibility of enamel as determined by Ca²⁺ release from the enamel surface. The effects of bleaching on mineral loss were indistinguishable from distilled water in the experimental system used. However, some surface differences were observed by SEM. The phosphomolybdenum blue method for phosphate is compromised by peroxide bleaching agents due to their oxidising properties. However, the Ca²⁺ electrode is unaffected by oxidising agents and can be used to determine the mineral loss in the presence of peroxides. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleaching" title="bleaching">bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=carbamide%20peroxide" title=" carbamide peroxide"> carbamide peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=demineralisation" title=" demineralisation"> demineralisation</a>, <a href="https://publications.waset.org/abstracts/search?q=teeth%20whitening" title=" teeth whitening"> teeth whitening</a> </p> <a href="https://publications.waset.org/abstracts/132807/effect-of-tooth-bleaching-agents-on-enamel-demineralisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Effect of Application of Turmeric Extract Powder Solution on the Color Changes of Non-Vital Teeth (An In-vitro study).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haidy%20N.%20Salem">Haidy N. Salem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nada%20O.%20Kamel"> Nada O. Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahinaz%20N.%20Hassan"> Shahinaz N. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20M.%20Elhefnawy"> Sherif M. Elhefnawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: to assess the effect of using turmeric powder extract on changes of tooth color with extra-coronal and intra-coronal bleaching methods. Methods: Turmeric powder extract was weighted and mixed with two different hydrogen peroxide concentrations (3% and 6%) to be used as a bleaching agent. Thirty teeth were allocated into three groups (n=10): Group A: Bleaching agent (6%) was applied on the labial surface, Group B: Bleaching agent (3%) was applied inside the pulp chamber and Group C: Extra and intra-coronal bleaching techniques were used (6% and 3% respectively). A standardized access cavity was opened in the palatal surface of each tooth in both Groups B and C. Color parameters were measured using a spectrophotometer. Results: A statistically significant difference in color difference values (∆E*) and enamel brightness (∆L*) was found between Group C and each of Groups A and B. There was no statistically significant difference in (∆E*) and (∆L*) between Group A and Group B. The highest mean value of (∆E*) and (∆L*) was found in Group C, while the least mean value was found in Group B. Conclusion: Bleaching the external and internal tooth structure with low concentrations of hydrogen peroxide solution mixed with turmeric extract has a promising effect in color enhancement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bleaching" title="bleaching">bleaching</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrophotometer" title=" spectrophotometer"> spectrophotometer</a>, <a href="https://publications.waset.org/abstracts/search?q=turmeric" title=" turmeric"> turmeric</a> </p> <a href="https://publications.waset.org/abstracts/157800/effect-of-application-of-turmeric-extract-powder-solution-on-the-color-changes-of-non-vital-teeth-an-in-vitro-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">202</span> Implications of Oxidative Stress for Monoterpenoid Oxindole Alkaloid Production in Uncaria tomentosa Cultures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20C.%20Ramos%20Valdivia">Ana C. Ramos Valdivia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ileana%20Vera-Reyes"> Ileana Vera-Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ariana%20A.%20Huerta-Heredia"> Ariana A. Huerta-Heredia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conditions of biotic and abiotic stress in plants can lead to the generation of high amounts of reactive oxygen species (ROS), which leads through a signaling cascade and second messengers to different antioxidant defense responses including the production of secondary metabolites. A limited number of species of plants like Uncaria tomentosa (cat claw) typical of the Amazon region produce monoterpenoid oxindole alkaloids (MOA) such as isopteropodine, mitraphylline, rhynchophylline and its isomers. Moreover, in cultivated roots, the glucoindole alkaloid 3α-dihydrocadambine (DHC) is also accumulated. Several studies have demonstrated that MAO has antioxidant properties and possess important pharmacological activities such as antitumor and immunostimulant while DHC, has hypotensive and hypolipidemic effects. In order the study the regulatory concerns operating in MAO production, the links between oxidative stress and antioxidant alkaloid production in U. tomentosa root cultures were examined. Different amount of hydrogen peroxide between 0.2 -1.0 mM was added to 12 days old roots cultures showing that, this substance had a differential effect on the production of DHC and MOA whereas the viability remained in 80% after six days. Addition of 0.2 mM hydrogen peroxide increased approximately 65% MAO and DHC production (0,540 ± 0.018 and 0.618 ± 0.029 mg per g dry weight, respectively) relative to the control. On contrast, after the addition of 0.6 mM and 1 mM hydrogen peroxide, DHC accumulation into the roots gradually decreased to 53% and 93% respectively, without changes in MAO concentration, which was in relation to a twice increase of the intracellular hydrogen peroxide content. On the other hand, concentrations of DHC (0.1, 0.5 and 1.0 mM in methanol) demonstrated free-radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The calculated IC50 for all tested concentrations was 0.180 mg per ml (0.33 mM) while the calculated TE50 was 276 minutes. Our results suggest that U. tomentosa root cultures both MAO and DHC have antioxidant capacities and respond to oxidative stress with a stimulation of their production; however, in presence of a higher concentration of ROS into the roots, DHC could be oxidized. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=monoterpenoid%20indole%20alkaloid" title="monoterpenoid indole alkaloid">monoterpenoid indole alkaloid</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20cultures" title=" root cultures"> root cultures</a>, <a href="https://publications.waset.org/abstracts/search?q=uncaria%20tomentosa" title=" uncaria tomentosa"> uncaria tomentosa</a> </p> <a href="https://publications.waset.org/abstracts/71305/implications-of-oxidative-stress-for-monoterpenoid-oxindole-alkaloid-production-in-uncaria-tomentosa-cultures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">201</span> Comparative Analysis of Oil Extracts from Cotton and Watermelon Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Jumare">S. A. Jumare</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20O.%20Tijani"> A. O. Tijani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20Siraj"> M. F. Siraj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Babatunde"> B. V. Babatunde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated the comparative analysis of oil extracted from cotton and watermelon seeds using solvent extraction process. Normal ethyl-ether was used as solvent in the extraction process. The AOAC method of Analysis was employed in the determination of the physiochemical properties of the oil. The chemical properties of the oil determined include the saponification value, free fatty acid, iodine value, peroxide value and acid value. The physical properties of the oil determined include specific gravity, refractive index, colour, odour, taste and pH. The value obtained for cottonseed oil are saponification value (187mgKOH/g), free fatty acid (5.64mgKOH/g), iodine value (95.2g/100), peroxide value (9.33meq/kg), acid value (11.22mg/KOH/g), pH value (4.62), refractive index (1.46), and specific gravity (0.9) respectively, it has a bland odour, a reddish brown colour and a mild taste. The values obtained for watermelon seed oil are saponification value (83.3mgKOH/g), free fatty acid (6.58mg/KOH/g), iodine value (122.6g/100), peroxide value (5.3meq/kg), acid value (3.74mgKOH/g), pH value (6.3), refractive index (1.47), and specific gravity (0.9) respectively, it has a nutty flavour, a golden yellow colour and a mild taste. From the result obtained, it shows that cottonseed oil has high acid value which shows the stability of the oil and its stability to rancidity. Consequently, watermelon seed oil is order wise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extraction" title="extraction">extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent" title=" solvent"> solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20seeds" title=" cotton seeds"> cotton seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=watermelon%20seeds" title=" watermelon seeds"> watermelon seeds</a> </p> <a href="https://publications.waset.org/abstracts/26575/comparative-analysis-of-oil-extracts-from-cotton-and-watermelon-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">200</span> Leaching of Copper from Copper Ore Using Sulphuric Acid in the Presence of Hydrogen Peroxide as an Oxidizing Agent: An Optimized Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilary%20Rutto">Hilary Rutto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leaching with acids are the most commonly reagents used to remove copper ions from its copper ores. It is important that the process conditions are optimized to improve the leaching efficiency. In the present study the effects of pH, oxidizing agent (hydrogen peroxide), stirring speed, solid to liquid ratio and acid concentration on the leaching of copper ions from it ore were investigated using a pH Stat apparatus. Copper ions were analyzed at the end of each experiment using Atomic Absorption (AAS) machine. Results showed that leaching efficiency improved with an increase in acid concentration, stirring speed, oxidizing agent, pH and decreased with an increase in the solid to liquid ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=leaching" title="leaching">leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidizing%20agent" title=" oxidizing agent"> oxidizing agent</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stat%20apparatus" title=" pH stat apparatus"> pH stat apparatus</a> </p> <a href="https://publications.waset.org/abstracts/22113/leaching-of-copper-from-copper-ore-using-sulphuric-acid-in-the-presence-of-hydrogen-peroxide-as-an-oxidizing-agent-an-optimized-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">199</span> Comparison Physicochemical Properties of Hexane Extracted Aniseed Oil from Cold Press Extraction Residue and Cold Press Aniseed Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Derya%20%C3%96ren">Derya Ören</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeyma%20Akal%C4%B1n"> Şeyma Akalın</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cold pres technique is a traditional method to obtain oil. The cold-pressing procedure, involves neither heat nor chemical treatments, so cold press technique has low oil yield and cold pressed herbal material residue still contains some oil. In this study, the oil that is remained in the cold pressed aniseed extracted with hegzan and analysed to determine physicochemical properties and quality parameters. It is found that the aniseed after cold press process contains % 10 oil. Other analysis parametres free fatty acid (FFA) is 2,1 mgKOH/g, peroxide value is 7,6 meq02/kg. Cold pressed aniseed oil values are determined for fatty acid (FFA) value as 2,1 mgKOH/g, peroxide value 4,5 meq02/kg respectively. Also fatty acid composition is analysed, it is found that both of these oil have same fatty acid composition. The main fatty acids are; oleic, linoleic, and palmitic acids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aniseed%20oil" title="aniseed oil">aniseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20press" title=" cold press"> cold press</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=residue" title=" residue"> residue</a> </p> <a href="https://publications.waset.org/abstracts/37167/comparison-physicochemical-properties-of-hexane-extracted-aniseed-oil-from-cold-press-extraction-residue-and-cold-press-aniseed-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">198</span> Development of Self-Reliant Satellite-Level Propulsion System by Using Hydrogen Peroxide Propellant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20J.%20Liu">H. J. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20A.%20Chan"> Y. A. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20K.%20Pai"> C. K. Pai</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Tseng"> K. C. Tseng</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Chen"> Y. H. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Chan"> Y. L. Chan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20C.%20Kuo"> T. C. Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To satisfy the mission requirement of the FORMOSAT-7 project, NSPO has initialized a self-reliant development on satellite propulsion technology. A trade-off study on different types of on-board propulsion system has been done. A green propellant, high-concentration hydrogen peroxide (H2O2 hereafter), is chosen in this research because it is ITAR-free, nontoxic and easy to produce. As the components designed for either cold gas or hydrazine propulsion system are not suitable for H2O2 propulsion system, the primary objective of the research is to develop the components compatible with H2O2. By cooperating with domestic research institutes and manufacturing vendors, several prototype components, including a diaphragm-type tank, pressure transducer, ball latching valve, and one-Newton thruster with catalyst bed, were manufactured, and the functional tests were performed successfully according to the mission requirements. The requisite environmental tests, including hot firing test, thermal vaccum test, vibration test and compatibility test, are prepared and will be to completed in the near future. To demonstrate the subsystem function, an Air-Bearing Thrust Stand (ABTS) and a real-time Data Acquisition & Control System (DACS) were implemented to assess the performance of the proposed H2O2 propulsion system. By measuring the distance that the thrust stand has traveled in a given time, the thrust force can be derived from the kinematics equation. To validate the feasibility of the approach, it is scheduled to assess the performance of a cold gas (N2) propulsion system prior to the H2O2 propulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FORMOSAT-7" title="FORMOSAT-7">FORMOSAT-7</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20propellant" title=" green propellant"> green propellant</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogen%20peroxide" title=" Hydrogen peroxide"> Hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thruster" title=" thruster"> thruster</a> </p> <a href="https://publications.waset.org/abstracts/30721/development-of-self-reliant-satellite-level-propulsion-system-by-using-hydrogen-peroxide-propellant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">197</span> Recovery of Fried Soybean Oil Using Bentonite as an Adsorbent: Optimization, Isotherm and Kinetics Studies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prakash%20Kumar%20Nayak">Prakash Kumar Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20Kumar"> Avinash Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Uma%20Dash"> Uma Dash</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalpana%20Rayaguru"> Kalpana Rayaguru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soybean oil is one of the most widely consumed cooking oils, worldwide. Deep-fat frying of foods at higher temperatures adds unique flavour, golden brown colour and crispy texture to foods. But it brings in various changes like hydrolysis, oxidation, hydrogenation and thermal alteration to oil. The presence of Peroxide value (PV) is one of the most important factors affecting the quality of the deep-fat fried oil. Using bentonite as an adsorbent, the PV can be reduced, thereby improving the quality of the soybean oil. In this study, operating parameters like heating time of oil (10, 15, 20, 25 & 30 h), contact time ( 5, 10, 15, 20, 25 h) and concentration of adsorbent (0.25, 0.5, 0.75, 1.0 and 1.25 g/ 100 ml of oil) have been optimized by response surface methodology (RSM) considering percentage reduction of PV as a response. Adsorption data were analysed by fitting with Langmuir and Freundlich isotherm model. The results show that the Langmuir model shows the best fit compared to the Freundlich model. The adsorption process was also found to follow a pseudo-second-order kinetic model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Langmuir%20isotherm" title=" Langmuir isotherm"> Langmuir isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=peroxide%20value" title=" peroxide value"> peroxide value</a>, <a href="https://publications.waset.org/abstracts/search?q=RSM" title=" RSM"> RSM</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20oil" title=" soybean oil"> soybean oil</a> </p> <a href="https://publications.waset.org/abstracts/44879/recovery-of-fried-soybean-oil-using-bentonite-as-an-adsorbent-optimization-isotherm-and-kinetics-studies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">196</span> Antioxidant Potential of Sunflower Seed Cake Extract in Stabilization of Soybean Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivanor%20Zardo">Ivanor Zardo</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Walper%20Da%20Cunha"> Fernanda Walper Da Cunha</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%BAlia%20%20Sarkis"> Júlia Sarkis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ligia%20Damasceno%20Ferreira%20Marczak"> Ligia Damasceno Ferreira Marczak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipid oxidation is one of the most important deteriorating processes in oil industry, resulting in the losses of nutritional value of oils as well as changes in color, flavor and other physiological properties. Autoxidation of lipids occurs naturally between molecular oxygen and the unsaturation of fatty acids, forming fat-free radicals, peroxide free radicals and hydroperoxides. In order to avoid the lipid oxidation in vegetable oils, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary butyl hydro-quinone (TBHQ) are commonly used. However, the use of synthetic antioxidants has been associated with several health side effects and toxicity. The use of natural antioxidants as stabilizers of vegetable oils is being suggested as a sustainable alternative to synthetic antioxidants. The alternative that has been studied is the use of natural extracts obtained mainly from fruits, vegetables and seeds, which have a well-known antioxidant activity related mainly to the presence of phenolic compounds. The sunflower seed cake is rich in phenolic compounds (1 4% of the total mass), being the chlorogenic acid the major constituent. The aim of this study was to evaluate the in vitro application of the phenolic extract obtained from the sunflower seed cake as a retarder of the lipid oxidation reaction in soybean oil and to compare the results with a synthetic antioxidant. For this, the soybean oil, provided from the industry without any addition of antioxidants, was subjected to an accelerated storage test for 17 days at 65 °C. Six samples with different treatments were submitted to the test: control sample, without any addition of antioxidants; 100 ppm of synthetic antioxidant BHT; mixture of 50 ppm of BHT and 50 ppm of phenolic compounds; and 100, 500 and 1200 ppm of phenolic compounds. The phenolic compounds concentration in the extract was expressed in gallic acid equivalents. To evaluate the oxidative changes of the samples, aliquots were collected after 0, 3, 6, 10 and 17 days and analyzed for the peroxide, diene and triene conjugate values. The soybean oil sample initially had a peroxide content of 2.01 ± 0.27 meq of oxygen/kg of oil. On the third day of the treatment, only the samples treated with 100, 500 and 1200 ppm of phenolic compounds showed a considerable oxidation retard compared to the control sample. On the sixth day of the treatment, the samples presented a considerable increase in the peroxide value (higher than 13.57 meq/kg), and the higher the concentration of phenolic compounds, the lower the peroxide value verified. From the tenth day on, the samples had a very high peroxide value (higher than 55.39 meq/kg), where only the sample containing 1200 ppm of phenolic compounds presented significant oxidation retard. The samples containing the phenolic extract were more efficient to avoid the formation of the primary oxidation products, indicating effectiveness to retard the reaction. Similar results were observed for dienes and trienes. Based on the results, phenolic compounds, especially chlorogenic acid (the major phenolic compound of sunflower seed cake), can be considered as a potential partial or even total substitute for synthetic antioxidants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chlorogenic%20acid" title="chlorogenic acid">chlorogenic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20antioxidant" title=" natural antioxidant"> natural antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetables%20oil%20deterioration" title=" vegetables oil deterioration"> vegetables oil deterioration</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20valorization" title=" waste valorization"> waste valorization</a> </p> <a href="https://publications.waset.org/abstracts/71657/antioxidant-potential-of-sunflower-seed-cake-extract-in-stabilization-of-soybean-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">195</span> An Activatable Prodrug for the Treatment of Metastatic Tumors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eun-Joong%20Kim">Eun-Joong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sankarprasad%20Bhuniya"> Sankarprasad Bhuniya</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunseung%20Lee"> Hyunseung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Min%20Kim"> Hyun Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaejoon%20Cheong"> Chaejoon Cheong</a>, <a href="https://publications.waset.org/abstracts/search?q=Su-khendu%20Maiti"> Su-khendu Maiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwan%20Soo%20Hong"> Kwan Soo Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Seung%20Kim"> Jong Seung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metastatic cancers have historically been difficult to treat. However, metastatic tumors have been found to have high levels of reactive oxygen species such as hydrogen peroxide (H2O2), supporting the hypothesis that a prodrug could be activated by intracellular H2O2 and lead to a potential anti-metastatic therapy. In this study, prodrug 7 was designed to be activated by H2O2-mediated boronate oxidation, resulting in activation of the fluorophore for detection and release of the therapeutic agent, SN-38. Drug release from prodrug 7 was investigated by monitoring fluorescence after addition of H2O2 to the cancer cells. Prodrug 7 activated by H2O2 selectively inhibited tumor cell growth. Furthermore, intratracheally administered prodrug 7 showed effective anti-tumor activity in a mouse model of metastatic lung disease. Thus, this H2O2-responsive prodrug has therapeutic potential as a novel treatment for metastatic cancer via cellular imaging with fluorescence as well as selective release of the anti-cancer drug, SN-38. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title="hydrogen peroxide">hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=prodrug" title=" prodrug"> prodrug</a>, <a href="https://publications.waset.org/abstracts/search?q=metastatic%20tumors" title=" metastatic tumors"> metastatic tumors</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a> </p> <a href="https://publications.waset.org/abstracts/16855/an-activatable-prodrug-for-the-treatment-of-metastatic-tumors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">194</span> Physicochemical Properties of Rambutan Seed Oil (RSO)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadya%20Hajar">Nadya Hajar</a>, <a href="https://publications.waset.org/abstracts/search?q=Naemaa%20Mohamad"> Naemaa Mohamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurul%20Azlin%20Tokiman"> Nurul Azlin Tokiman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nursabrina%20Munawar"> Nursabrina Munawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Noor%20Hasvenda%20Abd%20Rahim"> Noor Hasvenda Abd Rahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rambutan (Nephelium lappaceum L.) fruit is abundantly present in Malaysia during their season of the year. Its short shelf life at ambient temperature has contributed to fruit wastage. Thus, the initiative of producing canned Rambutan is an innovation that makes Rambutan fruit available throughout the year. The canned Rambutan industry leaves large amount of Rambutan seed. This study focused on utilization of Rambutan seed as a valuable product which is Rambutan Seed Oil (RSO). The RSO was extracted using Soxhlet Extraction Method for 8 hours. The objective of this study was to determine the physicochemical properties of RSO: melting point (°C), Refractive Index (RI), Total Carotene Content (TCC), water activity (Aw), acid value, peroxide value and saponification value. The results showed: 38.00±1.00 – 48.83±1.61°C melting point, 1.46±0.00 RI, 1.18±0.06mg/kg TCC, 0.4721±0.0176 Aw, 1.2162±0.1520mg KOH/g acid value, 9.6000±0.4000g/g peroxide value and 146.8040±18.0182mg KOH/g saponification value, respectively. According to the results, RSO showed high industrial potential as cocoa butter replacement in chocolates and cosmetics production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cocoa%20butter%20replacer" title="Cocoa butter replacer">Cocoa butter replacer</a>, <a href="https://publications.waset.org/abstracts/search?q=Rambutan" title=" Rambutan"> Rambutan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rambutan%20seed" title=" Rambutan seed"> Rambutan seed</a>, <a href="https://publications.waset.org/abstracts/search?q=Rambutan%20seed%20oil%20%28RSO%29" title=" Rambutan seed oil (RSO)"> Rambutan seed oil (RSO)</a> </p> <a href="https://publications.waset.org/abstracts/63694/physicochemical-properties-of-rambutan-seed-oil-rso" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">193</span> Effect of Physicochemical Treatments on the Characteristics of Activated Sludge</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hammadi%20Larbi">Hammadi Larbi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The treatment of wastewater in sewage plants usually results in the formation of a large amount of sludge. These appear at the outlet of the treatment plant as a viscous fluid loaded with a high concentration of dry matter. This sludge production presents environmental, ecological, and economic risks. That is why it is necessary to find many solutions for minimizing these risks. In the present article, the effect of hydrogen peroxide, thermal treatment, and quicklime on the characteristics of the activated sludge produced in urban wastewater plant were evaluated in order to avoid any risk in the plants. The study shows increasing of the dose of H2O2 from 0 to 0.4 g causes an increase in the solubilization rate of COD from 12% to 45% and a reduction in the organic matter content of sludge (VM/SM) from 74% to 36% . The results also show that the optimum efficiency of the heat treatment corresponds to a temperature of 80 ° C for a treatment time of 40 min is 47% and 51.82% for a temperature equal to 100 ° C and 76.30 % for a temperature of 120 ° C, and 79.38% for a temperature of 140 ° C. The treatment of sludge by quicklime gives the optimum efficiency of 70.62 %. It was shown the increasing of the temperature from 80°C to 140°C, the pH of sludge was increased from 7.12 to 9.59. The obtained results showed that with increasing the dose of quicklime from 0 g/l to 1g/l in activated sludge led to an increase of their pH from 7.12 to 12.06. The study shows the increasing the dose of quicklime from 0 g/l to 1g/l causes also an increase in the solubilization of COD from 0% to 70.62 % <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20sludge" title="activated sludge">activated sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide" title=" hydrogen peroxide"> hydrogen peroxide</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20treatment" title=" thermal treatment"> thermal treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=quicklime" title=" quicklime"> quicklime</a> </p> <a href="https://publications.waset.org/abstracts/157961/effect-of-physicochemical-treatments-on-the-characteristics-of-activated-sludge" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">192</span> Sterilization Effects of Low Concentration of Hydrogen Peroxide Solution on 3D Printed Biodegradable Polyurethane Nanocomposite Scaffold for Heart Valve Regeneration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Mohmad-Saberi">S. E. Mohmad-Saberi</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Song"> W. Song</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Oliver"> N. Oliver</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Adrian"> M. Adrian</a>, <a href="https://publications.waset.org/abstracts/search?q=T.C.%20Hsu"> T.C. Hsu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Darbyshire"> A. Darbyshire</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable polyurethane (PU) has emerged as a potential material to promote repair and regeneration of damaged/diseased tissues in heart valve regeneration due to its excellent biomechanical profile. Understanding the effects of sterilization on their properties is vital since they are more sensitive and more critical of porous structures compared to bulk ones. In this study, the effects of low concentration of hydrogen peroxide (H₂O₂) solution sterilization has been investigated to determine whether the procedure would be efficient and non-destructive to porous three-dimensional (3D) elastomeric nanocomposite, polyhedral oligomeric silsesquioxane-terminated poly (ethylene-diethylene glycol succinate-sebacate) urea-urethane (POSS-EDSS-PU) scaffold. All the samples were tested for sterility following sterilization using phosphate buffer saline (PBS) as control and 5 % v/v H₂O₂ solution. The samples were incubated in tryptic soy broth for the cultivation of microorganisms under agitation at 37˚C for 72 hours. The effects of the 5 % v/v H₂O₂ solution sterilization were evaluated in terms of morphology, chemical and mechanical properties using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and tensile tester apparatus. Toxicity effects of the 5 % v/v H₂O₂ solution decontamination were studied by in vitro cytotoxicity test, where the cellular responses of human dermal fibroblast (HDF) were examined. A clear, uncontaminated broth using 5 % v/v H₂O₂ solution method indicated efficient sterilization after 3 days, while the non-sterilized control shows clouding broth indicated contamination. The morphology of 3D POSS-EDSS-PU scaffold appeared to have similar morphology after sterilization with 5 % v/v H₂O₂ solution regarding of pore size and surface. FTIR results show that the sterilized samples and non-sterilized control share the same spectra pattern, confirming no significant alterations over the surface chemistry. For the mechanical properties of the H₂O₂ solution-treated scaffolds, the tensile strain was not significantly decreased, however, become significantly stiffer after the sterilization. No cytotoxic effects were observed after the 5 % v/v H₂O₂ solution sterilization as confirmed by cell viability assessed by Alamar Blue assay. The results suggest that low concentration of 5 % v/v hydrogen peroxide solution can be used as an alternative method for sterilizing biodegradable 3D porous scaffold with micro/nano-architecture without structural deformation. This study provides the understanding of the sterilization effects on biomechanical profile and cell proliferation of 3D POSS-EDSS-PU scaffolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20peroxide%20solution" title=" hydrogen peroxide solution"> hydrogen peroxide solution</a>, <a href="https://publications.waset.org/abstracts/search?q=POSS-EDSS-PU" title=" POSS-EDSS-PU"> POSS-EDSS-PU</a>, <a href="https://publications.waset.org/abstracts/search?q=sterilization" title=" sterilization"> sterilization</a> </p> <a href="https://publications.waset.org/abstracts/87620/sterilization-effects-of-low-concentration-of-hydrogen-peroxide-solution-on-3d-printed-biodegradable-polyurethane-nanocomposite-scaffold-for-heart-valve-regeneration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87620.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=cespitulactam%20peroxide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10