CINXE.COM

Search results for: moving load

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: moving load</title> <meta name="description" content="Search results for: moving load"> <meta name="keywords" content="moving load"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="moving load" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="moving load"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3628</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: moving load</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3358</span> Rhetoric and Renarrative Structure of Digital Images in Trans-Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang%20Geng">Yang Geng</a>, <a href="https://publications.waset.org/abstracts/search?q=Anqi%20Zhao"> Anqi Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The misreading theory of Harold Bloom provides a new diachronic perspective as an approach to the consistency between rhetoric of digital technology, dynamic movement of digital images and uncertain meaning of text. Reinterpreting the diachroneity of 'intertextuality' in the context of misreading theory extended the range of the 'intermediality' of transmedia to the intense tension between digital images and symbolic images throughout history of images. With the analogy between six categories of revisionary ratios and six steps of digital transformation, digital rhetoric might be illustrated as a linear process reflecting dynamic, intensive relations between digital moving images and original static images. Finally, it was concluded that two-way framework of the rhetoric of transformation of digital images and reversed served as a renarrative structure to revive static images by reconnecting them with digital moving images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhetoric" title="rhetoric">rhetoric</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20art" title=" digital art"> digital art</a>, <a href="https://publications.waset.org/abstracts/search?q=intermediality" title=" intermediality"> intermediality</a>, <a href="https://publications.waset.org/abstracts/search?q=misreading%20theory" title=" misreading theory"> misreading theory</a> </p> <a href="https://publications.waset.org/abstracts/100230/rhetoric-and-renarrative-structure-of-digital-images-in-trans-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3357</span> Synchronous Generator in Case Voltage Sags for Different Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benalia%20Nadia">Benalia Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Bensiali%20Nadia"> Bensiali Nadia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zezouri%20Noura"> Zezouri Noura </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effects of voltage sags, both symmetrical and unsymmetrical, on the three-phase Synchronous Machine (SM) when powering an isolate load or infinite bus bar. The vast majority of the electrical power generation systems in the world is consist of synchronous generators coupled to the electrical network though a transformer. Voltage sags on SM cause speed variations, current and torque peaks and hence may cause tripping and equipment damage. The consequences of voltage sags in the machine behavior depends on different factors such as its magnitude (or depth), duration , the parameters of the machine and also the size of load. In this study, we consider the machine feeds an infinite bus bar in the first and the isolate load using symmetric and asymmetric defaults to see the behavior of the machine in both case the simulation have been used on SIMULINK MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20quality" title="power quality">power quality</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20sag" title=" voltage sag"> voltage sag</a>, <a href="https://publications.waset.org/abstracts/search?q=synchronous%20generator" title=" synchronous generator"> synchronous generator</a>, <a href="https://publications.waset.org/abstracts/search?q=infinite%20system" title=" infinite system"> infinite system</a> </p> <a href="https://publications.waset.org/abstracts/21583/synchronous-generator-in-case-voltage-sags-for-different-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">679</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3356</span> Static Priority Approach to Under-Frequency Based Load Shedding Scheme in Islanded Industrial Networks: Using the Case Study of Fatima Fertilizer Company Ltd - FFL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Kazmi">S. H. Kazmi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ahmed"> T. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Javed"> K. Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghani"> A. Ghani </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper static scheme of under-frequency based load shedding is considered for chemical and petrochemical industries with islanded distribution networks relying heavily on the primary commodity to ensure minimum production loss, plant downtime or critical equipment shutdown. A simplistic methodology is proposed for in-house implementation of this scheme using underfrequency relays and a step by step guide is provided including the techniques to calculate maximum percentage overloads, frequency decay rates, time based frequency response and frequency based time response of the system. Case study of FFL electrical system is utilized, presenting the actual system parameters and employed load shedding settings following the similar series of steps. The arbitrary settings are then verified for worst overload conditions (loss of a generation source in this case) and comprehensive system response is then investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=islanding" title="islanding">islanding</a>, <a href="https://publications.waset.org/abstracts/search?q=under-frequency%20load%20shedding" title=" under-frequency load shedding"> under-frequency load shedding</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20rate%20of%20change" title=" frequency rate of change"> frequency rate of change</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20UFLS" title=" static UFLS"> static UFLS</a> </p> <a href="https://publications.waset.org/abstracts/25160/static-priority-approach-to-under-frequency-based-load-shedding-scheme-in-islanded-industrial-networks-using-the-case-study-of-fatima-fertilizer-company-ltd-ffl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25160.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3355</span> Optimal Load Factors for Seismic Design of Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Boj%C3%B3rquez">Juan Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonia%20E.%20Ruiz"> Sonia E. Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ed%C3%A9n%20Boj%C3%B3rquez"> Edén Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20de%20Le%C3%B3n%20Escobedo"> David de León Escobedo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A life-cycle optimization procedure to establish the best load factors combinations for seismic design of buildings, is proposed. The expected cost of damage from future earthquakes within the life of the structure is estimated, and realistic cost functions are assumed. The functions include: Repair cost, cost of contents damage, cost associated with loss of life, cost of injuries and economic loss. The loads considered are dead, live and earthquake load. The study is performed for reinforced concrete buildings located in Mexico City. The buildings are modeled as multiple-degree-of-freedom frame structures. The parameter selected to measure the structural damage is the maximum inter-story drift. The structural models are subjected to 31 soft-soil ground motions recorded in the Lake Zone of Mexico City. In order to obtain the annual structural failure rates, a numerical integration method is applied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20factors" title="load factors">load factors</a>, <a href="https://publications.waset.org/abstracts/search?q=life-cycle%20analysis" title=" life-cycle analysis"> life-cycle analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20buildings" title=" reinforced concrete buildings"> reinforced concrete buildings</a> </p> <a href="https://publications.waset.org/abstracts/22167/optimal-load-factors-for-seismic-design-of-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">617</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3354</span> Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuan-Hsiang%20Chang">Yuan-Hsiang Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Chi%20Lin"> Pin-Chi Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Li-Der%20Jeng"> Li-Der Jeng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20detection" title="motion detection">motion detection</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20tracking" title=" motion tracking"> motion tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=trajectory%20analysis" title=" trajectory analysis"> trajectory analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title=" video surveillance"> video surveillance</a> </p> <a href="https://publications.waset.org/abstracts/13650/automatic-motion-trajectory-analysis-for-dual-human-interaction-using-video-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">548</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3353</span> 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Himanshu%20Singh">Himanshu Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Rishi%20Kant"> Rishi Kant</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Bhattacharya"> Shantanu Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20reduction" title="particle size reduction">particle size reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=micromixer" title=" micromixer"> micromixer</a>, <a href="https://publications.waset.org/abstracts/search?q=FDM%20modelling" title=" FDM modelling"> FDM modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20etching" title=" wet etching"> wet etching</a> </p> <a href="https://publications.waset.org/abstracts/33039/3-d-modeling-of-particle-size-reduction-from-micro-to-nano-scale-using-finite-difference-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33039.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">431</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3352</span> Noise of Aircraft Flyovers Affects Reading Saccades</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Svea%20Missfeldt">Svea Missfeldt</a>, <a href="https://publications.waset.org/abstracts/search?q=Rainer%20H%C3%B6ger"> Rainer Höger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of studies show that aircraft noise around airports negatively affects the reading comprehension of children attending schools in the neighbourhood. Yet little is known about the underlying mechanisms. Explanatory approaches discuss the attention capturing effect of noise sources which occupy mental capacity. Research suggests that attentional capacities are especially demanded when different modalities are involved at the same time. To explore whether aircraft noise affects reading processes in specific manners, students read texts in variable sound conditions while their eye movements were recorded. Besides noise caused by aircraft flyovers, which represent moving sound sources, saccades were also recorded under the condition of white noise, a natural sound setting and silence for comparison. Data showed an increase in regressive saccades when the sound of moving sources was presented. Interestingly, this effect was significantly high when the aircrafts moved in the opposite of the reading direction. Especially the latter result is not compatible with the hypothesis of a general impairment of cognitive processes by noise where the direction of movement should not have an influence. Reading is assumed to be based on two different attentional mechanisms: overt and covert attention, where the latter supports control and pre-planning of eye movements during reading. We believe that covert attention is affected by moving sound sources, resulting in an enhanced number of backwardly directed saccades. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aircraft%20noise" title="aircraft noise">aircraft noise</a>, <a href="https://publications.waset.org/abstracts/search?q=attentional%20processes" title=" attentional processes"> attentional processes</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=eye%20movements" title=" eye movements"> eye movements</a>, <a href="https://publications.waset.org/abstracts/search?q=reading%20saccades" title=" reading saccades"> reading saccades</a> </p> <a href="https://publications.waset.org/abstracts/41983/noise-of-aircraft-flyovers-affects-reading-saccades" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3351</span> A Distinct Approach Towards Relativity and Time Dilation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vipin%20Choudhary">Vipin Choudhary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Time Dilation is the difference in the amount of time two clocks measure in the same inertial frame. Many studies have explored the relativity of time dilation using various approaches. However, the scientific and mathematical explanation of time dilation of moving things and light pulse clocks still has limited research. Therefore, this article examines relativity by utilizing scientific and mathematical approaches; the experience of moving things and light pulse clock ticks have been examined. The study revealed that the time elapsed for the same process is different for the different observers. Here, it showed that the time can be expressed in the form of a wave. In addition, the relative distance changes between the observers, and the observing subject time flows differently for the observer relative to the observing subject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Einstein%27s%20special%20theory%20of%20relativity" title="Einstein&#039;s special theory of relativity">Einstein&#039;s special theory of relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=reference%20frame" title=" reference frame"> reference frame</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20dilation" title=" time dilation"> time dilation</a>, <a href="https://publications.waset.org/abstracts/search?q=length%20contraction" title=" length contraction"> length contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorentz%20transformation." title=" Lorentz transformation."> Lorentz transformation.</a> </p> <a href="https://publications.waset.org/abstracts/187451/a-distinct-approach-towards-relativity-and-time-dilation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3350</span> The Influence of the Moving Speeds of DNA Droplet on Polymerase Chain Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyh%20Jyh%20Chen">Jyh Jyh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Fu%20H.%20Yang"> Fu H. Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20W.%20Wang"> Chen W. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20M.%20Lin"> Yu M. Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a reaction chamber is reciprocated among three temperature regions by using an oscillatory thermal cycling machine. Three cartridge heaters are collocated to heat three aluminum blocks in order to achieve PCR requirements in the reaction chamber. The effects of various chamber moving speeds among different temperature regions on the chamber temperature profiles are presented. To solve the evaporation effect of the sample in the PCR experiment, the mineral oil and the cover lid are used. The influences of various extension times on DNA amplification are also demonstrated. The target fragments of the amplification are 385-bp and 420-bp. The results show when the forward speed is set at 6 mm/s and the backward speed is 2.4 mm/s, the temperature required for the experiment can be achieved. It is successful to perform the amplification of DNA fragments in our device. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oscillatory" title="oscillatory">oscillatory</a>, <a href="https://publications.waset.org/abstracts/search?q=polymerase%20chain%20reaction" title=" polymerase chain reaction"> polymerase chain reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20chamber" title=" reaction chamber"> reaction chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20cycling%20machine" title=" thermal cycling machine"> thermal cycling machine</a> </p> <a href="https://publications.waset.org/abstracts/64588/the-influence-of-the-moving-speeds-of-dna-droplet-on-polymerase-chain-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">530</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3349</span> Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Firas%20M.%20Tuaimah">Firas M. Tuaimah</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20M.%20Abdul%20Abbas"> Huda M. Abdul Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=short%20term%20load%20forecasting" title="short term load forecasting">short term load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20interval" title=" prediction interval"> prediction interval</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20fuzzy%20logic%20systems" title=" type 2 fuzzy logic systems"> type 2 fuzzy logic systems</a>, <a href="https://publications.waset.org/abstracts/search?q=electric" title=" electric"> electric</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20systems%20engineering" title=" computer systems engineering"> computer systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/14301/iraqi-short-term-electrical-load-forecasting-based-on-interval-type-2-fuzzy-logic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3348</span> An EWMA P-Chart Based on Improved Square Root Transformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saowanit%20Sukparungsee">Saowanit Sukparungsee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, the traditional Shewhart p chart has been developed by for charting the binomial data. This chart has been developed using the normal approximation with condition as low defect level and the small to moderate sample size. In real applications, however, are away from these assumptions due to skewness in the exact distribution. In this paper, a modified Exponentially Weighted Moving Average (EWMA) control chat for detecting a change in binomial data by improving square root transformations, namely ISRT p EWMA control chart. The numerical results show that ISRT p EWMA chart is superior to ISRT p chart for small to moderate shifts, otherwise, the latter is better for large shifts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=number%20of%20defects" title="number of defects">number of defects</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20weighted%20moving%20average" title=" exponentially weighted moving average"> exponentially weighted moving average</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20run%20length" title=" average run length"> average run length</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20root%20transformations" title=" square root transformations"> square root transformations</a> </p> <a href="https://publications.waset.org/abstracts/10613/an-ewma-p-chart-based-on-improved-square-root-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3347</span> Effect of Fire Exposure on the Ultimate Strength of Loaded Columns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20Hamdy%20Ghieth">Hatem Hamdy Ghieth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent time many fires happened in many skeleton buildings. The fire may be continues for a long time. This fire may cause a collapse of the building. This collapse may be happened due to the time of exposure to fire as well as the rate of the loading to the carrying elements. In this research a laboratory study for reinforced concrete columns under effect of fire with temperature reaches (650 ْ C) on the behavior of columns which loaded with axial load and with exposing to fire temperature only from all sides of columns. the main parameters of this study are level of load applying to the column, and the temperature applied to the fire, this temperatures was 500oC and 650oc. Nine concrete columns with dimensions 20x20x100 cms were casted one of these columns was tested to determine the ultimate load while the least were fired according to the experimental schedule. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=columns" title="columns">columns</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20duration" title=" fire duration"> fire duration</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20strength" title=" concrete strength"> concrete strength</a>, <a href="https://publications.waset.org/abstracts/search?q=level%20of%20loading" title=" level of loading"> level of loading</a> </p> <a href="https://publications.waset.org/abstracts/19444/effect-of-fire-exposure-on-the-ultimate-strength-of-loaded-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">440</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3346</span> A Comparative Study for the Axial Load Capacity of Circular High Strength CFST Columns </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20Guzel">Eylem Guzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Osmanoglu"> Faruk Osmanoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Kurucu"> Muhammet Kurucu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete-filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete-filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete-filled%20steel%20tube%20column" title="concrete-filled steel tube column">concrete-filled steel tube column</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20load%20capacity" title=" axial load capacity"> axial load capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20code" title=" Chinese code"> Chinese code</a>, <a href="https://publications.waset.org/abstracts/search?q=Australian%20standard" title=" Australian standard"> Australian standard</a> </p> <a href="https://publications.waset.org/abstracts/43455/a-comparative-study-for-the-axial-load-capacity-of-circular-high-strength-cfst-columns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3345</span> Evaluation of PV Orientation Effect on Mismatch between Consumption Load and PV Power Profiles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyad%20M.%20Muslih">Iyad M. Muslih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yehya%20Abdellatif"> Yehya Abdellatif</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Qutishat"> Sara Qutishat </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Renewable energy and in particular solar photovoltaic energy is emerging as a reasonable power generation source. The intermittent and unpredictable nature of solar energy can represent a serious challenge to the utility grids, specifically at relatively high penetration. To minimize the impact of PV power systems on the grid, self-consumption is encouraged. Self-consumption can be improved by matching the PV power generation with the electrical load consumption profile. This study will focus in studying different load profiles and comparing them to typical solar PV power generation at the selected sites with the purpose of analyzing the mismatch in consumption load profile for different users; residential, commercial, and industrial versus the solar photovoltaic output generation. The PV array orientation can be adjusted to reduce the mismatch effects. The orientation shift produces a corresponding shift in the energy production curve. This shift has a little effect on the mismatch for residential loads due to the fact the peak load occurs at night due to lighting loads. This minor gain does not justify the power production loss associated with the orientation shift. The orientation shift for both commercial and industrial cases lead to valuable decrease in the mismatch effects. Such a design is worth considering for reducing grid penetration. Furthermore, the proposed orientation shift yielded better results during the summer time due to the extended daylight hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grid%20impact" title="grid impact">grid impact</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMER" title=" HOMER"> HOMER</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20mismatch" title=" power mismatch"> power mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20PV%20energy" title=" solar PV energy"> solar PV energy</a> </p> <a href="https://publications.waset.org/abstracts/32203/evaluation-of-pv-orientation-effect-on-mismatch-between-consumption-load-and-pv-power-profiles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">604</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3344</span> Current Status of Nitrogen Saturation in the Upper Reaches of the Kanna River, Japan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakura%20Yoshii">Sakura Yoshii</a>, <a href="https://publications.waset.org/abstracts/search?q=Masakazu%20Abe"> Masakazu Abe</a>, <a href="https://publications.waset.org/abstracts/search?q=Akihiro%20Iijima"> Akihiro Iijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrogen saturation has become one of the serious issues in the field of forest environment. The watershed protection forests located in the downwind hinterland of Tokyo Metropolitan Area are believed to be facing nitrogen saturation. In this study, we carefully focus on the balance of nitrogen between load and runoff. Annual nitrogen load via atmospheric deposition was estimated to 461.1 t-N/year in the upper reaches of the Kanna River. Annual nitrogen runoff to the forested headwater stream of the Kanna River was determined to 184.9 t-N/year, corresponding to 40.1% of the total nitrogen load. Clear seasonal change in NO3-N concentration was still observed. Therefore, watershed protection forest of the Kanna River is most likely to be in Stage-1 on the status of nitrogen saturation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20deposition" title="atmospheric deposition">atmospheric deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20accumulation" title=" nitrogen accumulation"> nitrogen accumulation</a>, <a href="https://publications.waset.org/abstracts/search?q=denitrification" title=" denitrification"> denitrification</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20ecosystems" title=" forest ecosystems"> forest ecosystems</a> </p> <a href="https://publications.waset.org/abstracts/3246/current-status-of-nitrogen-saturation-in-the-upper-reaches-of-the-kanna-river-japan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3343</span> A Review of Deformation and Settlement Monitoring on the Field: Types and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Ali">Hassan Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Hamid"> Abdulrahman Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses using of instruments to monitor deformation and settlement. Specifically, it concentrates on field instruments such as inclinometer and plate load test and their applications in the field. Inclinometer has been used effectively to monitor lateral earth movements and settlement in landslide areas, embankments and foundations. They are also used to monitor the deflection of retaining walls and piles under load. This paper is reviewing types of inclinometer systems, comparison between systems, applications, field accuracy and correction. The paper also will present a case study of using inclinometer to monitor the creep movements within the ancient landslide on The Washington Park Station. Furthermore, the application of deformation and settlement instruments in Saudi Arabia will be discussed in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclinometer" title="inclinometer">inclinometer</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20load%20test" title=" plate load test"> plate load test</a>, <a href="https://publications.waset.org/abstracts/search?q=backfills" title=" backfills"> backfills</a>, <a href="https://publications.waset.org/abstracts/search?q=sand" title=" sand"> sand</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20and%20settlement" title=" deformation and settlement"> deformation and settlement</a> </p> <a href="https://publications.waset.org/abstracts/41331/a-review-of-deformation-and-settlement-monitoring-on-the-field-types-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3342</span> Thermal Fatigue Behavior of Austenitic Stainless Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jung-Ho%20Moon">Jung-Ho Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Continually increasing working temperature and growing need for greater efficiency and reliability of automotive exhaust require systematic investigation into the thermal fatigue properties especially of high temperature stainless steels. In this study, thermal fatigue properties of 300 series austenitic stainless steels have been evaluated in the temperature ranges of 200-800°C and 200-900°C. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. Load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=austenitic%20stainless%20steel" title="austenitic stainless steel">austenitic stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive%20exhaust" title=" automotive exhaust"> automotive exhaust</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20fatigue" title=" thermal fatigue"> thermal fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20relaxation" title=" load relaxation"> load relaxation</a> </p> <a href="https://publications.waset.org/abstracts/9692/thermal-fatigue-behavior-of-austenitic-stainless-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3341</span> Experimental Study on Bending and Torsional Strength of Bulk Molding Compound Seat Back Frame Part</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hee%20Yong%20Kang">Hee Yong Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyeon%20Ho%20Shin"> Hyeon Ho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung%20Cheol%20Yoo"> Jung Cheol Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Il%20Taek%20Lee"> Il Taek Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Mo%20Yang"> Sung Mo Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lightweight technology using composites is being developed for vehicle seat structures, and its design must meet the safety requirements. According to the Federal Motor Vehicle Safety Standard (FMVSS) 207 seating systems test procedure, the back moment load is applied to the seat back frame structure for the safety evaluation of the vehicle seat. The seat back frame using the composites is divided into three parts: upper part frame, and left- and right-side frame parts following the manufacturing process. When a rear moment load is applied to the seat back frame, the side frame receives the bending load and the torsional load at the same time. This results in the largest loaded strength. Therefore, strength test of the component unit is required. In this study, a component test method based on the FMVSS 207 seating systems test procedure was proposed for the strength analysis of bending load and torsional load of the automotive Bulk Molding Compound (BMC) Seat Back Side Frame. Moreover, strength evaluation according to the carbon band reinforcement was performed. The back-side frame parts of the seat that are applied to the test were manufactured through BMC that is composed of vinyl ester Matrix and short carbon fiber. Then, two kinds of reinforced and non-reinforced parts of carbon band were formed through a high-temperature compression molding process. In addition, the structure that is applied to the component test was constructed by referring to the FMVSS 207. Then, the bending load and the torsional load were applied through the displacement control to perform the strength test for four load conditions. The results of each test are shown through the load-displacement curves of the specimen. The failure strength of the parts caused by the reinforcement of the carbon band was analyzed. Additionally, the fracture characteristics of the parts for four strength tests were evaluated, and the weakness structure of the back-side frame of the seat structure was confirmed according to the test conditions. Through the bending and torsional strength test methods, we confirmed the strength and fracture characteristics of BMC Seat Back Side Frame according to the carbon band reinforcement. And we proposed a method of testing the part strength of a seat back frame for vehicles that can meet the FMVSS 207. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seat%20back%20frame" title="seat back frame">seat back frame</a>, <a href="https://publications.waset.org/abstracts/search?q=bending%20and%20torsional%20strength" title=" bending and torsional strength"> bending and torsional strength</a>, <a href="https://publications.waset.org/abstracts/search?q=BMC%20%28Bulk%20Molding%20Compound%29" title=" BMC (Bulk Molding Compound)"> BMC (Bulk Molding Compound)</a>, <a href="https://publications.waset.org/abstracts/search?q=FMVSS%20207%20seating%20systems" title=" FMVSS 207 seating systems"> FMVSS 207 seating systems</a> </p> <a href="https://publications.waset.org/abstracts/92200/experimental-study-on-bending-and-torsional-strength-of-bulk-molding-compound-seat-back-frame-part" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3340</span> Fault Analysis of Ship Power System Comprising of Parallel Generators and Variable Frequency Drive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umair%20Ashraf">Umair Ashraf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kjetil%20Uhlen"> Kjetil Uhlen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sverre%20Eriksen"> Sverre Eriksen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20Jelani"> Nadeem Jelani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although advancement in technology has increased the reliability and ease of work in ship power system, but these advancements are also adding complexities. Ever increasing non linear loads, like power electronics (PE) devices effect the stability of the system. Frequent load variations and complex load dynamics are due to the frequency converters and motor drives, these problem are more prominent when system is connected with the weak grid. In the ship power system major consumers are thruster motors for the propulsion. For the control operation of these motors variable frequency drives (VFD) are used, mostly VFDs operate on nominal voltage of the system. Some of the consumers in ship operate on lower voltage than nominal, these consumers got supply through step down transformers. In this paper the vector control scheme is used for the control of both rectifier and inverter, parallel operation of the synchronous generators is also demonstrated. The simulation have been performed with induction motor as load on VFD and parallel RLC load. Fault analysis has been performed first for the system which do not have VFD and then for the system with VFD. Three phase to the ground, single phase to the ground fault were implemented and behavior of the system in both the cases was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-linear%20load" title="non-linear load">non-linear load</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20electronics" title=" power electronics"> power electronics</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20operating%20generators" title=" parallel operating generators"> parallel operating generators</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20frequency%20drives" title=" variable frequency drives"> variable frequency drives</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20source%20converters" title=" voltage source converters"> voltage source converters</a>, <a href="https://publications.waset.org/abstracts/search?q=weak%20grid" title=" weak grid"> weak grid</a> </p> <a href="https://publications.waset.org/abstracts/16335/fault-analysis-of-ship-power-system-comprising-of-parallel-generators-and-variable-frequency-drive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3339</span> Load-Enabled Deployment and Sensing Range Optimization for Lifetime Enhancement of WSNs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krishan%20P.%20Sharma">Krishan P. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Sharma"> T. P. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wireless sensor nodes are resource constrained battery powered devices usually deployed in hostile and ill-disposed areas to cooperatively monitor physical or environmental conditions. Due to their limited power supply, the major challenge for researchers is to utilize their battery power for enhancing the lifetime of whole network. Communication and sensing are two major sources of energy consumption in sensor networks. In this paper, we propose a deployment strategy for enhancing the average lifetime of a sensor network by effectively utilizing communication and sensing energy to provide full coverage. The proposed scheme is based on the fact that due to heavy relaying load, sensor nodes near to the sink drain energy at much faster rate than other nodes in the network and consequently die much earlier. To cover this imbalance, proposed scheme finds optimal communication and sensing ranges according to effective load at each node and uses a non-uniform deployment strategy where there is a comparatively high density of nodes near to the sink. Probable relaying load factor at particular node is calculated and accordingly optimal communication distance and sensing range for each sensor node is adjusted. Thus, sensor nodes are placed at locations that optimize energy during network operation. Formal mathematical analysis for calculating optimized locations is reported in present work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load%20factor" title="load factor">load factor</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20lifetime" title=" network lifetime"> network lifetime</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20deployment" title=" non-uniform deployment"> non-uniform deployment</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20range" title=" sensing range"> sensing range</a> </p> <a href="https://publications.waset.org/abstracts/9887/load-enabled-deployment-and-sensing-range-optimization-for-lifetime-enhancement-of-wsns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3338</span> Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mashrei">Mohammed Mashrei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrocement" title="ferrocement">ferrocement</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=slab" title=" slab"> slab</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/68236/experimental-work-to-estimate-the-strength-of-ferrocement-slabs-incorporating-silica-fume-and-steel-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3337</span> Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Wenger">Philipp Wenger</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Beltle"> Michael Beltle</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Tenbohlen"> Stefan Tenbohlen</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwe%20Riechert"> Uwe Riechert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=current%20shunt" title="current shunt">current shunt</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20moving%20particles" title=" free moving particles"> free moving particles</a>, <a href="https://publications.waset.org/abstracts/search?q=high-speed%20imaging" title=" high-speed imaging"> high-speed imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=HVDC-GIS" title=" HVDC-GIS"> HVDC-GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=UHF" title=" UHF"> UHF</a> </p> <a href="https://publications.waset.org/abstracts/135119/partial-discharge-characteristics-of-free-moving-particles-in-hvdc-gis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3336</span> Experimental Investigations on Group Interaction Effects of Laterally Loaded Piles in Submerged Sand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasaswini%20Mishra">Jasaswini Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashim%20K.%20Dey"> Ashim K. Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to investigate the group interaction effects of laterally loaded pile groups driven into a medium dense sand layer in submerged state. Static lateral load tests were carried out on pile groups consisting of varying number of piles and at different spacings. The test setup consists of a load cell (500 kg capacity) and an LVDT (50 mm) to measure the load and pile head deflection respectively. The piles were extensively instrumented with strain gauges so as to study the variation of soil resistance within the group. The bending moments at various depths were calculated from strain gauge data and these curves were fitted using a higher order polynomial in order to get 'p-y' curves. A comparative study between a single pile and a pile under a group has also been done for a better understanding of the group effect. It is observed that average load per pile is significantly reduced relative to single pile and it decreases with increase in the number of piles in a pile group. The loss of efficiency of the piles in the group, commonly referred to as "shadowing" effect, has been expressed by the use of a 'p-multiplier'. Leading rows carries greater amount of load when compared with the trailing rows. The variations of bending moment with depth for different rows of pile within a group and different spacing have been analyzed and compared with that of a single pile. p multipliers within different rows in a pile group were evaluated from the experimental study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=group%20action" title="group action">group action</a>, <a href="https://publications.waset.org/abstracts/search?q=laterally%20loaded%20piles" title=" laterally loaded piles"> laterally loaded piles</a>, <a href="https://publications.waset.org/abstracts/search?q=p-multiplier" title=" p-multiplier"> p-multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20gauge" title=" strain gauge"> strain gauge</a> </p> <a href="https://publications.waset.org/abstracts/51258/experimental-investigations-on-group-interaction-effects-of-laterally-loaded-piles-in-submerged-sand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3335</span> Dynamic Amplification Factors of Some City Bridges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Paeglite">I. Paeglite</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Paeglitis"> A. Paeglitis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20effects" title=" dynamic effects"> dynamic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20testing" title=" load testing"> load testing</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20amplification%20factor" title=" dynamic amplification factor"> dynamic amplification factor</a> </p> <a href="https://publications.waset.org/abstracts/10727/dynamic-amplification-factors-of-some-city-bridges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3334</span> Analysing the Stability of Electrical Grid for Increased Renewable Energy Penetration by Focussing on LI-Ion Battery Storage Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemendra%20Singh%20Rathod">Hemendra Singh Rathod</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Frequency is, among other factors, one of the governing parameters for maintaining electrical grid stability. The quality of an electrical transmission and supply system is mainly described by the stability of the grid frequency. Over the past few decades, energy generation by intermittent sustainable sources like wind and solar has seen a significant increase globally. Consequently, controlling the associated deviations in grid frequency within safe limits has been gaining momentum so that the balance between demand and supply can be maintained. Lithium-ion battery energy storage system (Li-Ion BESS) has been a promising technology to tackle the challenges associated with grid instability. BESS is, therefore, an effective response to the ongoing debate whether it is feasible to have an electrical grid constantly functioning on a hundred percent renewable power in the near future. In recent years, large-scale manufacturing and capital investment into battery production processes have made the Li-ion battery systems cost-effective and increasingly efficient. The Li-ion systems require very low maintenance and are also independent of geographical constraints while being easily scalable. The paper highlights the use of stationary and moving BESS for balancing electrical energy, thereby maintaining grid frequency at a rapid rate. Moving BESS technology, as implemented in the selected railway network in Germany, is here considered as an exemplary concept for demonstrating the same functionality in the electrical grid system. Further, using certain applications of Li-ion batteries, such as self-consumption of wind and solar parks or their ancillary services, wind and solar energy storage during low demand, black start, island operation, residential home storage, etc. offers a solution to effectively integrate the renewables and support Europe’s future smart grid. EMT software tool DIgSILENT PowerFactory has been utilised to model an electrical transmission system with 100% renewable energy penetration. The stability of such a transmission system has been evaluated together with BESS within a defined frequency band. The transmission system operators (TSO) have the superordinate responsibility for system stability and must also coordinate with the other European transmission system operators. Frequency control is implemented by TSO by maintaining a balance between electricity generation and consumption. Li-ion battery systems are here seen as flexible, controllable loads and flexible, controllable generation for balancing energy pools. Thus using Li-ion battery storage solution, frequency-dependent load shedding, i.e., automatic gradual disconnection of loads from the grid, and frequency-dependent electricity generation, i.e., automatic gradual connection of BESS to the grid, is used as a perfect security measure to maintain grid stability in any case scenario. The paper emphasizes the use of stationary and moving Li-ion battery storage for meeting the demands of maintaining grid frequency and stability for near future operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20control" title="frequency control">frequency control</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20stability" title=" grid stability"> grid stability</a>, <a href="https://publications.waset.org/abstracts/search?q=li-ion%20battery%20storage" title=" li-ion battery storage"> li-ion battery storage</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/132625/analysing-the-stability-of-electrical-grid-for-increased-renewable-energy-penetration-by-focussing-on-li-ion-battery-storage-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3333</span> Photo Catalytic Treatment of Wastewater from Processing Poultry by-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Franco%20Mac%C3%ADas">J. Franco Macías</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Montes%20Alba"> E. Montes Alba</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20L%C3%B3pez%20V%C3%A1squez"> A. López Vásquez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The growing development in the poultry industry has generated a strong and adverse impact on quality and availability of water resources. Inside this industry, is finding out the treatment of by-products such as feathers, viscera and blood demanding highly water consumption, generating contaminant discharges as well. As one of current of treatment of by-products is the effluent of cooking condensate steam that has contaminant organic load; therefore, it is necessary to implement removal treatments before discharging it toward water sources. The photo catalysis appears as a promising alternative of treatment due to the different advantages it has, among others, includes low cost, easily operation, high efficiency and elimination of a wide variety of contaminants in a watery environment. This study has evaluated a heterogeneous photo catalytic treatment for removal contaminant organic load. This process was developed in oxidation and reduction conditions. It was analyzed the effect of factors such as pH, catalyst and sacrifice agent concentration. Finally, good conditions to removal contaminant organic load were achieved to determine percentage of contaminant organic load by means of response surface methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=poultry%20industry" title="poultry industry">poultry industry</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20oxidation%20process" title=" advanced oxidation process"> advanced oxidation process</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation" title=" photodegradation"> photodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2 "> TiO2 </a> </p> <a href="https://publications.waset.org/abstracts/18911/photo-catalytic-treatment-of-wastewater-from-processing-poultry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3332</span> Polymer Mixing in the Cavity Transfer Mixer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giovanna%20Grosso">Giovanna Grosso</a>, <a href="https://publications.waset.org/abstracts/search?q=Martien%20A.%20Hulsen"> Martien A. Hulsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Arash%20Sarhangi%20Fard"> Arash Sarhangi Fard</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Overend"> Andrew Overend</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick.%20D.%20Anderson"> Patrick. D. Anderson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many industrial applications and, in particular in polymer industry, the quality of mixing between different materials is fundamental to guarantee the desired properties of finished products. However, properly modelling and understanding polymer mixing often presents noticeable difficulties, because of the variety and complexity of the physical phenomena involved. This is the case of the Cavity Transfer Mixer (CTM), for which a clear understanding of mixing mechanisms is still missing, as well as clear guidelines for the system optimization. This device, invented and patented by Gale at Rapra Technology Limited, is an add-on to be mounted downstream of existing extruders, in order to improve distributive mixing. It consists of two concentric cylinders, the rotor and stator, both provided with staggered rows of hemispherical cavities. The inner cylinder (rotor) rotates, while the outer (stator) remains still. At the same time, the pressure load imposed upstream, pushes the fluid through the CTM. Mixing processes are driven by the flow field generated by the complex interaction between the moving geometry, the imposed pressure load and the rheology of the fluid. In such a context, the present work proposes a complete and accurate three dimensional modelling of the CTM and results of a broad range of simulations assessing the impact on mixing of several geometrical and functioning parameters. Among them, we find: the number of cavities per row, the number of rows, the size of the mixer, the rheology of the fluid and the ratio between the rotation speed and the fluid throughput. The model is composed of a flow part and a mixing part: a finite element solver computes the transient velocity field, which is used in the mapping method implementation in order to simulate the concentration field evolution. Results of simulations are summarized in guidelines for the device optimization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mixing" title="Mixing">Mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=non-Newtonian%20fluids" title=" non-Newtonian fluids"> non-Newtonian fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=rheology." title=" rheology."> rheology.</a> </p> <a href="https://publications.waset.org/abstracts/43521/polymer-mixing-in-the-cavity-transfer-mixer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3331</span> Structural Analysis of Hydro-Turbine Spiral Casing and Stay Ring Using Ansys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surjit%20Angra">Surjit Angra</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Rani"> Pooja Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In hydro power plant spiral casing and Stay ring is meant to guide the water flow to guide vane and runner. Spiral casing and Stay ring is subjected to static i.e. pressure load as well as fluctuating load acting on the structure due to water hammer effect in water conductor system. Finite element method has been used to calculate stresses on spiral casing and stay ring. These calculations were done for the maximum possible loading under operating condition "LC1 Quick Shut Down”. The design load is reached for the spiral casing and stay ring during the emergency closure of the guide apparatus "LC1 Quick Shut Down”. During this operation the forces from the head cover to the stay ring also reach their maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydro-turbine" title="hydro-turbine">hydro-turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=spiral%20casing" title=" spiral casing"> spiral casing</a>, <a href="https://publications.waset.org/abstracts/search?q=stay%20ring" title=" stay ring"> stay ring</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20analysis" title=" structural analysis"> structural analysis</a> </p> <a href="https://publications.waset.org/abstracts/5592/structural-analysis-of-hydro-turbine-spiral-casing-and-stay-ring-using-ansys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3330</span> Toward Indoor and Outdoor Surveillance using an Improved Fast Background Subtraction Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=El%20Harraj%20Abdeslam">El Harraj Abdeslam</a>, <a href="https://publications.waset.org/abstracts/search?q=Raissouni%20Naoufal"> Raissouni Naoufal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The detection of moving objects from a video image sequences is very important for object tracking, activity recognition, and behavior understanding in video surveillance. The most used approach for moving objects detection / tracking is background subtraction algorithms. Many approaches have been suggested for background subtraction. But, these are illumination change sensitive and the solutions proposed to bypass this problem are time consuming. In this paper, we propose a robust yet computationally efficient background subtraction approach and, mainly, focus on the ability to detect moving objects on dynamic scenes, for possible applications in complex and restricted access areas monitoring, where moving and motionless persons must be reliably detected. It consists of three main phases, establishing illumination changes in variance, background/foreground modeling and morphological analysis for noise removing. We handle illumination changes using Contrast Limited Histogram Equalization (CLAHE), which limits the intensity of each pixel to user determined maximum. Thus, it mitigates the degradation due to scene illumination changes and improves the visibility of the video signal. Initially, the background and foreground images are extracted from the video sequence. Then, the background and foreground images are separately enhanced by applying CLAHE. In order to form multi-modal backgrounds we model each channel of a pixel as a mixture of K Gaussians (K=5) using Gaussian Mixture Model (GMM). Finally, we post process the resulting binary foreground mask using morphological erosion and dilation transformations to remove possible noise. For experimental test, we used a standard dataset to challenge the efficiency and accuracy of the proposed method on a diverse set of dynamic scenes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=video%20surveillance" title="video surveillance">video surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=background%20subtraction" title=" background subtraction"> background subtraction</a>, <a href="https://publications.waset.org/abstracts/search?q=contrast%20limited%20histogram%20equalization" title=" contrast limited histogram equalization"> contrast limited histogram equalization</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination%20invariance" title=" illumination invariance"> illumination invariance</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20tracking" title=" object tracking"> object tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=object%20detection" title=" object detection"> object detection</a>, <a href="https://publications.waset.org/abstracts/search?q=behavior%20understanding" title=" behavior understanding"> behavior understanding</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20scenes" title=" dynamic scenes"> dynamic scenes</a> </p> <a href="https://publications.waset.org/abstracts/27499/toward-indoor-and-outdoor-surveillance-using-an-improved-fast-background-subtraction-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3329</span> Dynamic Behavior of the Nanostructure of Load-Bearing Biological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahan%20Qwamizadeh">Mahan Qwamizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun%20Zhou"> Kun Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuoqi%20Zhang"> Zuoqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Wei%20Zhang"> Yong Wei Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Typical load-bearing biological materials like bone, mineralized tendon and shell, are biocomposites made from both organic (collagen) and inorganic (biomineral) materials. This amazing class of materials with intrinsic internally designed hierarchical structures show superior mechanical properties with regard to their weak components from which they are formed. Extensive investigations concentrating on static loading conditions have been done to study the biological materials failure. However, most of the damage and failure mechanisms in load-bearing biological materials will occur whenever their structures are exposed to dynamic loading conditions. The main question needed to be answered here is: What is the relation between the layout and architecture of the load-bearing biological materials and their dynamic behavior? In this work, a staggered model has been developed based on the structure of natural materials at nanoscale and Finite Element Analysis (FEA) has been used to study the dynamic behavior of the structure of load-bearing biological materials to answer why the staggered arrangement has been selected by nature to make the nanocomposite structure of most of the biological materials. The results showed that the staggered structures will efficiently attenuate the stress wave rather than the layered structure. Furthermore, such staggered architecture is effectively in charge of utilizing the capacity of the biostructure to resist both normal and shear loads. In this work, the geometrical parameters of the model like the thickness and aspect ratio of the mineral inclusions selected from the typical range of the experimentally observed feature sizes and layout dimensions of the biological materials such as bone and mineralized tendon. Furthermore, the numerical results validated with existing theoretical solutions. Findings of the present work emphasize on the significant effects of dynamic behavior on the natural evolution of load-bearing biological materials and can help scientists to design bioinspired materials in the laboratories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=load-bearing%20biological%20materials" title="load-bearing biological materials">load-bearing biological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=staggered%20structure" title=" staggered structure"> staggered structure</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20wave%20decay" title=" stress wave decay"> stress wave decay</a> </p> <a href="https://publications.waset.org/abstracts/31314/dynamic-behavior-of-the-nanostructure-of-load-bearing-biological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=9" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=2">2</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=9">9</a></li> <li class="page-item active"><span class="page-link">10</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=13">13</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=120">120</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=121">121</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=moving%20load&amp;page=11" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10