CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–43 of 43 results for author: <span class="mathjax">Cochran, T A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&query=Cochran%2C+T+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Cochran, T A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Cochran%2C+T+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Cochran, T A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15333">arXiv:2411.15333</a> <span> [<a href="https://arxiv.org/pdf/2411.15333">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unconventional gapping behavior in a kagome superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&query=Ratkovski%2C+D">Danilo Ratkovski</a>, <a href="/search/cond-mat?searchtype=author&query=L%C3%BCscher%2C+B">Bernhard L眉scher</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Bangura%2C+A">Ali Bangura</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15333v1-abstract-short" style="display: inline;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charg… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15333v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15333v1-abstract-full" style="display: none;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charge order that substantially reduces the compound's space group symmetries. Through a combination of thermodynamic as well as electrical and thermal transport measurements, we uncover two superconducting regimes with distinct transport and thermodynamic characteristics, while finding no evidence for a phase transition separating them. Thermodynamic measurements reveal substantial quasiparticle weight in a high-temperature regime. At lower temperatures, this weight is removed via the formation of a second gap. The two regimes are sharply distinguished by a pronounced enhancement of the upper critical field at low temperatures and by a switch in the anisotropy of the longitudinal thermal conductivity as a function of in-plane magnetic field orientation. We argue that the band with a gap opening at lower temperatures continues to host low-energy quasiparticles, possibly due to a nodal structure of the gap. Taken together, our results present evidence for band-selective superconductivity with remarkable decoupling of the (two) superconducting gaps. The commonly employed multiband scenario, whereby superconductivity emerges in a primary band and is then induced in other bands appears to fail in this unconventional kagome superconductor. Instead, band-selective superconducting pairing is a paradigm that seems to unify seemingly contradicting results in this intensely studied family of materials and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'none'; document.getElementById('2411.15333v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19636">arXiv:2410.19636</a> <span> [<a href="https://arxiv.org/pdf/2410.19636">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pomeranchuk instability of a topological crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/cond-mat?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19636v1-abstract-short" style="display: inline;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By direct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19636v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19636v1-abstract-full" style="display: none;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By directly visualizing the Fermi surface of the surface state via scanning tunneling spectroscopy and photoemission spectroscopy, we find that the Fermi surface gets deformed and becomes elliptical at the energies where the nematic state is present. Known instances of nematic instability typically need van-Hove singularities or multi-orbital physics as drivers. In contrast, the surface states of arsenic are essentially indistinguishable from well-confined isotropic Rashba bands near the Fermi level, rendering our finding the first realization of Pomeranchuk instability of the topological surface state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'none'; document.getElementById('2410.19636v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.17142">arXiv:2409.17142</a> <span> [<a href="https://arxiv.org/pdf/2409.17142">pdf</a>, <a href="https://arxiv.org/format/2409.17142">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> </div> </div> <p class="title is-5 mathjax"> Visualizing Dynamics of Charges and Strings in (2+1)D Lattice Gauge Theories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Jobst%2C+B">Bernhard Jobst</a>, <a href="/search/cond-mat?searchtype=author&query=Rosenberg%2C+E">Eliott Rosenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Lensky%2C+Y+D">Yuri D. Lensky</a>, <a href="/search/cond-mat?searchtype=author&query=Gyawali%2C+G">Gaurav Gyawali</a>, <a href="/search/cond-mat?searchtype=author&query=Eassa%2C+N">Norhan Eassa</a>, <a href="/search/cond-mat?searchtype=author&query=Will%2C+M">Melissa Will</a>, <a href="/search/cond-mat?searchtype=author&query=Abanin%2C+D">Dmitry Abanin</a>, <a href="/search/cond-mat?searchtype=author&query=Acharya%2C+R">Rajeev Acharya</a>, <a href="/search/cond-mat?searchtype=author&query=Beni%2C+L+A">Laleh Aghababaie Beni</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+T+I">Trond I. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Ansmann%2C+M">Markus Ansmann</a>, <a href="/search/cond-mat?searchtype=author&query=Arute%2C+F">Frank Arute</a>, <a href="/search/cond-mat?searchtype=author&query=Arya%2C+K">Kunal Arya</a>, <a href="/search/cond-mat?searchtype=author&query=Asfaw%2C+A">Abraham Asfaw</a>, <a href="/search/cond-mat?searchtype=author&query=Atalaya%2C+J">Juan Atalaya</a>, <a href="/search/cond-mat?searchtype=author&query=Babbush%2C+R">Ryan Babbush</a>, <a href="/search/cond-mat?searchtype=author&query=Ballard%2C+B">Brian Ballard</a>, <a href="/search/cond-mat?searchtype=author&query=Bardin%2C+J+C">Joseph C. Bardin</a>, <a href="/search/cond-mat?searchtype=author&query=Bengtsson%2C+A">Andreas Bengtsson</a>, <a href="/search/cond-mat?searchtype=author&query=Bilmes%2C+A">Alexander Bilmes</a>, <a href="/search/cond-mat?searchtype=author&query=Bourassa%2C+A">Alexandre Bourassa</a>, <a href="/search/cond-mat?searchtype=author&query=Bovaird%2C+J">Jenna Bovaird</a>, <a href="/search/cond-mat?searchtype=author&query=Broughton%2C+M">Michael Broughton</a>, <a href="/search/cond-mat?searchtype=author&query=Browne%2C+D+A">David A. Browne</a> , et al. (167 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.17142v1-abstract-short" style="display: inline;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'inline'; document.getElementById('2409.17142v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.17142v1-abstract-full" style="display: none;"> Lattice gauge theories (LGTs) can be employed to understand a wide range of phenomena, from elementary particle scattering in high-energy physics to effective descriptions of many-body interactions in materials. Studying dynamical properties of emergent phases can be challenging as it requires solving many-body problems that are generally beyond perturbative limits. We investigate the dynamics of local excitations in a $\mathbb{Z}_2$ LGT using a two-dimensional lattice of superconducting qubits. We first construct a simple variational circuit which prepares low-energy states that have a large overlap with the ground state; then we create particles with local gates and simulate their quantum dynamics via a discretized time evolution. As the effective magnetic field is increased, our measurements show signatures of transitioning from deconfined to confined dynamics. For confined excitations, the magnetic field induces a tension in the string connecting them. Our method allows us to experimentally image string dynamics in a (2+1)D LGT from which we uncover two distinct regimes inside the confining phase: for weak confinement the string fluctuates strongly in the transverse direction, while for strong confinement transverse fluctuations are effectively frozen. In addition, we demonstrate a resonance condition at which dynamical string breaking is facilitated. Our LGT implementation on a quantum processor presents a novel set of techniques for investigating emergent particle and string dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.17142v1-abstract-full').style.display = 'none'; document.getElementById('2409.17142v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08394">arXiv:2408.08394</a> <span> [<a href="https://arxiv.org/pdf/2408.08394">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-51255-3">10.1038/s41467-024-51255-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A topological Hund nodal line antiferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yueh-Ting Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guan%2C+S">Shuyue Guan</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+C">Che-Min Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Z">Zhaohu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+T">Tong Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Chi%2C+S">Shengwei Chi</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Tian%2C+Z">Zhaoming Tian</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08394v1-abstract-short" style="display: inline;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'inline'; document.getElementById('2408.08394v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08394v1-abstract-full" style="display: none;"> The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08394v1-abstract-full').style.display = 'none'; document.getElementById('2408.08394v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications volume 15, Article number: 7052 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13702">arXiv:2406.13702</a> <span> [<a href="https://arxiv.org/pdf/2406.13702">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-024-01914-z">10.1038/s41563-024-01914-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Van-Hove annihilation and nematic instability on a Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&query=Ingham%2C+J">Julian Ingham</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13702v2-abstract-short" style="display: inline;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectrosc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13702v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13702v2-abstract-full" style="display: none;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectroscopy, we reveal a stripe-like nematic order breaking the crystal rotational symmetry within the Kagome lattice itself. Moreover, we identify a set of van Hove singularities adhering to the Kagome layer electrons, which appear along one direction of the Brillouin zone while being annihilated along other high-symmetry directions, revealing a rotational symmetry breaking. Via detailed spectroscopic maps, we further observe an elliptical deformation of Fermi surface, which provides direct evidence for an electronically mediated nematic order. Our work not only bridges the gap between electronic nematicity and Kagome physics, but also sheds light on the potential mechanism for realizing symmetry-broken phases in correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'none'; document.getElementById('2406.13702v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02341">arXiv:2402.02341</a> <span> [<a href="https://arxiv.org/pdf/2402.02341">pdf</a>, <a href="https://arxiv.org/format/2402.02341">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Untangle charge-order dependent bulk states from surface effects in a topological kagome metal ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+C">Changjiang Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Roychowdhury%2C+S">Subhajit Roychowdhury</a>, <a href="/search/cond-mat?searchtype=author&query=Yilmaz%2C+T">Turgut Yilmaz</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Fedorov%2C+A">Alexei Fedorov</a>, <a href="/search/cond-mat?searchtype=author&query=Chandra%2C+S">Shekhar Chandra</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02341v1-abstract-short" style="display: inline;"> Kagome metals with charge density wave (CDW) order exhibit a broad spectrum of intriguing quantum phenomena. The recent discovery of the novel kagome CDW compound ScV$_6$Sn$_6$ has spurred significant interest. However, understanding the interplay between CDW and the bulk electronic structure has been obscured by a profusion of surface states and terminations in this quantum material. Here, we emp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02341v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02341v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02341v1-abstract-full" style="display: none;"> Kagome metals with charge density wave (CDW) order exhibit a broad spectrum of intriguing quantum phenomena. The recent discovery of the novel kagome CDW compound ScV$_6$Sn$_6$ has spurred significant interest. However, understanding the interplay between CDW and the bulk electronic structure has been obscured by a profusion of surface states and terminations in this quantum material. Here, we employ photoemission spectroscopy and potassium dosing to elucidate the complete bulk band structure of ScV$_6$Sn$_6$, revealing multiple van Hove singularities near the Fermi level. We surprisingly discover a robust spin-polarized topological Dirac surface resonance state at the M point within the two-fold van Hove singularities. Assisted by the first-principle calculations, the temperature dependence of the $k_z$- resolved ARPES spectrum provides unequivocal evidence for the proposed $\sqrt{3}$$\times$$\sqrt{3}$$\times3$ charge order over other candidates. Our work not only enhances the understanding of the CDW-dependent bulk and surface states in ScV$_6$Sn$_6$ but also establishes an essential foundation for potential manipulation of the CDW order in kagome materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02341v1-abstract-full').style.display = 'none'; document.getElementById('2402.02341v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in PRB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14547">arXiv:2401.14547</a> <span> [<a href="https://arxiv.org/pdf/2401.14547">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a Topological Charge Density Wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guin%2C+S+N">Satya N. Guin</a>, <a href="/search/cond-mat?searchtype=author&query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14547v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14547v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14547v1-abstract-full" style="display: none;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological material, Ta2Se8I. Below the transition temperature (TCDW = 260 K), tunneling spectra on an atomically resolved lattice reveal a large insulating gap in the bulk and on the surface, exceeding 500 meV, surpassing predictions from standard weakly-coupled mean-field theory. Spectroscopic imaging confirms the presence of CDW, with LDOS maxima at the conduction band corresponding to the LDOS minima at the valence band, thus revealing a 蟺 phase difference in the respective CDW order. Concomitantly, at a monolayer step edge, we detect an in-gap boundary mode with modulations along the edge that match the CDW wavevector along the edge. Intriguingly, the phase of the edge state modulation shifts by 蟺 within the charge order gap, connecting the fully gapped bulk (and surface) conduction and valence bands via a smooth energy-phase relation. This bears similarity to the topological spectral flow of edge modes, where the boundary modes bridge the gapped bulk modes in energy and momentum magnitude but in Ta2Se8I, the connectivity distinctly occurs in energy and momentum phase. Notably, our temperature-dependent measurements indicate a vanishing of the insulating gap and the in-gap edge state above TCDW, suggesting their direct relation to CDW. The theoretical analysis also indicates that the observed boundary mode is topological and linked to CDW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'none'; document.getElementById('2401.14547v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04845">arXiv:2401.04845</a> <span> [<a href="https://arxiv.org/pdf/2401.04845">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07203-8">10.1038/s41586-024-07203-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a hybrid topological quantum state in an elemental solid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Schindler%2C+F">Frank Schindler</a>, <a href="/search/cond-mat?searchtype=author&query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hou%2C+T">Tao Hou</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04845v1-abstract-short" style="display: inline;"> Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three significant research directions: competition between distinct interactions, as in the multiple intertwined phases, interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and the coalescence of multiple topol… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04845v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04845v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04845v1-abstract-full" style="display: none;"> Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three significant research directions: competition between distinct interactions, as in the multiple intertwined phases, interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and the coalescence of multiple topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, while the last example remains mostly untouched, mainly because of the lack of a material platform for experimental studies. Here, using tunneling microscopy, photoemission spectroscopy, and theoretical analysis, we unveil a "hybrid" and yet novel topological phase of matter in the simple elemental solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology, stabilizing a hybrid topological phase. While momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topology-induced step edge conduction channels revealed on various forms of natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step edge states in arsenic relies on the simultaneous presence of both a nontrivial strong Z2 invariant and a nontrivial higher-order topological invariant, providing experimental evidence for hybrid topology and its realization in a single crystal. Our discovery highlights pathways to explore the interplay of different kinds of band topology and harness the associated topological conduction channels in future engineered quantum or nano-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04845v1-abstract-full').style.display = 'none'; document.getElementById('2401.04845v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature (2024); in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 628, 527 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15862">arXiv:2312.15862</a> <span> [<a href="https://arxiv.org/pdf/2312.15862">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a topological exciton insulator with tunable momentum order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+H">Huangyu Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Tallarida%2C+M">Massimo Tallarida</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+J">Ji Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">Hu Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15862v1-abstract-short" style="display: inline;"> Topology and correlations are fundamental concepts in modern physics, but their simultaneous occurrence within a single quantum phase is exceptionally rare. In this study, we present the discovery of such a phase of matter in Ta2Pd3Te5, a semimetal where the Coulomb interaction between electrons and holes leads to the spontaneous formation of excitonic bound states below T=100 K. Our spectroscopy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15862v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15862v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15862v1-abstract-full" style="display: none;"> Topology and correlations are fundamental concepts in modern physics, but their simultaneous occurrence within a single quantum phase is exceptionally rare. In this study, we present the discovery of such a phase of matter in Ta2Pd3Te5, a semimetal where the Coulomb interaction between electrons and holes leads to the spontaneous formation of excitonic bound states below T=100 K. Our spectroscopy unveils the development of an insulating gap stemming from the condensation of these excitons, thus giving rise to a highly sought-after correlated quantum phase known as the excitonic insulator. Remarkably, our scanning tunneling microscopy measurements reveal the presence of gapless boundary modes in the excitonic insulator state. Their magnetic field response and our theoretical calculations suggest a topological origin of these modes, rendering Ta2Pd3Te5 as the first experimentally identified topological excitonic insulator in a three-dimensional material not masked by any structural phase transition. Furthermore, our study uncovers a secondary excitonic instability below T=5 K, which differs from the primary one in having finite momentum. We observe unprecedented tunability of its wavevector by an external magnetic field. These findings unlock a frontier in the study of novel correlated topological phases of matter and their tunability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15862v1-abstract-full').style.display = 'none'; document.getElementById('2312.15862v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Journal submission on 7th December 23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09487">arXiv:2312.09487</a> <span> [<a href="https://arxiv.org/pdf/2312.09487">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Transport response of topological hinge modes in $伪$-Bi$_4$Br$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Dhale%2C+N">Nikhil Dhale</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+W">Wenhao Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Lv%2C+B">Bing Lv</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09487v2-abstract-short" style="display: inline;"> Electronic topological phases are renowned for their unique properties, where conducting surface states exist on the boundary of an insulating three-dimensional bulk. While the transport response of the surface states has been extensively studied, the response of the topological hinge modes remains elusive. Here, we investigate a layered topological insulator $伪$-Bi$_4$Br$_4$, and provide the firs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09487v2-abstract-full').style.display = 'inline'; document.getElementById('2312.09487v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09487v2-abstract-full" style="display: none;"> Electronic topological phases are renowned for their unique properties, where conducting surface states exist on the boundary of an insulating three-dimensional bulk. While the transport response of the surface states has been extensively studied, the response of the topological hinge modes remains elusive. Here, we investigate a layered topological insulator $伪$-Bi$_4$Br$_4$, and provide the first evidence for quantum transport in gapless topological hinge states existing within the insulating bulk and surface energy gaps. Our magnetoresistance measurements reveal pronounced h/e periodic (where h denotes Planck's constant and e represents the electron charge) Aharonov-Bohm oscillation. The observed periodicity, which directly reflects the enclosed area of phase-coherent electron propagation, matches the area enclosed by the sample hinges, providing compelling evidence for the quantum interference of electrons circumnavigating around the hinges. Notably, the h/e oscillations evolve as a function of magnetic field orientation, following the interference paths along the hinge modes that are allowed by topology and symmetry, and in agreement with the locations of the hinge modes according to our scanning tunneling microscopy images. Remarkably, this demonstration of quantum transport in a topological insulator can be achieved using a flake geometry and we show that it remains robust even at elevated temperatures. Our findings collectively reveal the quantum transport response of topological hinge modes with both topological nature and quantum coherence, which can be directly applied to the development of efficient quantum electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09487v2-abstract-full').style.display = 'none'; document.getElementById('2312.09487v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics, in press (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.12113">arXiv:2302.12113</a> <span> [<a href="https://arxiv.org/pdf/2302.12113">pdf</a>, <a href="https://arxiv.org/format/2302.12113">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Observation of Kondo lattice and Kondo-enhanced anomalous Hall effect in an itinerant ferromagnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Y">Yuqing Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+P">Pengyu Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+H">Haoyu Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+R">Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hashimoto%2C+M">Makoto Hashimoto</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+D">Donghui Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+W">Wenlong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Z">Zhiping Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.12113v1-abstract-short" style="display: inline;"> The interplay between Kondo screening and magnetic interactions is central to comprehending the intricate phases in heavy-fermion compounds. However, the role of the itinerant magnetic order, which is driven by the conducting (c) electrons, has been largely uncharted in the context of heavy-fermion systems due to the scarcity of material candidates. Here we demonstrate the coexistence of the coher… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12113v1-abstract-full').style.display = 'inline'; document.getElementById('2302.12113v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.12113v1-abstract-full" style="display: none;"> The interplay between Kondo screening and magnetic interactions is central to comprehending the intricate phases in heavy-fermion compounds. However, the role of the itinerant magnetic order, which is driven by the conducting (c) electrons, has been largely uncharted in the context of heavy-fermion systems due to the scarcity of material candidates. Here we demonstrate the coexistence of the coherent Kondo screening and d-orbital ferromagnetism in material system La$_{1-x}$Ce$_x$Co$_2$As$_2$, through comprehensive thermodynamic and electrical transport measurements. Additionally, using angle-resolved photoemission spectroscopy (ARPES), we further observe the f-orbit-dominated bands near the Fermi level ($E_f$) and signatures of the f-c hybridization below the magnetic transition temperature, providing strong evidence of Kondo lattice state in the presence of ferromagnetic order. Remarkably, by changing the ratio of Ce/La, we observe a substantial enhancement of the anomalous Hall effect (AHE) in the Kondo lattice regime. The value of the Hall conductivity quantitatively matches with the first-principle calculation that optimized with our ARPES results and can be attributed to the large Berry curvature (BC) density engendered by the topological nodal rings composed of the Ce-4f and Co-3d orbitals at $E_f$. Our findings point to the realization of a new platform for exploring correlation-driven topological responses in a novel Kondo lattice environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.12113v1-abstract-full').style.display = 'none'; document.getElementById('2302.12113v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figs and 22 pages. This is the submitted version and the work will be presented in March meeting (section T19). All comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11425">arXiv:2301.11425</a> <span> [<a href="https://arxiv.org/pdf/2301.11425">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Anomalously high supercurrent density in a two-dimensional topological material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+W">Wenkai Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lai%2C+Z">Zhuangchai Lai</a>, <a href="/search/cond-mat?searchtype=author&query=Tu%2C+Y">Yi-Hsin Tu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+Y">Yao Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+S">Siyuan Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=You%2C+J">Jing-Yang You</a>, <a href="/search/cond-mat?searchtype=author&query=Feng%2C+Y">Yuan-Ping Feng</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Watanabe%2C+K">Kenji Watanabe</a>, <a href="/search/cond-mat?searchtype=author&query=Taniguchi%2C+T">Takashi Taniguchi</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+H">Hua Zhang</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11425v1-abstract-short" style="display: inline;"> Ongoing advances in superconductors continue to revolutionize technology thanks to the increasingly versatile and robust availability of lossless supercurrent. In particular high supercurrent density can lead to more efficient and compact power transmission lines, high-field magnets, as well as high-performance nanoscale radiation detectors and superconducting spintronics. Here, we report the disc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11425v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11425v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11425v1-abstract-full" style="display: none;"> Ongoing advances in superconductors continue to revolutionize technology thanks to the increasingly versatile and robust availability of lossless supercurrent. In particular high supercurrent density can lead to more efficient and compact power transmission lines, high-field magnets, as well as high-performance nanoscale radiation detectors and superconducting spintronics. Here, we report the discovery of an unprecedentedly high superconducting critical current density (17 MA/cm2 at 0 T and 7 MA/cm2 at 8 T) in 1T'-WS2, exceeding those of all reported two-dimensional superconductors to date. 1T'-WS2 features a strongly anisotropic (both in- and out-of-plane) superconducting state that violates the Pauli paramagnetic limit signaling the presence of unconventional superconductivity. Spectroscopic imaging of the vortices further substantiates the anisotropic nature of the superconducting state. More intriguingly, the normal state of 1T'-WS2 carries topological properties. The band structure obtained via angle-resolved photoemission spectroscopy and first-principles calculations points to a Z2 topological invariant. The concomitance of topology and superconductivity in 1T'-WS2 establishes it as a topological superconductor candidate, which is promising for the development of quantum computing technology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11425v1-abstract-full').style.display = 'none'; document.getElementById('2301.11425v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.01402">arXiv:2301.01402</a> <span> [<a href="https://arxiv.org/pdf/2301.01402">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.046402">10.1103/PhysRevLett.130.046402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coexistence of bulk-nodal and surface-nodeless Cooper pairings in a superconducting Dirac semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhong%2C+Y">Yigui Zhong</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chapai%2C+R">Ramakanta Chapai</a>, <a href="/search/cond-mat?searchtype=author&query=Mine%2C+A">Akifumi Mine</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=S%C3%A1nchez-Barriga%2C+J">Jaime S谩nchez-Barriga</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Clark%2C+O+J">Oliver J. Clark</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J+X">Jia- Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Blawat%2C+J">Joanna Blawat</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Nagashima%2C+T">Tsubaki Nagashima</a>, <a href="/search/cond-mat?searchtype=author&query=Sahand%2C+N">Najafzadeh Sahand</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+S">Shiyuan Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Shin%2C+S">Shik Shin</a>, <a href="/search/cond-mat?searchtype=author&query=Okazaki%2C+K">Kozo Okazaki</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.01402v1-abstract-short" style="display: inline;"> The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01402v1-abstract-full').style.display = 'inline'; document.getElementById('2301.01402v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.01402v1-abstract-full" style="display: none;"> The interplay of nontrivial topology and superconductivity in condensed matter physics gives rise to exotic phenomena. However, materials are extremely rare where it is possible to explore the full details of the superconducting pairing. Here, we investigate the momentum dependence of the superconducting gap distribution in a novel Dirac material PdTe. Using high resolution, low temperature photoemission spectroscopy, we establish it as a spin-orbit coupled Dirac semimetal with the topological Fermi arc crossing the Fermi level on the (010) surface. This spin-textured surface state exhibits a fully gapped superconducting Cooper pairing structure below Tc~4.5K. Moreover, we find a node in the bulk near the Brillouin zone boundary, away from the topological Fermi arc.These observations not only demonstrate the band resolved electronic correlation between topological Fermi arc states and the way it induces Cooper pairing in PdTe, but also provide a rare case where surface and bulk states host a coexistence of nodeless and nodal gap structures enforced by spin-orbit coupling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.01402v1-abstract-full').style.display = 'none'; document.getElementById('2301.01402v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by PRL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.00958">arXiv:2301.00958</a> <span> [<a href="https://arxiv.org/pdf/2301.00958">pdf</a>, <a href="https://arxiv.org/format/2301.00958">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Transverse circular photogalvanic effect associated with Lorentz-violating Weyl fermions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+Y">Yuanjun Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yilin Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Hung%2C+Y">Yi-Chun Hung</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+Q">Qiong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.00958v1-abstract-short" style="display: inline;"> Nonlinear optical responses of quantum materials have recently undergone dramatic developments to unveil nontrivial geometry and topology. A remarkable example is the quantized longitudinal circular photogalvanic effect (CPGE) associated with the Chern number of Weyl fermions, while the physics of transverse CPGE in Weyl semimetals remains exclusive. Here, we show that the transverse CPGE of Loren… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00958v1-abstract-full').style.display = 'inline'; document.getElementById('2301.00958v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.00958v1-abstract-full" style="display: none;"> Nonlinear optical responses of quantum materials have recently undergone dramatic developments to unveil nontrivial geometry and topology. A remarkable example is the quantized longitudinal circular photogalvanic effect (CPGE) associated with the Chern number of Weyl fermions, while the physics of transverse CPGE in Weyl semimetals remains exclusive. Here, we show that the transverse CPGE of Lorentz invariant Weyl fermions is forced to be zero. We find that the transverse photocurrents of Weyl fermions are associated not only with the Chern numbers but also with the degree of Lorentz-symmetry breaking in condensed matter systems. Based on the generic two-band model analysis, we provide a new powerful equation to calculate the transverse CPGE based on the tilting and warping terms of Weyl fermions. Our results are more capable in designing large transverse CPGE of Weyl semimetals in experiments and are applied to more than tens of Weyl materials to estimate their photocurrents. Our method paves the way to study the CPGE of massless or massive quasiparticles to design next-generation quantum optoelectronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.00958v1-abstract-full').style.display = 'none'; document.getElementById('2301.00958v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10291">arXiv:2207.10291</a> <span> [<a href="https://arxiv.org/pdf/2207.10291">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.035151">10.1103/PhysRevB.106.035151 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evidence for electronic signature of magnetic transition in topological magnet HoSbTe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+M">Meng Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10291v1-abstract-short" style="display: inline;"> Topological insulators with intrinsic magnetic order are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. To study these systems and their physics, people have proposed a variety of magnetic topological insulator systems, including HoSbTe, an antiferromagnetic weak topological insulator candidate. In this work, we use scanning tun… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10291v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10291v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10291v1-abstract-full" style="display: none;"> Topological insulators with intrinsic magnetic order are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. To study these systems and their physics, people have proposed a variety of magnetic topological insulator systems, including HoSbTe, an antiferromagnetic weak topological insulator candidate. In this work, we use scanning tunneling microscopy to probe the electronic structure of HoSbTe with antiferromagnetic and ferromagnetic orders that are tuned by applying an external magnetic field. Although around the Fermi energy, we find minor differences between the quasi-particle interferences under the ferromagnetic and antiferromagnetic orders, deep inside the valance region, a new quasi-particle interference signal emerges with ferromagnetism. This observation is consistent with our first-principles calculations indicating the magnetism-driven transition of the electronic states in this spin-orbit coupled topological magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10291v1-abstract-full').style.display = 'none'; document.getElementById('2207.10291v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10648">arXiv:2203.10648</a> <span> [<a href="https://arxiv.org/pdf/2203.10648">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Magnetization-direction-tunable kagome Weyl line </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+W">Wenlong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jozwiak%2C+C">Chris Jozwiak</a>, <a href="/search/cond-mat?searchtype=author&query=Bostwick%2C+A">Aaron Bostwick</a>, <a href="/search/cond-mat?searchtype=author&query=Rotenberg%2C+E">Eli Rotenberg</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md. Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10648v1-abstract-short" style="display: inline;"> Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena. Here, utilizing angle-resolved photoemission spectroscopy, we demonstrate Weyl lines with strong out-of-plane dispersion in an A-A stacked kagome magnet TbxGd1-xMn6Sn6. On the Gd rich side, the Weyl line remains nearly spin-orbit-gapless due to a remarkable cooperative interplay between Kane-Mele spin-or… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10648v1-abstract-full').style.display = 'inline'; document.getElementById('2203.10648v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10648v1-abstract-full" style="display: none;"> Kagome magnets provide a fascinating platform for a plethora of topological quantum phenomena. Here, utilizing angle-resolved photoemission spectroscopy, we demonstrate Weyl lines with strong out-of-plane dispersion in an A-A stacked kagome magnet TbxGd1-xMn6Sn6. On the Gd rich side, the Weyl line remains nearly spin-orbit-gapless due to a remarkable cooperative interplay between Kane-Mele spin-orbit-coupling, low site symmetry and in-plane magnetic order. Under Tb substitution, the kagome Weyl line gaps due to a magnetic reorientation to out-of-plane order. Our results illustrate the magnetic moment direction as an efficient tuning knob for realizing distinct three-dimensional topological phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10648v1-abstract-full').style.display = 'none'; document.getElementById('2203.10648v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures. Comments are welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.01888">arXiv:2203.01888</a> <span> [<a href="https://arxiv.org/pdf/2203.01888">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.166401">10.1103/PhysRevLett.129.166401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of charge order and corresponding edge state in kagome magnet FeGe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Teng%2C+X">Xiaokun Teng</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md. Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Mardanya%2C+S">Sougata Mardanya</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Ye%2C+Z">Zijin Ye</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Lienhard%2C+B">Benjamin Lienhard</a>, <a href="/search/cond-mat?searchtype=author&query=Deng%2C+H">Han-Bin Deng</a>, <a href="/search/cond-mat?searchtype=author&query=Setty%2C+C">Chandan Setty</a>, <a href="/search/cond-mat?searchtype=author&query=Si%2C+Q">Qimiao Si</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+B">Bin Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Yi%2C+M">Ming Yi</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+P">Pengcheng Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.01888v3-abstract-short" style="display: inline;"> Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge order, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to non-kagome surface layers. Here we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifes a 2x2 charge order in the magnetic kagome… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01888v3-abstract-full').style.display = 'inline'; document.getElementById('2203.01888v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.01888v3-abstract-full" style="display: none;"> Kagome materials often host exotic quantum phases, including spin liquids, Chern gap, charge order, and superconductivity. Existing scanning microscopy studies of the kagome charge order have been limited to non-kagome surface layers. Here we tunnel into the kagome lattice of FeGe to uncover features of the charge order. Our spectroscopic imaging identifes a 2x2 charge order in the magnetic kagome lattice, resembling that discovered in kagome superconductors. Spin-mapping across steps of unit-cell-height demonstrates that this charge order emerges from spin-polarized electrons with an antiferromagnetic stacking order. We further uncover the correlation between antiferromagnetism and charge order anisotropy, highlighting the unusual magnetic coupling of the charge order. Finally, we detect a pronounced edge state within the charge order energy gap, which is robust against the irregular shape of the kagome lattice edges. We discuss our results with the theoretically considered topological features of the kagome charge order including orbital magnetism and bulk-boundary correspondence. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.01888v3-abstract-full').style.display = 'none'; document.getElementById('2203.01888v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 166401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00675">arXiv:2203.00675</a> <span> [<a href="https://arxiv.org/pdf/2203.00675">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.105.L121107">10.1103/PhysRevB.105.L121107 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Visualizing the out-of-plane electronic dispersions in an intercalated transition metal dichalcogenide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=LaBollita%2C+H">Harrison LaBollita</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Bhandari%2C+H">Hari Bhandari</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md. Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Liskevich%2C+M">Maksim Liskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Usanov%2C+D+A">Dmitry A. Usanov</a>, <a href="/search/cond-mat?searchtype=author&query=Dang%2C+Y">Yanliu Dang</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Davydov%2C+A+V">Albert V. Davydov</a>, <a href="/search/cond-mat?searchtype=author&query=Ghimire%2C+N+J">Nirmal J. Ghimire</a>, <a href="/search/cond-mat?searchtype=author&query=Botana%2C+A+S">Antia S. Botana</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00675v1-abstract-short" style="display: inline;"> Layered transition metal dichalcogenides have rich phase diagram and they feature two dimensionality on numerous physical properties. Co1/3NbS2 is one of the newest members of this family where Co atoms are intercalated into the Van der Waals gaps between NbS2 layers. We study the three-dimensional electronic band structure of Co1/3NbS2 using both surface and bulk sensitive angle-resolved photoemi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00675v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00675v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00675v1-abstract-full" style="display: none;"> Layered transition metal dichalcogenides have rich phase diagram and they feature two dimensionality on numerous physical properties. Co1/3NbS2 is one of the newest members of this family where Co atoms are intercalated into the Van der Waals gaps between NbS2 layers. We study the three-dimensional electronic band structure of Co1/3NbS2 using both surface and bulk sensitive angle-resolved photoemission spectroscopy. We show that the electronic bands do not fit into the rigid-band-shift picture after the Co intercalation. Instead, Co1/3NbS2 displays a different orbital character near the Fermi level compared to the pristine NbS2 compound and has a clear band dispersion in kz direction despite its layered structure. Our photoemission study demonstrates the out-of-plane electronic correlations introduced by the Co intercalation, thus offering a new perspective on this compound. Finally, we propose how Fermi level tuning could lead to exotic phases such as spin density wave instability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00675v1-abstract-full').style.display = 'none'; document.getElementById('2203.00675v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by Physical Review B</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.14722">arXiv:2112.14722</a> <span> [<a href="https://arxiv.org/pdf/2112.14722">pdf</a>, <a href="https://arxiv.org/format/2112.14722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04512-8">10.1038/s41586-022-04512-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> What's knot to like? Observation of a linked loop quantum state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Hugelmeyer%2C+C">Cole Hugelmeyer</a>, <a href="/search/cond-mat?searchtype=author&query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&query=Schr%C3%B6ter%2C+N+B+M">Niels B. M. Schr枚ter</a>, <a href="/search/cond-mat?searchtype=author&query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&query=Thiagarajan%2C+B">Balasubramanian Thiagarajan</a>, <a href="/search/cond-mat?searchtype=author&query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&query=Adell%2C+J">Johan Adell</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.14722v2-abstract-short" style="display: inline;"> Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14722v2-abstract-full').style.display = 'inline'; document.getElementById('2112.14722v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.14722v2-abstract-full" style="display: none;"> Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we report a remarkable linking number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material's bulk Brillouin zone three-torus, $\mathbb{T}^3$. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits linking number $(2,2,2)$, providing a direct determination of the invariant structure from the experimental data. On the surface of our samples, we further predict and observe Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk-boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of exotic properties of quantum matter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.14722v2-abstract-full').style.display = 'none'; document.getElementById('2112.14722v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">See popular summary at https://research.princeton.edu/news/electrons-crystal-exhibit-linked-and-knotted-quantum-twists</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 604, 647-652 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.05718">arXiv:2110.05718</a> <span> [<a href="https://arxiv.org/pdf/2110.05718">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-022-01304-3">10.1038/s41563-022-01304-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Room-temperature quantum spin Hall edge state in a higher-order topological insulator Bi$_4$Br$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Yoon%2C+C">Chiho Yoon</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+Y">Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+Y">Yen-Chuan Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Yuan%2C+Z">Zhujun Yuan</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+F">Fan Zhang</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.05718v3-abstract-short" style="display: inline;"> Room-temperature realization of macroscopic quantum phenomena is one of the major pursuits in fundamental physics. The quantum spin Hall state, a topological quantum phenomenon that features a two-dimensional insulating bulk and a helical edge state, has not yet been realized at room temperature. Here, we use scanning tunneling microscopy to visualize a quantum spin Hall edge state on the surface… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05718v3-abstract-full').style.display = 'inline'; document.getElementById('2110.05718v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.05718v3-abstract-full" style="display: none;"> Room-temperature realization of macroscopic quantum phenomena is one of the major pursuits in fundamental physics. The quantum spin Hall state, a topological quantum phenomenon that features a two-dimensional insulating bulk and a helical edge state, has not yet been realized at room temperature. Here, we use scanning tunneling microscopy to visualize a quantum spin Hall edge state on the surface of the higher-order topological insulator Bi4Br4. We find that the atomically resolved lattice exhibits a large insulating gap of over 200meV, and an atomically sharp monolayer step edge hosts a striking in-gap gapless state, suggesting the topological bulk-boundary correspondence. An external magnetic field can gap the edge state, consistent with the time-reversal symmetry protection inherent to the underlying topology. We further identify the geometrical hybridization of such edge states, which not only attests to the Z2 topology of the quantum spin Hall state but also visualizes the building blocks of the higher-order topological insulator phase. Remarkably, both the insulating gap and topological edge state are observed to persist up to 300K. Our results point to the realization of the room-temperature quantum spin Hall edge state in a higher-order topological insulator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.05718v3-abstract-full').style.display = 'none'; document.getElementById('2110.05718v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.13957">arXiv:2108.13957</a> <span> [<a href="https://arxiv.org/pdf/2108.13957">pdf</a>, <a href="https://arxiv.org/format/2108.13957">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Helicoid-arc van Hove singularities in topological chiral crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yiyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&query=Chikina%2C+A">Alla Chikina</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Strocov%2C+V+N">Vladimir N. Strocov</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.13957v1-abstract-short" style="display: inline;"> Van Hove singularity are electronic instabilities that lead to many fascinating interactions, such as superconductivity and charge-density waves. And despite much interest, the nexus of emergent correlation effects from van Hove singularities and topological states of matter remains little explored in experiments. By utilizing synchrotron-based angle-resolved photoemission spectroscopy and Density… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13957v1-abstract-full').style.display = 'inline'; document.getElementById('2108.13957v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.13957v1-abstract-full" style="display: none;"> Van Hove singularity are electronic instabilities that lead to many fascinating interactions, such as superconductivity and charge-density waves. And despite much interest, the nexus of emergent correlation effects from van Hove singularities and topological states of matter remains little explored in experiments. By utilizing synchrotron-based angle-resolved photoemission spectroscopy and Density Functional Theory, here we provide the first discovery of the helicoid quantum nature of topological Fermi arcs inducing van Hove singularities. In particular, in topological chiral conductors RhSi and CoSi we directly observed multiple types of inter- and intra-helicoid-arc mediated singularities, which includes the type-I and type-II van Hove singularity. We further demonstrate that the energy of the helicoid-arc singularities are easily tuned by chemical engineering. Taken together, our work provides a promising route to engineering new electronic instabilities in topological quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.13957v1-abstract-full').style.display = 'none'; document.getElementById('2108.13957v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.14034">arXiv:2105.14034</a> <span> [<a href="https://arxiv.org/pdf/2105.14034">pdf</a>, <a href="https://arxiv.org/format/2105.14034">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.127.256403">10.1103/PhysRevLett.127.256403 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Signatures of Weyl fermion annihilation in a correlated kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirkin%2C+S+S">Stepan S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Vir%2C+P">Praveen Vir</a>, <a href="/search/cond-mat?searchtype=author&query=Thakur%2C+G+S">Gohil S. Thakur</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Kaznatcheev%2C+K">Konstantine Kaznatcheev</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.14034v2-abstract-short" style="display: inline;"> The manipulation of topological states in quantum matter is an essential pursuit of fundamental physics and next-generation quantum technology. Here we report the magnetic manipulation of Weyl fermions in the kagome spin-orbit semimetal Co$_3$Sn$_2$S$_2$, observed by high-resolution photoemission spectroscopy. We demonstrate the exchange collapse of spin-orbit-gapped ferromagnetic Weyl loops into… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.14034v2-abstract-full').style.display = 'inline'; document.getElementById('2105.14034v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.14034v2-abstract-full" style="display: none;"> The manipulation of topological states in quantum matter is an essential pursuit of fundamental physics and next-generation quantum technology. Here we report the magnetic manipulation of Weyl fermions in the kagome spin-orbit semimetal Co$_3$Sn$_2$S$_2$, observed by high-resolution photoemission spectroscopy. We demonstrate the exchange collapse of spin-orbit-gapped ferromagnetic Weyl loops into paramagnetic Dirac loops under suppression of the magnetic order. We further observe that topological Fermi arcs disappear in the paramagnetic phase, suggesting the annihilation of exchange-split Weyl points. Our findings indicate that magnetic exchange collapse naturally drives Weyl fermion annihilation, opening new opportunities for engineering topology under correlated order parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.14034v2-abstract-full').style.display = 'none'; document.getElementById('2105.14034v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version. Comments welcome! Early version of this manuscript first submitted in January 2020. See also: arXiv:2005.02400, Co3Sn2S2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 127, 256403 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.00550">arXiv:2105.00550</a> <span> [<a href="https://arxiv.org/pdf/2105.00550">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.035131">10.1103/PhysRevB.104.035131 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intrinsic nature of chiral charge order in the kagome superconductor RbV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Ortiz%2C+B+R">Brenden R. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+Q">Qiangwei Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.00550v2-abstract-short" style="display: inline;"> Superconductors with kagome lattices have been identified for over 40 years, with a superconducting transition temperature TC up to 7K. Recently, certain kagome superconductors have been found to exhibit an exotic charge order, which intertwines with superconductivity and persists to a temperature being one order of magnitude higher than TC. In this work, we use scanning tunneling microscopy (STM)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00550v2-abstract-full').style.display = 'inline'; document.getElementById('2105.00550v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.00550v2-abstract-full" style="display: none;"> Superconductors with kagome lattices have been identified for over 40 years, with a superconducting transition temperature TC up to 7K. Recently, certain kagome superconductors have been found to exhibit an exotic charge order, which intertwines with superconductivity and persists to a temperature being one order of magnitude higher than TC. In this work, we use scanning tunneling microscopy (STM) to study the charge order in kagome superconductor RbV3Sb5. We observe both a 2x2 chiral charge order and nematic surface superlattices (predominantly 1x4). We find that the 2x2 charge order exhibits intrinsic chirality with magnetic field tunability. Defects can scatter electrons to introduce standing waves, which couple with the charge order to cause extrinsic effects. While the chiral charge order resembles that discovered in KV3Sb5, it further interacts with the nematic surface superlattices that are absent in KV3Sb5 but exist in CsV3Sb5. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.00550v2-abstract-full').style.display = 'none'; document.getElementById('2105.00550v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 035131 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.06167">arXiv:2101.06167</a> <span> [<a href="https://arxiv.org/pdf/2101.06167">pdf</a>, <a href="https://arxiv.org/format/2101.06167">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-021-00352-3">10.1038/s41535-021-00352-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Putative helimagnetic phase in the kagome metal Co_3Sn_2-xIn_xS_2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C+N">C. N. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Mielke%2C+C">C. Mielke III</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirkin%2C+S+S">S. S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">I. Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+-">S. -S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">T. A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">S. Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.06167v1-abstract-short" style="display: inline;"> The exploration of topological electronic phases that result from strong electronic correlations is a frontier in condensed matter physics. One class of systems that is currently emerging as a platform for such studies are so-called kagome magnets based on transition metals. Using muon spin-rotation, we explore magnetic correlations in the kagome magnet Co$_{3}$Sn$_{2-x}$In$_{x}$S$_{2}$ as a funct… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06167v1-abstract-full').style.display = 'inline'; document.getElementById('2101.06167v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.06167v1-abstract-full" style="display: none;"> The exploration of topological electronic phases that result from strong electronic correlations is a frontier in condensed matter physics. One class of systems that is currently emerging as a platform for such studies are so-called kagome magnets based on transition metals. Using muon spin-rotation, we explore magnetic correlations in the kagome magnet Co$_{3}$Sn$_{2-x}$In$_{x}$S$_{2}$ as a function of In-doping, providing putative evidence for an intriguing incommensurate helimagnetic (HM) state. Our results show that, while the undoped sample exhibits an out-of-plane ferromagnetic (FM) ground state, at 5 ${\%}$ of In-doping the system enters a state in which FM and in-plane antiferromagnetic (AFM) phases coexist. At higher doping, a HM state emerges and becomes dominant at the critical doping level of only $x_{\rm cr,1}$ ${\simeq}$ 0.3. This indicates a zero temperature first order quantum phase transition from the FM, through a mixed state, to a helical phase at $x_{\rm cr,1}$. In addition, at $x_{\rm cr,2}$ ${\simeq}$ 1, a zero temperature second order phase transition from helical to paramagnetic phase is observed, evidencing a HM quantum critical point (QCP) in the phase diagram of the topological magnet Co$_{3}$Sn$_{2-x}$In$_{x}$S$_{2}$. The observed diversity of interactions in the magnetic kagome lattice drives non-monotonous variations of the topological Hall response of this system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.06167v1-abstract-full').style.display = 'none'; document.getElementById('2101.06167v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures. This work builds on our earlier finding on Co3Sn2S2, arXiv:1904.09353, and expands our findings to Co3Sn2-xInxS2</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials 6, 50 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.05763">arXiv:2101.05763</a> <span> [<a href="https://arxiv.org/pdf/2101.05763">pdf</a>, <a href="https://arxiv.org/format/2101.05763">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> Intriguing magnetism of the topological kagome magnet TbMn_6Sn_6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Mielke%2C+C">C. Mielke III</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+W">W. Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushin%2C+V">V. Pomjakushin</a>, <a href="/search/cond-mat?searchtype=author&query=Zaharko%2C+O">O. Zaharko</a>, <a href="/search/cond-mat?searchtype=author&query=Sturniolo%2C+S">S. Sturniolo</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">X. Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ukleev%2C+V">V. Ukleev</a>, <a href="/search/cond-mat?searchtype=author&query=White%2C+J+S">J. S. White</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirkin%2C+S+S">S. S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&query=Larsen%2C+C+B">C. B. Larsen</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">T. A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&query=Poree%2C+V">V. Poree</a>, <a href="/search/cond-mat?searchtype=author&query=Das%2C+D">D. Das</a>, <a href="/search/cond-mat?searchtype=author&query=Gupta%2C+R">R. Gupta</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+C+N">C. N. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z+Q">Z. Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Liborio%2C+L">L. Liborio</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">S. Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Z. Hasan</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.05763v2-abstract-short" style="display: inline;"> Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. Here, we explore magnetic correlations in the transition-metal-based kagome magnet TbMn$_{6}$Sn$_{6}$ using muon spin rotation, combined with local field analysis and neutron diffraction. Our results show th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05763v2-abstract-full').style.display = 'inline'; document.getElementById('2101.05763v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.05763v2-abstract-full" style="display: none;"> Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. Here, we explore magnetic correlations in the transition-metal-based kagome magnet TbMn$_{6}$Sn$_{6}$ using muon spin rotation, combined with local field analysis and neutron diffraction. Our results show that the system exhibits an out-of-plane ferrimagnetic structure $P6/mm'm'$ (comprised by Tb and Mn moments) with slow magnetic fluctuations below $T_{\rm C2}$~=~320~K. These fluctuations exhibit a slowing down below $T_{\rm C1}^{*}$~${\simeq}$~120~K, and we see the formation of static patches with ideal out-of-plane order below $T_{\rm C1}$~${\simeq}$~20~K which grow in a volume with decreasing temperature. The appearance of the static patches has a similar onset to the interesting phenomenon such as spin-polarized Dirac dispersion with a large Chern gap and topological edge states. We further show that the temperature evolution of the anomalous Hall conductivity (AHC) is strongly influenced by the low temperature magnetic crossover. Our presented experimental results show that the onset of the topological electronic properties tied to the Dirac band is promoted only by true static out-of-plane ferrimagnetic order in TbMn$_{6}$Sn$_{6}$ and is washed out by the slow magnetic fluctuations above $T_{\rm C1}$~${\simeq}$~20~K. Remarkably, hydrostatic pressure of 2.1 GPa stabilises static out-of-plane topological ferrimagnetic ground state in the whole volume of the sample. Therefore the exciting perspective arises of a magnetic system in which the topological response can be controlled, and thus explored, over a wide range of parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.05763v2-abstract-full').style.display = 'none'; document.getElementById('2101.05763v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 12 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.15709">arXiv:2012.15709</a> <span> [<a href="https://arxiv.org/pdf/2012.15709">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-021-01034-y">10.1038/s41563-021-01034-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of unconventional chiral charge order in kagome superconductor KV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Ortiz%2C+B+R">Brenden R. Ortiz</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=He%2C+J">Junyi He</a>, <a href="/search/cond-mat?searchtype=author&query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ruff%2C+J">Jacob Ruff</a>, <a href="/search/cond-mat?searchtype=author&query=Kautzsch%2C+L">Linus Kautzsch</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Wilson%2C+S+D">Stephen D. Wilson</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.15709v3-abstract-short" style="display: inline;"> Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15709v3-abstract-full').style.display = 'inline'; document.getElementById('2012.15709v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.15709v3-abstract-full" style="display: none;"> Intertwining quantum order and nontrivial topology is at the frontier of condensed matter physics. A charge density wave (CDW) like order with orbital currents has been proposed as a powerful resource for achieving the quantum anomalous Hall effect in topological materials and for the hidden phase in cuprate high-temperature superconductors. However, the experimental realization of such an order is challenging. Here we use high-resolution scanning tunnelling microscopy (STM) to discover an unconventional charge order in a kagome material KV3Sb5, with both a topological band structure and a superconducting ground state. Through both topography and spectroscopic imaging, we observe a robust 2x2 superlattice. Spectroscopically, an energy gap opens at the Fermi level, across which the 2x2 charge modulation exhibits an intensity reversal in real-space, signaling charge ordering. At impurity-pinning free region, the strength of intrinsic charge modulations further exhibits chiral anisotropy with unusual magnetic field response. Theoretical analysis of our experiments suggests a tantalizing unconventional chiral CDW in the frustrated kagome lattice, which can not only lead to large anomalous Hall effect with orbital magnetism, but also be a precursor of unconventional superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.15709v3-abstract-full').style.display = 'none'; document.getElementById('2012.15709v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Orbital magnetism calculation added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Materials (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13738">arXiv:2007.13738</a> <span> [<a href="https://arxiv.org/pdf/2007.13738">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-18111-6">10.1038/s41467-020-18111-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin-orbit quantum impurity and quantization in a topological magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Macam%2C+G">Gennevieve Macam</a>, <a href="/search/cond-mat?searchtype=author&query=Sura%2C+H+O+M">Hano Omar Mohammad Sura</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zijia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yangmu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhi-Quan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chuang%2C+F">Feng-Chuan Chuang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13738v1-abstract-short" style="display: inline;"> Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological magnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered q… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13738v1-abstract-full').style.display = 'inline'; document.getElementById('2007.13738v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13738v1-abstract-full" style="display: none;"> Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological magnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered quantum impurity in a topological magnet Co3Sn2S2. We find that each substituted In impurity introduces a striking localized bound state. Our systematic magnetization-polarized probe reveals that this bound state is spin-down polarized, in lock with a negative orbital magnetization. Moreover, the magnetic bound states of neighboring impurities interact to form quantized orbitals, exhibiting an intriguing spin-orbit splitting, analogous to the splitting of the topological fermion line. Our work collectively demonstrates the strong spin-orbit effect of the single-atomic impurity at the quantum level, suggesting that a nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13738v1-abstract-full').style.display = 'none'; document.getElementById('2007.13738v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature Communications (2020), both experiment and theory included. arXiv admin note: text overlap with arXiv:2002.11783</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 4415 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.14713">arXiv:2006.14713</a> <span> [<a href="https://arxiv.org/pdf/2006.14713">pdf</a>, <a href="https://arxiv.org/format/2006.14713">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-16879-1">10.1038/s41467-020-16879-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Weyl fermions in a magnetic non-centrosymmetric crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+H">Hong Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Alidoust%2C+N">Nasser Alidoust</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+X">Xiao Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+Y">Yi Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yi-Yuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+J">Jie Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+G">Guang Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.14713v1-abstract-short" style="display: inline;"> Characterized by the absence of inversion symmetry, non-centrosymmetric materials are of great interest because they exhibit ferroelectricity, second harmonic generation, emergent Weyl fermions, and other fascinating phenomena. It is expected that if time-reversal symmetry is also broken, additional magneto-electric effects can emerge from the interplay between magnetism and electronic order. Here… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14713v1-abstract-full').style.display = 'inline'; document.getElementById('2006.14713v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.14713v1-abstract-full" style="display: none;"> Characterized by the absence of inversion symmetry, non-centrosymmetric materials are of great interest because they exhibit ferroelectricity, second harmonic generation, emergent Weyl fermions, and other fascinating phenomena. It is expected that if time-reversal symmetry is also broken, additional magneto-electric effects can emerge from the interplay between magnetism and electronic order. Here we report topological conducting properties in the non-centrosymmetric magnet PrAlGe. By photoemission spectroscopy, we observe an arc parametrizing surface-localized states---a topological arc. Using the bulk-boundary correspondence, we conclude that these arcs correspond to projected topological charges of $\pm{1}$ in the surface Brillouin zone, demonstrating the presence of magnetic Weyl quasiparticles in bulk. We further observe a large anomalous Hall response, arising from diverging bulk Berry curvature fields associated with the magnetic Weyl band structure. Our results demonstrate a topological phase with robust electronic surface states and anomalous transport in a non-centrosymmetric magnet for the first time, providing a novel material platform to study the interplay between magnetic order, band topology and transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.14713v1-abstract-full').style.display = 'none'; document.getElementById('2006.14713v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature Communications (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 3356 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.04881">arXiv:2006.04881</a> <span> [<a href="https://arxiv.org/pdf/2006.04881">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-020-2482-7">10.1038/s41586-020-2482-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a quantum limit Chern magnet TbMn6Sn6 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Ma%2C+W">Wenlong Ma</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Song%2C+Z">Zhida Song</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zijia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Swidler%2C+B">Bianca Swidler</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.04881v1-abstract-short" style="display: inline;"> The quantum level interplay between geometry, topology, and correlation is at the forefront of fundamental physics. Owing to the unusual lattice geometry and breaking of time-reversal symmetry, kagome magnets are predicted to support intrinsic Chern quantum phases. However, quantum materials hosting ideal spin-orbit coupled kagome lattices with strong out-of-plane magnetization have been lacking.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04881v1-abstract-full').style.display = 'inline'; document.getElementById('2006.04881v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.04881v1-abstract-full" style="display: none;"> The quantum level interplay between geometry, topology, and correlation is at the forefront of fundamental physics. Owing to the unusual lattice geometry and breaking of time-reversal symmetry, kagome magnets are predicted to support intrinsic Chern quantum phases. However, quantum materials hosting ideal spin-orbit coupled kagome lattices with strong out-of-plane magnetization have been lacking. Here we use scanning tunneling microscopy to discover a new topological kagome magnet TbMn6Sn6, which is close to satisfying the above criteria. We visualize its effectively defect-free purely Mn-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state exhibits distinct Landau quantization upon the application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk-boundary correspondence between the Chern gap and topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, opening up an avenue for discovering topological quantum phenomena in the RMn6Sn6 (R = rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk-boundary-Berry correspondence covering real and momentum space demonstrates a proof-of-principle method revealing topological magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.04881v1-abstract-full').style.display = 'none'; document.getElementById('2006.04881v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature (2020)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 583, 533-536 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10343">arXiv:2005.10343</a> <span> [<a href="https://arxiv.org/pdf/2005.10343">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.201105">10.1103/PhysRevB.101.201105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of sixfold degenerate fermions in PdSb$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Y%C3%A1ng%2C+X">Xi脿n Y谩ng</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chapai%2C+R">Ramakanta Chapai</a>, <a href="/search/cond-mat?searchtype=author&query=Tristant%2C+D">Damien Tristant</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Ch%C3%A9ng%2C+Z">Z菒ji膩 Ch茅ng</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Vekhter%2C+I">Ilya Vekhter</a>, <a href="/search/cond-mat?searchtype=author&query=Shelton%2C+W+A">William A. Shelton</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+R">Rongying Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10343v1-abstract-short" style="display: inline;"> Three types of fermions have been extensively studied in topological quantum materials: Dirac, Weyl, and Majorana fermions. Beyond the fundamental fermions in high energy physics, exotic fermions are allowed in condensed matter systems residing in three-, six- or eightfold degenerate band crossings. Here, we use angle-resolved photoemission spectroscopy to directly visualize three-doubly-degenerat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10343v1-abstract-full').style.display = 'inline'; document.getElementById('2005.10343v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10343v1-abstract-full" style="display: none;"> Three types of fermions have been extensively studied in topological quantum materials: Dirac, Weyl, and Majorana fermions. Beyond the fundamental fermions in high energy physics, exotic fermions are allowed in condensed matter systems residing in three-, six- or eightfold degenerate band crossings. Here, we use angle-resolved photoemission spectroscopy to directly visualize three-doubly-degenerate bands in PdSb$_2$. The ultrahigh energy resolution we are able to achieve allows for the confirmation of all the sixfold degenerate bands at the R point, in remarkable consistency with first-principles calculations. Moreover, we find that this sixfold degenerate crossing has quadratic dispersion as predicted by theory. Finally, we compare sixfold degenerate fermions with previously confirmed fermions to demonstrate the importance of this work: our study indicates a topological fermion beyond the constraints of high energy physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10343v1-abstract-full').style.display = 'none'; document.getElementById('2005.10343v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys Rev B. 101, 201105(R) (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.10308">arXiv:2005.10308</a> <span> [<a href="https://arxiv.org/pdf/2005.10308">pdf</a>, <a href="https://arxiv.org/format/2005.10308">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-021-01126-9">10.1038/s41563-021-01126-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sirica%2C+N">N Sirica</a>, <a href="/search/cond-mat?searchtype=author&query=Orth%2C+P+P">P. P. Orth</a>, <a href="/search/cond-mat?searchtype=author&query=Scheurer%2C+M+S">M. S. Scheurer</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+Y+M">Y. M. Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+M+-">M. -C. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Padmanabhan%2C+P">P. Padmanabhan</a>, <a href="/search/cond-mat?searchtype=author&query=Mix%2C+L+T">L. T. Mix</a>, <a href="/search/cond-mat?searchtype=author&query=Teitelbaum%2C+S+W">S. W. Teitelbaum</a>, <a href="/search/cond-mat?searchtype=author&query=Trigo%2C+M">M. Trigo</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L+X">L. X. Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G+F">G. F. Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+B">B. Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+R">R. Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Shen%2C+B">B. Shen</a>, <a href="/search/cond-mat?searchtype=author&query=Hu%2C+C">C. Hu</a>, <a href="/search/cond-mat?searchtype=author&query=Lee%2C+C+-">C. -C. Lee</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">H. Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">T. A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Trugman%2C+S+A">S. A. Trugman</a>, <a href="/search/cond-mat?searchtype=author&query=Zhu%2C+J+-">J. -X. Zhu</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Ni%2C+N">N. Ni</a>, <a href="/search/cond-mat?searchtype=author&query=Qiu%2C+X+G">X. G. Qiu</a>, <a href="/search/cond-mat?searchtype=author&query=Taylor%2C+A+J">A. J. Taylor</a>, <a href="/search/cond-mat?searchtype=author&query=Yarotski%2C+D+A">D. A. Yarotski</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.10308v4-abstract-short" style="display: inline;"> Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10308v4-abstract-full').style.display = 'inline'; document.getElementById('2005.10308v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.10308v4-abstract-full" style="display: none;"> Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry change a critical step in developing future technologies that rely on such control. Topological materials, like the newly discovered topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second-harmonic generation spectroscopy as a sensitive probe of symmetry change, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast time scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.10308v4-abstract-full').style.display = 'none'; document.getElementById('2005.10308v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures, 4 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.02400">arXiv:2005.02400</a> <span> [<a href="https://arxiv.org/pdf/2005.02400">pdf</a>, <a href="https://arxiv.org/format/2005.02400">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Signatures of a topological Weyl loop in Co$_3$Sn$_2$S$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirkin%2C+S+S">Stepan S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jiaxin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zijia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.02400v2-abstract-short" style="display: inline;"> The search for novel topological phases of matter in quantum magnets has emerged as a frontier of condensed matter physics. Here we use state-of-the-art angle-resolved photoemission spectroscopy (ARPES) to investigate single crystals of Co$_3$Sn$_2$S$_2$ in its ferromagnetic phase. We report for the first time signatures of a topological Weyl loop. From fundamental symmetry considerations, this ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02400v2-abstract-full').style.display = 'inline'; document.getElementById('2005.02400v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.02400v2-abstract-full" style="display: none;"> The search for novel topological phases of matter in quantum magnets has emerged as a frontier of condensed matter physics. Here we use state-of-the-art angle-resolved photoemission spectroscopy (ARPES) to investigate single crystals of Co$_3$Sn$_2$S$_2$ in its ferromagnetic phase. We report for the first time signatures of a topological Weyl loop. From fundamental symmetry considerations, this magnetic Weyl loop is expected to be gapless if spin-orbit coupling (SOC) is strictly zero but gapped, with possible Weyl points, under finite SOC. We point out that high-resolution ARPES results to date cannot unambiguously resolve the SOC gap anywhere along the Weyl loop, leaving open the possibility that Co$_3$Sn$_2$S$_2$ hosts zero Weyl points or some non-zero number of Weyl points. On the surface of our samples, we further observe a possible Fermi arc, but we are unable to clearly verify its topological nature using the established counting criteria. As a result, we argue that from the point of view of photoemission spectroscopy the presence of Weyl points and Fermi arcs in Co$_3$Sn$_2$S$_2$ remains ambiguous. Our results have implications for ongoing investigations of Co$_3$Sn$_2$S$_2$ and other topological magnets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.02400v2-abstract-full').style.display = 'none'; document.getElementById('2005.02400v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Co3Sn2S2; comments welcome. Manuscript unchanged, updated comment: companion paper to arXiv:2105.14034, which is published as Phys. Rev. Lett. 127, 256403 (2021) at https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.256403</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.11365">arXiv:2004.11365</a> <span> [<a href="https://arxiv.org/pdf/2004.11365">pdf</a>, <a href="https://arxiv.org/format/2004.11365">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> A Fermi Arc Quantum Ladder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Ch%C3%A9ng%2C+Z">Z菒ji膩 Ch茅ng</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Borrmann%2C+H">Horst Borrmann</a>, <a href="/search/cond-mat?searchtype=author&query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.11365v1-abstract-short" style="display: inline;"> Known topological quantum matter, including topological insulators and Dirac/Weyl semimetals, often hosts robust boundary states in the gaps between bulk bands in energy-momentum space. Beyond one-gap systems, quantum crystals may also feature more than one inter-band gap. The manifestation of higher-fold topology with multiple nontrivial gaps in quantum materials remains elusive. In this work, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11365v1-abstract-full').style.display = 'inline'; document.getElementById('2004.11365v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.11365v1-abstract-full" style="display: none;"> Known topological quantum matter, including topological insulators and Dirac/Weyl semimetals, often hosts robust boundary states in the gaps between bulk bands in energy-momentum space. Beyond one-gap systems, quantum crystals may also feature more than one inter-band gap. The manifestation of higher-fold topology with multiple nontrivial gaps in quantum materials remains elusive. In this work, we leverage a photoemission spectroscopy probe to discover the multi-gap topology of a chiral fermion material. We identify two sets of chiral surface states. These Fermi arcs exhibit an emergent ladder structure in energy-momentum space, unprecedented in topological materials. Furthermore, we determine the multi-gap chiral charge $\textbf{C}=(2,2)$. Our results provide a general framework to explore future complex topological materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.11365v1-abstract-full').style.display = 'none'; document.getElementById('2004.11365v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00004">arXiv:2004.00004</a> <span> [<a href="https://arxiv.org/pdf/2004.00004">pdf</a>, <a href="https://arxiv.org/format/2004.00004">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aav2327">10.1126/science.aav2327 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Ernst%2C+B">Benedikt Ernst</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jiaxin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Singh%2C+B">Bahadur Singh</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+G">Guang Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+X">Xiaoting Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+B">Baokai Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Bansil%2C+A">Arun Bansil</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00004v1-abstract-short" style="display: inline;"> Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet Co$_2$MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00004v1-abstract-full').style.display = 'inline'; document.getElementById('2004.00004v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00004v1-abstract-full" style="display: none;"> Topological matter is known to exhibit unconventional surface states and anomalous transport owing to unusual bulk electronic topology. In this study, we use photoemission spectroscopy and quantum transport to elucidate the topology of the room temperature magnet Co$_2$MnGa. We observe sharp bulk Weyl fermion line dispersions indicative of nontrivial topological invariants present in the magnetic phase. On the surface of the magnet, we observe electronic wave functions that take the form of drumheads, enabling us to directly visualize the crucial components of the bulk-boundary topological correspondence. By considering the Berry curvature field associated with the observed topological Weyl fermion lines, we quantitatively account for the giant anomalous Hall response observed in our samples. Our experimental results suggest a rich interplay of strongly correlated electrons and topology in this quantum magnet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00004v1-abstract-full').style.display = 'none'; document.getElementById('2004.00004v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Incorporates arXiv:1712.09992, with additional data, analysis and discussion</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 365 (6459), 1278-1281 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.11783">arXiv:2002.11783</a> <span> [<a href="https://arxiv.org/pdf/2002.11783">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Spin-orbit quantum impurity in a topological kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+Y">Yuxiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Macam%2C+G">Gennevieve Macam</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Sura%2C+H+O+M">Hano Omar Mohammad Sura</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zijia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+Y">Yangmu Li</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhi-Quan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Chuang%2C+F">Feng-Chuan Chuang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.11783v1-abstract-short" style="display: inline;"> Quantum states induced by single-atomic-impurities are the current frontier of material and information science. Recently the spin-orbit coupled correlated kagome magnets are emerging as a new class of topological quantum materials, although the effect of single-atomic impurities remains unexplored. Here we use state-of-the-art scanning tunneling microscopy/spectroscopy (STM/S) to study the atomic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11783v1-abstract-full').style.display = 'inline'; document.getElementById('2002.11783v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.11783v1-abstract-full" style="display: none;"> Quantum states induced by single-atomic-impurities are the current frontier of material and information science. Recently the spin-orbit coupled correlated kagome magnets are emerging as a new class of topological quantum materials, although the effect of single-atomic impurities remains unexplored. Here we use state-of-the-art scanning tunneling microscopy/spectroscopy (STM/S) to study the atomic indium impurity in a topological kagome magnet Co3Sn2S2, which is designed to support the spin-orbit quantum state. We find each impurity features a strongly localized bound state. Our systematic magnetization-polarized tunneling probe reveals its spin-down polarized nature with an unusual moment of -5uB, indicative of additional orbital magnetization. As the separation between two impurities progressively shrinks, their respective bound states interact and form quantized molecular orbital states. The molecular orbital of three neighboring impurities further exhibits an intriguing splitting owing to the combination of geometry, magnetism, and spin-orbit coupling, analogous to the splitting of the topological Weyl fermion line12,19. Our work demonstrates the quantum-level interplay between magnetism and spin-orbit coupling at an individual atomic impurity, which provides insights into the emergent impurity behavior in a topological kagome magnet and the potential of spin-orbit quantum impurities for information science. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.11783v1-abstract-full').style.display = 'none'; document.getElementById('2002.11783v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.11513">arXiv:1912.11513</a> <span> [<a href="https://arxiv.org/pdf/1912.11513">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.101.100507">10.1103/PhysRevB.101.100507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Field-free platform for topological zero-energy mode in superconductors LiFeAs and PbTaSe$_2$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+G">Guangyang Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+G">Guang Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+D">Desheng Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Luo%2C+J">Jianlin Luo</a>, <a href="/search/cond-mat?searchtype=author&query=Chen%2C+G">Genfu Chen</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Chou%2C+F">Fang-Cheng Chou</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jin%2C+C">Changqing Jin</a>, <a href="/search/cond-mat?searchtype=author&query=Sankar%2C+R">Raman Sankar</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.11513v1-abstract-short" style="display: inline;"> Superconducting materials exhibiting topological properties are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. In this work, we explore the possibility of a field-free platform for generating Majorana zero energy excitations by depositing magnetic Fe impurities on the surface of candidate topological superconductors, LiFeAs and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11513v1-abstract-full').style.display = 'inline'; document.getElementById('1912.11513v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.11513v1-abstract-full" style="display: none;"> Superconducting materials exhibiting topological properties are emerging as an exciting platform to realize fundamentally new excitations from topological quantum states of matter. In this work, we explore the possibility of a field-free platform for generating Majorana zero energy excitations by depositing magnetic Fe impurities on the surface of candidate topological superconductors, LiFeAs and PbTaSe$_2$. We use scanning tunneling microscopy to probe localized states induced at the Fe adatoms on the atomic scale and at sub-Kelvin temperatures. We find that each Fe adatom generates a striking zero-energy bound state inside the superconducting gap, which do not split in magnetic fields up to 8T, underlining a nontrivial topological origin. Our findings point to magnetic Fe adatoms evaporated on bulk superconductors with topological surface states as a new platform for exploring Majorana zero modes and quantum information science under field-free conditions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.11513v1-abstract-full').style.display = 'none'; document.getElementById('1912.11513v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 101, 100507 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.11396">arXiv:1910.11396</a> <span> [<a href="https://arxiv.org/pdf/1910.11396">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.123.217004">10.1103/PhysRevLett.123.217004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quantum phase transition of correlated iron-based superconductivity in LiFe$_{1-x}$Co$_x$As </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Dai%2C+G">Guangyang Dai</a>, <a href="/search/cond-mat?searchtype=author&query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&query=Kreisel%2C+A">Andreas Kreisel</a>, <a href="/search/cond-mat?searchtype=author&query=Macam%2C+G">Gennevieve Macam</a>, <a href="/search/cond-mat?searchtype=author&query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&query=Miao%2C+H">Hu Miao</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+Z">Zhi-Quan Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Martiny%2C+J+H+J">Johannes H. J. Martiny</a>, <a href="/search/cond-mat?searchtype=author&query=Andersen%2C+B+M">Brian M. Andersen</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cheng%2C+Z">Zijia Cheng</a>, <a href="/search/cond-mat?searchtype=author&query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Xing%2C+L">Lingyi Xing</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xiancheng Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Gao%2C+Y">Yi Gao</a>, <a href="/search/cond-mat?searchtype=author&query=Chuang%2C+F">Feng-Chuan Chuang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.11396v1-abstract-short" style="display: inline;"> The interplay between unconventional Cooper pairing and quantum states associated with atomic scale defects is a frontier of research with many open questions. So far, only a few of the high-temperature superconductors allow this intricate physics to be studied in a widely tunable way. We use scanning tunneling microscopy (STM) to image the electronic impact of Co atoms on the ground state of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11396v1-abstract-full').style.display = 'inline'; document.getElementById('1910.11396v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.11396v1-abstract-full" style="display: none;"> The interplay between unconventional Cooper pairing and quantum states associated with atomic scale defects is a frontier of research with many open questions. So far, only a few of the high-temperature superconductors allow this intricate physics to be studied in a widely tunable way. We use scanning tunneling microscopy (STM) to image the electronic impact of Co atoms on the ground state of the LiFe$_{1-x}$Co$_x$As system. We observe that impurities progressively suppress the global superconducting gap and introduce low energy states near the gap edge, with the superconductivity remaining in the strong-coupling limit. Unexpectedly, the fully opened gap evolves into a nodal state before the Cooper pair coherence is fully destroyed. Our systematic theoretical analysis shows that these new observations can be quantitatively understood by the nonmagnetic Born-limit scattering effect in a s$\pm$-wave superconductor, unveiling the driving force of the superconductor to metal quantum phase transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.11396v1-abstract-full').style.display = 'none'; document.getElementById('1910.11396v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures, includes Supplementary Materials. To appear in Phys. Rev. Lett</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 123, 217004 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.03207">arXiv:1906.03207</a> <span> [<a href="https://arxiv.org/pdf/1906.03207">pdf</a>, <a href="https://arxiv.org/format/1906.03207">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Topological photocurrent responses from chiral surface Fermi arcs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jiaxin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Hsu%2C+M">Ming-Chien Hsu</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+S">Shin-Ming Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.03207v1-abstract-short" style="display: inline;"> The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optical effects from bulk states only, disregarding topological surface responses. Here we propose a new (hitherto unknown) surface-only topological photoc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03207v1-abstract-full').style.display = 'inline'; document.getElementById('1906.03207v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.03207v1-abstract-full" style="display: none;"> The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optical effects from bulk states only, disregarding topological surface responses. Here we propose a new (hitherto unknown) surface-only topological photocurrent response from chiral Fermi arcs. Using the ideal topological chiral semimetal RhSi as a representative, we quantitatively compute the topologically robust photocurrents from Fermi arcs on different surfaces. By rigorous crystal symmetry analysis, we demonstrate that Fermi arc photocurrents can be perpendicular to the bulk injection currents regardless of the choice of materials' surface. We then generalize this finding to all cubic chiral space groups and predict material candidates. Our theory reveals a powerful notion where common crystalline-symmetry can be used to induce universal topological responses as well as making it possible to completely disentangle bulk and surface topological responses in many conducting material families. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.03207v1-abstract-full').style.display = 'none'; document.getElementById('1906.03207v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 124, 166404(2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.09353">arXiv:1904.09353</a> <span> [<a href="https://arxiv.org/pdf/1904.09353">pdf</a>, <a href="https://arxiv.org/format/1904.09353">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-020-14325-w">10.1038/s41467-020-14325-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tunable Berry Curvature Through Magnetic Phase Competition in a Topological Kagome Magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Z. Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Verezhak%2C+J">J. Verezhak</a>, <a href="/search/cond-mat?searchtype=author&query=Gawryluk%2C+D">D. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirkin%2C+S+S">S. S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">I. Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">H. Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Simutis%2C+G">G. Simutis</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+-">S. -S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">T. A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">G. Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&query=Keller%2C+L">L. Keller</a>, <a href="/search/cond-mat?searchtype=author&query=Skrzeczkowska%2C+Z">Z. Skrzeczkowska</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Q. Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H+C">H. C. Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">S. Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Z. Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.09353v1-abstract-short" style="display: inline;"> Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. However, the magnetic nature of these materials in the presence of topological state remains an unsolved issue. Here, we explore magnetic correlations in the kagome magnet Co_3Sn_2S_2. Using muon spin-rotati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09353v1-abstract-full').style.display = 'inline'; document.getElementById('1904.09353v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.09353v1-abstract-full" style="display: none;"> Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. However, the magnetic nature of these materials in the presence of topological state remains an unsolved issue. Here, we explore magnetic correlations in the kagome magnet Co_3Sn_2S_2. Using muon spin-rotation, we present evidence for competing magnetic orders in the kagome lattice of this compound. Our results show that while the sample exhibits an out-of-plane ferromagnetic ground state, an in-plane antiferromagnetic state appears at temperatures above 90 K, eventually attaining a volume fraction of 80% around 170 K, before reaching a non-magnetic state. Strikingly, the reduction of the anomalous Hall conductivity above 90 K linearly follows the disappearance of the volume fraction of the ferromagnetic state. We further show that the competition of these magnetic phases is tunable through applying either an external magnetic field or hydrostatic pressure. Our results taken together suggest the thermal and quantum tuning of Berry curvature field via external tuning of magnetic order. Our study shows that Co_3Sn_2S_2 is a rare example where the magnetic competition drives the thermodynamic evolution of the Berry curvature field, thus tuning its topological state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.09353v1-abstract-full').style.display = 'none'; document.getElementById('1904.09353v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, Supplementary Information is available upon request</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 11, 559 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.00630">arXiv:1904.00630</a> <span> [<a href="https://arxiv.org/pdf/1904.00630">pdf</a>, <a href="https://arxiv.org/ps/1904.00630">ps</a>, <a href="https://arxiv.org/format/1904.00630">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.100.045104">10.1103/PhysRevB.100.045104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Crystal growth and quantum oscillations in the topological chiral semimetal CoSi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xirui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guangqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+Y">Yiyuan Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Tien%2C+H">Hung-Ju Tien</a>, <a href="/search/cond-mat?searchtype=author&query=Gui%2C+X">Xin Gui</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.00630v1-abstract-short" style="display: inline;"> We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00630v1-abstract-full').style.display = 'inline'; document.getElementById('1904.00630v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.00630v1-abstract-full" style="display: none;"> We survey the electrical transport properties of the single-crystalline, topological chiral semimetal CoSi which was grown via different methods. High-quality CoSi single crystals were found in the growth from tellurium solution. The sample's high carrier mobility enables us to observe, for the first time, quantum oscillations (QOs) in its thermoelectrical signals. Our analysis of QOs reveals two spherical Fermi surfaces around the R point in the Brillouin zone corner. The extracted Berry phases of these electron orbits are consistent with the -2 chiral charge as reported in DFT calculations. Detailed analysis on the QOs reveals that the spin-orbit coupling induced band-splitting is less than 2 meV near the Fermi level, one order of magnitude smaller than our DFT calculation result. We also report the phonon-drag induced large Nernst effect in CoSi at intermediate temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.00630v1-abstract-full').style.display = 'none'; document.getElementById('1904.00630v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 100, 045104 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.04822">arXiv:1901.04822</a> <span> [<a href="https://arxiv.org/pdf/1901.04822">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-019-0426-7">10.1038/s41567-019-0426-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Negative flat band magnetism in a spin-orbit coupled correlated kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Q">Qi Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Tsirkin%2C+S">Stepan Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Zhou%2C+H">Huibin Zhou</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.04822v2-abstract-short" style="display: inline;"> It has long been speculated that electronic flat band systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity. Although flat bands are known to exist in a few systems such as heavy fermion materials and twisted bilayer graphene, their microscopic roles and underlying mechanisms in generating emergent behavior remain elusive. Her… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04822v2-abstract-full').style.display = 'inline'; document.getElementById('1901.04822v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.04822v2-abstract-full" style="display: none;"> It has long been speculated that electronic flat band systems can be a fertile ground for hosting novel emergent phenomena including unconventional magnetism and superconductivity. Although flat bands are known to exist in a few systems such as heavy fermion materials and twisted bilayer graphene, their microscopic roles and underlying mechanisms in generating emergent behavior remain elusive. Here we use scanning tunneling microscopy to elucidate the atomically resolved electronic states and their magnetic response in the kagome magnet Co3Sn2S2. We observe a pronounced peak at the Fermi level, which is identified to arise from the kinetically frustrated kagome flat band. Increasing magnetic field up to +-8T, this state exhibits an anomalous magnetization-polarized Zeeman shift, dominated by an orbital moment in opposite to the field direction. Such negative magnetism can be understood as spin-orbit coupling induced quantum phase effects tied to non-trivial flat band systems. We image the flat band peak, resolve the associated negative magnetism, and provide its connection to the Berry curvature field, showing that Co3Sn2S2 is a rare example of kagome magnet where the low energy physics can be dominated by the spin-orbit coupled flat band. Our methodology of probing band-resolved ordering phenomena such as spin-orbit magnetism can also be applied in future experiments to elucidate other exotic phenomena including flat band superconductivity and anomalous quantum transport. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.04822v2-abstract-full').style.display = 'none'; document.getElementById('1901.04822v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics online</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 15, 443 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.04466">arXiv:1812.04466</a> <span> [<a href="https://arxiv.org/pdf/1812.04466">pdf</a>, <a href="https://arxiv.org/format/1812.04466">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-019-1037-2">10.1038/s41586-019-1037-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of topological chiral crystals with helicoid arc states </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Sanchez%2C+D+S">Daniel S. Sanchez</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Xie%2C+W">Weiwei Xie</a>, <a href="/search/cond-mat?searchtype=author&query=Manna%2C+K">Kaustuv Manna</a>, <a href="/search/cond-mat?searchtype=author&query=S%C3%BC%C3%9F%2C+V">Vicky S眉脽</a>, <a href="/search/cond-mat?searchtype=author&query=Huang%2C+C">Cheng-Yi Huang</a>, <a href="/search/cond-mat?searchtype=author&query=Alidoust%2C+N">Nasser Alidoust</a>, <a href="/search/cond-mat?searchtype=author&query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+X">Xirui Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+G">Guang-Qiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.04466v1-abstract-short" style="display: inline;"> The quantum behaviour of electrons in materials lays the foundation for modern electronic and information technology. Quantum materials with novel electronic and optical properties have been proposed as the next frontier, but much remains to be discovered to actualize the promise. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We demon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04466v1-abstract-full').style.display = 'inline'; document.getElementById('1812.04466v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.04466v1-abstract-full" style="display: none;"> The quantum behaviour of electrons in materials lays the foundation for modern electronic and information technology. Quantum materials with novel electronic and optical properties have been proposed as the next frontier, but much remains to be discovered to actualize the promise. Here we report the first observation of topological quantum properties of chiral crystals in the RhSi family. We demonsrate that this material hosts novel phase of matter exhibiting nearly ideal topological surface properties that emerge as a consequence of the crystals' structural chirality or handedness. We also demonstrate that the electrons on the surface of this crystal show a highly unusual helicoid structure that spirals around two high-symmetry momenta signalling its topological electronic chirality. Such helicoid Fermi arcs on the surface experimentally characterize the topological charges of $\pm{2}$, which arise from the bulk chiral fermions. The existence of bulk high-fold degenerate fermions are guaranteed by the crystal symmetries, however, in order to determine the topological charge in the chiral crystals it is essential to identify and study the helical arc states. Remarkably, these topological conductors we discovered exhibit helical Fermi arcs which are of length $蟺$, stretching across the entire Brillouin zone and orders of magnitude larger than those found in all known Weyl semimetals. Our results demonstrate novel electronic topological state of matter on a structurally chiral crystal featuring helicoid Fermi arc surface states. The exotic electronic chiral fermion state realised in these materials can be used to detect a quantised photogalvanic optical response or the chiral magnetic effect and its optical version in future devices as described by G. Chang \textit{et.al.,} `Topological quantum properties of chiral crystals' Nature Mat. 17, 978-985 (2018). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.04466v1-abstract-full').style.display = 'none'; document.getElementById('1812.04466v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00218">arXiv:1810.00218</a> <span> [<a href="https://arxiv.org/pdf/1810.00218">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-018-0502-7">10.1038/s41586-018-0502-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant and anisotropic many-body spin-orbit tunability in a strongly correlated kagome magnet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+S+S">Songtian S. Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Li%2C+H">Hang Li</a>, <a href="/search/cond-mat?searchtype=author&query=Jiang%2C+K">Kun Jiang</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Zhang%2C+B">Bingjing Zhang</a>, <a href="/search/cond-mat?searchtype=author&query=Lian%2C+B">Biao Lian</a>, <a href="/search/cond-mat?searchtype=author&query=Xiang%2C+C">Cheng Xiang</a>, <a href="/search/cond-mat?searchtype=author&query=Belopolski%2C+I">Ilya Belopolski</a>, <a href="/search/cond-mat?searchtype=author&query=Zheng%2C+H">Hao Zheng</a>, <a href="/search/cond-mat?searchtype=author&query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&query=Xu%2C+S">Su-Yang Xu</a>, <a href="/search/cond-mat?searchtype=author&query=Bian%2C+G">Guang Bian</a>, <a href="/search/cond-mat?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/cond-mat?searchtype=author&query=Chang%2C+T">Tay-Rong Chang</a>, <a href="/search/cond-mat?searchtype=author&query=Lin%2C+H">Hsin Lin</a>, <a href="/search/cond-mat?searchtype=author&query=Lu%2C+Z">Zhong-Yi Lu</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+Z">Ziqiang Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Jia%2C+S">Shuang Jia</a>, <a href="/search/cond-mat?searchtype=author&query=Wang%2C+W">Wenhong Wang</a>, <a href="/search/cond-mat?searchtype=author&query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00218v1-abstract-short" style="display: inline;"> Owing to the unusual geometry of kagome lattices-lattices made of corner-sharing triangles-their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states. In the presence of strong spin-orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin-orbit phenomena. Her… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00218v1-abstract-full').style.display = 'inline'; document.getElementById('1810.00218v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00218v1-abstract-full" style="display: none;"> Owing to the unusual geometry of kagome lattices-lattices made of corner-sharing triangles-their electrons are useful for studying the physics of frustrated, correlated and topological quantum electronic states. In the presence of strong spin-orbit coupling, the magnetic and electronic structures of kagome lattices are further entangled, which can lead to hitherto unknown spin-orbit phenomena. Here we use a combination of vector-magnetic-field capability and scanning tunnelling microscopy to elucidate the spin-orbit nature of the kagome ferromagnet Fe3Sn2 and explore the associated exotic correlated phenomena. We discover that a many-body electronic state from the kagome lattice couples strongly to the vector field with three-dimensional anisotropy, exhibiting a magnetization-driven giant nematic (two-fold-symmetric) energy shift. Probing the fermionic quasi-particle interference reveals consistent spontaneous nematicity-a clear indication of electron correlation-and vector magnetization is capable of altering this state, thus controlling the many-body electronic symmetry. These spin-driven giant electronic responses go well beyond Zeeman physics and point to the realization of an underlying correlated magnetic topological phase. The tunability of this kagome magnet reveals a strong interplay between an externally applied field, electronic excitations and nematicity, providing new ways of controlling spin-orbit properties and exploring emergent phenomena in topological or quantum materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00218v1-abstract-full').style.display = 'none'; document.getElementById('1810.00218v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature, online (2018)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 562, 91-95 (2018) </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>