CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 203 results for author: <span class="mathjax">Neupert, T</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Neupert%2C+T">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Neupert, T"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Neupert%2C+T&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Neupert, T"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15333">arXiv:2411.15333</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15333">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Unconventional gapping behavior in a kagome superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+E+S">Eun Sang Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ratkovski%2C+D">Danilo Ratkovski</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%BCscher%2C+B">Bernhard L眉scher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X">Xian Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bangura%2C+A">Ali Bangura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15333v1-abstract-short" style="display: inline;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15333v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15333v1-abstract-full" style="display: none;"> Determining the types of superconducting order in quantum materials is a challenge, especially when multiple degrees of freedom, such as bands or orbitals, contribute to the fermiology and when superconductivity competes, intertwines, or coexists with other symmetry-breaking orders. Here, we study the Kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charge order that substantially reduces the compound&#39;s space group symmetries. Through a combination of thermodynamic as well as electrical and thermal transport measurements, we uncover two superconducting regimes with distinct transport and thermodynamic characteristics, while finding no evidence for a phase transition separating them. Thermodynamic measurements reveal substantial quasiparticle weight in a high-temperature regime. At lower temperatures, this weight is removed via the formation of a second gap. The two regimes are sharply distinguished by a pronounced enhancement of the upper critical field at low temperatures and by a switch in the anisotropy of the longitudinal thermal conductivity as a function of in-plane magnetic field orientation. We argue that the band with a gap opening at lower temperatures continues to host low-energy quasiparticles, possibly due to a nodal structure of the gap. Taken together, our results present evidence for band-selective superconductivity with remarkable decoupling of the (two) superconducting gaps. The commonly employed multiband scenario, whereby superconductivity emerges in a primary band and is then induced in other bands appears to fail in this unconventional kagome superconductor. Instead, band-selective superconducting pairing is a paradigm that seems to unify seemingly contradicting results in this intensely studied family of materials and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15333v1-abstract-full').style.display = 'none'; document.getElementById('2411.15333v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.22088">arXiv:2410.22088</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.22088">pdf</a>, <a href="https://arxiv.org/format/2410.22088">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Probing chiral symmetry with a topological domain wall sensor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szczerbakow%2C+A">Andrzej Szczerbakow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korczak%2C+J">Jedrzej Korczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Story%2C+T">Tomasz Story</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bode%2C+M">Matthias Bode</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Odobesko%2C+A">Artem Odobesko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.22088v1-abstract-short" style="display: inline;"> Chiral symmetry is a fundamental property with profound implications for the properties of elementary particles, that implies a spectral symmetry (i.e. E =&gt; -E ) in their dispersion relation. In condensed matter physics, chiral symmetry is frequently associated with superconductors or materials hosting Dirac fermions such as graphene or topological insulators. There, chiral symmetry is an emergent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22088v1-abstract-full').style.display = 'inline'; document.getElementById('2410.22088v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.22088v1-abstract-full" style="display: none;"> Chiral symmetry is a fundamental property with profound implications for the properties of elementary particles, that implies a spectral symmetry (i.e. E =&gt; -E ) in their dispersion relation. In condensed matter physics, chiral symmetry is frequently associated with superconductors or materials hosting Dirac fermions such as graphene or topological insulators. There, chiral symmetry is an emergent low-energy property, accompanied by an emergent spectral symmetry. While the chiral symmetry can be broken by crystal distortion or external perturbations, the spectral symmetry frequently survives. As the presence of spectral symmetry does not necessarily imply chiral symmetry, the question arises how these two properties can be experimentally differentiated. Here, we demonstrate how a system with preserved spectral symmetry can reveal underlying broken chiral symmetry using topological defects. Our study shows that these defects induce a spectral imbalance in the Landau level spectrum, providing direct evidence of symmetry alteration at topological domain walls. Using high-resolution STM/STS we demonstrate the intricate interplay between chiral and translational symmetry which is broken at step edges in topological crystalline insulator Pb$_{1-x}$Sn$_x$Se. The chiral symmetry breaking leads to a shift in the guiding center coordinates of the Landau orbitals near the step edge, thus resulting in a distinct chiral flow of the spectral density of Landau levels. This study underscores the pivotal role of topological defects as sensitive probes for detecting hidden symmetries, offering profound insights into emergent phenomena with implications for fundamental physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.22088v1-abstract-full').style.display = 'none'; document.getElementById('2410.22088v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 3 figures, Supplementary Material</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19636">arXiv:2410.19636</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19636">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Pomeranchuk instability of a topological crystal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xue%2C+F">Fei Xue</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Perakis%2C+I+E">Ilias E. Perakis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kargarian%2C+M">Mehdi Kargarian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19636v1-abstract-short" style="display: inline;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By direct&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19636v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19636v1-abstract-full" style="display: none;"> Nematic quantum fluids appear in strongly interacting systems and break the rotational symmetry of the crystallographic lattice. In metals, this is connected to a well-known instability of the Fermi liquid-the Pomeranchuk instability. Using scanning tunneling microscopy, we identified this instability in a highly unusual setting: on the surface of an elemental topological metal, arsenic. By directly visualizing the Fermi surface of the surface state via scanning tunneling spectroscopy and photoemission spectroscopy, we find that the Fermi surface gets deformed and becomes elliptical at the energies where the nematic state is present. Known instances of nematic instability typically need van-Hove singularities or multi-orbital physics as drivers. In contrast, the surface states of arsenic are essentially indistinguishable from well-confined isotropic Rashba bands near the Fermi level, rendering our finding the first realization of Pomeranchuk instability of the topological surface state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19636v1-abstract-full').style.display = 'none'; document.getElementById('2410.19636v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04371">arXiv:2409.04371</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04371">pdf</a>, <a href="https://arxiv.org/format/2409.04371">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Topological excitons in moir茅 MoTe$_2$/WSe$_2$ heterobilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Froese%2C+P">Paul Froese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04371v2-abstract-short" style="display: inline;"> Due to the presence of flat Chern bands, moir茅 transition metal dichalcogenide (TMD) bilayers are a platform to realize strongly correlated topological phases of fermions such as fractional Chern insulators. TMDs are also known to host long-lived excitons, which inherit the topology of the underlying Chern bands. For the particular example of MoTe$_2$/WSe$_2$ heterobilayers we perform a time-depen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04371v2-abstract-full').style.display = 'inline'; document.getElementById('2409.04371v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04371v2-abstract-full" style="display: none;"> Due to the presence of flat Chern bands, moir茅 transition metal dichalcogenide (TMD) bilayers are a platform to realize strongly correlated topological phases of fermions such as fractional Chern insulators. TMDs are also known to host long-lived excitons, which inherit the topology of the underlying Chern bands. For the particular example of MoTe$_2$/WSe$_2$ heterobilayers we perform a time-dependent Hartree-Fock calculation to identify a regime in the phase diagram where the excitons themselves form a topological flat band. This paves a way towards realizing strongly correlated states of bosons in moir茅 TMDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04371v2-abstract-full').style.display = 'none'; document.getElementById('2409.04371v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures (4 pages in supplement)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.11024">arXiv:2408.11024</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.11024">pdf</a>, <a href="https://arxiv.org/format/2408.11024">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Multifractal statistics of non-Hermitian skin effect on the Cayley tree </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hamanaka%2C+S">Shu Hamanaka</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iliasov%2C+A+A">Askar A. Iliasov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bzdu%C5%A1ek%2C+T">Tom谩拧 Bzdu拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+T">Tsuneya Yoshida</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.11024v1-abstract-short" style="display: inline;"> Multifractal analysis is a powerful tool for characterizing the localization properties of wave functions. Despite its utility, this tool has been predominantly applied to disordered Hermitian systems. Multifractal statistics associated with the non-Hermitian skin effect remain largely unexplored. Here, we demonstrate that the tree geometry induces multifractal statistics for the single-particle s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11024v1-abstract-full').style.display = 'inline'; document.getElementById('2408.11024v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.11024v1-abstract-full" style="display: none;"> Multifractal analysis is a powerful tool for characterizing the localization properties of wave functions. Despite its utility, this tool has been predominantly applied to disordered Hermitian systems. Multifractal statistics associated with the non-Hermitian skin effect remain largely unexplored. Here, we demonstrate that the tree geometry induces multifractal statistics for the single-particle skin states on the Cayley tree. This sharply contrasts with the absence of multifractal properties for conventional single-particle skin effects in crystalline lattices. Our work uncovers the unique feature of the skin effect on the Cayley tree and provides a novel mechanism for inducing multifractality in open quantum systems without disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.11024v1-abstract-full').style.display = 'none'; document.getElementById('2408.11024v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02896">arXiv:2408.02896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02896">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Chiral kagome superconductivity modulations with residual Fermi arcs in KV3Sb5 and CsV3Sb5 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Hanbin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+H">Hailang Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guowei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fu%2C+R">Ruiqing Fu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Z">Zhongyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+X">Xianxin Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shi%2C+Y">Youguo Shi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+H">Hongxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+X">Xiao-Yu Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wei Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xitong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yuanyuan Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yi%2C+M">Mingsheng Yi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">Gang Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hohmann%2C+H">Hendrik Hohmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Holb%C3%A6k%2C+S+C">Sofie Castro Holb忙k</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrrnage%2C+M">Matteo D眉rrnage</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+S">Sen Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qianghua Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02896v1-abstract-short" style="display: inline;"> Superconductivity involving finite momentum pairing can lead to spatial gap and pair density modulations, as well as Bogoliubov Fermi states within the superconducting gap. However, the experimental realization of their intertwined relations has been challenging. Here, we detect chiral kagome superconductivity modulations with residual Fermi arcs in KV3Sb5 and CsV3Sb5 by normal and Josephson scann&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02896v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02896v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02896v1-abstract-full" style="display: none;"> Superconductivity involving finite momentum pairing can lead to spatial gap and pair density modulations, as well as Bogoliubov Fermi states within the superconducting gap. However, the experimental realization of their intertwined relations has been challenging. Here, we detect chiral kagome superconductivity modulations with residual Fermi arcs in KV3Sb5 and CsV3Sb5 by normal and Josephson scanning tunneling microscopy down to 30mK with resolved electronic energy difference at microelectronvolt level. We observe a U-shaped superconducting gap with flat residual in-gap states. This gap exhibits chiral 2 by 2 spatial modulations with magnetic field tunable chirality, which align with the chiral 2 by 2 pair density modulations observed through Josephson tunneling. These findings demonstrate a chiral pair density wave (PDW) that breaks time-reversal symmetry. Quasiparticle interference imaging of the in-gap zero-energy states reveals segmented arcs, with high-temperature data linking them to parts of the reconstructed V d-orbital states within the charge order. The detected residual Fermi arcs can be explained by the partial suppression of these d-orbital states through an interorbital 2 by 2 PDW and thus serve as candidate Bogoliubov Fermi states. Additionally, we differentiate the observed PDW order from impurity-induced gap modulations. Our observations not only uncover a chiral PDW order with orbital-selectivity, but also illuminate the fundamental space-momentum correspondence inherent in finite momentum paired superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02896v1-abstract-full').style.display = 'none'; document.getElementById('2408.02896v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Nature (2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02892">arXiv:2408.02892</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02892">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.046503">10.1103/PhysRevLett.133.046503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local excitation of kagome spin ice magnetism in HoAgGe seen by scanning tunneling microscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Hanbin Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+T">Tianyu Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+G">Guowei Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+L">Lu Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+L">Lingxiao Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+W">Wu Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+T">Tiantian Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Song%2C+W">Wei Song</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiang-Rui Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+J">Jifeng Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y+Y">Y. Y. Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+N">Nan Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">Hao Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+L">Li Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Liyuan Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mei%2C+J">Jia-Wei Mei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+L">Liusuo Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=He%2C+J">Jiaqing He</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+Q">Qihang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02892v1-abstract-short" style="display: inline;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02892v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02892v1-abstract-full" style="display: none;"> The kagome spin ice can host frustrated magnetic excitations by flipping its local spin. Under an inelastic tunneling condition, the tip in a scanning tunneling microscope can flip the local spin, and we apply this technique to kagome metal HoAgGe with a long-range ordered spin ice ground state. Away from defects, we discover a pair of pronounced dips in the local tunneling spectrum at symmetrical bias voltages with negative intensity values, serving as a striking inelastic tunneling signal. This signal disappears above the spin ice formation temperature and has a dependence on the magnetic fields, demonstrating its intimate relation with the spin ice magnetism. We provide a two-level spin-flip model to explain the tunneling dips considering the spin ice magnetism under spin-orbit coupling. Our results uncover a local emergent excitation of spin ice magnetism in a kagome metal, suggesting that local electrical field induced spin flip climbs over a barrier caused by spin-orbital locking. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02892v1-abstract-full').style.display = 'none'; document.getElementById('2408.02892v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 046503 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07957">arXiv:2407.07957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07957">pdf</a>, <a href="https://arxiv.org/format/2407.07957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> </div> </div> <p class="title is-5 mathjax"> Topology of ultra-localized insulators and superconductors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trifunovic%2C+L">Luka Trifunovic</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brouwer%2C+P+W">Piet W. Brouwer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07957v1-abstract-short" style="display: inline;"> The topology of an insulator can be defined even when all eigenstates of the system are localized - an extreme case of Anderson insulators that we call ultra-localized. We derive the classification of such ultra-localized insulators in all symmetry classes and dimensions. We clarify their bulk-boundary correspondence and show that ultra-localized systems are in many instances phases of matter not&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07957v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07957v1-abstract-full" style="display: none;"> The topology of an insulator can be defined even when all eigenstates of the system are localized - an extreme case of Anderson insulators that we call ultra-localized. We derive the classification of such ultra-localized insulators in all symmetry classes and dimensions. We clarify their bulk-boundary correspondence and show that ultra-localized systems are in many instances phases of matter not described by the known classification of topological insulators and superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07957v1-abstract-full').style.display = 'none'; document.getElementById('2407.07957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02560">arXiv:2407.02560</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02560">pdf</a>, <a href="https://arxiv.org/format/2407.02560">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> When Could Abelian Fractional Topological Insulators Exist in Twisted MoTe$_2$ (and Other Systems) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kwan%2C+Y+H">Yves H. Kwan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yu%2C+J">Jiabin Yu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dagnino%2C+A+K">Andrea Kouta Dagnino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yi Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+X">Xiaodong Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02560v1-abstract-short" style="display: inline;"> Using comprehensive exact diagonalization calculations on $胃\approx 3.7 ^{\circ}$ twisted bilayer MoTe$_2$ ($t$MoTe$_2$), as well as idealized Landau level models also relevant for lower $胃$, we extract general principles for engineering fractional topological insulators (FTIs) in realistic situations. First, in a Landau level setup at $谓=1/3+1/3$, we investigate what features of the interaction d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02560v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02560v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02560v1-abstract-full" style="display: none;"> Using comprehensive exact diagonalization calculations on $胃\approx 3.7 ^{\circ}$ twisted bilayer MoTe$_2$ ($t$MoTe$_2$), as well as idealized Landau level models also relevant for lower $胃$, we extract general principles for engineering fractional topological insulators (FTIs) in realistic situations. First, in a Landau level setup at $谓=1/3+1/3$, we investigate what features of the interaction destroy an FTI. For both pseudopotential interactions and realistic screened Coulomb interactions, we find that sufficient suppression of the short-range repulsion is needed for stabilizing an FTI. We then study $胃\approx 3.7 ^{\circ}$ $t$MoTe$_2$ with realistic band-mixing and anisotropic non-local dielectric screening. Our finite-size calculations only find an FTI phase at $谓=-4/3$ in the presence of a significant additional short-range attraction $g$ that acts to counter the Coulomb repulsion at short distances. We discuss how further finite-size drifts, dielectric engineering, Landau level character, and band-mixing effects may reduce the required value of $g$ closer towards the experimentally relevant conditions of $t$MoTe$_2$. Projective calculations into the $n=1$ Landau level, which resembles the second valence band of $胃\simeq 2.1^\circ$ $t$MoTe$_2$, do not yield FTIs for any $g$, suggesting that FTIs at low-angle $t$MoTe$_2$ for $谓=-8/3$ and $-10/3$ may be unlikely. While our study highlights the challenges, at least for the fillings considered, to obtaining an FTI with transport plateaus, even in large-angle $t$MoTe$_2$ where fractional Chern insulators are experimentally established, we also provide potential sample-engineering routes to improve the stability of FTI phases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02560v1-abstract-full').style.display = 'none'; document.getElementById('2407.02560v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6+36 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13702">arXiv:2406.13702</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13702">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41563-024-01914-z">10.1038/s41563-024-01914-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Van-Hove annihilation and nematic instability on a Kagome lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shao%2C+S">Sen Shao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xia%2C+W">Wei Xia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ingham%2C+J">Julian Ingham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qiu%2C+Q">Qingzheng Qiu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+Y">Yanfeng Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13702v2-abstract-short" style="display: inline;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectrosc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13702v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13702v2-abstract-full" style="display: none;"> Novel states of matter arise in quantum materials due to strong interactions among electrons. A nematic phase breaks the point group symmetry of the crystal lattice and is known to emerge in correlated materials. Here we report the observation of an intra-unit-cell nematic order and signatures of Pomeranchuk instability in the Kagome metal ScV6Sn6. Using scanning tunneling microscopy and spectroscopy, we reveal a stripe-like nematic order breaking the crystal rotational symmetry within the Kagome lattice itself. Moreover, we identify a set of van Hove singularities adhering to the Kagome layer electrons, which appear along one direction of the Brillouin zone while being annihilated along other high-symmetry directions, revealing a rotational symmetry breaking. Via detailed spectroscopic maps, we further observe an elliptical deformation of Fermi surface, which provides direct evidence for an electronically mediated nematic order. Our work not only bridges the gap between electronic nematicity and Kagome physics, but also sheds light on the potential mechanism for realizing symmetry-broken phases in correlated electron systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13702v2-abstract-full').style.display = 'none'; document.getElementById('2406.13702v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Mater. (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01642">arXiv:2405.01642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01642">pdf</a>, <a href="https://arxiv.org/format/2405.01642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Floquet engineered inhomogeneous quantum chaos in critical systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Numasawa%2C+T">Tokiro Numasawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ryu%2C+S">Shinsei Ryu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01642v1-abstract-short" style="display: inline;"> We study universal chaotic dynamics of a large class of periodically driven critical systems described by spatially inhomogeneous conformal field theories. By employing an effective curved spacetime approach, we show that the onset of quantum chaotic correlations, captured by the Lyapunov exponent of out-of-time-order correlators (OTOCs), is set by the Hawking temperature of emergent Floquet horiz&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01642v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01642v1-abstract-full" style="display: none;"> We study universal chaotic dynamics of a large class of periodically driven critical systems described by spatially inhomogeneous conformal field theories. By employing an effective curved spacetime approach, we show that the onset of quantum chaotic correlations, captured by the Lyapunov exponent of out-of-time-order correlators (OTOCs), is set by the Hawking temperature of emergent Floquet horizons. Furthermore, scrambling of quantum information is shown to be strongly inhomogeneous, leading to transitions from chaotic to non-chaotic regimes by tuning driving parameters. We finally use our framework to propose a concrete protocol to simulate and measure OTOCs in quantum simulators, by designing an efficient stroboscopic backward time evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01642v1-abstract-full').style.display = 'none'; document.getElementById('2405.01642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11650">arXiv:2404.11650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.11650">pdf</a>, <a href="https://arxiv.org/format/2404.11650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033205">10.1103/PhysRevResearch.6.033205 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interacting Crystalline Topological Insulators in two-dimensions with Time-Reversal Symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aksoy%2C+%C3%96+M">脰mer M. Aksoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11650v2-abstract-short" style="display: inline;"> Topology is routinely used to understand the physics of electronic insulators. However, for strongly interacting electronic matter, such as Mott insulators, a comprehensive topological characterization is still lacking. When their ground state only contains short-range entanglement and does not break symmetries spontaneously, they generically realize crystalline fermionic symmetry-protected topolo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11650v2-abstract-full').style.display = 'inline'; document.getElementById('2404.11650v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11650v2-abstract-full" style="display: none;"> Topology is routinely used to understand the physics of electronic insulators. However, for strongly interacting electronic matter, such as Mott insulators, a comprehensive topological characterization is still lacking. When their ground state only contains short-range entanglement and does not break symmetries spontaneously, they generically realize crystalline fermionic symmetry-protected topological phases (cFSPTs), supporting gapless modes at the boundaries or at the lattice defects. Here, we provide an exhaustive classification of cFSPTs in two dimensions with $\mathrm{U}(1)$ charge-conservation and spinful time-reversal symmetries, namely, those generically present in spin-orbit coupled insulators, for any of the 17 wallpaper groups. It has been shown that the classification of cFSPTs can be understood from appropriate real-space decorations of lower-dimensional subspaces, and we expose how these relate to the Wyckoff positions of the lattice. We find that all nontrivial one-dimensional decorations require electronic interactions. Furthermore, we provide model Hamiltonians for various decorations, and discuss the signatures of cFSPTs. This classification paves the way to further explore topological interacting insulators, providing the backbone information in generic model systems and ultimately in experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11650v2-abstract-full').style.display = 'none'; document.getElementById('2404.11650v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 6, 033205 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18046">arXiv:2403.18046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18046">pdf</a>, <a href="https://arxiv.org/format/2403.18046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Strain-induced enhancement of the charge-density-wave in the kagome metal ScV$_6$Sn$_6$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tuniz%2C+M">Manuel Tuniz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Consiglio%2C+A">Armando Consiglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pokharel%2C+G">Ganesh Pokharel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parmigiani%2C+F">Fulvio Parmigiani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">Giorgio Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+S+D">Stephen D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vobornik%2C+I">Ivana Vobornik</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salvador%2C+F">Federico Salvador</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cilento%2C+F">Federico Cilento</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Sante%2C+D">Domenico Di Sante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+F">Federico Mazzola</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18046v1-abstract-short" style="display: inline;"> The kagome geometry is an example of frustrated configuration in which rich physics takes place, including the emergence of superconductivity and charge density wave (CDW). Among the kagome metals, ScV$_6$Sn$_6$ hosts an unconventional CDW, with its electronic order showing a different periodicity than that of the phonon which generates it. In this material, a CDW-softened flat phonon band has a s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18046v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18046v1-abstract-full" style="display: none;"> The kagome geometry is an example of frustrated configuration in which rich physics takes place, including the emergence of superconductivity and charge density wave (CDW). Among the kagome metals, ScV$_6$Sn$_6$ hosts an unconventional CDW, with its electronic order showing a different periodicity than that of the phonon which generates it. In this material, a CDW-softened flat phonon band has a second-order collapse at the same time that the first order transition occurs. This phonon band originates from the out-of-plane vibrations of the Sc and Sn atoms, and it is at the base of the electron-phonon-coupling driven CDW phase of ScV$_6$Sn$_6$. Here, we use uniaxial strain to tune the frequency of the flat phonon band, tracking the strain evolution via time-resolved optical spectroscopy and first-principles calculations. Our findings emphasize the capability to induce an enhancement of the unconventional CDW properties in ScV$_6$Sn$_6$ kagome metal through control of strain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18046v1-abstract-full').style.display = 'none'; document.getElementById('2403.18046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text + SM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16219">arXiv:2402.16219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16219">pdf</a>, <a href="https://arxiv.org/format/2402.16219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Charge orders with distinct magnetic response in a prototypical kagome superconductor LaRu$_{3}$Si$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Mielke%2C+C">C. Mielke III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sazgari%2C+V">V. Sazgari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Plokhikh%2C+I">I. Plokhikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">S. Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+H">H. Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Graham%2C+J+N">J. N. Graham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bialo%2C+I">I. Bialo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garbarino%2C+G">G. Garbarino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+D">D. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bartkowiak%2C+M">M. Bartkowiak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+S+S">S. S. Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">M. H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakatsuji%2C+S">S. Nakatsuji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wehinger%2C+B">B. Wehinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">D. J. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16219v2-abstract-short" style="display: inline;"> The kagome lattice has emerged as a promising platform for hosting unconventional chiral charge order at high temperatures. Notably, in LaRu$_{3}$Si$_{2}$, a room-temperature charge-ordered state with a propagation vector of ($\frac{1}{4}$,~0,~0) has been recently identified. However, understanding the interplay between this charge order and superconductivity, particularly with respect to time-rev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16219v2-abstract-full').style.display = 'inline'; document.getElementById('2402.16219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16219v2-abstract-full" style="display: none;"> The kagome lattice has emerged as a promising platform for hosting unconventional chiral charge order at high temperatures. Notably, in LaRu$_{3}$Si$_{2}$, a room-temperature charge-ordered state with a propagation vector of ($\frac{1}{4}$,~0,~0) has been recently identified. However, understanding the interplay between this charge order and superconductivity, particularly with respect to time-reversal-symmetry breaking, remains elusive. In this study, we employ single crystal X-ray diffraction, magnetotransport, and muon-spin rotation experiments to investigate the charge order and its electronic and magnetic responses in LaRu$_{3}$Si$_{2}$ across a wide temperature range down to the superconducting state. Our findings reveal the emergence of a charge order with a propagation vector of ($\frac{1}{6}$,~0,~0) below $T_{\rm CO,2}$ ${\simeq}$ 80 K, coexisting with the previously identified room-temperature primary charge order ($\frac{1}{4}$,~0,~0). The primary charge-ordered state exhibits zero magnetoresistance. In contrast, the appearance of the secondary charge order at $T_{\rm CO,2}$ is accompanied by a notable magnetoresistance response and a pronounced temperature-dependent Hall effect, which experiences a sign reversal, switching from positive to negative below $T^{*}$ ${\simeq}$ 35 K. Intriguingly, we observe an enhancement in the internal field width sensed by the muon ensemble below $T^{*}$ ${\simeq}$ 35 K. Moreover, the muon spin relaxation rate exhibits a substantial increase upon the application of an external magnetic field below $T_{\rm CO,2}$ ${\simeq}$ 80 K. Our results highlight the coexistence of two distinct types of charge order in LaRu$_{3}$Si$_{2}$ within the correlated kagome lattice, namely a non-magnetic charge order ($\frac{1}{4}$,~0,~0) below $T_{\rm co,1}$ ${\simeq}$ 400 K and a time-reversal-symmetry-breaking charge order below $T_{\rm CO,2}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16219v2-abstract-full').style.display = 'none'; document.getElementById('2402.16219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.16089">arXiv:2402.16089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.16089">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Giant Strain Response of Charge Modulation and Singularity in a Kagome Superconductor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lin%2C+C">Chun Lin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Consiglio%2C+A">Armando Consiglio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Forslund%2C+O+K">Ola Kenji Forslund</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuspert%2C+J">Julia Kuspert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lei%2C+H">Hechang Lei</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Louat%2C+A">Alex Louat</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Watson%2C+M+D">Matthew D. Watson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+T+K">Timur K. Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cacho%2C+C">Cephise Cacho</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carbone%2C+D">Dina Carbone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leandersson%2C+M">Mats Leandersson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Polley%2C+C">Craig Polley</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balasubramanian%2C+T">Thiagarajan Balasubramanian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Sante%2C+D">Domenico Di Sante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Zurab Guguchia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sangiovanni%2C+G">Giorgio Sangiovanni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.16089v1-abstract-short" style="display: inline;"> Tunable quantum materials hold great potential for applications. Of special interest are materials in which small lattice strain induces giant electronic responses. The kagome compounds AV3Sb5 (A = K, Rb, Cs) provide a testbed for such singular electronic states. In this study, through angle-resolved photoemission spectroscopy, we provide comprehensive spectroscopic measurements of the giant respo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16089v1-abstract-full').style.display = 'inline'; document.getElementById('2402.16089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.16089v1-abstract-full" style="display: none;"> Tunable quantum materials hold great potential for applications. Of special interest are materials in which small lattice strain induces giant electronic responses. The kagome compounds AV3Sb5 (A = K, Rb, Cs) provide a testbed for such singular electronic states. In this study, through angle-resolved photoemission spectroscopy, we provide comprehensive spectroscopic measurements of the giant responses induced by compressive and tensile strains on the charge-density-wave (CDW) order parameter and high-order van Hove singularity (HO-VHS) in CsV3Sb5. We observe a tripling of the CDW gap magnitudes with ~1% strain, accompanied by the changes of both energy and mass of the saddle-point fermions. Our results reveal an anticorrelation between the unconventional CDW order parameter and the mass of a HO-VHS, and highlight the role of the latter in the superconducting pairing. The giant electronic responses uncover a rich strain tunability of the versatile kagome system in studying quantum interplays under lattice perturbations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.16089v1-abstract-full').style.display = 'none'; document.getElementById('2402.16089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11130">arXiv:2402.11130</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11130">pdf</a>, <a href="https://arxiv.org/format/2402.11130">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Depth-dependent study of time-reversal symmetry-breaking in the kagome superconductor $A$V$_{3}$Sb$_{5}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Graham%2C+J+N">J. N. Graham</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mielke%2C+C">C. Mielke III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+D">D. Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morresi%2C+T">T. Morresi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sazgari%2C+V">V. Sazgari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Suter%2C+A">A. Suter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Prokscha%2C+T">T. Prokscha</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Deng%2C+H">H. Deng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wilson%2C+S+D">S. D. Wilson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salinas%2C+A+C">A. C. Salinas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martins%2C+M+M">M. M. Martins</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhong%2C+Y">Y. Zhong</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Okazaki%2C+K">K. Okazaki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Z. Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M">M. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanna%2C+S">S. Sanna</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Salman%2C+Z">Z. Salman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bonfa%2C+P">P. Bonfa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11130v1-abstract-short" style="display: inline;"> The breaking of time-reversal symmetry (TRS) in the normal state of kagome superconductors $A$V$_{3}$Sb$_{5}$ stands out as a significant feature. Yet the extent to which this effect can be tuned remains uncertain, a crucial aspect to grasp in light of the varying details of TRS breaking observed through different techniques. Here, we employ the unique low-energy muon spin rotation technique combi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11130v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11130v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11130v1-abstract-full" style="display: none;"> The breaking of time-reversal symmetry (TRS) in the normal state of kagome superconductors $A$V$_{3}$Sb$_{5}$ stands out as a significant feature. Yet the extent to which this effect can be tuned remains uncertain, a crucial aspect to grasp in light of the varying details of TRS breaking observed through different techniques. Here, we employ the unique low-energy muon spin rotation technique combined with local field numerical analysis to study the TRS breaking response as a function of depth from the surface in single crystals of RbV$_{3}$Sb$_{5}$ with charge order and Cs(V$_{0.86}$Ta$_{0.14}$)$_{3}$Sb$_{5}$ without charge order. In the bulk (i.e., &gt; 33 nm from the surface) of RbV$_{3}$Sb$_{5}$, we have detected a notable increase in the internal magnetic field width experienced by the muon ensemble. This increase occurs only within the charge ordered state. Intriguingly, the muon spin relaxation rate is significantly enhanced near the surface (i.e., &lt; 33 nm from the surface) of RbV$_{3}$Sb$_{5}$, and this effect commences at temperatures significantly higher than the onset of charge order. Conversely, in Cs(V$_{0.86}$Ta$_{0.14}$)$_{3}$Sb$_{5}$, we do not observe a similar enhancement in the internal field width, neither in the bulk nor near the surface. These observations indicate a strong connection between charge order and TRS breaking on one hand, and on the other hand, suggest that TRS breaking can occur prior to long-range charge order. This research offers compelling evidence for depth-dependent magnetism in $A$V$_{3}$Sb$_{5}$ superconductors in the presence of charge order. Such findings are likely to elucidate the intricate microscopic mechanisms that underpin the TRS breaking phenomena in these materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11130v1-abstract-full').style.display = 'none'; document.getElementById('2402.11130v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 13 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Communications 15, 8978 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.14547">arXiv:2401.14547</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.14547">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a Topological Charge Density Wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guin%2C+S+N">Satya N. Guin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kumar%2C+N">Nitesh Kumar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shekhar%2C+C">Chandra Shekhar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Multer%2C+D">Daniel Multer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.14547v1-abstract-short" style="display: inline;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'inline'; document.getElementById('2401.14547v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.14547v1-abstract-full" style="display: none;"> Charge density waves (CDWs) appear in numerous condensed matter platforms, ranging from high-Tc superconductors to quantum Hall systems. Despite such ubiquity, there has been a lack of direct experimental study on boundary states that can uniquely stem from the charge order. Here, using scanning tunneling microscopy, we directly visualize the bulk and boundary phenomenology of CDW in a topological material, Ta2Se8I. Below the transition temperature (TCDW = 260 K), tunneling spectra on an atomically resolved lattice reveal a large insulating gap in the bulk and on the surface, exceeding 500 meV, surpassing predictions from standard weakly-coupled mean-field theory. Spectroscopic imaging confirms the presence of CDW, with LDOS maxima at the conduction band corresponding to the LDOS minima at the valence band, thus revealing a 蟺 phase difference in the respective CDW order. Concomitantly, at a monolayer step edge, we detect an in-gap boundary mode with modulations along the edge that match the CDW wavevector along the edge. Intriguingly, the phase of the edge state modulation shifts by 蟺 within the charge order gap, connecting the fully gapped bulk (and surface) conduction and valence bands via a smooth energy-phase relation. This bears similarity to the topological spectral flow of edge modes, where the boundary modes bridge the gapped bulk modes in energy and momentum magnitude but in Ta2Se8I, the connectivity distinctly occurs in energy and momentum phase. Notably, our temperature-dependent measurements indicate a vanishing of the insulating gap and the in-gap edge state above TCDW, suggesting their direct relation to CDW. The theoretical analysis also indicates that the observed boundary mode is topological and linked to CDW. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.14547v1-abstract-full').style.display = 'none'; document.getElementById('2401.14547v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics (2024); in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.04845">arXiv:2401.04845</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.04845">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-024-07203-8">10.1038/s41586-024-07203-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a hybrid topological quantum state in an elemental solid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+F">Frank Schindler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Islam%2C+R">Rajibul Islam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Muhammad%2C+Z">Zahir Muhammad</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hou%2C+T">Tao Hou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+H">Hongyu Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yahyavi%2C+M">Mohammad Yahyavi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+G">Guoqing Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.04845v1-abstract-short" style="display: inline;"> Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three significant research directions: competition between distinct interactions, as in the multiple intertwined phases, interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and the coalescence of multiple topol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04845v1-abstract-full').style.display = 'inline'; document.getElementById('2401.04845v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.04845v1-abstract-full" style="display: none;"> Topology and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three significant research directions: competition between distinct interactions, as in the multiple intertwined phases, interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and the coalescence of multiple topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, while the last example remains mostly untouched, mainly because of the lack of a material platform for experimental studies. Here, using tunneling microscopy, photoemission spectroscopy, and theoretical analysis, we unveil a &#34;hybrid&#34; and yet novel topological phase of matter in the simple elemental solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology, stabilizing a hybrid topological phase. While momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topology-induced step edge conduction channels revealed on various forms of natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step edge states in arsenic relies on the simultaneous presence of both a nontrivial strong Z2 invariant and a nontrivial higher-order topological invariant, providing experimental evidence for hybrid topology and its realization in a single crystal. Our discovery highlights pathways to explore the interplay of different kinds of band topology and harness the associated topological conduction channels in future engineered quantum or nano-devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.04845v1-abstract-full').style.display = 'none'; document.getElementById('2401.04845v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature (2024); in press</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 628, 527 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.15862">arXiv:2312.15862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.15862">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Discovery of a topological exciton insulator with tunable momentum order </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Songbo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+H">Huangyu Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zheng%2C+X">Xiquan Zheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kim%2C+B">Byunghoon Kim</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+J">Junyi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+J">Jinjin Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denlinger%2C+J">Jonathan Denlinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tallarida%2C+M">Massimo Tallarida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dai%2C+J">Ji Dai</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vescovo%2C+E">Elio Vescovo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rajapitamahuni%2C+A">Anil Rajapitamahuni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miao%2C+H">Hu Miao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Peng%2C+Y">Yingying Peng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.15862v1-abstract-short" style="display: inline;"> Topology and correlations are fundamental concepts in modern physics, but their simultaneous occurrence within a single quantum phase is exceptionally rare. In this study, we present the discovery of such a phase of matter in Ta2Pd3Te5, a semimetal where the Coulomb interaction between electrons and holes leads to the spontaneous formation of excitonic bound states below T=100 K. Our spectroscopy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15862v1-abstract-full').style.display = 'inline'; document.getElementById('2312.15862v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.15862v1-abstract-full" style="display: none;"> Topology and correlations are fundamental concepts in modern physics, but their simultaneous occurrence within a single quantum phase is exceptionally rare. In this study, we present the discovery of such a phase of matter in Ta2Pd3Te5, a semimetal where the Coulomb interaction between electrons and holes leads to the spontaneous formation of excitonic bound states below T=100 K. Our spectroscopy unveils the development of an insulating gap stemming from the condensation of these excitons, thus giving rise to a highly sought-after correlated quantum phase known as the excitonic insulator. Remarkably, our scanning tunneling microscopy measurements reveal the presence of gapless boundary modes in the excitonic insulator state. Their magnetic field response and our theoretical calculations suggest a topological origin of these modes, rendering Ta2Pd3Te5 as the first experimentally identified topological excitonic insulator in a three-dimensional material not masked by any structural phase transition. Furthermore, our study uncovers a secondary excitonic instability below T=5 K, which differs from the primary one in having finite momentum. We observe unprecedented tunability of its wavevector by an external magnetic field. These findings unlock a frontier in the study of novel correlated topological phases of matter and their tunability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.15862v1-abstract-full').style.display = 'none'; document.getElementById('2312.15862v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> Journal submission on 7th December 23 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13348">arXiv:2312.13348</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13348">pdf</a>, <a href="https://arxiv.org/format/2312.13348">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.109.214509">10.1103/PhysRevB.109.214509 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge-4$e$ Superconductivity in a Hubbard model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13348v2-abstract-short" style="display: inline;"> A phase of matter in which fermion quartets form a superconducting condensate, rather than the paradigmatic Cooper pairs, is a recurrent subject of experimental and theoretical studies. However, a comprehensive microscopic understanding of charge-4$e$ superconductivity as a quantum phase is lacking. Here, we propose and study a two-orbital tight-binding model with attractive Hubbard-type interacti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13348v2-abstract-full').style.display = 'inline'; document.getElementById('2312.13348v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13348v2-abstract-full" style="display: none;"> A phase of matter in which fermion quartets form a superconducting condensate, rather than the paradigmatic Cooper pairs, is a recurrent subject of experimental and theoretical studies. However, a comprehensive microscopic understanding of charge-4$e$ superconductivity as a quantum phase is lacking. Here, we propose and study a two-orbital tight-binding model with attractive Hubbard-type interactions. Such a model naturally provides the Bose-Einstein condensate as a limit for electron quartets and supports charge-4$e$ superconductivity, as we show by mapping it to a spin-1/2 chain in this perturbative limit. Using both exact diagonalization and density matrix renormalization group calculations for the one-dimensional case, we further establish that the ground state is indeed a superfluid phase of 4$e$ charge carriers and that this phase can be stabilized well beyond the perturbative regime. Importantly, we demonstrate that 4$e$ condensation dominates over 2$e$ condensation even for nearly decoupled orbitals, a scenario suitable for experiments with ultracold atoms in the form of almost decoupled chains. Our model paves the way for both experimental and theoretical exploration of 4$e$ superconductivity and provides a natural starting point for future studies beyond one dimension or more intricate 4$e$ states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13348v2-abstract-full').style.display = 'none'; document.getElementById('2312.13348v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 109, 214509, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09487">arXiv:2312.09487</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09487">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Transport response of topological hinge modes in $伪$-Bi$_4$Br$_4$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Z">Zhiwei Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dhale%2C+N">Nikhil Dhale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+W">Wenhao Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Litskevich%2C+M">Maksim Litskevich</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Casas%2C+B">Brian Casas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shumiya%2C+N">Nana Shumiya</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cochran%2C+T+A">Tyler A. Cochran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+Y">Yongkai Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jiang%2C+Y">Yu-Xiao Jiang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+Y">Ying Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+G">Guangming Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cheng%2C+Z">Zi-Jia Cheng</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yang%2C+X+P">Xian P. Yang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+N">Nan Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Balicas%2C+L">Luis Balicas</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yao%2C+Y">Yugui Yao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lv%2C+B">Bing Lv</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09487v2-abstract-short" style="display: inline;"> Electronic topological phases are renowned for their unique properties, where conducting surface states exist on the boundary of an insulating three-dimensional bulk. While the transport response of the surface states has been extensively studied, the response of the topological hinge modes remains elusive. Here, we investigate a layered topological insulator $伪$-Bi$_4$Br$_4$, and provide the firs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09487v2-abstract-full').style.display = 'inline'; document.getElementById('2312.09487v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09487v2-abstract-full" style="display: none;"> Electronic topological phases are renowned for their unique properties, where conducting surface states exist on the boundary of an insulating three-dimensional bulk. While the transport response of the surface states has been extensively studied, the response of the topological hinge modes remains elusive. Here, we investigate a layered topological insulator $伪$-Bi$_4$Br$_4$, and provide the first evidence for quantum transport in gapless topological hinge states existing within the insulating bulk and surface energy gaps. Our magnetoresistance measurements reveal pronounced h/e periodic (where h denotes Planck&#39;s constant and e represents the electron charge) Aharonov-Bohm oscillation. The observed periodicity, which directly reflects the enclosed area of phase-coherent electron propagation, matches the area enclosed by the sample hinges, providing compelling evidence for the quantum interference of electrons circumnavigating around the hinges. Notably, the h/e oscillations evolve as a function of magnetic field orientation, following the interference paths along the hinge modes that are allowed by topology and symmetry, and in agreement with the locations of the hinge modes according to our scanning tunneling microscopy images. Remarkably, this demonstration of quantum transport in a topological insulator can be achieved using a flake geometry and we show that it remains robust even at elevated temperatures. Our findings collectively reveal the quantum transport response of topological hinge modes with both topological nature and quantum coherence, which can be directly applied to the development of efficient quantum electronic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09487v2-abstract-full').style.display = 'none'; document.getElementById('2312.09487v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nature Physics, in press (2023)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07653">arXiv:2312.07653</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07653">pdf</a>, <a href="https://arxiv.org/format/2312.07653">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> </div> <p class="title is-5 mathjax"> Van-Hove tuning of Fermi surface instabilities through compensated metallicity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hohmann%2C+H">Hendrik Hohmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%C3%BCrrnagel%2C+M">Matteo D眉rrnagel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bunney%2C+M">Matthew Bunney</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schwemmer%2C+T">Tilman Schwemmer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rachel%2C+S">Stephan Rachel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07653v1-abstract-short" style="display: inline;"> Van-Hove (vH) singularities in the vicinity of the Fermi level facilitate the emergence of electronically mediated Fermi surface instabilities. This is because they provide a momentum-localized enhancement of density of states enhancing selective electronic scattering channels. High-temperature topological superconductivity has been argued for in graphene at vH filling which, however, has so far p&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07653v1-abstract-full').style.display = 'inline'; document.getElementById('2312.07653v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07653v1-abstract-full" style="display: none;"> Van-Hove (vH) singularities in the vicinity of the Fermi level facilitate the emergence of electronically mediated Fermi surface instabilities. This is because they provide a momentum-localized enhancement of density of states enhancing selective electronic scattering channels. High-temperature topological superconductivity has been argued for in graphene at vH filling which, however, has so far proven inaccessible due to the demanded large doping from pristine half filling. We propose compensated metallicity as a path to unlock vH-driven pairing close to half filling in an electronic honeycomb lattice model. It is enabled through the strong breaking of chiral symmetry from intra-sublattice hybridization, leading to the emergence of a hole pocket (hp) nearby the van-Hove points $M$ at the Brillouin zone boundary and an electron pocket (ep) around the zone center $螕$. While the ep is radially symmetric and barely contributing to the electronic ordering selection, the hp is dominated by its vH signature and yields electronic order at elevated scales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07653v1-abstract-full').style.display = 'none'; document.getElementById('2312.07653v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.03442">arXiv:2311.03442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.03442">pdf</a>, <a href="https://arxiv.org/format/2311.03442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.6.033195">10.1103/PhysRevResearch.6.033195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topology of SmB6 revisited by means of topological quantum chemistry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Robredo%2C+I">I帽igo Robredo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">TItus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ma%C3%B1es%2C+J+L">Juan L. Ma帽es</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.03442v1-abstract-short" style="display: inline;"> The mixed-valence compound SmB6 with partially filled samarium 4f flat bands hybridizing with 5d conduction bands is a paramount example of a correlated topological heavy-fermion system. In this study we revisit the topology of SmB6 with the band theory paradigm and uncover previously overlooked aspects resulting from the formation of multiple topological gaps in the electronic structure. By invok&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03442v1-abstract-full').style.display = 'inline'; document.getElementById('2311.03442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.03442v1-abstract-full" style="display: none;"> The mixed-valence compound SmB6 with partially filled samarium 4f flat bands hybridizing with 5d conduction bands is a paramount example of a correlated topological heavy-fermion system. In this study we revisit the topology of SmB6 with the band theory paradigm and uncover previously overlooked aspects resulting from the formation of multiple topological gaps in the electronic structure. By invoking topological quantum chemistry (TQC) we provide a detailed classification of the strong and crystalline topological features that derive from the existence of such topological gaps. To corroborate this classification, we calculate Wilson loops and simulate the surface electronic structure using a minimal tight-binding model, allowing us to describe its surface states and confirm the crystalline topology. We finally discuss its implications for experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.03442v1-abstract-full').style.display = 'none'; document.getElementById('2311.03442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05219">arXiv:2310.05219</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05219">pdf</a>, <a href="https://arxiv.org/format/2310.05219">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.L241117">10.1103/PhysRevB.108.L241117 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\require{mhchem}$Quantum paramagnetism in the decorated square-kagome antiferromagnet $\ce{Na6Cu7BiO4(PO4)4Cl3}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Niggemann%2C+N">Nils Niggemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ralko%2C+A">Arnaud Ralko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+F">Francesco Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maity%2C+A">Atanu Maity</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+T">Tobias M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richter%2C+J">Johannes Richter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reuther%2C+J">Johannes Reuther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iqbal%2C+Y">Yasir Iqbal</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeschke%2C+H+O">Harald O. Jeschke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05219v2-abstract-short" style="display: inline;"> $\require{mhchem}$The square-kagome lattice Heisenberg antiferromagnet is a highly frustrated Hamiltonian whose material realizations have been scarce. We theoretically investigate the recently synthesized $\ce{Na6Cu7BiO4(PO4)4Cl3}$ where a Cu$^{2+}$ spin-$1/2&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05219v2-abstract-full').style.display = 'inline'; document.getElementById('2310.05219v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05219v2-abstract-full" style="display: none;"> $\require{mhchem}$The square-kagome lattice Heisenberg antiferromagnet is a highly frustrated Hamiltonian whose material realizations have been scarce. We theoretically investigate the recently synthesized $\ce{Na6Cu7BiO4(PO4)4Cl3}$ where a Cu$^{2+}$ spin-$1/2$ square-kagome lattice (with six site unit cell) is decorated by a seventh magnetic site alternatingly above and below the layers. The material does not show any sign of long-range magnetic order down to 50 mK despite a Curie-Weiss temperature of $-212$ K indicating a quantum paramagnetic phase. Our DFT energy mapping elicits a purely antiferromagnetic Hamiltonian that features longer range exchange interactions beyond the pure square-kagome model and, importantly, we find the seventh site to be strongly coupled to the plane. We combine two variational Monte Carlo approaches, pseudo-fermion/Majorana functional renormalization group and Schwinger-Boson mean field calculations to show that the complex Hamiltonian of $\ce{Na6Cu7BiO4(PO4)4Cl3}$ still features a nonmagnetic ground state. We explain how the seventh Cu$^{2+}$ site actually aids the stabilization of the disordered state. We predict static and dynamic spin structure factors to guide future neutron scattering experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05219v2-abstract-full').style.display = 'none'; document.getElementById('2310.05219v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures. Supplement: 7 pages, 11 figures v2: minor revisions in text and figure labels</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, L241117 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14111">arXiv:2309.14111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14111">pdf</a>, <a href="https://arxiv.org/format/2309.14111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.076502">10.1103/PhysRevLett.133.076502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Non-Hermitian Mott Skin Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Yoshida%2C+T">Tsuneya Yoshida</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Song-Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kawakami%2C+N">Norio Kawakami</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14111v3-abstract-short" style="display: inline;"> We propose a novel type of skin effects in non-Hermitian quantum many-body systems which we dub a non-Hermitian Mott skin effect. This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology. The Mott skin effect induces extreme sensitivity to the boundary conditions only in the spin degree of freedom (i.e., the charge distribution is not sensiti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14111v3-abstract-full').style.display = 'inline'; document.getElementById('2309.14111v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14111v3-abstract-full" style="display: none;"> We propose a novel type of skin effects in non-Hermitian quantum many-body systems which we dub a non-Hermitian Mott skin effect. This phenomenon is induced by the interplay between strong correlations and the non-Hermitian point-gap topology. The Mott skin effect induces extreme sensitivity to the boundary conditions only in the spin degree of freedom (i.e., the charge distribution is not sensitive to boundary conditions), which is in sharp contrast to the ordinary non-Hermitian skin effect in non-interacting systems. Concretely, we elucidate that a bosonic non-Hermitian chain exhibits the Mott skin effect in the strongly correlated regime by closely examining an effective Hamiltonian. The emergence of the Mott skin effect is also supported by numerical diagonalization of the bosonic chain. The difference between the ordinary non-Hermitian skin effect and the Mott skin effect is also reflected in the time-evolution of physical quantities; under the time-evolution spin accumulation is observed while the charge distribution remains spatially uniform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14111v3-abstract-full').style.display = 'none'; document.getElementById('2309.14111v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+17 pages, 3+16 figures, discussions of Liouvillian dynamics are revised</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 076502 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.09255">arXiv:2309.09255</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.09255">pdf</a>, <a href="https://arxiv.org/format/2309.09255">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01673-y">10.1038/s42005-024-01673-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charge order above room-temperature in a prototypical kagome superconductor La(Ru$_{1-x}$Fe$_{x}$)$_{3}$Si$_{2}$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Plokhikh%2C+I">I. Plokhikh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mielke%2C+C">C. Mielke III</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakamura%2C+H">H. Nakamura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Petricek%2C+V">V. Petricek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Qin%2C+Y">Y. Qin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sazgari%2C+V">V. Sazgari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCspert%2C+J">J. K眉spert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bialo%2C+I">I. Bialo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Shin%2C+S">S. Shin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivashko%2C+O">O. Ivashko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zimmermann%2C+M+v">M. v. Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Medarde%2C+M">M. Medarde</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amato%2C+A">A. Amato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Khasanov%2C+R">R. Khasanov</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Luetkens%2C+H">H. Luetkens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">M. H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Z. Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J+-">J. -X. Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">T. Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">J. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xu%2C+G">G. Xu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nakatsuji%2C+S">S. Nakatsuji</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pomjakushina%2C+E">E. Pomjakushina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gawryluk%2C+D+J">D. J. Gawryluk</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guguchia%2C+Z">Z. Guguchia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.09255v1-abstract-short" style="display: inline;"> The kagome lattice is an intriguing and rich platform for discovering, tuning and understanding the diverse phases of quantum matter, which is a necessary premise for utilizing quantum materials in all areas of modern and future electronics in a controlled and optimal way. The system LaRu$_{3}$Si$_{2}$ was shown to exhibit typical kagome band structure features near the Fermi energy formed by the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09255v1-abstract-full').style.display = 'inline'; document.getElementById('2309.09255v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.09255v1-abstract-full" style="display: none;"> The kagome lattice is an intriguing and rich platform for discovering, tuning and understanding the diverse phases of quantum matter, which is a necessary premise for utilizing quantum materials in all areas of modern and future electronics in a controlled and optimal way. The system LaRu$_{3}$Si$_{2}$ was shown to exhibit typical kagome band structure features near the Fermi energy formed by the Ru-$dz^{2}$ orbitals and the highest superconducting transition temperature $T_{\rm c}$ ${\simeq}$ 7K among the kagome-lattice materials. However, the effect of electronic correlations on the normal state properties remains elusive. Here, we report the discovery of charge order in La(Ru$_{1-x}$Fe$_{x}$)$_{3}$Si$_{2}$ ($x$ = 0, 0.01, 0.05) beyond room-temperature. Namely, single crystal X-ray diffraction reveals charge order with a propagation vector of ($\frac{1}{4}$,0,0) below $T_{\rm CO-I}$ ${\simeq}$ 400K in all three compounds. At lower temperatures, we see the appearance of a second set of charge order peaks with a propagation vector of ($\frac{1}{6}$,0,0). The introduction of Fe, which is known to quickly suppress superconductivity, does not drastically alter the onset temperature for charge order. Instead, it broadens the scattered intensity such that diffuse scattering appears at the same onset temperature, however does not coalesce into sharp Bragg diffraction peaks until much lower in temperature. Our results present the first example of a charge ordered state at or above room temperature in the correlated kagome lattice with bulk superconductivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.09255v1-abstract-full').style.display = 'none'; document.getElementById('2309.09255v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 7, 182 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.08590">arXiv:2308.08590</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.08590">pdf</a>, <a href="https://arxiv.org/format/2308.08590">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.043214">10.1103/PhysRevResearch.5.043214 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Understanding Symmetry Breaking in Twisted Bilayer Graphene from Cluster Constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Westerhout%2C+T">Tom Westerhout</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.08590v2-abstract-short" style="display: inline;"> Twisted bilayer graphene is an exciting platform for exploring correlated quantum phases, extremely tunable with respect to both the single-particle bands and the interaction profile of electrons. Here, we investigate the phase diagram of twisted bilayer graphene as described by an extended Hubbard model on the honeycomb lattice with two fermionic orbitals (valleys) per site. Besides the special e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08590v2-abstract-full').style.display = 'inline'; document.getElementById('2308.08590v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.08590v2-abstract-full" style="display: none;"> Twisted bilayer graphene is an exciting platform for exploring correlated quantum phases, extremely tunable with respect to both the single-particle bands and the interaction profile of electrons. Here, we investigate the phase diagram of twisted bilayer graphene as described by an extended Hubbard model on the honeycomb lattice with two fermionic orbitals (valleys) per site. Besides the special extended {\it cluster interaction} $Q$, we incorporate the effect of gating through an onsite Hubbard-interaction $U$. Within Quantum Monte Carlo (QMC), we find valence-bond-solid, N茅el-valley antiferromagnetic or charge-density wave phases. Further, we elucidate the competition of these phases by noticing that the cluster interaction induces an exotic constraint on the Hilbert space, which we dub {\it the cluster rule}, in analogy to the famous pyrochlore spin-ice rule. Formulating the perturbative Hamiltonian by projecting into the cluster-rule manifold, we perform exact diagonalization and construct the fixed-point states of the observed phases. Finally, we compute the local electron density patterns as signatures distinguishing these phases, which could be observed with scanning tunneling microscopy. Our work capitalizes on the notion of cluster constraints in the extended Hubbard model of twisted bilayer graphene, and suggests a scheme towards realization of several symmetry-breaking insulating phases in a twisted-bilayer graphene sheet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.08590v2-abstract-full').style.display = 'none'; document.getElementById('2308.08590v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09876">arXiv:2307.09876</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09876">pdf</a>, <a href="https://arxiv.org/format/2307.09876">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.206601">10.1103/PhysRevLett.132.206601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic non-Abelian semimetal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Tummuru%2C+T">Tarun Tummuru</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Anffany Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenggenhager%2C+P+M">Patrick M. Lenggenhager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maciejko%2C+J">Joseph Maciejko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bzdu%C5%A1ek%2C+T">Tom谩拧 Bzdu拧ek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09876v2-abstract-short" style="display: inline;"> We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane. Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09876v2-abstract-full').style.display = 'inline'; document.getElementById('2307.09876v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09876v2-abstract-full" style="display: none;"> We extend the notion of topologically protected semi-metallic band crossings to hyperbolic lattices in a negatively curved plane. Because of their distinct translation group structure, such lattices are associated with a high-dimensional reciprocal space. In addition, they support non-Abelian Bloch states which, unlike conventional Bloch states, acquire a matrix-valued Bloch factor under lattice translations. Combining diverse numerical and analytical approaches, we uncover an unconventional scaling in the density of states at low energies, and illuminate a nodal manifold of codimension five in the reciprocal space. The nodal manifold is topologically protected by a nonzero second Chern number, reminiscent of the characterization of Weyl nodes by the first Chern number. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09876v2-abstract-full').style.display = 'none'; document.getElementById('2307.09876v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages (4 figures) + 15 pages of supplementary material (9 figures)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 206601 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.06365">arXiv:2307.06365</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.06365">pdf</a>, <a href="https://arxiv.org/format/2307.06365">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02104-5">10.1038/s41567-023-02104-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Two-dimensional Shiba lattices as possible platform for crystalline topological superconductivity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCster%2C+F">Felix K眉ster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Souvik Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Aldarawsheh%2C+A">Amal Aldarawsheh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lounis%2C+S">Samir Lounis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S+S+P">Stuart S. P. Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sessi%2C+P">Paolo Sessi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.06365v2-abstract-short" style="display: inline;"> Localized or propagating Majorana boundary modes are the key feature of topological superconductors. They are rare in naturally-occurring compounds, but the tailored manipulation of quantum matter offers opportunities for their realization. Specifically, lattices of Yu-Shiba-Rusinov bound states $-$ Shiba lattices $-$ that arise when magnetic adatoms are placed on the surface of a conventional sup&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06365v2-abstract-full').style.display = 'inline'; document.getElementById('2307.06365v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.06365v2-abstract-full" style="display: none;"> Localized or propagating Majorana boundary modes are the key feature of topological superconductors. They are rare in naturally-occurring compounds, but the tailored manipulation of quantum matter offers opportunities for their realization. Specifically, lattices of Yu-Shiba-Rusinov bound states $-$ Shiba lattices $-$ that arise when magnetic adatoms are placed on the surface of a conventional superconductor can be used to create topological bands within the superconducting gap of the substrate. Here, using scanning tunnelling microscopy to create and probe adatom lattices with single atom precision we reveal two signatures consistent with the realization of two types of mirror symmetry protected topological superconductors. The first has edge modes as well as higher-order corner states, and the second has symmetry-protected bulk nodal points. In principle, their topological character and boundary modes should be protected by the spatial symmetries of the adatom lattice. Our results highlight the potential of Shiba lattices as a platform to design the topology and sample geometry of 2D superconductors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.06365v2-abstract-full').style.display = 'none'; document.getElementById('2307.06365v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Physics (https://doi.org/10.1038/s41567-023-02104-5)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.02528">arXiv:2307.02528</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.02528">pdf</a>, <a href="https://arxiv.org/format/2307.02528">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Phenomenology of bond and flux orders in kagome metals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.02528v2-abstract-short" style="display: inline;"> Despite much experimental and theoretical work, the nature of the charge order in the kagome metals belonging to the family of materials AV$_3$Sb$_5$ (A=Cs,Rb,K) remains controversial. A crucial ingredient for the identification of the ordering in these materials is their response to external perturbations, such as strain or magnetic fields. To this end, we provide a comprehensive symmetry classif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02528v2-abstract-full').style.display = 'inline'; document.getElementById('2307.02528v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.02528v2-abstract-full" style="display: none;"> Despite much experimental and theoretical work, the nature of the charge order in the kagome metals belonging to the family of materials AV$_3$Sb$_5$ (A=Cs,Rb,K) remains controversial. A crucial ingredient for the identification of the ordering in these materials is their response to external perturbations, such as strain or magnetic fields. To this end, we provide a comprehensive symmetry classification of the possible charge orders in kagome materials with a $2\times2$ increase of the unit cell. Motivated by the experimental reports of time-reversal-symmetry breaking and rotational anisotropy, we consider the interdependence of flux and bond orders. Deriving the relevant Landau free energy for possible orders, we study the effect of symmetry-breaking perturbations such as strain and magnetic fields. Our results, thus, provide a roadmap for future tests of these intricate orders. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.02528v2-abstract-full').style.display = 'none'; document.getElementById('2307.02528v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages (+7 pages appendix), 4 figures (+6 figures appendix), included corrections as published under &#34;Erratum Phys. Rev. B 110, 159901 (2024)&#34;</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 108, 125136 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.00593">arXiv:2306.00593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.00593">pdf</a>, <a href="https://arxiv.org/format/2306.00593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41535-024-00629-3">10.1038/s41535-024-00629-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Distinct switching of chiral transport in the kagome metals KV$_3$Sb$_5$ and CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=van+Delft%2C+M+R">Maarten R. van Delft</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wiedmann%2C+S">Steffen Wiedmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.00593v1-abstract-short" style="display: inline;"> The kagome metals AV$_3$Sb$_5$ (A=K,Rb,Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00593v1-abstract-full').style.display = 'inline'; document.getElementById('2306.00593v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.00593v1-abstract-full" style="display: none;"> The kagome metals AV$_3$Sb$_5$ (A=K,Rb,Cs) present an ideal sandbox to study the interrelation between multiple coexisting correlated phases such as charge order and superconductivity. So far, no consensus on the microscopic nature of these states has been reached as the proposals struggle to explain all their exotic physical properties. Among these, field-switchable electric magneto-chiral anisotropy (eMChA) in CsV$_3$Sb$_5$ provides intriguing evidence for a rewindable electronic chirality, yet the other family members have not been likewise investigated. Here, we present a comparative study of magneto-chiral transport between CsV$_3$Sb$_5$ and KV$_3$Sb$_5$. Despite their similar electronic structure, KV$_3$Sb$_5$ displays negligible eMChA, if any, and with no field switchability. This is in stark contrast to the non-saturating eMChA in CsV$_3$Sb$_5$ even in high fields up to 35 T. In light of their similar band structures, the stark difference in eMChA suggests its origin in the correlated states. Clearly, the V kagome nets alone are not sufficient to describe the physics and the interactions with their environment are crucial in determining the nature of their low-temperature state. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.00593v1-abstract-full').style.display = 'none'; document.getElementById('2306.00593v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> npj Quantum Materials, 9, 20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.13743">arXiv:2304.13743</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.13743">pdf</a>, <a href="https://arxiv.org/format/2304.13743">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/2515-7639/acf2ca">10.1088/2515-7639/acf2ca <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Infernal and Exceptional Edge Modes: Non-Hermitian Topology Beyond the Skin Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+F">Frank Schindler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.13743v2-abstract-short" style="display: inline;"> The classification of point gap topology in all local non-Hermitian symmetry classes has been recently established. However, many entries in the resulting periodic table have only been discussed in a formal setting and still lack a physical interpretation in terms of their bulk-boundary correspondence. Here, we derive the edge signatures of all two-dimensional phases with intrinsic point gap topol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13743v2-abstract-full').style.display = 'inline'; document.getElementById('2304.13743v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.13743v2-abstract-full" style="display: none;"> The classification of point gap topology in all local non-Hermitian symmetry classes has been recently established. However, many entries in the resulting periodic table have only been discussed in a formal setting and still lack a physical interpretation in terms of their bulk-boundary correspondence. Here, we derive the edge signatures of all two-dimensional phases with intrinsic point gap topology. While in one dimension point gap topology invariably leads to the non-Hermitian skin effect, non-Hermitian boundary physics is significantly richer in two dimensions. We find two broad classes of non-Hermitian edge states: (1) Infernal points, where a skin effect occurs only at a single edge momentum, while all other edge momenta are devoid of edge states. Under semi-infinite boundary conditions, the point gap thereby closes completely, but only at a single edge momentum. (2) Non-Hermitian exceptional point dispersions, where edge states persist at all edge momenta and furnish an anomalous number of symmetry-protected exceptional points. Surprisingly, the latter class of systems allows for a finite, non-extensive number of edge states with a well defined dispersion along all generic edge terminations. Instead, the point gap only closes along the real and imaginary eigenvalue axes, realizing a novel form of non-Hermitian spectral flow. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.13743v2-abstract-full').style.display = 'none'; document.getElementById('2304.13743v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures, 13 pages supplementary material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. Mater. 6 045006 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.00972">arXiv:2304.00972</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.00972">pdf</a>, <a href="https://arxiv.org/format/2304.00972">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02374-z">10.1038/s41567-023-02374-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Correlated order at the tipping point in the kagome metal CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+K">Kaize Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+L">Ling Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.00972v1-abstract-short" style="display: inline;"> Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders form complex interactions. This is exemplified by charge order in some kagome systems, which are speculated to show nematicity and flux&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00972v1-abstract-full').style.display = 'inline'; document.getElementById('2304.00972v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.00972v1-abstract-full" style="display: none;"> Spontaneously broken symmetries are at the heart of many phenomena of quantum matter and physics more generally. However, determining the exact symmetries broken can be challenging due to imperfections such as strain, in particular when multiple electronic orders form complex interactions. This is exemplified by charge order in some kagome systems, which are speculated to show nematicity and flux order from orbital currents. We fabricated highly symmetric samples of a member of this family, CsV$_3$Sb$_5$, and measured their transport properties. We find the absence of measurable anisotropy at any temperature in the unperturbed material, however, a striking in-plane transport anisotropy appears when either weak magnetic fields or strains are present. A symmetry analysis indicates that a perpendicular magnetic field can indeed lead to in-plane anisotropy by inducing a flux order coexisting with more conventional bond order. Our results provide a unifying picture for the controversial charge order in kagome metals and highlight the need for microscopic materials control in the identification of broken symmetries. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.00972v1-abstract-full').style.display = 'none'; document.getElementById('2304.00972v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Physics 20, 579 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.12825">arXiv:2303.12825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.12825">pdf</a>, <a href="https://arxiv.org/format/2303.12825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> </div> <p class="title is-5 mathjax"> Single-parameter variational wavefunctions for quantum Hall bilayers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+Q">Qi Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.12825v1-abstract-short" style="display: inline;"> Bilayer quantum Hall states have been shown to be described by a BCS-paired state of composite fermions. However, finding a qualitatively accurate model state valid across all values of the bilayer separation is challenging. Here, we introduce two variational wavefunctions, each with a single variational parameter, which can be thought of as a proxy for the BCS order parameter. Studying systems of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12825v1-abstract-full').style.display = 'inline'; document.getElementById('2303.12825v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.12825v1-abstract-full" style="display: none;"> Bilayer quantum Hall states have been shown to be described by a BCS-paired state of composite fermions. However, finding a qualitatively accurate model state valid across all values of the bilayer separation is challenging. Here, we introduce two variational wavefunctions, each with a single variational parameter, which can be thought of as a proxy for the BCS order parameter. Studying systems of up to 9+9 electrons in a spherical geometry using Monte Carlo methods, we show that the ground state can be accurately described by these single-parameter variational states. In addition, for the first time we provide a numerically exact wavefunction for the Halperin-111 state in terms of composite fermions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.12825v1-abstract-full').style.display = 'none'; document.getElementById('2303.12825v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages + 3 figures main text (7 pages + 4 figures supplement)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.13185">arXiv:2302.13185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.13185">pdf</a>, <a href="https://arxiv.org/format/2302.13185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-024-45951-3">10.1038/s41467-024-45951-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Finite-momentum Cooper pairing in proximitized altermagnets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Song-Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hu%2C+L">Lun-Hui Hu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.13185v2-abstract-short" style="display: inline;"> Finite-momentum Cooper pairing is an unconventional form of superconductivity that is widely believed to require finite magnetization. Altermagnetism is an emerging magnetic phase with highly anisotropic spin-splitting of specific symmetries, but zero net magnetization. Here, we study Cooper pairing in metallic altermagnets connected to conventional $s$-wave superconductors. Remarkably, we find th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13185v2-abstract-full').style.display = 'inline'; document.getElementById('2302.13185v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.13185v2-abstract-full" style="display: none;"> Finite-momentum Cooper pairing is an unconventional form of superconductivity that is widely believed to require finite magnetization. Altermagnetism is an emerging magnetic phase with highly anisotropic spin-splitting of specific symmetries, but zero net magnetization. Here, we study Cooper pairing in metallic altermagnets connected to conventional $s$-wave superconductors. Remarkably, we find that the Cooper pairs induced in the altermagnets acquire a finite centre-of-mass momentum, despite the \textit{zero} net magnetization in the system. This anomalous Cooper-pair momentum strongly depends on the propagation direction and exhibits unusual symmetric patterns. Furthermore, it yields several unique features: (i) highly orientation-dependent oscillations in the order parameter, (ii) controllable 0-$蟺$ transitions in the Josephson supercurrent, (iii) large-oblique-angle Cooper-pair transfer trajectories in junctions parallel with the direction where spin splitting vanishes, and (iv) distinct Fraunhofer patterns in junctions oriented along different directions. Finally, we discuss the implementation of our predictions in candidate materials such as RuO$_{2}$ and KRu$_{4}$O$_{8}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.13185v2-abstract-full').style.display = 'none'; document.getElementById('2302.13185v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 6 figures, Published in Nature Communications</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Commun. 15, 1801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.09824">arXiv:2302.09824</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.09824">pdf</a>, <a href="https://arxiv.org/format/2302.09824">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-023-01353-3">10.1038/s42005-023-01353-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Hybrid Quantum-Classical Method for Electron-Phonon Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Miessen%2C+A">Alexander Miessen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yan%2C+H">Haoran Yan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tavernelli%2C+I">Ivano Tavernelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Demler%2C+E">Eugene Demler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Y">Yao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.09824v2-abstract-short" style="display: inline;"> Interactions between electrons and phonons play a crucial role in quantum materials. Yet, there is no universal method that would simultaneously accurately account for strong electron-phonon interactions and electronic correlations. By combining methods of the variational quantum eigensolver and the variational non-Gaussian solver, we develop a hybrid quantum-classical algorithm suitable for this&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09824v2-abstract-full').style.display = 'inline'; document.getElementById('2302.09824v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.09824v2-abstract-full" style="display: none;"> Interactions between electrons and phonons play a crucial role in quantum materials. Yet, there is no universal method that would simultaneously accurately account for strong electron-phonon interactions and electronic correlations. By combining methods of the variational quantum eigensolver and the variational non-Gaussian solver, we develop a hybrid quantum-classical algorithm suitable for this type of correlated systems. This hybrid method tackles systems with arbitrarily strong electron-phonon coupling without increasing the number of required qubits and quantum gates, as compared to purely electronic models. We benchmark the new method by applying it to the paradigmatic Hubbard-Holstein model at half filling, and show that it correctly captures the competition between charge density wave and antiferromagnetic phases, quantitatively consistent with exact diagonalization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.09824v2-abstract-full').style.display = 'none'; document.getElementById('2302.09824v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures; 4 pages Supplemental Material</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun Phys 6, 233 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04919">arXiv:2302.04919</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04919">pdf</a>, <a href="https://arxiv.org/format/2302.04919">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adg9774">10.1126/science.adg9774 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Variational Benchmarks for Quantum Many-Body Problems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wu%2C+D">Dian Wu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rossi%2C+R">Riccardo Rossi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vicentini%2C+F">Filippo Vicentini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Becca%2C+F">Federico Becca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cao%2C+X">Xiaodong Cao</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carrasquilla%2C+J">Juan Carrasquilla</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+F">Francesco Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Georges%2C+A">Antoine Georges</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hibat-Allah%2C+M">Mohamed Hibat-Allah</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Imada%2C+M">Masatoshi Imada</a>, <a href="/search/cond-mat?searchtype=author&amp;query=L%C3%A4uchli%2C+A+M">Andreas M. L盲uchli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazzola%2C+G">Guglielmo Mazzola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mezzacapo%2C+A">Antonio Mezzacapo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Millis%2C+A">Andrew Millis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moreno%2C+J+R">Javier Robledo Moreno</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nomura%2C+Y">Yusuke Nomura</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nys%2C+J">Jannes Nys</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parcollet%2C+O">Olivier Parcollet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pohle%2C+R">Rico Pohle</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Romero%2C+I">Imelda Romero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Schmid%2C+M">Michael Schmid</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Silvester%2C+J+M">J. Maxwell Silvester</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sorella%2C+S">Sandro Sorella</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04919v2-abstract-short" style="display: inline;"> The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04919v2-abstract-full').style.display = 'inline'; document.getElementById('2302.04919v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04919v2-abstract-full" style="display: none;"> The continued development of computational approaches to many-body ground-state problems in physics and chemistry calls for a consistent way to assess its overall progress. In this work, we introduce a metric of variational accuracy, the V-score, obtained from the variational energy and its variance. We provide an extensive curated dataset of variational calculations of many-body quantum systems, identifying cases where state-of-the-art numerical approaches show limited accuracy, and future algorithms or computational platforms, such as quantum computing, could provide improved accuracy. The V-score can be used as a metric to assess the progress of quantum variational methods toward a quantum advantage for ground-state problems, especially in regimes where classical verifiability is impossible. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04919v2-abstract-full').style.display = 'none'; document.getElementById('2302.04919v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science 386, 296-301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.04877">arXiv:2302.04877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.04877">pdf</a>, <a href="https://arxiv.org/format/2302.04877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.205129">10.1103/PhysRevB.107.205129 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Single monkey-saddle singularity of a Fermi surface and its instabilities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Aksoy%2C+%C3%96+M">脰mer M. Aksoy</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chandrasekaran%2C+A">Anirudh Chandrasekaran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chamon%2C+C">Claudio Chamon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mudry%2C+C">Christopher Mudry</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.04877v2-abstract-short" style="display: inline;"> Fermi surfaces can undergo sharp transitions under smooth changes of parameters. Such transitions can have a topological character, as is the case when a higher-order singularity, one that requires cubic or higher-order terms to describe the electronic dispersion near the singularity, develops at the transition. When time-reversal and inversion symmetries are present, odd singularities can only ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04877v2-abstract-full').style.display = 'inline'; document.getElementById('2302.04877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.04877v2-abstract-full" style="display: none;"> Fermi surfaces can undergo sharp transitions under smooth changes of parameters. Such transitions can have a topological character, as is the case when a higher-order singularity, one that requires cubic or higher-order terms to describe the electronic dispersion near the singularity, develops at the transition. When time-reversal and inversion symmetries are present, odd singularities can only appear in pairs within the Brillouin zone. In this case, the combination of the enhanced density of states that accompany these singularities and the nesting between the pairs of singularities leads to interaction driven instabilities. We present examples of single $n=3$ (monkey saddle) singularities when time-reversal and inversion symmetries are broken. We then turn to the question of what instabilities are possible when the singularities are isolated. For spinful electrons, we find that the inclusion of repulsive interactions destroys any isolated monkey-saddle singularity present in the noninteracting spectrum by developing Stoner or Lifshitz instabilities. In contrast, for spinless electrons and at the mean-field level, we show that an isolated monkey-saddle singularity can be stabilized in the presence of short-range repulsive interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.04877v2-abstract-full').style.display = 'none'; document.getElementById('2302.04877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 205129 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.14691">arXiv:2212.14691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.14691">pdf</a>, <a href="https://arxiv.org/format/2212.14691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.116601">10.1103/PhysRevLett.131.116601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancement of Second-Order Non-Hermitian Skin Effect by Magnetic Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+C">Chang-An Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trauzettel%2C+B">Bj枚rn Trauzettel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Song-Bo Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.14691v2-abstract-short" style="display: inline;"> The non-Hermitian skin effect is a unique phenomenon in which an extensive number of eigenstates are localized at the boundaries of a non-Hermitian system. Recent studies show that the non-Hermitian skin effect is significantly suppressed by magnetic fields. In contrast, we demonstrate that the second-order skin effect (SOSE) is robust and can even be enhanced by magnetic fields. Remarkably, SOSE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14691v2-abstract-full').style.display = 'inline'; document.getElementById('2212.14691v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.14691v2-abstract-full" style="display: none;"> The non-Hermitian skin effect is a unique phenomenon in which an extensive number of eigenstates are localized at the boundaries of a non-Hermitian system. Recent studies show that the non-Hermitian skin effect is significantly suppressed by magnetic fields. In contrast, we demonstrate that the second-order skin effect (SOSE) is robust and can even be enhanced by magnetic fields. Remarkably, SOSE can also be induced by magnetic fields from a trivial non-Hermitian system that does not experience any skin effect at zero field. These properties are intimately related to to the persistence and emergence of topological line gaps in the complex energy spectrum in presence of magnetic fields. Moreover, we show that a magnetic field can drive a non-Hermitian system from a hybrid skin effect, where the first-order skin effect and SOSE coexist, to pure SOSE. Our results describe a qualitatively new magnetic field behavior of the non-Hermitian skin effect. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.14691v2-abstract-full').style.display = 'none'; document.getElementById('2212.14691v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8+9 pages, 4+12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 116601 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10556">arXiv:2209.10556</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10556">pdf</a>, <a href="https://arxiv.org/format/2209.10556">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.245145">10.1103/PhysRevB.107.245145 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interacting topological quantum chemistry of Mott atomic limits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Soldini%2C+M+O">Martina O. Soldini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iraola%2C+M">Mikel Iraola</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Valent%C3%AD%2C+R">Roser Valent铆</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10556v2-abstract-short" style="display: inline;"> Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10556v2-abstract-full').style.display = 'inline'; document.getElementById('2209.10556v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10556v2-abstract-full" style="display: none;"> Topological quantum chemistry (TQC) is a successful framework for identifying (noninteracting) topological materials. Based on the symmetry eigenvalues of Bloch eigenstates at maximal momenta, which are attainable from first principles calculations, a band structure can either be classified as an atomic limit, in other words adiabatically connected to independent electronic orbitals on the respective crystal lattice, or it is topological. For interacting systems, there is no single-particle band structure and hence, the TQC machinery grinds to a halt. We develop a framework analogous to TQC, but employing $n$-particle Green&#39;s function to classify interacting systems. Fundamentally, we define a class of interacting reference states that generalize the notion of atomic limits, which we call Mott atomic limits, and are symmetry protected topological states. Our formalism allows to fully classify these reference states (with $n=2$), which can themselves represent symmetry protected topological states. We present a comprehensive classification of such states in one-dimension and provide numerical results on model systems. With this, we establish Mott atomic limit states as a generalization of the atomic limits to interacting systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10556v2-abstract-full').style.display = 'none'; document.getElementById('2209.10556v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09247">arXiv:2209.09247</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09247">pdf</a>, <a href="https://arxiv.org/format/2209.09247">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42256-024-00790-1">10.1038/s42256-024-00790-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Weak-signal extraction enabled by deep-neural-network denoising of diffraction data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oppliger%2C+J">Jens Oppliger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Denner%2C+M+M">M. Michael Denner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCspert%2C+J">Julia K眉spert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Frison%2C+R">Ruggero Frison</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wang%2C+Q">Qisi Wang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morawietz%2C+A">Alexander Morawietz</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ivashko%2C+O">Oleh Ivashko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dippel%2C+A">Ann-Christin Dippel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=von+Zimmermann%2C+M">Martin von Zimmermann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bia%C5%82o%2C+I">Izabela Bia艂o</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martinelli%2C+L">Leonardo Martinelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fauqu%C3%A9%2C+B">Beno卯t Fauqu茅</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Choi%2C+J">Jaewon Choi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Garcia-Fernandez%2C+M">Mirian Garcia-Fernandez</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhou%2C+K">Ke-Jin Zhou</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+N+B">Niels B. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kurosawa%2C+T">Tohru Kurosawa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Momono%2C+N">Naoki Momono</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Oda%2C+M">Migaku Oda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Natterer%2C+F+D">Fabian D. Natterer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+J">Johan Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09247v3-abstract-short" style="display: inline;"> Removal or cancellation of noise has wide-spread applications for imaging and acoustics. In every-day-life applications, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Here, we show how data can be denoised via a deep convolutional neural network such that weak signals appea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09247v3-abstract-full').style.display = 'inline'; document.getElementById('2209.09247v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09247v3-abstract-full" style="display: none;"> Removal or cancellation of noise has wide-spread applications for imaging and acoustics. In every-day-life applications, denoising may even include generative aspects, which are unfaithful to the ground truth. For scientific use, however, denoising must reproduce the ground truth accurately. Here, we show how data can be denoised via a deep convolutional neural network such that weak signals appear with quantitative accuracy. In particular, we study X-ray diffraction on crystalline materials. We demonstrate that weak signals stemming from charge ordering, insignificant in the noisy data, become visible and accurate in the denoised data. This success is enabled by supervised training of a deep neural network with pairs of measured low- and high-noise data. We demonstrate that using artificial noise does not yield such quantitatively accurate results. Our approach thus illustrates a practical strategy for noise filtering that can be applied to challenging acquisition problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09247v3-abstract-full').style.display = 'none'; document.getElementById('2209.09247v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures; extended study, additional supplementary information, results unchanged</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Machine Intelligence (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.09169">arXiv:2209.09169</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.09169">pdf</a>, <a href="https://arxiv.org/format/2209.09169">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.195105">10.1103/PhysRevB.107.195105 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of Glide Symmetry Protected Helical Edge States in WTe$_{2}$ Monolayer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bieniek%2C+M">Maciej Bieniek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=V%C3%A4yrynen%2C+J+I">Jukka I. V盲yrynen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Li%2C+G">Gang Li</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.09169v1-abstract-short" style="display: inline;"> Helical edge states in quantum spin Hall (QSH) materials are central building blocks of topological matter design and engineering. Despite their principal topological protection against elastic backscattering, the level of operational stability depends on manifold parameters such as the band gap of the given semiconductor system in the &#39;inverted&#39; regime, temperature, disorder, and crystal orientat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09169v1-abstract-full').style.display = 'inline'; document.getElementById('2209.09169v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.09169v1-abstract-full" style="display: none;"> Helical edge states in quantum spin Hall (QSH) materials are central building blocks of topological matter design and engineering. Despite their principal topological protection against elastic backscattering, the level of operational stability depends on manifold parameters such as the band gap of the given semiconductor system in the &#39;inverted&#39; regime, temperature, disorder, and crystal orientation. We theoretically investigate electronic and transport properties of QSH edge states in large gap 1-T&#39; WTe$_{2}$ monolayers. We explore the impact of edge termination, disorder, temperature, and interactions on experimentally addressable edge state observables, such as local density of states and conductance. We show that conductance quantization can remain surprisingly robust even for heavily disordered samples because of an anomalously small edge state decay length and additional protection related to the large direct gap allowed by glide symmetry. From the simulation of temperature-dependent resistance, we find that moderate disorder enhances the stability of conductance by localizing bulk states. We evaluate the edge state velocity and Luttinger liquid parameter as functions of the chemical potential, finding prospects for physics beyond linear helical Luttinger liquids in samples with ultra-clean and well-defined edges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.09169v1-abstract-full').style.display = 'none'; document.getElementById('2209.09169v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 195105 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.06837">arXiv:2209.06837</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.06837">pdf</a>, <a href="https://arxiv.org/format/2209.06837">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.2c03794">10.1021/acs.nanolett.2c03794 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interaction effects in a 1D flat band at a topological crystalline step edge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Wagner%2C+G">Glenn Wagner</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Das%2C+S">Souvik Das</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jung%2C+J">Johannes Jung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Odobesko%2C+A">Artem Odobesko</a>, <a href="/search/cond-mat?searchtype=author&amp;query=K%C3%BCster%2C+F">Felix K眉ster</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Keller%2C+F">Florian Keller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korczak%2C+J">Jedrzej Korczak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szczerbakow%2C+A">Andrzej Szczerbakow</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Story%2C+T">Tomasz Story</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Parkin%2C+S">Stuart Parkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bode%2C+M">Matthias Bode</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sessi%2C+P">Paolo Sessi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.06837v1-abstract-short" style="display: inline;"> Step edges of topological crystalline insulators can be viewed as predecessors of higher-order topology, as they embody one-dimensional edge channels embedded in an effective three-dimensional electronic vacuum emanating from the topological crystalline insulator. Using scanning tunneling microscopy and spectroscopy we investigate the behaviour of such edge channels in Pb$_{1-x}$Sn$_{x}$Se under d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06837v1-abstract-full').style.display = 'inline'; document.getElementById('2209.06837v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.06837v1-abstract-full" style="display: none;"> Step edges of topological crystalline insulators can be viewed as predecessors of higher-order topology, as they embody one-dimensional edge channels embedded in an effective three-dimensional electronic vacuum emanating from the topological crystalline insulator. Using scanning tunneling microscopy and spectroscopy we investigate the behaviour of such edge channels in Pb$_{1-x}$Sn$_{x}$Se under doping. Once the energy position of the step edge is brought close to the Fermi level, we observe the opening of a correlation gap. The experimental results are rationalized in terms of interaction effects which are enhanced since the electronic density is collapsed to a one-dimensional channel. This constitutes a unique system to study how topology and many-body electronic effects intertwine, which we model theoretically through a Hartree-Fock analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.06837v1-abstract-full').style.display = 'none'; document.getElementById('2209.06837v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures (main text) and 5 pages, 6 figures (Supplementary Material)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10112">arXiv:2207.10112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.10112">pdf</a>, <a href="https://arxiv.org/format/2207.10112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-022-33471-x">10.1038/s41467-022-33471-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological Zero-Dimensional Defect and Flux States in Three-Dimensional Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Schindler%2C+F">Frank Schindler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tsirkin%2C+S+S">Stepan S. Tsirkin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bernevig%2C+B+A">B. Andrei Bernevig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wieder%2C+B+J">Benjamin J. Wieder</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10112v2-abstract-short" style="display: inline;"> In insulating crystals, it was previously shown that defects with two fewer dimensions than the bulk can bind topological electronic states. We here further extend the classification of topological defect states by demonstrating that the corners of crystalline defects with integer Burgers vectors can bind 0D higher-order end (HEND) states with anomalous charge and spin. We demonstrate that HEND st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10112v2-abstract-full').style.display = 'inline'; document.getElementById('2207.10112v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10112v2-abstract-full" style="display: none;"> In insulating crystals, it was previously shown that defects with two fewer dimensions than the bulk can bind topological electronic states. We here further extend the classification of topological defect states by demonstrating that the corners of crystalline defects with integer Burgers vectors can bind 0D higher-order end (HEND) states with anomalous charge and spin. We demonstrate that HEND states are intrinsic topological consequences of the bulk electronic structure and introduce new bulk topological invariants that are predictive of HEND dislocation states in solid-state materials. We demonstrate the presence of first-order 0D defect states in PbTe monolayers and HEND states in 3D SnTe crystals. We relate our analysis to magnetic flux insertion in insulating crystals. We find that $蟺$-flux tubes in inversion- and time-reversal-symmetric (helical) higher-order topological insulators bind Kramers pairs of spin-charge-separated HEND states, which represent observable signatures of anomalous surface half quantum spin Hall states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10112v2-abstract-full').style.display = 'none'; document.getElementById('2207.10112v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version, 23 pg main text + 76 pg appendix, 8 + 24 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 13, 5791 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.00264">arXiv:2206.00264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.00264">pdf</a>, <a href="https://arxiv.org/format/2206.00264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevResearch.5.L012025">10.1103/PhysRevResearch.5.L012025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pinch-points to half-moons and up in the stars: the kagome skymap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Kiese%2C+D">Dominik Kiese</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+F">Francesco Ferrari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Astrakhantsev%2C+N">Nikita Astrakhantsev</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Niggemann%2C+N">Nils Niggemann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ghosh%2C+P">Pratyay Ghosh</a>, <a href="/search/cond-mat?searchtype=author&amp;query=M%C3%BCller%2C+T">Tobias M眉ller</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Reuther%2C+J">Johannes Reuther</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gingras%2C+M+J+P">Michel J. P. Gingras</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trebst%2C+S">Simon Trebst</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Iqbal%2C+Y">Yasir Iqbal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.00264v1-abstract-short" style="display: inline;"> Pinch point singularities, associated with flat band magnetic excitations, are tell-tale signatures of Coulomb spin liquids. While their properties in the presence of quantum fluctuations have been widely studied, the fate of the complementary non-analytic features -- shaped as half-moons and stars -- arising from adjacent shallow dispersive bands has remained unexplored. Here, we address this que&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00264v1-abstract-full').style.display = 'inline'; document.getElementById('2206.00264v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.00264v1-abstract-full" style="display: none;"> Pinch point singularities, associated with flat band magnetic excitations, are tell-tale signatures of Coulomb spin liquids. While their properties in the presence of quantum fluctuations have been widely studied, the fate of the complementary non-analytic features -- shaped as half-moons and stars -- arising from adjacent shallow dispersive bands has remained unexplored. Here, we address this question for the spin $S=1/2$ Heisenberg antiferromagnet on the kagome lattice with second and third neighbor couplings, which allows one to tune the classical ground state from flat bands to being governed by shallow dispersive bands for intermediate coupling strengths. Employing the complementary strengths of variational Monte Carlo, pseudo-fermion functional renormalization group, and density-matrix renormalization group, we establish the quantum phase diagram. The U(1) Dirac spin liquid ground state of the nearest-neighbor antiferromagnet remains remarkably robust till intermediate coupling strengths when it transitions into a pinwheel valence bond crystal displaying signatures of half-moons in its structure factor. Our work thus identifies a microscopic setting that realizes one of the proximate orders of the Dirac spin liquid identified in a recent work [Song, Wang, Vishwanath, He, Nat. Commun. 10, 4254 (2019)]. For larger couplings, we obtain a collinear magnetically ordered ground state characterized by star-like patterns. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.00264v1-abstract-full').style.display = 'none'; document.getElementById('2206.00264v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures. Supplemental Material appended</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Research 5, L012025 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.05106">arXiv:2205.05106</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.05106">pdf</a>, <a href="https://arxiv.org/format/2205.05106">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41467-023-36359-6">10.1038/s41467-023-36359-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic Matter in Electrical Circuits with Tunable Complex Phases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+A">Anffany Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Brand%2C+H">Hauke Brand</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Helbig%2C+T">Tobias Helbig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hofmann%2C+T">Tobias Hofmann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Imhof%2C+S">Stefan Imhof</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fritzsche%2C+A">Alexander Fritzsche</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kie%C3%9Fling%2C+T">Tobias Kie脽ling</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stegmaier%2C+A">Alexander Stegmaier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Upreti%2C+L+K">Lavi K. Upreti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bzdu%C5%A1ek%2C+T">Tom谩拧 Bzdu拧ek</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greiter%2C+M">Martin Greiter</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boettcher%2C+I">Igor Boettcher</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.05106v3-abstract-short" style="display: inline;"> Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circui&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05106v3-abstract-full').style.display = 'inline'; document.getElementById('2205.05106v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.05106v3-abstract-full" style="display: none;"> Curved spaces play a fundamental role in many areas of modern physics, from cosmological length scales to subatomic structures related to quantum information and quantum gravity. In tabletop experiments, negatively curved spaces can be simulated with hyperbolic lattices. Here we introduce and experimentally realize hyperbolic matter as a paradigm for topological states through topolectrical circuit networks relying on a complex-phase circuit element. The experiment is based on hyperbolic band theory that we confirm here in an unprecedented numerical survey of finite hyperbolic lattices. We implement hyperbolic graphene as an example of topologically nontrivial hyperbolic matter. Our work sets the stage to realize more complex forms of hyperbolic matter to challenge our established theories of physics in curved space, while the tunable complex-phase element developed here can be a key ingredient for future experimental simulation of various Hamiltonians with topological ground states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.05106v3-abstract-full').style.display = 'none'; document.getElementById('2205.05106v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages + methods + supplementary information</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Commun. 14, 622 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02869">arXiv:2205.02869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02869">pdf</a>, <a href="https://arxiv.org/format/2205.02869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.13.5.104">10.21468/SciPostPhys.13.5.104 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thermal and dissipative effects on the heating transition in a driven critical system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Choo%2C+K">Kenny Choo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lapierre%2C+B">Bastien Lapierre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kuhlenkamp%2C+C">Clemens Kuhlenkamp</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tiwari%2C+A">Apoorv Tiwari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chitra%2C+R">Ramasubramanian Chitra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02869v2-abstract-short" style="display: inline;"> We study the dissipative dynamics of a periodically driven inhomogeneous critical lattice model in one dimension. The closed system dynamics starting from pure initial states is well-described by a driven Conformal Field Theory (CFT), which predicts the existence of both heating and non-heating phases in such systems. Heating is inhomogeneous and is manifested via the emergence of black-hole like&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02869v2-abstract-full').style.display = 'inline'; document.getElementById('2205.02869v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02869v2-abstract-full" style="display: none;"> We study the dissipative dynamics of a periodically driven inhomogeneous critical lattice model in one dimension. The closed system dynamics starting from pure initial states is well-described by a driven Conformal Field Theory (CFT), which predicts the existence of both heating and non-heating phases in such systems. Heating is inhomogeneous and is manifested via the emergence of black-hole like horizons in the system. The robustness of this CFT phenomenology when considering thermal initial states and open systems remains elusive. First, we present analytical results for the Floquet CFT time evolution for thermal initial states. Moreover, using exact calculations of the time evolution of the lattice density matrix, we demonstrate that for short and intermediate times, the closed system phase diagram comprising heating and non-heating phases, persists for thermal initial states on the lattice. Secondly, in the fully open system with boundary dissipators, we show that the nontrivial spatial structure of the heating phase survives particle-conserving and non-conserving dissipations through clear signatures in mutual information and energy density evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02869v2-abstract-full').style.display = 'none'; document.getElementById('2205.02869v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version 2: New figures, numerical computations and analytical computations from CFT</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 13, 104 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.06269">arXiv:2204.06269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.06269">pdf</a>, <a href="https://arxiv.org/format/2204.06269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.106203">10.1103/PhysRevLett.130.106203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emergent Edge Modes in Shifted Quasi-One-Dimensional Charge Density Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Song-Bo Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Liu%2C+X">Xiaoxiong Liu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hossain%2C+M+S">Md Shafayat Hossain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Yin%2C+J">Jia-Xin Yin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Hasan%2C+M+Z">M. Zahid Hasan</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.06269v2-abstract-short" style="display: inline;"> We propose and study a two-dimensional (2D) phase of shifted charge density waves (CDW), which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral ps&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06269v2-abstract-full').style.display = 'inline'; document.getElementById('2204.06269v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.06269v2-abstract-full" style="display: none;"> We propose and study a two-dimensional (2D) phase of shifted charge density waves (CDW), which is constructed from an array of weakly coupled 1D CDW wires whose phases shift from one wire to the next. We show that the fully gapped bulk CDW has topological properties, characterized by a nonzero Chern number, that imply edge modes within the bulk gap. Remarkably, these edge modes exhibit spectral pseudo-flow as a function of \emph{position} along the edge, and are thus dual to the chiral edge modes of Chern insulators with their spectral flow in \emph{momentum} space. Furthermore, we show that the CDW edge modes are stable against inter-wire coupling. Our predictions can be tested experimentally in quasi-1D CDW compounds such as Ta$_2$Se$_8$I. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.06269v2-abstract-full').style.display = 'none'; document.getElementById('2204.06269v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+4 pages, 4+6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 106203 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.09593">arXiv:2203.09593</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.09593">pdf</a>, <a href="https://arxiv.org/format/2203.09593">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05127-9">10.1038/s41586-022-05127-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Switchable chiral transport in charge-ordered Kagome metal CsV$_3$Sb$_5$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guo%2C+C">Chunyu Guo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Putzke%2C+C">Carsten Putzke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Konyzheva%2C+S">Sofia Konyzheva</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huang%2C+X">Xiangwei Huang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gutierrez-Amigo%2C+M">Martin Gutierrez-Amigo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Errea%2C+I">Ion Errea</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chen%2C+D">Dong Chen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vergniory%2C+M+G">Maia G. Vergniory</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Felser%2C+C">Claudia Felser</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fischer%2C+M+H">Mark H. Fischer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moll%2C+P+J+W">Philip J. W. Moll</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.09593v2-abstract-short" style="display: inline;"> When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magneto-chiral anisotropy (eMChA). While chiral transport signatures are by symmetry allowed in many conductors without a center of inversion, it reaches appreciable levels only in rare cases when an e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09593v2-abstract-full').style.display = 'inline'; document.getElementById('2203.09593v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.09593v2-abstract-full" style="display: none;"> When electric conductors differ from their mirror image, unusual chiral transport coefficients appear that are forbidden in achiral metals, such as a non-linear electric response known as electronic magneto-chiral anisotropy (eMChA). While chiral transport signatures are by symmetry allowed in many conductors without a center of inversion, it reaches appreciable levels only in rare cases when an exceptionally strong chiral coupling to the itinerant electrons is present. So far, observations of chiral transport have been limited to materials in which the atomic positions strongly break mirror symmetries. Here, we report chiral transport in the centro-symmetric layered Kagome metal CsV$_3$Sb$_5$, observed via second harmonic generation under in-plane magnetic field. The eMChA signal becomes significant only at temperatures below $T&#39;\sim$ 35 K, deep within the charge-ordered state of CsV$_3$Sb$_5$ ($T_{\mathrm{CDW}}\sim$ 94 K). This temperature dependence reveals a direct correspondence between electronic chirality, unidirectional charge order, and spontaneous time-reversal-symmetry breaking due to putative orbital loop currents. We show that the chirality is set by the out-of-plane field component and that a transition from left- to right-handed transport can be induced by changing the field sign. CsV$_3$Sb$_5$ is the first material in which strong chiral transport can be controlled and switched by small magnetic-field changes, in stark contrast to structurally chiral materials -- a prerequisite for their applications in chiral electronics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.09593v2-abstract-full').style.display = 'none'; document.getElementById('2203.09593v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 611, 461 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07292">arXiv:2203.07292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07292">pdf</a>, <a href="https://arxiv.org/format/2203.07292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.246402">10.1103/PhysRevLett.129.246402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hyperbolic Topological Band Insulators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Urwyler%2C+D+M">David M. Urwyler</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lenggenhager%2C+P+M">Patrick M. Lenggenhager</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Boettcher%2C+I">Igor Boettcher</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Thomale%2C+R">Ronny Thomale</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Neupert%2C+T">Titus Neupert</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bzdu%C5%A1ek%2C+T">Tom谩拧 Bzdu拧ek</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07292v2-abstract-short" style="display: inline;"> Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-)dimensional momentum space. To explore the uncharted topological aspects arising in hyperbolic band theory, we here introduce elementary models of hyperbolic topological band insulators: t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07292v2-abstract-full').style.display = 'inline'; document.getElementById('2203.07292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07292v2-abstract-full" style="display: none;"> Recently, hyperbolic lattices that tile the negatively curved hyperbolic plane emerged as a new paradigm of synthetic matter, and their energy levels were characterized by a band structure in a four- (or higher-)dimensional momentum space. To explore the uncharted topological aspects arising in hyperbolic band theory, we here introduce elementary models of hyperbolic topological band insulators: the hyperbolic Haldane model and the hyperbolic Kane-Mele model; both obtained by replacing the hexagonal cells of their Euclidean counterparts by octagons. Their non-trivial topology is revealed by computing topological invariants in both position and momentum space. The bulk-boundary correspondence is evidenced by comparing bulk and boundary density of states, by modelling propagation of edge excitations, and by their robustness against disorder. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07292v2-abstract-full').style.display = 'none'; document.getElementById('2203.07292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main text (4 pages incl. 5 figures and 1 table) + references + supplementary material (24 pages incl. 13 figures and 2 tables)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 129, 246402 (2022) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Neupert%2C+T&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10