CINXE.COM

古典力學 - 維基百科,自由嘅百科全書

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="yue" dir="ltr"> <head> <meta charset="UTF-8"> <title>古典力學 - 維基百科,自由嘅百科全書</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )zh_yuewikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat": "yue","wgMonthNames":["","1月","2月","3月","4月","5月","6月","7月","8月","9月","10月","11月","12月"],"wgRequestId":"f6a14cf1-8944-45dd-ac88-c88714478f57","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"古典力學","wgTitle":"古典力學","wgCurRevisionId":2133457,"wgRevisionId":2133457,"wgArticleId":87371,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Webarchive模wayback連結","用緊ISBN魔術鏈嘅版","正文","包含GND識別碼嘅維基百科文章","Pages using div col with small parameter","經典力學"],"wgPageViewLanguage":"yue","wgPageContentLanguage":"yue","wgPageContentModel":"wikitext","wgRelevantPageName":"古典力學","wgRelevantArticleId":87371,"wgTempUserName":null,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgRedirectedFrom":"經典力學","wgNoticeProject": "wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"yue","pageLanguageDir":"ltr","pageVariantFallbacks":"yue"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":50000,"wgInternalRedirectTargetUrl":"/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8","wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q11397","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false, "wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["mediawiki.action.view.redirect","ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.HanTS-conv","ext.gadget.refToolbar","ext.gadget.charinsert", "ext.gadget.internalLinkHelper-altcolor","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=yue&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=yue&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=yue&amp;modules=ext.gadget.charinsert-styles&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=yue&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/e/e8/Newtons_cradle_animation_book.gif"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="900"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/e/e8/Newtons_cradle_animation_book.gif"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="600"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="480"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="古典力學 - 維基百科,自由嘅百科全書"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//zh-yue.m.wikipedia.org/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8"> <link rel="alternate" type="application/x-wiki" title="編輯" href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="維基百科 (yue)"> <link rel="EditURI" type="application/rsd+xml" href="//zh-yue.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://zh-yue.wikipedia.org/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.zh-yue"> <link rel="alternate" type="application/atom+xml" title="維基百科嘅Atom Feed" href="/w/index.php?title=Special:%E6%9C%80%E8%BF%91%E4%BF%AE%E6%94%B9&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-古典力學 rootpage-古典力學 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">跳去內容</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="站點"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="主目錄" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">主目錄</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">主目錄</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">移去側欄</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">收埋</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 導覽 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%E9%A0%AD%E7%89%88" title="睇頭版[z]" accesskey="z"><span>頭版</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Portal:%E7%9B%AE%E9%8C%84"><span>目錄</span></a></li><li id="n-featuredcontent" class="mw-list-item"><a href="/wiki/Portal:%E6%AD%A3%E5%98%A2"><span>正嘢</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:%E6%99%82%E4%BA%BA%E6%99%82%E4%BA%8B" title="提供而家發生嘅事嘅背景資料"><span>時人時事</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:%E6%98%AF%E4%BD%86%E4%B8%80%E7%89%88" title="是但載入一版[x]" accesskey="x"><span>是但一版</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:%E9%97%9C%E6%96%BC"><span>關於維基百科</span></a></li><li id="n-聯絡處" class="mw-list-item"><a href="/wiki/Wikipedia:%E8%81%AF%E7%B5%A1%E6%88%91%E5%93%8B"><span>聯絡處</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> 交流 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-說明書" class="mw-list-item"><a href="https://www.mediawiki.org/wiki/Special:MyLanguage/Help:Contents"><span>說明書</span></a></li><li id="n-城市論壇" class="mw-list-item"><a href="/wiki/Wikipedia:%E5%9F%8E%E5%B8%82%E8%AB%96%E5%A3%87"><span>城市論壇</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:%E7%A4%BE%E5%8D%80%E5%A4%A7%E5%A0%82" title="關於呢個計劃,你可以做乜,應該要點做"><span>社區大堂</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:%E6%9C%80%E8%BF%91%E4%BF%AE%E6%94%B9" title="列出呢個 wiki 中嘅最近修改[r]" accesskey="r"><span>最近修改</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%E9%A0%AD%E7%89%88" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="維基百科" src="/static/images/mobile/copyright/wikipedia-wordmark-zh_yue.svg" style="width: 7.5em; height: 1.625em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-zh_yue.svg" width="120" height="16" style="width: 7.5em; height: 1em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:%E6%90%9C%E7%B4%A2" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="搵維基百科[f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>查嘢</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="搵維基百科" aria-label="搵維基百科" autocapitalize="sentences" title="搵維基百科[f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:搜索"> </div> <button class="cdx-button cdx-search-input__end-button">搵嘢</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="個人架生"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="閱讀設定"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="閱讀設定" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">閱讀設定</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_zh-yue.wikipedia.org&amp;uselang=yue" class=""><span>捐畀維基百科</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E9%96%8B%E6%88%B6&amp;returnto=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="建議你開返個戶口簽到,不過唔做都無所謂。" class=""><span>開戶口</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:%E7%B0%BD%E5%88%B0&amp;returnto=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="唔係是必要簽到,但建議你噉做。[o]" accesskey="o" class=""><span>簽到</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out user-links-collapsible-item" title="多啲選項" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="個人架生" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">個人架生</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="用戶選單" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_zh-yue.wikipedia.org&amp;uselang=yue"><span>捐畀維基百科</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E9%96%8B%E6%88%B6&amp;returnto=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="建議你開返個戶口簽到,不過唔做都無所謂。"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>開戶口</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:%E7%B0%BD%E5%88%B0&amp;returnto=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="唔係是必要簽到,但建議你噉做。[o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>簽到</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="站點"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="目錄" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">目錄</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">移去側欄</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">收埋</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">文頭</div> </a> </li> <li id="toc-假設同三大參數" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#假設同三大參數"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>假設同三大參數</span> </div> </a> <ul id="toc-假設同三大參數-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-位置同郁動" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#位置同郁動"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>位置同郁動</span> </div> </a> <button aria-controls="toc-位置同郁動-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>切換去 位置同郁動 細章節</span> </button> <ul id="toc-位置同郁動-sublist" class="vector-toc-list"> <li id="toc-位置" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#位置"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>位置</span> </div> </a> <ul id="toc-位置-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-位移" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#位移"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>位移</span> </div> </a> <ul id="toc-位移-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-速度同速率" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#速度同速率"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>速度同速率</span> </div> </a> <ul id="toc-速度同速率-sublist" class="vector-toc-list"> <li id="toc-相對速度" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#相對速度"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.1</span> <span>相對速度</span> </div> </a> <ul id="toc-相對速度-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-加速度" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#加速度"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3.2</span> <span>加速度</span> </div> </a> <ul id="toc-加速度-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-參考系" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#參考系"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.4</span> <span>參考系</span> </div> </a> <ul id="toc-參考系-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-力以及能量" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#力以及能量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>力以及能量</span> </div> </a> <button aria-controls="toc-力以及能量-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>切換去 力以及能量 細章節</span> </button> <ul id="toc-力以及能量-sublist" class="vector-toc-list"> <li id="toc-動量" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#動量"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>動量</span> </div> </a> <ul id="toc-動量-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-力" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#力"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>力</span> </div> </a> <ul id="toc-力-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-自由體圖" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#自由體圖"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>自由體圖</span> </div> </a> <ul id="toc-自由體圖-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-能量概念" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#能量概念"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>能量概念</span> </div> </a> <ul id="toc-能量概念-sublist" class="vector-toc-list"> <li id="toc-作功" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#作功"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.1</span> <span>作功</span> </div> </a> <ul id="toc-作功-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-動能" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#動能"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.2</span> <span>動能</span> </div> </a> <ul id="toc-動能-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-位能" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#位能"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4.3</span> <span>位能</span> </div> </a> <ul id="toc-位能-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </li> <li id="toc-物理定律" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#物理定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>物理定律</span> </div> </a> <button aria-controls="toc-物理定律-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>切換去 物理定律 細章節</span> </button> <ul id="toc-物理定律-sublist" class="vector-toc-list"> <li id="toc-牛頓運動定律" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#牛頓運動定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>牛頓運動定律</span> </div> </a> <ul id="toc-牛頓運動定律-sublist" class="vector-toc-list"> <li id="toc-第一定律" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第一定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.1</span> <span>第一定律</span> </div> </a> <ul id="toc-第一定律-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-第二定律" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第二定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.2</span> <span>第二定律</span> </div> </a> <ul id="toc-第二定律-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-第三定律" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#第三定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1.3</span> <span>第三定律</span> </div> </a> <ul id="toc-第三定律-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-萬有引力定律" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#萬有引力定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>萬有引力定律</span> </div> </a> <ul id="toc-萬有引力定律-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-第啲定律" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#第啲定律"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.3</span> <span>第啲定律</span> </div> </a> <ul id="toc-第啲定律-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-適用範圍" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#適用範圍"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>適用範圍</span> </div> </a> <button aria-controls="toc-適用範圍-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>切換去 適用範圍 細章節</span> </button> <ul id="toc-適用範圍-sublist" class="vector-toc-list"> <li id="toc-條件_1:速度" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#條件_1:速度"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>條件 1:速度</span> </div> </a> <ul id="toc-條件_1:速度-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-條件_2:尺度" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#條件_2:尺度"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>條件 2:尺度</span> </div> </a> <ul id="toc-條件_2:尺度-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-子領域" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#子領域"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>子領域</span> </div> </a> <ul id="toc-子領域-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-相關領域" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#相關領域"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>相關領域</span> </div> </a> <ul id="toc-相關領域-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-相關應用" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#相關應用"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>相關應用</span> </div> </a> <ul id="toc-相關應用-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-睇埋" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#睇埋"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>睇埋</span> </div> </a> <ul id="toc-睇埋-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-註釋" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#註釋"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>註釋</span> </div> </a> <ul id="toc-註釋-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-參考" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#參考"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>參考</span> </div> </a> <ul id="toc-參考-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-拎" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#拎"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>拎</span> </div> </a> <ul id="toc-拎-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="目錄" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="開/收內容一覽" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">開/收內容一覽</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">古典力學</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="去睇另一種語文嘅文章。有112種語言版本。" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-112" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">112種語言</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Klassieke_meganika" title="Klassieke meganika – 南非荷蘭文" lang="af" hreflang="af" data-title="Klassieke meganika" data-language-autonym="Afrikaans" data-language-local-name="南非荷蘭文" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-als mw-list-item"><a href="https://als.wikipedia.org/wiki/Klassische_Mechanik" title="Klassische Mechanik – 德文(瑞士)" lang="gsw" hreflang="gsw" data-title="Klassische Mechanik" data-language-autonym="Alemannisch" data-language-local-name="德文(瑞士)" class="interlanguage-link-target"><span>Alemannisch</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Mecanica_clasica" title="Mecanica clasica – 阿拉貢文" lang="an" hreflang="an" data-title="Mecanica clasica" data-language-autonym="Aragonés" data-language-local-name="阿拉貢文" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D9%8A%D9%83%D8%A7%D9%86%D9%8A%D9%83%D8%A7_%D8%AA%D9%82%D9%84%D9%8A%D8%AF%D9%8A%D8%A9" title="ميكانيكا تقليدية – 阿拉伯文" lang="ar" hreflang="ar" data-title="ميكانيكا تقليدية" data-language-autonym="العربية" data-language-local-name="阿拉伯文" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-arz mw-list-item"><a href="https://arz.wikipedia.org/wiki/%D8%A7%D9%84%D9%85%D9%8A%D9%83%D8%A7%D9%86%D9%8A%D9%83%D8%A7_%D8%A7%D9%84%D9%83%D9%84%D8%A7%D8%B3%D9%8A%D9%83%D9%8A%D9%87" title="الميكانيكا الكلاسيكيه – 埃及阿拉伯文" lang="arz" hreflang="arz" data-title="الميكانيكا الكلاسيكيه" data-language-autonym="مصرى" data-language-local-name="埃及阿拉伯文" class="interlanguage-link-target"><span>مصرى</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%A7%E0%A7%8D%E0%A7%B0%E0%A7%81%E0%A6%AA%E0%A6%A6%E0%A7%80_%E0%A6%AC%E0%A6%B2%E0%A6%AC%E0%A6%BF%E0%A6%9C%E0%A7%8D%E0%A6%9E%E0%A6%BE%E0%A6%A8" title="ধ্ৰুপদী বলবিজ্ঞান – 阿薩姆文" lang="as" hreflang="as" data-title="ধ্ৰুপদী বলবিজ্ঞান" data-language-autonym="অসমীয়া" data-language-local-name="阿薩姆文" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Mec%C3%A1nica_cl%C3%A1sica" title="Mecánica clásica – 阿斯圖里亞文" lang="ast" hreflang="ast" data-title="Mecánica clásica" data-language-autonym="Asturianu" data-language-local-name="阿斯圖里亞文" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Klassik_mexanika" title="Klassik mexanika – 亞塞拜然文" lang="az" hreflang="az" data-title="Klassik mexanika" data-language-autonym="Azərbaycanca" data-language-local-name="亞塞拜然文" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-azb mw-list-item"><a href="https://azb.wikipedia.org/wiki/%DA%A9%D9%84%D8%A7%D8%B3%DB%8C%DA%A9_%D9%85%DA%A9%D8%A7%D9%86%DB%8C%DA%A9" title="کلاسیک مکانیک – South Azerbaijani" lang="azb" hreflang="azb" data-title="کلاسیک مکانیک" data-language-autonym="تۆرکجه" data-language-local-name="South Azerbaijani" class="interlanguage-link-target"><span>تۆرکجه</span></a></li><li class="interlanguage-link interwiki-ba mw-list-item"><a href="https://ba.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классик механика – 巴什客爾文" lang="ba" hreflang="ba" data-title="Классик механика" data-language-autonym="Башҡортса" data-language-local-name="巴什客爾文" class="interlanguage-link-target"><span>Башҡортса</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%96%D1%87%D0%BD%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0" title="Класічная механіка – 白俄羅斯文" lang="be" hreflang="be" data-title="Класічная механіка" data-language-autonym="Беларуская" data-language-local-name="白俄羅斯文" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%BB%D1%8F%D1%81%D1%8B%D1%87%D0%BD%D0%B0%D1%8F_%D0%BC%D1%8D%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0" title="Клясычная мэханіка – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Клясычная мэханіка" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Класическа механика – 保加利亞文" lang="bg" hreflang="bg" data-title="Класическа механика" data-language-autonym="Български" data-language-local-name="保加利亞文" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bh mw-list-item"><a href="https://bh.wikipedia.org/wiki/%E0%A4%95%E0%A5%8D%E0%A4%B2%E0%A4%BE%E0%A4%B8%E0%A4%BF%E0%A4%95%E0%A4%B2_%E0%A4%AE%E0%A5%88%E0%A4%95%E0%A5%87%E0%A4%A8%E0%A4%BF%E0%A4%95%E0%A5%8D%E0%A4%B8" title="क्लासिकल मैकेनिक्स – Bhojpuri" lang="bh" hreflang="bh" data-title="क्लासिकल मैकेनिक्स" data-language-autonym="भोजपुरी" data-language-local-name="Bhojpuri" class="interlanguage-link-target"><span>भोजपुरी</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%9A%E0%A6%BF%E0%A6%B0%E0%A6%BE%E0%A6%AF%E0%A6%BC%E0%A6%A4_%E0%A6%AC%E0%A6%B2%E0%A6%AC%E0%A6%BF%E0%A6%9C%E0%A7%8D%E0%A6%9E%E0%A6%BE%E0%A6%A8" title="চিরায়ত বলবিজ্ঞান – 孟加拉文" lang="bn" hreflang="bn" data-title="চিরায়ত বলবিজ্ঞান" data-language-autonym="বাংলা" data-language-local-name="孟加拉文" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Klasi%C4%8Dna_mehanika" title="Klasična mehanika – 波士尼亞文" lang="bs" hreflang="bs" data-title="Klasična mehanika" data-language-autonym="Bosanski" data-language-local-name="波士尼亞文" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-bxr mw-list-item"><a href="https://bxr.wikipedia.org/wiki/%D2%BA%D1%83%D0%BD%D0%B3%D0%B0%D0%B4%D0%B0%D0%B3_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Һунгадаг механика – Russia Buriat" lang="bxr" hreflang="bxr" data-title="Һунгадаг механика" data-language-autonym="Буряад" data-language-local-name="Russia Buriat" class="interlanguage-link-target"><span>Буряад</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Mec%C3%A0nica_cl%C3%A0ssica" title="Mecànica clàssica – 加泰羅尼亞文" lang="ca" hreflang="ca" data-title="Mecànica clàssica" data-language-autonym="Català" data-language-local-name="加泰羅尼亞文" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ce mw-list-item"><a href="https://ce.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA%D0%B0%D0%BD_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классикан механика – 車臣文" lang="ce" hreflang="ce" data-title="Классикан механика" data-language-autonym="Нохчийн" data-language-local-name="車臣文" class="interlanguage-link-target"><span>Нохчийн</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D9%85%DB%8C%DA%A9%D8%A7%D9%86%DB%8C%DA%A9%DB%8C_%DA%A9%D9%84%D8%A7%D8%B3%DB%8C%DA%A9" title="میکانیکی کلاسیک – 索拉尼庫爾德文" lang="ckb" hreflang="ckb" data-title="میکانیکی کلاسیک" data-language-autonym="کوردی" data-language-local-name="索拉尼庫爾德文" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Klasick%C3%A1_mechanika" title="Klasická mechanika – 捷克文" lang="cs" hreflang="cs" data-title="Klasická mechanika" data-language-autonym="Čeština" data-language-local-name="捷克文" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA%C4%83%D0%BB%D0%BB%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классикăлла механика – 楚瓦什文" lang="cv" hreflang="cv" data-title="Классикăлла механика" data-language-autonym="Чӑвашла" data-language-local-name="楚瓦什文" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Mecaneg_glasurol" title="Mecaneg glasurol – 威爾斯文" lang="cy" hreflang="cy" data-title="Mecaneg glasurol" data-language-autonym="Cymraeg" data-language-local-name="威爾斯文" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Klassisk_mekanik" title="Klassisk mekanik – 丹麥文" lang="da" hreflang="da" data-title="Klassisk mekanik" data-language-autonym="Dansk" data-language-local-name="丹麥文" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Klassische_Mechanik" title="Klassische Mechanik – 德文" lang="de" hreflang="de" data-title="Klassische Mechanik" data-language-autonym="Deutsch" data-language-local-name="德文" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9A%CE%BB%CE%B1%CF%83%CE%B9%CE%BA%CE%AE_%CE%BC%CE%B7%CF%87%CE%B1%CE%BD%CE%B9%CE%BA%CE%AE" title="Κλασική μηχανική – 希臘文" lang="el" hreflang="el" data-title="Κλασική μηχανική" data-language-autonym="Ελληνικά" data-language-local-name="希臘文" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Classical_mechanics" title="Classical mechanics – 英文" lang="en" hreflang="en" data-title="Classical mechanics" data-language-autonym="English" data-language-local-name="英文" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Klasika_mekaniko" title="Klasika mekaniko – 世界文" lang="eo" hreflang="eo" data-title="Klasika mekaniko" data-language-autonym="Esperanto" data-language-local-name="世界文" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Mec%C3%A1nica_cl%C3%A1sica" title="Mecánica clásica – 西班牙文" lang="es" hreflang="es" data-title="Mecánica clásica" data-language-autonym="Español" data-language-local-name="西班牙文" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Klassikaline_mehaanika" title="Klassikaline mehaanika – 愛沙尼亞文" lang="et" hreflang="et" data-title="Klassikaline mehaanika" data-language-autonym="Eesti" data-language-local-name="愛沙尼亞文" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Mekanika_klasiko" title="Mekanika klasiko – 巴斯克文" lang="eu" hreflang="eu" data-title="Mekanika klasiko" data-language-autonym="Euskara" data-language-local-name="巴斯克文" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%85%DA%A9%D8%A7%D9%86%DB%8C%DA%A9_%DA%A9%D9%84%D8%A7%D8%B3%DB%8C%DA%A9" title="مکانیک کلاسیک – 波斯文" lang="fa" hreflang="fa" data-title="مکانیک کلاسیک" data-language-autonym="فارسی" data-language-local-name="波斯文" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Klassinen_mekaniikka" title="Klassinen mekaniikka – 芬蘭文" lang="fi" hreflang="fi" data-title="Klassinen mekaniikka" data-language-autonym="Suomi" data-language-local-name="芬蘭文" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/M%C3%A9canique_newtonienne" title="Mécanique newtonienne – 法文" lang="fr" hreflang="fr" data-title="Mécanique newtonienne" data-language-autonym="Français" data-language-local-name="法文" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/Meicnic_Newton" title="Meicnic Newton – 愛爾蘭文" lang="ga" hreflang="ga" data-title="Meicnic Newton" data-language-autonym="Gaeilge" data-language-local-name="愛爾蘭文" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gcr mw-list-item"><a href="https://gcr.wikipedia.org/wiki/M%C3%A9kanik_newtonyenn" title="Mékanik newtonyenn – Guianan Creole" lang="gcr" hreflang="gcr" data-title="Mékanik newtonyenn" data-language-autonym="Kriyòl gwiyannen" data-language-local-name="Guianan Creole" class="interlanguage-link-target"><span>Kriyòl gwiyannen</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Mec%C3%A1nica_cl%C3%A1sica" title="Mecánica clásica – 加里西亞文" lang="gl" hreflang="gl" data-title="Mecánica clásica" data-language-autonym="Galego" data-language-local-name="加里西亞文" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he badge-Q17437796 badge-featuredarticle mw-list-item" title="正文"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%9B%D7%A0%D7%99%D7%A7%D7%94_%D7%A7%D7%9C%D7%90%D7%A1%D7%99%D7%AA" title="מכניקה קלאסית – 希伯來文" lang="he" hreflang="he" data-title="מכניקה קלאסית" data-language-autonym="עברית" data-language-local-name="希伯來文" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%9A%E0%A4%BF%E0%A4%B0%E0%A4%B8%E0%A4%AE%E0%A5%8D%E0%A4%AE%E0%A4%A4_%E0%A4%AF%E0%A4%BE%E0%A4%82%E0%A4%A4%E0%A5%8D%E0%A4%B0%E0%A4%BF%E0%A4%95%E0%A5%80" title="चिरसम्मत यांत्रिकी – 北印度文" lang="hi" hreflang="hi" data-title="चिरसम्मत यांत्रिकी" data-language-autonym="हिन्दी" data-language-local-name="北印度文" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hif mw-list-item"><a href="https://hif.wikipedia.org/wiki/Classical_mechanics" title="Classical mechanics – 斐濟印地文" lang="hif" hreflang="hif" data-title="Classical mechanics" data-language-autonym="Fiji Hindi" data-language-local-name="斐濟印地文" class="interlanguage-link-target"><span>Fiji Hindi</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Klasi%C4%8Dna_mehanika" title="Klasična mehanika – 克羅埃西亞文" lang="hr" hreflang="hr" data-title="Klasična mehanika" data-language-autonym="Hrvatski" data-language-local-name="克羅埃西亞文" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Klasszikus_mechanika" title="Klasszikus mechanika – 匈牙利文" lang="hu" hreflang="hu" data-title="Klasszikus mechanika" data-language-autonym="Magyar" data-language-local-name="匈牙利文" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D4%B4%D5%A1%D5%BD%D5%A1%D5%AF%D5%A1%D5%B6_%D5%B4%D5%A5%D5%AD%D5%A1%D5%B6%D5%AB%D5%AF%D5%A1" title="Դասական մեխանիկա – 亞美尼亞文" lang="hy" hreflang="hy" data-title="Դասական մեխանիկա" data-language-autonym="Հայերեն" data-language-local-name="亞美尼亞文" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-ia mw-list-item"><a href="https://ia.wikipedia.org/wiki/Mechanica_classic" title="Mechanica classic – 國際文" lang="ia" hreflang="ia" data-title="Mechanica classic" data-language-autonym="Interlingua" data-language-local-name="國際文" class="interlanguage-link-target"><span>Interlingua</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Mekanika_klasik" title="Mekanika klasik – 印尼文" lang="id" hreflang="id" data-title="Mekanika klasik" data-language-autonym="Bahasa Indonesia" data-language-local-name="印尼文" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-ie mw-list-item"><a href="https://ie.wikipedia.org/wiki/Mecanica_classic" title="Mecanica classic – 國際文(E)" lang="ie" hreflang="ie" data-title="Mecanica classic" data-language-autonym="Interlingue" data-language-local-name="國際文(E)" class="interlanguage-link-target"><span>Interlingue</span></a></li><li class="interlanguage-link interwiki-io mw-list-item"><a href="https://io.wikipedia.org/wiki/Klasika_mekaniko" title="Klasika mekaniko – 伊多文" lang="io" hreflang="io" data-title="Klasika mekaniko" data-language-autonym="Ido" data-language-local-name="伊多文" class="interlanguage-link-target"><span>Ido</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/S%C3%ADgild_aflfr%C3%A6%C3%B0i" title="Sígild aflfræði – 冰島文" lang="is" hreflang="is" data-title="Sígild aflfræði" data-language-autonym="Íslenska" data-language-local-name="冰島文" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Meccanica_classica" title="Meccanica classica – 義大利文" lang="it" hreflang="it" data-title="Meccanica classica" data-language-autonym="Italiano" data-language-local-name="義大利文" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%A6" title="古典力学 – 日文" lang="ja" hreflang="ja" data-title="古典力学" data-language-autonym="日本語" data-language-local-name="日文" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-jam mw-list-item"><a href="https://jam.wikipedia.org/wiki/Klasikal_mikianix" title="Klasikal mikianix – 牙買加克裏奧爾英文" lang="jam" hreflang="jam" data-title="Klasikal mikianix" data-language-autonym="Patois" data-language-local-name="牙買加克裏奧爾英文" class="interlanguage-link-target"><span>Patois</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%99%E1%83%9A%E1%83%90%E1%83%A1%E1%83%98%E1%83%99%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%9B%E1%83%94%E1%83%A5%E1%83%90%E1%83%9C%E1%83%98%E1%83%99%E1%83%90" title="კლასიკური მექანიკა – 喬治亞文" lang="ka" hreflang="ka" data-title="კლასიკური მექანიკა" data-language-autonym="ქართული" data-language-local-name="喬治亞文" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kaa mw-list-item"><a href="https://kaa.wikipedia.org/wiki/Klassik_mexanika" title="Klassik mexanika – 卡拉卡爾帕克文" lang="kaa" hreflang="kaa" data-title="Klassik mexanika" data-language-autonym="Qaraqalpaqsha" data-language-local-name="卡拉卡爾帕克文" class="interlanguage-link-target"><span>Qaraqalpaqsha</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA%D0%B0%D0%BB%D1%8B%D2%9B_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классикалық механика – 哈薩克文" lang="kk" hreflang="kk" data-title="Классикалық механика" data-language-autonym="Қазақша" data-language-local-name="哈薩克文" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-kn mw-list-item"><a href="https://kn.wikipedia.org/wiki/%E0%B2%97%E0%B2%A4%E0%B2%BF%E0%B2%B5%E0%B2%BF%E0%B2%9C%E0%B3%8D%E0%B2%9E%E0%B2%BE%E0%B2%A8" title="ಗತಿವಿಜ್ಞಾನ – 坎那達文" lang="kn" hreflang="kn" data-title="ಗತಿವಿಜ್ಞಾನ" data-language-autonym="ಕನ್ನಡ" data-language-local-name="坎那達文" class="interlanguage-link-target"><span>ಕನ್ನಡ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EA%B3%A0%EC%A0%84%EC%97%AD%ED%95%99" title="고전역학 – 韓文" lang="ko" hreflang="ko" data-title="고전역학" data-language-autonym="한국어" data-language-local-name="韓文" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-la mw-list-item"><a href="https://la.wikipedia.org/wiki/Mechanica_Newtoniana" title="Mechanica Newtoniana – 拉丁文" lang="la" hreflang="la" data-title="Mechanica Newtoniana" data-language-autonym="Latina" data-language-local-name="拉丁文" class="interlanguage-link-target"><span>Latina</span></a></li><li class="interlanguage-link interwiki-lfn mw-list-item"><a href="https://lfn.wikipedia.org/wiki/Mecanica_clasica" title="Mecanica clasica – 新共同語言" lang="lfn" hreflang="lfn" data-title="Mecanica clasica" data-language-autonym="Lingua Franca Nova" data-language-local-name="新共同語言" class="interlanguage-link-target"><span>Lingua Franca Nova</span></a></li><li class="interlanguage-link interwiki-lmo mw-list-item"><a href="https://lmo.wikipedia.org/wiki/Mecanega_classega" title="Mecanega classega – 倫巴底文" lang="lmo" hreflang="lmo" data-title="Mecanega classega" data-language-autonym="Lombard" data-language-local-name="倫巴底文" class="interlanguage-link-target"><span>Lombard</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Klasikin%C4%97_mechanika" title="Klasikinė mechanika – 立陶宛文" lang="lt" hreflang="lt" data-title="Klasikinė mechanika" data-language-autonym="Lietuvių" data-language-local-name="立陶宛文" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Klasisk%C4%81_meh%C4%81nika" title="Klasiskā mehānika – 拉脫維亞文" lang="lv" hreflang="lv" data-title="Klasiskā mehānika" data-language-autonym="Latviešu" data-language-local-name="拉脫維亞文" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-map-bms mw-list-item"><a href="https://map-bms.wikipedia.org/wiki/Mekanika_klasik" title="Mekanika klasik – Banyumasan" lang="jv-x-bms" hreflang="jv-x-bms" data-title="Mekanika klasik" data-language-autonym="Basa Banyumasan" data-language-local-name="Banyumasan" class="interlanguage-link-target"><span>Basa Banyumasan</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Класична механика – 馬其頓文" lang="mk" hreflang="mk" data-title="Класична механика" data-language-autonym="Македонски" data-language-local-name="馬其頓文" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%89%E0%B4%A6%E0%B4%BE%E0%B4%A4%E0%B5%8D%E0%B4%A4%E0%B4%AC%E0%B4%B2%E0%B4%A4%E0%B4%A8%E0%B5%8D%E0%B4%A4%E0%B5%8D%E0%B4%B0%E0%B4%82" title="ഉദാത്തബലതന്ത്രം – 馬來亞拉姆文" lang="ml" hreflang="ml" data-title="ഉദാത്തബലതന്ത്രം" data-language-autonym="മലയാളം" data-language-local-name="馬來亞拉姆文" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%A1%D0%BE%D0%BD%D0%B3%D0%BE%D0%B4%D0%BE%D0%B3_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA" title="Сонгодог механик – 蒙古文" lang="mn" hreflang="mn" data-title="Сонгодог механик" data-language-autonym="Монгол" data-language-local-name="蒙古文" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-mr mw-list-item"><a href="https://mr.wikipedia.org/wiki/%E0%A4%85%E0%A4%AD%E0%A4%BF%E0%A4%9C%E0%A4%BE%E0%A4%A4_%E0%A4%AF%E0%A4%BE%E0%A4%AE%E0%A4%BF%E0%A4%95%E0%A5%80" title="अभिजात यामिकी – 馬拉地文" lang="mr" hreflang="mr" data-title="अभिजात यामिकी" data-language-autonym="मराठी" data-language-local-name="馬拉地文" class="interlanguage-link-target"><span>मराठी</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Mekanik_klasik" title="Mekanik klasik – 馬來文" lang="ms" hreflang="ms" data-title="Mekanik klasik" data-language-autonym="Bahasa Melayu" data-language-local-name="馬來文" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-mt mw-list-item"><a href="https://mt.wikipedia.org/wiki/Mekkanika_klassika" title="Mekkanika klassika – 馬爾他文" lang="mt" hreflang="mt" data-title="Mekkanika klassika" data-language-autonym="Malti" data-language-local-name="馬爾他文" class="interlanguage-link-target"><span>Malti</span></a></li><li class="interlanguage-link interwiki-my mw-list-item"><a href="https://my.wikipedia.org/wiki/%E1%80%82%E1%80%94%E1%80%B9%E1%80%91%E1%80%9D%E1%80%84%E1%80%BA_%E1%80%99%E1%80%80%E1%80%B9%E1%80%80%E1%80%84%E1%80%BA%E1%80%B8%E1%80%94%E1%80%85%E1%80%BA" title="ဂန္ထဝင် မက္ကင်းနစ် – 緬甸文" lang="my" hreflang="my" data-title="ဂန္ထဝင် မက္ကင်းနစ်" data-language-autonym="မြန်မာဘာသာ" data-language-local-name="緬甸文" class="interlanguage-link-target"><span>မြန်မာဘာသာ</span></a></li><li class="interlanguage-link interwiki-nds mw-list-item"><a href="https://nds.wikipedia.org/wiki/Klassische_Mechanik" title="Klassische Mechanik – 低地德文" lang="nds" hreflang="nds" data-title="Klassische Mechanik" data-language-autonym="Plattdüütsch" data-language-local-name="低地德文" class="interlanguage-link-target"><span>Plattdüütsch</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Klassieke_mechanica" title="Klassieke mechanica – 荷蘭文" lang="nl" hreflang="nl" data-title="Klassieke mechanica" data-language-autonym="Nederlands" data-language-local-name="荷蘭文" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Klassisk_mekanikk" title="Klassisk mekanikk – 耐諾斯克挪威文" lang="nn" hreflang="nn" data-title="Klassisk mekanikk" data-language-autonym="Norsk nynorsk" data-language-local-name="耐諾斯克挪威文" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Klassisk_mekanikk" title="Klassisk mekanikk – 巴克摩挪威文" lang="nb" hreflang="nb" data-title="Klassisk mekanikk" data-language-autonym="Norsk bokmål" data-language-local-name="巴克摩挪威文" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-oc mw-list-item"><a href="https://oc.wikipedia.org/wiki/Mecanica_classica" title="Mecanica classica – 奧克西坦文" lang="oc" hreflang="oc" data-title="Mecanica classica" data-language-autonym="Occitan" data-language-local-name="奧克西坦文" class="interlanguage-link-target"><span>Occitan</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%9F%E0%A8%95%E0%A8%B8%E0%A8%BE%E0%A8%B2%E0%A9%80_%E0%A8%AE%E0%A8%95%E0%A9%88%E0%A8%A8%E0%A8%95%E0%A9%80" title="ਟਕਸਾਲੀ ਮਕੈਨਕੀ – 旁遮普文" lang="pa" hreflang="pa" data-title="ਟਕਸਾਲੀ ਮਕੈਨਕੀ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="旁遮普文" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Mechanika_klasyczna" title="Mechanika klasyczna – 波蘭文" lang="pl" hreflang="pl" data-title="Mechanika klasyczna" data-language-autonym="Polski" data-language-local-name="波蘭文" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pnb mw-list-item"><a href="https://pnb.wikipedia.org/wiki/%DA%A9%D9%84%D8%A7%D8%B3%DB%8C%DA%A9%D9%84_%D9%85%DA%A9%DB%8C%D9%86%DA%A9%D8%B3" title="کلاسیکل مکینکس – Western Punjabi" lang="pnb" hreflang="pnb" data-title="کلاسیکل مکینکس" data-language-autonym="پنجابی" data-language-local-name="Western Punjabi" class="interlanguage-link-target"><span>پنجابی</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Mec%C3%A2nica_cl%C3%A1ssica" title="Mecânica clássica – 葡萄牙文" lang="pt" hreflang="pt" data-title="Mecânica clássica" data-language-autonym="Português" data-language-local-name="葡萄牙文" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Mecanic%C4%83_clasic%C4%83" title="Mecanică clasică – 羅馬尼亞文" lang="ro" hreflang="ro" data-title="Mecanică clasică" data-language-autonym="Română" data-language-local-name="羅馬尼亞文" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классическая механика – 俄文" lang="ru" hreflang="ru" data-title="Классическая механика" data-language-autonym="Русский" data-language-local-name="俄文" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-rue mw-list-item"><a href="https://rue.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%96%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0" title="Класічна механіка – 盧森尼亞文" lang="rue" hreflang="rue" data-title="Класічна механіка" data-language-autonym="Русиньскый" data-language-local-name="盧森尼亞文" class="interlanguage-link-target"><span>Русиньскый</span></a></li><li class="interlanguage-link interwiki-sah mw-list-item"><a href="https://sah.wikipedia.org/wiki/%D0%9E%D0%BB%D0%BE%D2%95%D1%83%D1%80%D0%B1%D1%83%D1%82_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Олоҕурбут механика – 雅庫特文" lang="sah" hreflang="sah" data-title="Олоҕурбут механика" data-language-autonym="Саха тыла" data-language-local-name="雅庫特文" class="interlanguage-link-target"><span>Саха тыла</span></a></li><li class="interlanguage-link interwiki-sd mw-list-item"><a href="https://sd.wikipedia.org/wiki/%DA%AA%D9%84%D8%A7%D8%B3%D9%8A%DA%AA%D9%84_%D9%85%D9%8A%DA%AA%D8%A7%D9%86%D9%8A%D8%A7%D8%AA" title="ڪلاسيڪل ميڪانيات – 信德文" lang="sd" hreflang="sd" data-title="ڪلاسيڪل ميڪانيات" data-language-autonym="سنڌي" data-language-local-name="信德文" class="interlanguage-link-target"><span>سنڌي</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Klasi%C4%8Dna_mehanika" title="Klasična mehanika – 塞爾維亞克羅埃西亞文" lang="sh" hreflang="sh" data-title="Klasična mehanika" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="塞爾維亞克羅埃西亞文" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-si mw-list-item"><a href="https://si.wikipedia.org/wiki/%E0%B7%83%E0%B6%B8%E0%B7%8A%E0%B6%B7%E0%B7%8F%E0%B7%80%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B6%BA_%E0%B6%BA%E0%B7%8F%E0%B6%B1%E0%B7%8A%E0%B6%AD%E0%B7%8A%E2%80%8D%E0%B6%BB_%E0%B7%80%E0%B7%92%E0%B6%AF%E0%B7%8A%E2%80%8D%E0%B6%BA%E0%B7%8F%E0%B7%80" title="සම්භාව්‍යය යාන්ත්‍ර විද්‍යාව – 僧伽羅文" lang="si" hreflang="si" data-title="සම්භාව්‍යය යාන්ත්‍ර විද්‍යාව" data-language-autonym="සිංහල" data-language-local-name="僧伽羅文" class="interlanguage-link-target"><span>සිංහල</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Classical_mechanics" title="Classical mechanics – Simple English" lang="en-simple" hreflang="en-simple" data-title="Classical mechanics" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Klasick%C3%A1_mechanika" title="Klasická mechanika – 斯洛伐克文" lang="sk" hreflang="sk" data-title="Klasická mechanika" data-language-autonym="Slovenčina" data-language-local-name="斯洛伐克文" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Klasi%C4%8Dna_mehanika" title="Klasična mehanika – 斯洛維尼亞文" lang="sl" hreflang="sl" data-title="Klasična mehanika" data-language-autonym="Slovenščina" data-language-local-name="斯洛維尼亞文" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Mekanika_klasike" title="Mekanika klasike – 阿爾巴尼亞文" lang="sq" hreflang="sq" data-title="Mekanika klasike" data-language-autonym="Shqip" data-language-local-name="阿爾巴尼亞文" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Класична механика – 塞爾維亞文" lang="sr" hreflang="sr" data-title="Класична механика" data-language-autonym="Српски / srpski" data-language-local-name="塞爾維亞文" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Klassisk_mekanik" title="Klassisk mekanik – 瑞典文" lang="sv" hreflang="sv" data-title="Klassisk mekanik" data-language-autonym="Svenska" data-language-local-name="瑞典文" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Umakanika_kawaida" title="Umakanika kawaida – 史瓦希里文" lang="sw" hreflang="sw" data-title="Umakanika kawaida" data-language-autonym="Kiswahili" data-language-local-name="史瓦希里文" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AE%E0%AE%B0%E0%AE%AA%E0%AE%BE%E0%AE%B0%E0%AF%8D%E0%AE%A8%E0%AF%8D%E0%AE%A4_%E0%AE%B5%E0%AE%BF%E0%AE%9A%E0%AF%88%E0%AE%AF%E0%AE%BF%E0%AE%AF%E0%AE%B2%E0%AF%8D" title="மரபார்ந்த விசையியல் – 坦米爾文" lang="ta" hreflang="ta" data-title="மரபார்ந்த விசையியல்" data-language-autonym="தமிழ்" data-language-local-name="坦米爾文" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-te mw-list-item"><a href="https://te.wikipedia.org/wiki/%E0%B0%B8%E0%B0%BE%E0%B0%82%E0%B0%AA%E0%B1%8D%E0%B0%B0%E0%B0%A6%E0%B0%BE%E0%B0%AF_%E0%B0%AF%E0%B0%BE%E0%B0%82%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%BF%E0%B0%95%E0%B0%B6%E0%B0%BE%E0%B0%B8%E0%B1%8D%E0%B0%A4%E0%B1%8D%E0%B0%B0%E0%B0%82" title="సాంప్రదాయ యాంత్రికశాస్త్రం – 泰盧固文" lang="te" hreflang="te" data-title="సాంప్రదాయ యాంత్రికశాస్త్రం" data-language-autonym="తెలుగు" data-language-local-name="泰盧固文" class="interlanguage-link-target"><span>తెలుగు</span></a></li><li class="interlanguage-link interwiki-tg mw-list-item"><a href="https://tg.wikipedia.org/wiki/%D0%9C%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0%D0%B8_%D0%BA%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA%D3%A3" title="Механикаи классикӣ – 塔吉克文" lang="tg" hreflang="tg" data-title="Механикаи классикӣ" data-language-autonym="Тоҷикӣ" data-language-local-name="塔吉克文" class="interlanguage-link-target"><span>Тоҷикӣ</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%81%E0%B8%A5%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C%E0%B8%94%E0%B8%B1%E0%B9%89%E0%B8%87%E0%B9%80%E0%B8%94%E0%B8%B4%E0%B8%A1" title="กลศาสตร์ดั้งเดิม – 泰文" lang="th" hreflang="th" data-title="กลศาสตร์ดั้งเดิม" data-language-autonym="ไทย" data-language-local-name="泰文" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tl mw-list-item"><a href="https://tl.wikipedia.org/wiki/Klasikong_mekanika" title="Klasikong mekanika – 塔加路族文" lang="tl" hreflang="tl" data-title="Klasikong mekanika" data-language-autonym="Tagalog" data-language-local-name="塔加路族文" class="interlanguage-link-target"><span>Tagalog</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Klasik_mekanik" title="Klasik mekanik – 土耳其文" lang="tr" hreflang="tr" data-title="Klasik mekanik" data-language-autonym="Türkçe" data-language-local-name="土耳其文" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-tt mw-list-item"><a href="https://tt.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классик механика – 韃靼文" lang="tt" hreflang="tt" data-title="Классик механика" data-language-autonym="Татарча / tatarça" data-language-local-name="韃靼文" class="interlanguage-link-target"><span>Татарча / tatarça</span></a></li><li class="interlanguage-link interwiki-tyv mw-list-item"><a href="https://tyv.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D1%81%D0%B8%D0%BA%D1%82%D0%B8%D0%B3_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D0%BA%D0%B0" title="Классиктиг механика – 土凡文" lang="tyv" hreflang="tyv" data-title="Классиктиг механика" data-language-autonym="Тыва дыл" data-language-local-name="土凡文" class="interlanguage-link-target"><span>Тыва дыл</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BB%D0%B0%D1%81%D0%B8%D1%87%D0%BD%D0%B0_%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D1%96%D0%BA%D0%B0" title="Класична механіка – 烏克蘭文" lang="uk" hreflang="uk" data-title="Класична механіка" data-language-autonym="Українська" data-language-local-name="烏克蘭文" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%DA%A9%D9%84%D8%A7%D8%B3%DB%8C%DA%A9%DB%8C_%D9%85%DB%8C%DA%A9%D8%A7%D9%86%DB%8C%D8%A7%D8%AA" title="کلاسیکی میکانیات – 烏都文" lang="ur" hreflang="ur" data-title="کلاسیکی میکانیات" data-language-autonym="اردو" data-language-local-name="烏都文" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Klassik_mexanika" title="Klassik mexanika – 烏茲別克文" lang="uz" hreflang="uz" data-title="Klassik mexanika" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="烏茲別克文" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-vep mw-list-item"><a href="https://vep.wikipedia.org/wiki/Klassine_mehanik" title="Klassine mehanik – 維普森文" lang="vep" hreflang="vep" data-title="Klassine mehanik" data-language-autonym="Vepsän kel’" data-language-local-name="維普森文" class="interlanguage-link-target"><span>Vepsän kel’</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%C6%A1_h%E1%BB%8Dc_c%E1%BB%95_%C4%91i%E1%BB%83n" title="Cơ học cổ điển – 越南文" lang="vi" hreflang="vi" data-title="Cơ học cổ điển" data-language-autonym="Tiếng Việt" data-language-local-name="越南文" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-war mw-list-item"><a href="https://war.wikipedia.org/wiki/Mekanika_klasika" title="Mekanika klasika – 瓦瑞文" lang="war" hreflang="war" data-title="Mekanika klasika" data-language-autonym="Winaray" data-language-local-name="瓦瑞文" class="interlanguage-link-target"><span>Winaray</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6" title="经典力学 – 吳語" lang="wuu" hreflang="wuu" data-title="经典力学" data-language-autonym="吴语" data-language-local-name="吳語" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-xmf mw-list-item"><a href="https://xmf.wikipedia.org/wiki/%E1%83%99%E1%83%9A%E1%83%90%E1%83%A1%E1%83%98%E1%83%99%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%9B%E1%83%94%E1%83%A5%E1%83%90%E1%83%9C%E1%83%98%E1%83%99%E1%83%90" title="კლასიკური მექანიკა – 明格列爾文" lang="xmf" hreflang="xmf" data-title="კლასიკური მექანიკა" data-language-autonym="მარგალური" data-language-local-name="明格列爾文" class="interlanguage-link-target"><span>მარგალური</span></a></li><li class="interlanguage-link interwiki-yi mw-list-item"><a href="https://yi.wikipedia.org/wiki/%D7%A7%D7%9C%D7%90%D7%A1%D7%99%D7%A9%D7%A2_%D7%9E%D7%A2%D7%9B%D7%90%D7%A0%D7%99%D7%A7" title="קלאסישע מעכאניק – 意第緒文" lang="yi" hreflang="yi" data-title="קלאסישע מעכאניק" data-language-autonym="ייִדיש" data-language-local-name="意第緒文" class="interlanguage-link-target"><span>ייִדיש</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E7%BB%8F%E5%85%B8%E5%8A%9B%E5%AD%A6" title="经典力学 – 中文" lang="zh" hreflang="zh" data-title="经典力学" data-language-autonym="中文" data-language-local-name="中文" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8" title="經典力學 – 文言文" lang="lzh" hreflang="lzh" data-title="經典力學" data-language-autonym="文言" data-language-local-name="文言文" class="interlanguage-link-target"><span>文言</span></a></li><li class="interlanguage-link interwiki-zh-min-nan mw-list-item"><a href="https://zh-min-nan.wikipedia.org/wiki/K%C3%B3%CD%98-ti%C3%A1n_le%CC%8Dk-ha%CC%8Dk" title="Kó͘-tián le̍k-ha̍k – 閩南語" lang="nan" hreflang="nan" data-title="Kó͘-tián le̍k-ha̍k" data-language-autonym="閩南語 / Bân-lâm-gú" data-language-local-name="閩南語" class="interlanguage-link-target"><span>閩南語 / Bân-lâm-gú</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11397#sitelinks-wikipedia" title="改跨語言拎" class="wbc-editpage">改拎</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="空間名"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="睇吓內容頁[c]" accesskey="c"><span>文章</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" rel="discussion" title="關於內容頁嘅討論[t]" accesskey="t"><span>討論</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="改語言變體" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">粵語</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="外觀"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8"><span>閱</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit" title="改呢版嘅代碼[e]" accesskey="e"><span>改</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=history" title="呢一頁之前嘅修訂[h]" accesskey="h"><span>睇返紀錄</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="頁面工具"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="架撐" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">架撐</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">架撐</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">移去側欄</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">收埋</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="多啲選項" > <div class="vector-menu-heading"> 動作 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8"><span>閱</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit" title="改呢版嘅代碼[e]" accesskey="e"><span>改</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=history"><span>睇返紀錄</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 基本 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:%E9%82%8A%E5%BA%A6%E9%8F%88%E5%8E%BB%E5%91%A2%E7%89%88/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="列出所有連接過嚟呢度嘅頁面[j]" accesskey="j"><span>有乜連過嚟</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:%E5%A4%96%E9%8F%88%E4%BF%AE%E6%94%B9/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" rel="nofollow" title="由呢版連出去嘅版嘅最近修改[k]" accesskey="k"><span>連結頁嘅更改</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Project:%E4%B8%8A%E8%BC%89" title="上載檔案[u]" accesskey="u"><span>上載檔案</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:%E5%B0%88%E9%96%80%E7%89%88" title="所有專門版一覽[q]" accesskey="q"><span>專門版</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;oldid=2133457" title="呢版呢個修訂嘅永久網址"><span>固定連結</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=info" title="多啲同呢版有拏褦嘅資料"><span>此版明細</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:%E5%BC%95%E7%94%A8&amp;page=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;id=2133457&amp;wpFormIdentifier=titleform" title="點樣引用呢頁嘅資訊"><span>引用呢篇文</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fzh-yue.wikipedia.org%2Fwiki%2F%25E5%258F%25A4%25E5%2585%25B8%25E5%258A%259B%25E5%25AD%25B8"><span>攞短網址</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fzh-yue.wikipedia.org%2Fwiki%2F%25E5%258F%25A4%25E5%2585%25B8%25E5%258A%259B%25E5%25AD%25B8"><span>下載QR code</span></a></li> </ul> </div> </div> <div id="p-electronpdfservice-sidebar-portlet-heading" class="vector-menu mw-portlet mw-portlet-electronpdfservice-sidebar-portlet-heading" > <div class="vector-menu-heading"> 打印/匯出 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="electron-print_pdf" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=show-download-screen"><span>下載PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="javascript:print();" rel="alternate" title="呢一版印得嘅版本[p]" accesskey="p"><span>印得嘅版本</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 第啲維基項目 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Classical_mechanics" hreflang="en"><span>維基同享</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q11397" title="連到接住資料儲存庫嘅項目[g]" accesskey="g"><span>維基數據項</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="頁面工具"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="閱讀設定"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">閱讀設定</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">移去側欄</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">收埋</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> <div id="mw-indicator-featured-star" class="mw-indicator"><div class="mw-parser-output"><span typeof="mw:File"><a href="/wiki/Wikipedia:%E6%AD%A3%E6%96%87" title="呢篇係一篇正文。撳呢度睇吓更多嘅資料。"><img alt="呢篇係一篇正文。撳呢度睇吓更多嘅資料。" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Cscr-featured.svg/20px-Cscr-featured.svg.png" decoding="async" width="20" height="19" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Cscr-featured.svg/30px-Cscr-featured.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Cscr-featured.svg/40px-Cscr-featured.svg.png 2x" data-file-width="466" data-file-height="443" /></a></span></div></div> </div> <div id="siteSub" class="noprint">出自維基百科,自由嘅百科全書</div> </div> <div id="contentSub"><div id="mw-content-subtitle"><span class="mw-redirectedfrom">(由<a href="/w/index.php?title=%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;redirect=no" class="mw-redirect" title="經典力學">經典力學</a>跳轉過嚟)</span></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="yue" dir="ltr"><p class="mw-empty-elt"> </p> <style data-mw-deduplicate="TemplateStyles:r1488945/mw-parser-output/.tmulti">.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}</style><div class="thumb tmulti tright"><div class="thumbinner" style="width:322px;max-width:322px"><div class="trow"><div class="tsingle" style="width:203px;max-width:203px"><div class="thumbimage" style="height:150px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Newtons_cradle_animation_book.gif" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Newtons_cradle_animation_book.gif/201px-Newtons_cradle_animation_book.gif" decoding="async" width="201" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Newtons_cradle_animation_book.gif/302px-Newtons_cradle_animation_book.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e8/Newtons_cradle_animation_book.gif/402px-Newtons_cradle_animation_book.gif 2x" data-file-width="480" data-file-height="360" /></a></span></div></div><div class="tsingle" style="width:115px;max-width:115px"><div class="thumbimage" style="height:150px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Siu_Ka_Ming_2023.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Siu_Ka_Ming_2023.jpg/113px-Siu_Ka_Ming_2023.jpg" decoding="async" width="113" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Siu_Ka_Ming_2023.jpg/170px-Siu_Ka_Ming_2023.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1b/Siu_Ka_Ming_2023.jpg/226px-Siu_Ka_Ming_2023.jpg 2x" data-file-width="1600" data-file-height="2134" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:107px;max-width:107px"><div class="thumbimage" style="height:139px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Falling_apple_crop.jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Falling_apple_crop.jpg/105px-Falling_apple_crop.jpg" decoding="async" width="105" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Falling_apple_crop.jpg/158px-Falling_apple_crop.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4b/Falling_apple_crop.jpg/210px-Falling_apple_crop.jpg 2x" data-file-width="2592" data-file-height="3456" /></a></span></div></div><div class="tsingle" style="width:211px;max-width:211px"><div class="thumbimage" style="height:139px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_(5845313516).jpg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_%285845313516%29.jpg/209px-Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_%285845313516%29.jpg" decoding="async" width="209" height="139" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/14/Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_%285845313516%29.jpg/314px-Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_%285845313516%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/14/Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_%285845313516%29.jpg/418px-Red_Bull_Racing_F1_roadshow_in_Hong_Kong_%22Dragon_Run%22_%285845313516%29.jpg 2x" data-file-width="900" data-file-height="600" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">古典力學所描述嘅各種現象: <ul><li>左上:<a href="/wiki/%E7%89%9B%E9%A0%93%E6%93%BA" title="牛頓擺">牛頓擺</a><sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup>;右上:<a href="/wiki/%E8%B6%B3%E7%90%83%E5%93%A1" title="足球員">足球員</a>用<a href="/wiki/%E5%8A%9B" title="力">力</a>踢波<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup>;</li> <li>左下:<a href="/wiki/%E8%98%8B%E6%9E%9C" title="蘋果">蘋果</a><a href="/wiki/%E8%87%AA%E7%94%B1%E4%B8%8B%E5%A2%9C" title="自由下墜">向下跌</a><sup id="cite_ref-french_3-0" class="reference"><a href="#cite_note-french-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>;右下:<a href="/wiki/%E8%B7%91%E8%BB%8A" class="mw-redirect" title="跑車">跑車</a><a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速</a>向前衝<sup id="cite_ref-french_3-1" class="reference"><a href="#cite_note-french-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>。</li></ul></div></div></div></div> <p><b>古典力學</b>(<a href="/wiki/Wikipedia:%E7%B2%B5%E6%96%87%E6%8B%BC%E9%9F%B3" title="Wikipedia:粵文拼音">粵拼</a>:<span class="plainlinks" style="display:inline-block"><a rel="nofollow" class="external text" href="http://yue.forvo.com/word/yue/古典力學/#yue"><span>gu<span class="Jpingtone">2</span> din<span class="Jpingtone">2</span> lik<span class="Jpingtone">6</span> hok<span class="Jpingtone">6</span></span></a></span>)<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>e 1<span class="cite-bracket">&#93;</span></a></sup>,又叫<b>牛頓力學</b><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>e 2<span class="cite-bracket">&#93;</span></a></sup>,喺<a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8" title="物理學">物理學</a>上係指<a href="/wiki/%E5%8A%9B%E5%AD%B8" title="力學">力學</a>嘅兩大分枝之一。古典力學呢套理論框架,係由<a href="/wiki/%E8%8B%B1%E5%9C%8B" title="英國">英國</a><a href="/wiki/%E7%A7%91%E5%AD%B8%E5%AE%B6" title="科學家">科學家</a><a href="/wiki/%E8%89%BE%E7%A2%A9%C2%B7%E7%89%9B%E9%A0%93" title="艾碩·牛頓">牛頓</a>同<a href="/wiki/%E5%BE%B7%E5%9C%8B" title="德國">德國</a><a href="/wiki/%E5%93%B2%E5%AD%B8%E5%AE%B6" title="哲學家">哲學家</a><a href="/wiki/%E8%90%8A%E5%B8%83%E5%B0%BC%E8%8C%B2" class="mw-redirect" title="萊布尼茲">萊布尼茲</a>搞起嘅,主要研究<a href="/wiki/%E5%AE%87%E5%AE%99" title="宇宙">宇宙</a>入面嘅物體點樣喺<a href="/wiki/%E5%8A%9B" title="力">力</a>嘅影響下<a href="/wiki/%E9%83%81%E5%8B%95" class="mw-redirect" title="郁動">郁動</a>。 </p><p>古典力學研究嘅題目好古老,但要到咗 17 世紀有牛頓等嘅思想家研究,先至有飛躍嘅發展。古典力學用咗幾條相對簡單嘅<a href="/wiki/%E7%89%A9%E7%90%86%E5%AE%9A%E5%BE%8B" title="物理定律">物理定律</a>,嘗試解釋嗮宇宙入邊一切<a href="/wiki/%E7%89%A9%E9%AB%94" title="物體">物體</a>嘅郁動——即係話佢解釋現象嘅能力勁得嚟又好<a href="/wiki/%E5%A5%A7%E5%9D%8E%E5%89%83%E5%88%80" title="奧坎剃刀">簡潔</a><sup id="cite_ref-french_3-2" class="reference"><a href="#cite_note-french-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup>,所以牛頓等人提出呢套理論後嗰幾個世紀,呢套理論框架一路都好有影響力,要等到成廿世紀初<a href="/wiki/%E7%8F%BE%E4%BB%A3%E7%89%A9%E7%90%86%E5%AD%B8" title="現代物理學">現代物理學</a>成形之後,古典力學先至開始喺理論性質嘅研究當中喪失影響力<sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>一般嚟講,古典力學喺符合咗兩個條件嘅環境下會俾到極之準嘅預測: </p> <ol><li>研究嘅物體唔算好重、又明顯大過<a href="/wiki/%E5%8E%9F%E5%AD%90" title="原子">原子</a>尺度;而且</li> <li>啲嘢郁嘅<a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a>明顯低過<a href="/wiki/%E5%85%89%E9%80%9F" title="光速">光速</a>一截。</li></ol> <p>當呢兩個條件當中是但一個達唔到嗰時,用古典力學計出嚟嘅結果會冇晒準確度-研究得原子咁細(或者更細)嘅嘢嗰陣要用<a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8" title="量子力學">量子力學</a>先得,而研究一啲速度接近光速嘅嘢嗰陣就要用<a href="/wiki/%E7%9B%B8%E5%B0%8D%E8%AB%96" title="相對論">相對論</a>至得。所以一去到進階嘅物理學研究(呢啲研究成日都會分析細粒過原子或者以接近光速飛嘅嘢),<a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8%E5%AE%B6" title="物理學家">物理學家</a>實係會用後者等嘅高階理論,而唔會用古典力學。不過喺一般<a href="/wiki/%E5%9C%B0%E7%90%83" title="地球">地球</a>環境下,呢兩個條件幾乎實會成立,所以古典力學就算到咗廿一世紀都仲係喺好多<a href="/wiki/%E5%B7%A5%E7%A8%8B" class="mw-redirect" title="工程">工程</a>領域上有用<sup id="cite_ref-french_3-3" class="reference"><a href="#cite_note-french-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup>。 </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="假設同三大參數"><span id=".E5.81.87.E8.A8.AD.E5.90.8C.E4.B8.89.E5.A4.A7.E5.8F.83.E6.95.B8"></span>假設同三大參數</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=1" title="編輯小節: 假設同三大參數"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Example_of_a_point.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Example_of_a_point.svg/300px-Example_of_a_point.svg.png" decoding="async" width="300" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/18/Example_of_a_point.svg/450px-Example_of_a_point.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/18/Example_of_a_point.svg/600px-Example_of_a_point.svg.png 2x" data-file-width="121" data-file-height="81" /></a><figcaption>灰色嘅係成嚿物體,古典力學嘅分析多數都會當佢係一個有質量嘅細點。</figcaption></figure> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8" title="幾何學">幾何學</a>、<a href="/wiki/%E5%90%91%E9%87%8F" title="向量">向量</a>、<a href="/wiki/%E5%BE%AE%E7%A9%8D%E5%88%86" title="微積分">微積分</a>同<a href="/wiki/%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B" title="微分方程">微分方程</a></div> <p>古典力學係一個<a href="/wiki/%E5%A5%A7%E5%9D%8E%E5%89%83%E5%88%80" title="奧坎剃刀">有相當高簡潔度</a>嘅<a href="/wiki/%E7%A7%91%E5%AD%B8%E7%90%86%E8%AB%96" title="科學理論">科學理論</a>,噉講意思即係話,呢個理論框架淨係用咗少數幾個<a href="/wiki/%E5%81%87%E8%A8%AD" class="mw-redirect" title="假設">假設</a>同埋概念就解釋得到好多現象。古典力學假設咗<a href="/wiki/%E7%A9%BA%E9%96%93" title="空間">空間</a>係跟<a href="/wiki/%E6%AD%90%E5%B9%BE%E9%87%8C%E5%BE%97%E5%B9%BE%E4%BD%95" title="歐幾里得幾何">歐幾里得幾何</a><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>e 3<span class="cite-bracket">&#93;</span></a></sup>嘅<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup>,並且會將分析緊嘅物體<a href="/wiki/%E6%8A%BD%E8%B1%A1%E5%8C%96" title="抽象化">抽象化</a>噉諗做<a href="/wiki/%E9%BB%9E%E8%B3%AA%E9%87%8F" class="mw-redirect" title="點質量">點質量</a><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>e 4<span class="cite-bracket">&#93;</span></a></sup>-即係<a href="/wiki/%E5%AE%B9%E9%87%8F" class="mw-redirect" title="容量">容量</a>係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span> 嘅<a href="/wiki/%E9%BB%9E_(%E5%B9%BE%E4%BD%95)" title="點 (幾何)">細點</a>,而一個點質量有三個基本<a href="/wiki/%E5%8F%83%E6%95%B8" title="參數">參數</a><sup id="cite_ref-ohanian_13-0" class="reference"><a href="#cite_note-ohanian-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>: </p> <ol><li><a href="/wiki/%E8%B3%AA%E9%87%8F" title="質量">質量</a><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>e 5<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/%E4%BD%8D%E7%BD%AE" title="位置">位置</a><sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>e 6<span class="cite-bracket">&#93;</span></a></sup></li> <li>所受嘅<a href="/wiki/%E5%8A%9B" title="力">力</a><sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>e 7<span class="cite-bracket">&#93;</span></a></sup></li></ol> <p>淨係靠呢幾個參數,古典力學就能夠完整噉分析件物體嘅郁動(睇埋<a href="/wiki/%E5%A5%A7%E5%9D%8E%E5%89%83%E5%88%80" title="奧坎剃刀">奧坎剃刀</a>)。 </p><p>要留意嘅係,古典力學只係現實嘅<b>大致<a href="/wiki/%E8%BF%91%E4%BC%BC%E5%80%BC" title="近似值">近似</a></b><sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>e 8<span class="cite-bracket">&#93;</span></a></sup>:例如古典力學分析得到嘅有<a href="/wiki/%E8%B3%AA%E9%87%8F" title="質量">質量</a>物體實係有非零容量嘅,所以點質量嘅假設查實就唔符合現實;之但係<a href="/wiki/%E5%8A%9B%E5%AD%B8" title="力學">力學</a>研究說明咗,「當啲嘢係點質量」呢個做法計到出嚟嘅結果大致正確-<a href="/wiki/%E8%AA%A4%E5%B7%AE" class="mw-redirect" title="誤差">誤差</a>極之細,即係就算一嚿物體係有非零容量嘅,佢喺古典力學入面嘅行為同「一柞點質量」冇明顯分別,而一嚿噉嘅物體嘅<a href="/wiki/%E9%87%8D%E5%BF%83" title="重心">重心</a><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>e 9<span class="cite-bracket">&#93;</span></a></sup>行為同一粒點質量冇分別,所以就算假設咗嚿物體係點<a href="/wiki/%E8%B3%AA%E9%87%8F" title="質量">質量</a>,計算得出嘅結果都同現實冇明顯差異。因為噉,呢種抽象化嘅做法一般都俾科學界認為係可以接受嘅<sup id="cite_ref-french_3-4" class="reference"><a href="#cite_note-french-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-ohanian_13-1" class="reference"><a href="#cite_note-ohanian-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading2"><h2 id="位置同郁動"><span id=".E4.BD.8D.E7.BD.AE.E5.90.8C.E9.83.81.E5.8B.95"></span>位置同郁動</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=2" title="編輯小節: 位置同郁動"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:3D_Spherical.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/3D_Spherical.svg/300px-3D_Spherical.svg.png" decoding="async" width="300" height="260" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4f/3D_Spherical.svg/450px-3D_Spherical.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4f/3D_Spherical.svg/600px-3D_Spherical.svg.png 2x" data-file-width="600" data-file-height="520" /></a><figcaption>一個 3D 嘅坐標系統;幅圖入面嗰點嘅位置又可以寫做 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (r,\theta ,\phi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>r</mi> <mo>,</mo> <mi>&#x03B8;<!-- θ --></mi> <mo>,</mo> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (r,\theta ,\phi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9e918fbb45350470ed9142d8ba0016fed78e130" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.402ex; height:2.843ex;" alt="{\displaystyle (r,\theta ,\phi )}"></span>-呢三個數值表達「嗰點嘅位置喺由 X 軸向 Y 軸轉 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> 度,由 Z 軸向 XY 平面轉 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> 度,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> <a href="/wiki/%E7%B1%B3_(%E9%95%B7%E5%BA%A6)" class="mw-redirect" title="米 (長度)">米</a>咁遠嘅地方」。</figcaption></figure> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E9%83%81%E5%8B%95" class="mw-redirect" title="郁動">郁動</a></div> <p>古典力學嘅基礎係「<a href="/wiki/%E4%BD%8D%E7%BD%AE" title="位置">位置</a>」嘅概念,而其餘嘅重要概念大部份都可以由位置嗰度推導出嚟: </p> <div class="mw-heading mw-heading3"><h3 id="位置"><span id=".E4.BD.8D.E7.BD.AE"></span>位置</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=3" title="編輯小節: 位置"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E4%BD%8D%E7%BD%AE" title="位置">位置</a></div> <p><a href="/wiki/%E4%BD%8D%E7%BD%AE" title="位置">位置</a><sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>e 10<span class="cite-bracket">&#93;</span></a></sup>係古典力學嘅一個基本概念,可以用<a href="/wiki/%E5%9D%90%E6%A8%99" title="坐標">坐標系統</a><sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>e 11<span class="cite-bracket">&#93;</span></a></sup>表達。要用一個坐標系統表達物體嘅位置,就要 </p> <ul><li>攞<a href="/wiki/%E7%A9%BA%E9%96%93" title="空間">空間</a>裏面嘅是但一個點嚟做<a href="/wiki/%E5%8E%9F%E9%BB%9E" title="原點">原點</a>(<sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>e 12<span class="cite-bracket">&#93;</span></a></sup> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle O}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>O</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle O}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d70e1d0d87e2ef1092ea1ffe2923d9933ff18fc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.773ex; height:2.176ex;" alt="{\displaystyle O}"></span>),喺原點呢個位置,每一條軸嘅坐標值都係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>,</li> <li>坐標值嘅數量等同呢個坐標系統嘅<a href="/wiki/%E7%B6%AD%E5%BA%A6" title="維度">維度</a><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>e 13<span class="cite-bracket">&#93;</span></a></sup>,</li></ul> <p>一件物體嘅位置就係由呢啲<a href="/wiki/%E5%9D%90%E6%A8%99" title="坐標">坐標值</a>嚟表達。例如如果分析緊嘅空間得一條<a href="/wiki/%E7%9B%B4%E7%B7%9A" class="mw-redirect" title="直線">直線</a>,可以揀佢上面是但一點做原點整返個<a href="/wiki/%E4%B8%80%E7%B6%AD" title="一維">一維</a>(1D)嘅坐標系統,當原點嘅左手邊做<a href="/wiki/%E6%AD%A3" class="mw-disambig" title="正">正</a>值,噉喺原點左手邊一米嘅嘢嘅位置就係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a25115739469707c4758b189fe310a750092a80a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.972ex; height:2.843ex;" alt="{\displaystyle (1)}"></span> 米,而喺原點右手邊兩米嘅嘢嘅位置就係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12164cb14c12a42a38f18598ed48b9ebd220fe0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.78ex; height:2.843ex;" alt="{\displaystyle (-2)}"></span> 米;如果分析緊嘅空間係個<a href="/wiki/%E6%AD%A3%E6%96%B9%E5%BD%A2" title="正方形">正方形</a>,就可以揀佢左下角做原點整返個<a href="/wiki/%E4%BA%8C%E7%B6%AD" title="二維">二維</a>(2D)嘅坐標系統,呢個系統會有 X 同 Y 兩條軸,分別以向右同向上做正值,噉喺呢個空間入面,嗰個正方形嘅右上角嘅位置就會係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (L,W)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>L</mi> <mo>,</mo> <mi>W</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (L,W)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/10c337762d4e34e689ca8d14178e7af8d864d472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.861ex; height:2.843ex;" alt="{\displaystyle (L,W)}"></span> 米-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/103168b86f781fe6e9a4a87b8ea1cebe0ad4ede8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.583ex; height:2.176ex;" alt="{\displaystyle L}"></span> 係個正方形嘅<a href="/wiki/%E9%95%B7%E5%BA%A6" title="長度">長度</a>,而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> 係個正方形嘅<a href="/wiki/%E9%97%8A%E5%BA%A6" class="mw-redirect" title="闊度">闊度</a>;最後,一般現實世界會攞古典力學嚟分析嘅空間都係<a href="/wiki/%E4%B8%89%E7%B6%AD" title="三維">三維</a>(3D)嘅-會有長度、闊度、同埋<a href="/wiki/%E9%AB%98%E5%BA%A6" title="高度">高度</a>三個坐標值。而且喺二維或者以上嘅空間入面,唔同嘅<a href="/wiki/%E7%B7%9A" class="mw-redirect mw-disambig" title="線">線</a>之間仲有<a href="/wiki/%E8%A7%92%E5%BA%A6" title="角度">角度</a>呢個<a href="/wiki/%E8%AE%8A%E6%95%B8_(%E7%A7%91%E7%A0%94)" title="變數 (科研)">變數</a>要考慮,角度都有得攞嚟表達物體嘅位置(睇附圖)<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>一件物體嘅<a href="/wiki/%E9%83%81%E5%8B%95" class="mw-redirect" title="郁動">郁動</a><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>e 14<span class="cite-bracket">&#93;</span></a></sup>可以理解成佢位置隨住<a href="/wiki/%E6%99%82%E9%96%93" title="時間">時間</a>嘅改變。順帶一提,喺包括古典力學嘅<a href="/wiki/%E5%8F%A4%E5%85%B8%E7%89%A9%E7%90%86%E5%AD%B8" title="古典物理學">古典物理學</a>入面,時間一般俾人當係<a href="/wiki/%E7%B5%95%E5%B0%8D%E6%99%82%E9%96%93" class="mw-redirect" title="絕對時間">絕對</a><sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>e 15<span class="cite-bracket">&#93;</span></a></sup>嘅-即係話古典物理學家覺得時間流動呢家嘢無論由邊個觀察者嘅角度睇都係一樣嘅,如果有兩件事件之間隔咗一秒發生,噉任何一個觀察者所睇到嘅「呢兩件事件之間嘅時間距離」都會係一秒。事實上,廿世紀<a href="/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論">狹義相對論</a>嘅研究說明咗呢個諗法係啱唔嗮嘅,但喺一般地球環境之下,呢個「絕對時間」嘅假設都仲係啱用嘅<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading3"><h3 id="位移"><span id=".E4.BD.8D.E7.A7.BB"></span>位移</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=4" title="編輯小節: 位移"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E4%BD%8D%E7%A7%BB" title="位移">位移</a></div> <p><a href="/wiki/%E4%BD%8D%E7%A7%BB" title="位移">位移</a><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>e 16<span class="cite-bracket">&#93;</span></a></sup>係指一件物體喺位置上嘅改變,喺古典力學計數嗰陣成日會用。假設有件物體由 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r_{1}} \,\!\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r_{1}} \,\!\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d758c96aa2d0a934777e8eb56d8ebbd47eb2cb73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:2.667ex; height:2.009ex;" alt="{\displaystyle \mathbf {r_{1}} \,\!\,\!}"></span> 呢個位置郁去新位置 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r_{2}} \,\!\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {r_{2}} \,\!\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/268ea3d6e6917017fda41d5061a51cbca7b08953" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:2.667ex; height:2.009ex;" alt="{\displaystyle \mathbf {r_{2}} \,\!\,\!}"></span> 嗰度,佢嘅位移-寫做「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2589325234008fec973d471bfcaace3af062fdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle \Delta \mathbf {r} }"></span>」或者「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f09df207c8e619140a90e8781a22d6f141211341" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.395ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} \mathbf {r} }"></span>」-就係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} =\mathbf {r_{2}} -\mathbf {r_{1}} \,\!\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">2</mn> </mrow> </msub> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi mathvariant="bold">r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold">1</mn> </mrow> </msub> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} =\mathbf {r_{2}} -\mathbf {r_{1}} \,\!\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c5c07b356174bfb735724adc1e0faedb6da9c0a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:13.923ex; height:2.509ex;" alt="{\displaystyle \Delta \mathbf {r} =\mathbf {r_{2}} -\mathbf {r_{1}} \,\!\,\!}"></span>,例如有件物體喺一個三維空間入面由 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1,1,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1,1,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/efeac0c817a90342bab7878eb40cb33dd6facbbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (1,1,1)}"></span> 呢點郁去 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (5,3,1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>5</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (5,3,1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1f79c68df59dc4fdab4b36a8f14f0204c650aecc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (5,3,1)}"></span> 嗰點度,佢嘅位移就係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (5-1,3-1,1-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>5</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (5-1,3-1,1-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15b7eba3efbcb1118ba305ceced650597a66f883" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:19.373ex; height:2.843ex;" alt="{\displaystyle (5-1,3-1,1-1)}"></span>-等如 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (4,2,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (4,2,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eda957fb9bd9a3d8a11d75ff75199665c0ce4fc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (4,2,0)}"></span>。位移係有方向嘅物理量-即係一個<a href="/wiki/%E5%90%91%E9%87%8F" title="向量">向量</a><sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>e 17<span class="cite-bracket">&#93;</span></a></sup>,所以除非係喺一維空間,一個位移冇得淨係用一個數值表達得嗮,而係要用好幾個數值嚟表達<sup id="cite_ref-hendersondisplacedistance_30-0" class="reference"><a href="#cite_note-hendersondisplacedistance-30"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>位移同<a href="/wiki/%E8%B7%9D%E9%9B%A2" title="距離">距離</a><sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>e 18<span class="cite-bracket">&#93;</span></a></sup>係兩個唔同嘅概念:假如一件物體用一條非直線嘅路線移動,噉佢行過嘅路線反映佢行咗嘅距離,而位移會係佢起點同終點之間嘅直線距離<sup id="cite_ref-hendersondisplacedistance_30-1" class="reference"><a href="#cite_note-hendersondisplacedistance-30"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup>。以下圖想像:彎彎曲曲嗰條線表示嘅係距離,而直嗰條線表示嘅係位移。 </p> <div style="clear: both;"></div> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Distancedisplacement1-zh-hans.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Distancedisplacement1-zh-hans.svg/langyue-525px-Distancedisplacement1-zh-hans.svg.png" decoding="async" width="525" height="325" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Distancedisplacement1-zh-hans.svg/langyue-788px-Distancedisplacement1-zh-hans.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Distancedisplacement1-zh-hans.svg/langyue-1050px-Distancedisplacement1-zh-hans.svg.png 2x" data-file-width="323" data-file-height="200" /></a><figcaption></figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="速度同速率"><span id=".E9.80.9F.E5.BA.A6.E5.90.8C.E9.80.9F.E7.8E.87"></span>速度同速率</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=5" title="編輯小節: 速度同速率"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/300px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg" decoding="async" width="300" height="200" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/450px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/40/US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg/600px-US_Navy_040501-N-1336S-037_The_U.S._Navy_sponsored_Chevy_Monte_Carlo_NASCAR_leads_a_pack_into_turn_four_at_California_Speedway.jpg 2x" data-file-width="1800" data-file-height="1200" /></a><figcaption>一架跑車用恆定速率掟彎;佢就算速率真係不變,因為佢方向變咗,佢速度都算係有變。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a>同<a href="/wiki/%E9%80%9F%E7%8E%87" title="速率">速率</a></div> <p>喺古典力學當中,<a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a><sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>e 19<span class="cite-bracket">&#93;</span></a></sup>嘅正式<a href="/wiki/%E5%AE%9A%E7%BE%A9" title="定義">定義</a>係「位移對時間嘅<a href="/wiki/%E5%B0%8E%E6%95%B8" title="導數">導數</a>」(詳情可以睇<a href="/wiki/%E5%BE%AE%E7%A9%8D%E5%88%86" title="微積分">微積分</a><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup>)-呢個詞用日常語言講嘅話,就係「位移隨住時間<a href="/wiki/%E8%AE%8A%E7%8E%87" class="mw-redirect" title="變率">改變嘅率</a>」,用<a href="/wiki/%E6%96%B9%E7%A8%8B%E5%BC%8F" title="方程式">方程式</a>表達係<sup id="cite_ref-wilson1901_34-0" class="reference"><a href="#cite_note-wilson1901-34"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} ={\mathrm {d} \mathbf {r} \over \mathrm {d} t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} ={\mathrm {d} \mathbf {r} \over \mathrm {d} t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c154a1c3f21f0307905733db694a58f7ecf80e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.74ex; height:5.509ex;" alt="{\displaystyle \mathbf {v} ={\mathrm {d} \mathbf {r} \over \mathrm {d} t}}"></span>;當中,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df6e8492015c331122565c580264dcc31144461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.798ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} \,\!}"></span> 係速度,而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/588a981eb3c6f32c01153f8710a7f70029b5e553" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.132ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} t}"></span> 就係成個過程用咗嘅時間。</dd></dl> <p>例如有件三維嘅物體喺 10 秒之間由原點郁去 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (4,3,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>4</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (4,3,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e6c6d5ef248fc028649a9d6c391193de4dbf579" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.365ex; height:2.843ex;" alt="{\displaystyle (4,3,0)}"></span> 嗰點,佢嘅速度就係<sup id="cite_ref-wilson1901_34-1" class="reference"><a href="#cite_note-wilson1901-34"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({4-0 \over 10},{3-0 \over 10},{0-0 \over 10})=(0.4,0.3,0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>4</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> <mn>10</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>3</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> <mn>10</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>0</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> <mn>10</mn> </mfrac> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mn>0.4</mn> <mo>,</mo> <mn>0.3</mn> <mo>,</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({4-0 \over 10},{3-0 \over 10},{0-0 \over 10})=(0.4,0.3,0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fcb0464da67374694a86d9323b2c5d8e99b7aaea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.963ex; height:5.176ex;" alt="{\displaystyle ({4-0 \over 10},{3-0 \over 10},{0-0 \over 10})=(0.4,0.3,0)}"></span>;</dd></dl> <p>因為位移係個向量,所以速度都係一個向量。如果上述嘅距離係以<a href="/wiki/%E7%B1%B3_(%E9%95%B7%E5%BA%A6)" class="mw-redirect" title="米 (長度)">米</a>做長度嘅<a href="/wiki/%E5%96%AE%E4%BD%8D" class="mw-disambig" title="單位">單位</a>,呢個向量表示「件物體嘅速度沿 X 軸係 0.4 <a href="/wiki/%E7%B1%B3%E6%AF%8F%E7%A7%92" title="米每秒">米每秒</a>,沿 Y 軸係 0.3 米每秒,沿 Z 軸係 0 米每秒」。呢件物件行咗嘅距離(用<a href="/wiki/%E7%95%A2%E6%B0%8F%E5%AE%9A%E7%90%86" title="畢氏定理">畢氏定理</a>計到)係 5 米,所以佢嘅<a href="/wiki/%E9%80%9F%E7%8E%87" title="速率">速率</a>(<sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>e 20<span class="cite-bracket">&#93;</span></a></sup>指唔考慮方向,淨係諗個速度嘅值,即係「行咗嘅距離<a href="/wiki/%E9%99%A4" title="除">除</a>時間」)就等如<sup id="cite_ref-wilson1901_34-2" class="reference"><a href="#cite_note-wilson1901-34"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {5-0 \over 10}=0.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>5</mn> <mo>&#x2212;<!-- − --></mo> <mn>0</mn> </mrow> <mn>10</mn> </mfrac> </mrow> <mo>=</mo> <mn>0.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {5-0 \over 10}=0.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2774d96f0f7f3312081ab28138fe3ac175a2212" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.072ex; height:5.176ex;" alt="{\displaystyle {5-0 \over 10}=0.5}"></span>-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0.5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0.5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0.5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c867fe7d5d53ce2c0790852289b794c6ed185f36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.972ex; height:2.176ex;" alt="{\displaystyle 0.5}"></span> 米每秒。</dd></dl> <p>要留意嘅係,喺嚴格嘅物理學用詞嗰度,「速度」同「速率」係兩個唔同嘅概念:前者係一個向量-一個有方向嘅物理量-所以要用好幾個數字先表達得嗮佢包含嘅所有內容(即係件物體由三條軸睇分別郁咗幾多);而後者係一個唔考慮方向嘅<a href="/wiki/%E6%A8%99%E9%87%8F" class="mw-redirect" title="標量">標量</a><sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>e 21<span class="cite-bracket">&#93;</span></a></sup>,淨係包含咗「件物體郁得幾快」,所以用一個數字已經能夠表達到嗮佢包含嘅內容。雖然係噉,喺日常用語入面,啲人用起「速度」同「速率」呢兩個詞上嚟都好求其,一般都當正佢哋係<a href="/wiki/%E5%90%8C%E7%BE%A9%E8%A9%9E" title="同義詞">同義詞</a>噉<sup id="cite_ref-wilson1901_34-3" class="reference"><a href="#cite_note-wilson1901-34"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading4"><h4 id="相對速度"><span id=".E7.9B.B8.E5.B0.8D.E9.80.9F.E5.BA.A6"></span>相對速度</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=6" title="編輯小節: 相對速度"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E7%9B%B8%E5%B0%8D%E9%80%9F%E5%BA%A6" title="相對速度">相對速度</a></div> <p>因為速度係一個向量,所以佢有得就住方向嚟做<a href="/wiki/%E5%8A%A0" title="加">加</a><a href="/wiki/%E6%B8%9B" title="減">減</a>,計出<a href="/wiki/%E7%9B%B8%E5%B0%8D%E9%80%9F%E5%BA%A6" title="相對速度">相對速度</a><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>e 22<span class="cite-bracket">&#93;</span></a></sup>:兩件物體之間嘅相對速度定義上係指「如果將其中一件物體當成靜止做對照點,另外嗰件物體嘅速度望落會係幾多」;舉個例說明,有一個人喺一個<a href="/wiki/%E7%81%AB%E8%BB%8A" title="火車">火車</a>嘅車頂向車頭行(為咗簡單起見,淨係考慮佢哋沿「<a href="/wiki/%E6%9D%B1" title="東">東</a>同<a href="/wiki/%E8%A5%BF" title="西">西</a>」呢條軸嘅郁動),架火車相對地面係向東以時速 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 40}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>40</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 40}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/686d435c2512a705c6680b84e9d172f259941f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 40}"></span> <a href="/wiki/%E5%85%AC%E9%87%8C" class="mw-redirect" title="公里">公里</a>行<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>註 1<span class="cite-bracket">&#93;</span></a></sup>,而個人喺車頂以相對架火車係向東以時速 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span> 公里行-如果將架火車想像成係靜止嘅,個人嘅速度係「向東時速 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span> 公里」,不過由一個喺地面嘅靜止觀察者嚟講,嗰個人就係以向東時速 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 50}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>50</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 50}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/17e5f8966bed37734cd86d4fd3c302913bb6d48b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 50}"></span> 公里(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 40+10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>40</mn> <mo>+</mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 40+10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ae733fff831545b183d5cca462644bec881d328f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.49ex; height:2.343ex;" alt="{\displaystyle 40+10}"></span>)行緊。即係將唔同嘅物體嘅速度相<a href="/wiki/%E5%8A%A0" title="加">加</a>可以知道佢哋嘅相對速度<sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>註 2<span class="cite-bracket">&#93;</span></a></sup>-呢樣嘢速率做唔到,因為速率唔包含方向,將兩架車嘅速率就噉相加減唔會俾分析嗰個人知道兩架車嘅相對速度<sup id="cite_ref-relativevelocity_40-0" class="reference"><a href="#cite_note-relativevelocity-40"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div style="clear: both;"></div> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Relative_motion_man_on_train.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Relative_motion_man_on_train.gif/540px-Relative_motion_man_on_train.gif" decoding="async" width="540" height="205" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/37/Relative_motion_man_on_train.gif/810px-Relative_motion_man_on_train.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/3/37/Relative_motion_man_on_train.gif 2x" data-file-width="903" data-file-height="342" /></a><figcaption></figcaption></figure> <p>再抽象些少講嘅話就係:設第一架車嘅速度做 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} =u\mathbf {d} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>=</mo> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} =u\mathbf {d} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e18bcc18c2459a74a93bbb3d2c6021d454883304" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:7.786ex; height:2.176ex;" alt="{\displaystyle \mathbf {u} =u\mathbf {d} \,\!}"></span>,第二架車嘅速度做 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =v\mathbf {e} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =v\mathbf {e} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba3743b3856dd39acc4de67e43d6b72371615ea0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:7.249ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} =v\mathbf {e} \,\!}"></span>;其中兩架車嘅速率就分別係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle u\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>u</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle u\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/605d415be590b5e59807a3882d9eac3b4e535507" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.717ex; height:1.676ex;" alt="{\displaystyle u\,\!}"></span> 同 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f34217ded608407636238760709b92635f19dbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.515ex; height:1.676ex;" alt="{\displaystyle v\,\!}"></span>,而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {d} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5fd6f87a46c497c529da4daaa8853266f225daf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.872ex; height:2.176ex;" alt="{\displaystyle \mathbf {d} \,\!}"></span> 同 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {e} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {e} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c083093ed7d6db010807779ba324431e7664d309" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.612ex; height:1.676ex;" alt="{\displaystyle \mathbf {e} \,\!}"></span> 分別係兩架車向住佢哋個方向嘅<a href="/wiki/%E5%96%AE%E4%BD%8D%E5%90%91%E9%87%8F" title="單位向量">單位向量</a><sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>e 23<span class="cite-bracket">&#93;</span></a></sup>。噉由第二架車嗰度望,第一架車嘅速度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} '\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} '\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f943ed0fd2a00f3d7df564efe36874776a8abe4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.557ex; height:2.509ex;" alt="{\displaystyle \mathbf {u} &#039;\,\!}"></span> 係<sup id="cite_ref-relativevelocity_40-1" class="reference"><a href="#cite_note-relativevelocity-40"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} '=\mathbf {u} -\mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} '=\mathbf {u} -\mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c324092242151c2a358003491609a35b819dc5ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; margin-right: -0.387ex; width:11.392ex; height:2.676ex;" alt="{\displaystyle \mathbf {u} &#039;=\mathbf {u} -\mathbf {v} \,\!}"></span></dd></dl> <p>同一道理,由第一架車嗰度望,第二架車嘅速度 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} '\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} '\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33493e0e9ee2d45ad00f5ab0881422ded647c746" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.483ex; height:2.509ex;" alt="{\displaystyle \mathbf {v} &#039;\,\!}"></span> 係 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} '=\mathbf {v} -\mathbf {u} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} '=\mathbf {v} -\mathbf {u} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d75924228302ef8d7f33bf5d28486e7e037d0714" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; margin-right: -0.387ex; width:11.318ex; height:2.676ex;" alt="{\displaystyle \mathbf {v} &#039;=\mathbf {v} -\mathbf {u} \,\!}"></span></dd></dl> <p>如果呢兩架車嘅郁嗰條軸一樣,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {d} =\mathbf {e} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">e</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {d} =\mathbf {e} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57bed2b5484aab789b0ffb5387215a9cfd003981" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:6.196ex; height:2.176ex;" alt="{\displaystyle \mathbf {d} =\mathbf {e} \,\!}"></span>,噉呢條公式簡化咗就係 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} '=(u-v)\mathbf {d} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>u</mi> <mo>&#x2212;<!-- − --></mo> <mi>v</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">d</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} '=(u-v)\mathbf {d} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba5d689424db06f92072876cb77f3ec1eb09f1e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; margin-right: -0.387ex; width:14.248ex; height:3.009ex;" alt="{\displaystyle \mathbf {u} &#039;=(u-v)\mathbf {d} \,\!}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="加速度"><span id=".E5.8A.A0.E9.80.9F.E5.BA.A6"></span>加速度</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=7" title="編輯小節: 加速度"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Gravity_gravita_grave.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/7d/Gravity_gravita_grave.gif/240px-Gravity_gravita_grave.gif" decoding="async" width="240" height="332" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/7/7d/Gravity_gravita_grave.gif 1.5x" data-file-width="289" data-file-height="400" /></a><figcaption>加速度嘅附圖</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速度</a></div> <p><a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速度</a><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>e 24<span class="cite-bracket">&#93;</span></a></sup>喺定義上係「速度對時間嘅導數」-同一道理,用日常語言講出嚟嘅話就係「速度隨住時間改變嘅率」,用方程式表達嘅話係<sup id="cite_ref-bondi1980_43-0" class="reference"><a href="#cite_note-bondi1980-43"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\mathrm {d} \mathbf {v} \over \mathrm {d} t}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={\mathrm {d} \mathbf {v} \over \mathrm {d} t}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96436ef0fadc39f5c3f3f7ce8908edd5e3f55fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; margin-right: -0.387ex; width:8.325ex; height:5.509ex;" alt="{\displaystyle \mathbf {a} ={\mathrm {d} \mathbf {v} \over \mathrm {d} t}\,\!}"></span>;<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a957216653a9ee0d0133dcefd13fb75e36b8b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.299ex; height:1.676ex;" alt="{\displaystyle \mathbf {a} }"></span> 就係加速度。</dd></dl> <p>例如係附圖噉。附圖顯示一件物體由靜止(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02ebaea2693bb5bc6bc09d54a7f77b2ac651b71a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.672ex; height:2.176ex;" alt="{\displaystyle \mathbf {v} =0}"></span>),去到有一個非零嘅速度(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4b9d8377af2a91280f8386a7d04d3cfc5cba4a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.672ex; height:2.676ex;" alt="{\displaystyle \mathbf {v} \neq 0}"></span>),再撞到地下停低(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02ebaea2693bb5bc6bc09d54a7f77b2ac651b71a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.672ex; height:2.176ex;" alt="{\displaystyle \mathbf {v} =0}"></span>),期間 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35c1866e359fbfd2e0f606c725ba5cc37a5195d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.411ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} }"></span> 不斷有變,即係話 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} \neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} \neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af07384538c89f4fa11388b7c193f2ec25128459" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.56ex; height:2.676ex;" alt="{\displaystyle \mathbf {a} \neq 0}"></span>。 </p><p>加速度都係一個向量,反映咗「速度改變得有幾快」。要留意嘅係,因為加速度係向量,所以就算佢係負數,都唔一定代表件物體係減緊速。例如有件物體,佢個加速度係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffa50dcaacd32d77fb512af521f6066839464c82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -5}"></span> <a href="/wiki/%E7%B1%B3%E6%AF%8F%E4%BA%8C%E6%AC%A1%E6%96%B9%E7%A7%92" title="米每二次方秒">米每二次方秒</a>。呢個數字表示佢個速度以每秒「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffa50dcaacd32d77fb512af521f6066839464c82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -5}"></span> 米每秒」嘅率噉改變緊,噉樣可以表示兩樣嘢<sup id="cite_ref-bondi1980_43-1" class="reference"><a href="#cite_note-bondi1980-43"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup>: </p> <ul><li>可能件物體嘅速度喺一秒之間由「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4ec811eb07dcac7ea67b413c5665390a1671ecb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 10}"></span> 米每秒」變做「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/29483407999b8763f0ea335cf715a6a5e809f44b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 5}"></span> 米每秒」-即係一個減速,但佢個速度由頭到尾都仲係向住正方向嘅;又或者係</li> <li>佢個速度喺一秒之間由「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -5}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>5</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -5}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffa50dcaacd32d77fb512af521f6066839464c82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -5}"></span> 米每秒」變做「<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -10}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>10</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -10}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cae1245b26372e6d9637c98edea699eb2daaaf0b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:4.133ex; height:2.343ex;" alt="{\displaystyle -10}"></span> 米每秒」-呢個反而係一個向住負方向嘅加速。</li></ul> <div class="mw-heading mw-heading3"><h3 id="參考系"><span id=".E5.8F.83.E8.80.83.E7.B3.BB"></span>參考系</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=8" title="編輯小節: 參考系"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Inertial_frames.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Inertial_frames.svg/240px-Inertial_frames.svg.png" decoding="async" width="240" height="266" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Inertial_frames.svg/360px-Inertial_frames.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cb/Inertial_frames.svg/480px-Inertial_frames.svg.png 2x" data-file-width="704" data-file-height="779" /></a><figcaption>兩個原點同方向唔同嘅參考系;兩個都係合理嘅。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E5%8F%83%E8%80%83%E7%B3%BB" title="參考系">參考系</a>同<a href="/wiki/%E6%85%A3%E6%80%A7%E5%8F%83%E8%80%83%E7%B3%BB" title="慣性參考系">慣性參考系</a></div> <p><a href="/wiki/%E5%8F%83%E8%80%83%E7%B3%BB" title="參考系">參考系</a><sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>e 25<span class="cite-bracket">&#93;</span></a></sup>喺物理學入面係指「用嚟測量同埋紀錄其他物體嘅屬性嘅坐標系統」。喺做古典力學分析嗰陣,首先要做嘅嘢係搵返個點做原點,呢樣嘢係<b>夾硬嚟</b><sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>e 26<span class="cite-bracket">&#93;</span></a></sup>嘅-現實世界嘅空間入面冇啲乜嘢原點(雖然古典力學假定咗有),如果有兩件物體喺同一條打橫嘅直線上相距 1 米:噉有得揀左邊嗰件做原點,當右手邊做正,而喺呢個情況下右邊嗰件物體嘅位置會係(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d04cf05c67d41d9f39dabf6a90722ce860a76958" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle +1}"></span> 米);又可以揀左邊嗰件做原點,左手邊做正,而喺呢個情況下右邊嗰件物體嘅位置會係(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/704fb0427140d054dd267925495e78164fee9aac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:2.971ex; height:2.343ex;" alt="{\displaystyle -1}"></span> 米)。即係話揀參考系-揀邊點做原點同埋邊個方向做正負-係隨意嘅,只要揀好咗之後喺接住落嚟嘅分析嗰度一致噉使用,計出嚟嘅結果就唔會有問題<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-taylor1992_48-0" class="reference"><a href="#cite_note-taylor1992-48"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>假想而家有一粒以若干非零速度郁緊嘅粒子,由兩個唔同嘅參考系 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ffe6a8a216bba6f72c39796067a4bbe4db003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,\!}"></span> 同埋 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,'\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msup> <mspace width="thinmathspace" /> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,'\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/723ef6534dfcd5c155851010730253f63f46f60b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.958ex; height:2.509ex;" alt="{\displaystyle S\,&#039;\,\!}"></span> 嗰度<a href="/wiki/%E9%87%8F%E5%BA%A6" title="量度">量度</a>佢。又假想相對於 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ffe6a8a216bba6f72c39796067a4bbe4db003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,\!}"></span> 呢個參考系,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,'\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msup> <mspace width="thinmathspace" /> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,'\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/723ef6534dfcd5c155851010730253f63f46f60b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.958ex; height:2.509ex;" alt="{\displaystyle S\,&#039;\,\!}"></span> 呢個參考系以 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df6e8492015c331122565c580264dcc31144461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.798ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} \,\!}"></span> 嘅速度郁緊(為咗簡單起見,呢個例子淨係考慮佢哋沿一個軸嘅郁動)。噉企喺呢兩個參考系嗰度嘅觀察者會分別噉量度到以下嘅結果<sup id="cite_ref-taylor1992_48-1" class="reference"><a href="#cite_note-taylor1992-48"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup>: </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {u} '=\mathbf {u} -\mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">u</mi> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {u} '=\mathbf {u} -\mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c324092242151c2a358003491609a35b819dc5ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; margin-right: -0.387ex; width:11.392ex; height:2.676ex;" alt="{\displaystyle \mathbf {u} &#039;=\mathbf {u} -\mathbf {v} \,\!}"></span>-同一粒粒子嘅郁動,喺 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,'\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <msup> <mspace width="thinmathspace" /> <mo>&#x2032;</mo> </msup> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,'\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/723ef6534dfcd5c155851010730253f63f46f60b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:2.958ex; height:2.509ex;" alt="{\displaystyle S\,&#039;\,\!}"></span> 量度到嘅速度係等如喺 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669ffe6a8a216bba6f72c39796067a4bbe4db003" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.886ex; height:2.176ex;" alt="{\displaystyle S\,\!}"></span> 量度到嘅速度減 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df6e8492015c331122565c580264dcc31144461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.798ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} \,\!}"></span>。</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} '=\mathbf {a} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} '=\mathbf {a} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c88cccfdc3abd6e8a726e17e3060aedc7c1e7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:6.769ex; height:2.509ex;" alt="{\displaystyle \mathbf {a} &#039;=\mathbf {a} \,\!}"></span>-粒粒子量度到嘅加速度同用邊個參考系無關。</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} '=\mathbf {F} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>&#x2032;</mo> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} '=\mathbf {F} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f2c07239cc0025c030dfe856db9125e11610566" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:7.536ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} &#039;=\mathbf {F} \,\!}"></span>-用<a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%BA%8C%E5%AE%9A%E5%BE%8B" title="牛頓第二定律">牛頓第二定律</a>,施喺粒粒子上面嘅<a href="/wiki/%E5%8A%9B" title="力">力</a>同用邊個慣性參考系無關。</li></ul> <p>一個可能要計呢啲數嘅情況係一個<a href="/wiki/%E5%A4%A9%E6%96%87%E5%AD%B8" title="天文學">天文學</a>研究:有兩個觀察者,一個企喺地球,另一個企喺<a href="/wiki/%E6%9C%88%E7%90%83" class="mw-redirect" title="月球">月球</a>,兩個都當自己係原點喺度嘗試測量<a href="/wiki/%E7%81%AB%E6%98%9F" title="火星">火星</a>嘅郁動(三樣嘢都郁緊)-雖然喺呢個情況,條數要計 3 次,因為呢柞<a href="/wiki/%E5%A4%A9%E9%AB%94" title="天體">天體</a>各自喺空間嘅三條軸嗰度都有位移,喺三條軸嗰度都有速度值<sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading2"><h2 id="力以及能量"><span id=".E5.8A.9B.E4.BB.A5.E5.8F.8A.E8.83.BD.E9.87.8F"></span>力以及能量</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=9" title="編輯小節: 力以及能量"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%BA%8C%E5%AE%9A%E5%BE%8B" title="牛頓第二定律">牛頓第二定律</a></div> <div class="mw-heading mw-heading3"><h3 id="動量"><span id=".E5.8B.95.E9.87.8F"></span>動量</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=10" title="編輯小節: 動量"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E5%8B%95%E9%87%8F" title="動量">動量</a></div> <p>喺古典力學入面,<a href="/wiki/%E7%B7%9A%E6%80%A7%E5%8B%95%E9%87%8F" class="mw-redirect" title="線性動量">線性動量</a><sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>e 27<span class="cite-bracket">&#93;</span></a></sup>,簡稱<a href="/wiki/%E5%8B%95%E9%87%8F" title="動量">動量</a>,數學符號係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span>,指係一件物體嘅質量同佢速度乘埋得出嘅數<sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =m\mathbf {v} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =m\mathbf {v} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a271a96e7b925fd39686375167c76d406e87c813" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.035ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} =m\mathbf {v} }"></span>,當中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> 係件物體嘅質量。</dd></dl> <p>動量有以下嘅特性:動量同速度一樣係向量,有方向同數值,喺<a href="/wiki/%E5%9C%8B%E9%9A%9B%E5%96%AE%E4%BD%8D%E5%88%B6" title="國際單位制">國際單位制</a><sup id="cite_ref-53" class="reference"><a href="#cite_note-53"><span class="cite-bracket">&#91;</span>e 28<span class="cite-bracket">&#93;</span></a></sup>嗰度嘅單位係<a href="https://en.wikipedia.org/wiki/Newton-second" class="extiw" title="en:Newton-second">公斤米每秒</a>-<a href="/wiki/%E5%85%AC%E6%96%A4" class="mw-redirect" title="公斤">公斤</a>(質量嘅單位)同米每秒(速度嘅單位)乘埋;用日常用語講嘅話,動量表達咗一件物體撞落去第啲嘢嗰陣,會有幾能夠引致後者嘅郁動有所改變-假設有一個<a href="/wiki/%E6%A1%8C%E7%90%83" title="桌球">檯波</a>,佢以一定嘅速度撞落去第個檯波嗰度,假設第啲因素不變,如果前者嘅速度愈快或者質量愈大(兩者都可以引致動量上升),噉後者俾佢撞完之後嘅郁動嘅改變幅度會愈大<sup id="cite_ref-54" class="reference"><a href="#cite_note-54"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>根據<a href="/wiki/%E5%8B%95%E9%87%8F%E5%AE%88%E6%81%86%E5%AE%9A%E5%BE%8B" class="mw-redirect" title="動量守恆定律">動量守恆定律</a><sup id="cite_ref-55" class="reference"><a href="#cite_note-55"><span class="cite-bracket">&#91;</span>e 29<span class="cite-bracket">&#93;</span></a></sup>,喺一個<a href="/wiki/%E5%B0%81%E9%96%89%E7%B3%BB%E7%B5%B1" title="封閉系統">封閉系統</a>(唔能夠由外界攞動量)入面,所有物體嘅動量嘅總和永遠都唔會變-如果有嚿物體撞落去一嚿本嚟唔郁嘅嘢嗰度嘅話,後者會吸收動量並且加速,而前者實會少噉咗啲動量而減速-<a href="/wiki/%E7%A2%B0%E6%92%9E" title="碰撞">碰撞</a>呢家嘢本質上可以想像成「動量嘅轉移」<sup id="cite_ref-56" class="reference"><a href="#cite_note-56"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup>。 </p> <style data-mw-deduplicate="TemplateStyles:r1242160">.mw-parser-output .gallery-mod{background:transparent;margin-top:0.5em}.mw-parser-output .gallery-mod-center{margin-left:auto;margin-right:auto}.mw-parser-output .gallery-mod-title{text-align:center;font-weight:bold}.mw-parser-output .gallery-mod-box{float:left;border-collapse:collapse;margin:3px}.mw-parser-output .gallery-mod-box .thumb{border:1px solid #ccc;background-color:#F8F8F8;padding:0;text-align:center}.mw-parser-output tr.gallery-mod-text{vertical-align:top}.mw-parser-output tr.gallery-mod-text .core{display:block;font-size:small;padding:0}.mw-parser-output .gallery-mod-text .caption{line-height:1.25em;padding:6px 6px 1px 6px;margin:0;border:none;border-width:0}.mw-parser-output .gallery-mod-footer{text-align:right;font-size:80%;line-height:1em}</style><table class="gallery-mod gallery-mod-center"><tbody><tr><td><table class="gallery-mod-box" style="width:420px"><tbody><tr><td class="thumb" style="height:260px"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:To_pot_the_red.jpg" class="mw-file-description" title="桌球即將要相撞。"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/To_pot_the_red.jpg/400px-To_pot_the_red.jpg" decoding="async" width="400" height="235" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/32/To_pot_the_red.jpg/600px-To_pot_the_red.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/32/To_pot_the_red.jpg/800px-To_pot_the_red.jpg 2x" data-file-width="1850" data-file-height="1088" /></a><figcaption><center><a href="/wiki/%E6%A1%8C%E7%90%83" title="桌球">桌球</a>即將要相撞。</center></figcaption></figure></td></tr><tr class="gallery-mod-text"><td class="core"><div class="caption" style="min-height:3.1em;width:407px"><center><a href="/wiki/%E6%A1%8C%E7%90%83" title="桌球">桌球</a>即將要相撞。</center>&#160;</div></td></tr></tbody></table></td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="力"><span id=".E5.8A.9B"></span>力</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=11" title="編輯小節: 力"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Pulley_in_Oil_Well.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/1/1c/Pulley_in_Oil_Well.jpg" decoding="async" width="229" height="315" class="mw-file-element" data-file-width="229" data-file-height="315" /></a><figcaption><a href="/wiki/%E5%BE%B7%E5%B7%9E" class="mw-disambig" title="德州">德州</a>一個<a href="/wiki/%E6%B2%B9%E4%BA%95" title="油井">油井</a>嘅<a href="/wiki/%E8%BD%A4%E8%BD%86" title="轤轆">轤轆</a>;條鋼纜吊住嚿嘢,喺後者身上施股向上嘅力。如果冇咗股力,嚿嘢會向下加速<sup id="cite_ref-ohanian_13-2" class="reference"><a href="#cite_note-ohanian-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E5%8A%9B" title="力">力</a></div> <p><a href="/wiki/%E5%8A%9B" title="力">力</a>(單位係<a href="/wiki/%E7%89%9B%E9%A0%93_(%E5%96%AE%E4%BD%8D)" title="牛頓 (單位)">牛頓</a>)呢個概念同動量息息相關。牛頓係人類史上第一個用數學方程式嚟表達「力」呢個概念嘅人,而根據<a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%BA%8C%E5%AE%9A%E5%BE%8B" title="牛頓第二定律">牛頓第二定律</a><sup id="cite_ref-57" class="reference"><a href="#cite_note-57"><span class="cite-bracket">&#91;</span>e 30<span class="cite-bracket">&#93;</span></a></sup>,力係靠動量嚟定義嘅<sup id="cite_ref-reif1995_58-0" class="reference"><a href="#cite_note-reif1995-58"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} ={\mathrm {d} \mathbf {p} \over \mathrm {d} t}={\mathrm {d} (m\mathbf {v} ) \over \mathrm {d} t}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} ={\mathrm {d} \mathbf {p} \over \mathrm {d} t}={\mathrm {d} (m\mathbf {v} ) \over \mathrm {d} t}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/712d440775a5b182a95fec7e9a5b0c011fa4d1c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:18.883ex; height:5.843ex;" alt="{\displaystyle \mathbf {F} ={\mathrm {d} \mathbf {p} \over \mathrm {d} t}={\mathrm {d} (m\mathbf {v} ) \over \mathrm {d} t}}"></span></dd></dl> <p>呢條式講嘅係「作用喺一件物體上面嘅力」(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da18bef8c979f3548bb0d8976f5844012d7b8256" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.683ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} }"></span>)等如「佢前前後後嘅動量改變」(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e50be72a23ece942b61d54a2fb6a0cea10ef908b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.778ex; height:2.509ex;" alt="{\displaystyle \mathrm {d} \mathbf {p} }"></span>)除以「呢個作用所維持嘅時間」(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/588a981eb3c6f32c01153f8710a7f70029b5e553" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.132ex; height:2.176ex;" alt="{\displaystyle \mathrm {d} t}"></span>)。即係話假設所有因素唔變,作用喺嗰件物體上面嘅力愈大(簡單啲講就係愈大力推或者拉佢),件物體嘅動量改變會愈大;而如果個力保持唔變,作用持續嘅時間愈短,件物體嘅動量改變都會愈大。假定件物體喺成個作用嘅過程入面質量唔變,因為「速度隨時間嘅變率」等如加速度(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9efe6327d8931bc602fddf2b21bd5d26896a448b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:7.861ex; height:5.509ex;" alt="{\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}}"></span>),第二定律條式仲有得簡化做<sup id="cite_ref-reif1995_58-1" class="reference"><a href="#cite_note-reif1995-58"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =m\mathbf {a} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =m\mathbf {a} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2151321cfa5c18d334871ce673d67f5d1bce86d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.508ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} =m\mathbf {a} \,}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="自由體圖"><span id=".E8.87.AA.E7.94.B1.E9.AB.94.E5.9C.96"></span>自由體圖</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=12" title="編輯小節: 自由體圖"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E8%87%AA%E7%94%B1%E9%AB%94%E5%9C%96" title="自由體圖">自由體圖</a></div> <p><a href="/wiki/%E8%87%AA%E7%94%B1%E9%AB%94%E5%9C%96" title="自由體圖">自由體圖</a><sup id="cite_ref-59" class="reference"><a href="#cite_note-59"><span class="cite-bracket">&#91;</span>e 31<span class="cite-bracket">&#93;</span></a></sup>係古典力學分析上嘅一種做法,喺物理學同<a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%B8" title="工程學">工程學</a>上都好常用:一幅自由體圖會畫出分析緊嗰一件物體、件物體嘅各部份、以及向件物體施力嘅物體,然後用箭咀表示出個系統當中存在嘅力,每個箭咀會有個方向代表嗰股力嘅方向,仲會附帶一個數值表示嗰股力嘅大細;例如想像一嚿物體(用一個藍色嘅<a href="/wiki/%E5%9B%9B%E6%96%B9%E5%BD%A2" class="mw-redirect" title="四方形">四方形</a>代表),擺咗喺一個<a href="/wiki/%E6%96%9C%E9%9D%A2" title="斜面">斜面</a>(紅色<a href="/wiki/%E4%B8%89%E8%A7%92%E5%BD%A2" title="三角形">三角形</a>)上面,個斜面同地面之間嘅角度係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e5ab2664b422d53eb0c7df3b87e1360d75ad9af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.09ex; height:2.176ex;" alt="{\displaystyle \theta }"></span> 咁多度,件物體會受到至少三股力- </p> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mg}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>g</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mg}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b09617a2fc63da5d747f0e1c0060f8ca5d57cf4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.156ex; height:2.009ex;" alt="{\displaystyle mg}"></span> 係由地球施喺件物體上嘅<a href="/wiki/%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B" title="萬有引力">萬有引力</a>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> 係由個斜面施喺件物體上嘅<a href="/wiki/%E6%91%A9%E6%93%A6%E5%8A%9B" title="摩擦力">摩擦力</a><sup id="cite_ref-60" class="reference"><a href="#cite_note-60"><span class="cite-bracket">&#91;</span>e 32<span class="cite-bracket">&#93;</span></a></sup>;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5e3890c981ae85503089652feb48b191b57aae3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle N}"></span> 係由個斜面施喺件物體上嘅<a href="/wiki/%E5%8F%8D%E4%BD%9C%E7%94%A8%E5%8A%9B" title="反作用力">反作用力</a><sup id="cite_ref-61" class="reference"><a href="#cite_note-61"><span class="cite-bracket">&#91;</span>e 33<span class="cite-bracket">&#93;</span></a></sup>;</li></ul> <p>如果 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mg\sin(\theta )&gt;f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>g</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mo>&gt;</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mg\sin(\theta )&gt;f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7493683070440d934b2090042ad5c5f54c897791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.676ex; height:2.843ex;" alt="{\displaystyle mg\sin(\theta )&gt;f}"></span> <sup id="cite_ref-62" class="reference"><a href="#cite_note-62"><span class="cite-bracket">&#91;</span>註 3<span class="cite-bracket">&#93;</span></a></sup>,就會令嚿物體沿 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle mg\sin(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mi>g</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle mg\sin(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee5a20d2ec6f33c143f116c62d49880e48f6ce7e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.299ex; height:2.843ex;" alt="{\displaystyle mg\sin(\theta )}"></span> 嘅向左下方向有個加速度,而佢向嗰個方向嘅速度就會上升。畫做自由體圖嘅話<sup id="cite_ref-63" class="reference"><a href="#cite_note-63"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-64" class="reference"><a href="#cite_note-64"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup>: </p> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Free_body1.3.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Free_body1.3.svg/400px-Free_body1.3.svg.png" decoding="async" width="400" height="267" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Free_body1.3.svg/600px-Free_body1.3.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d3/Free_body1.3.svg/800px-Free_body1.3.svg.png 2x" data-file-width="512" data-file-height="342" /></a><figcaption></figcaption></figure> <p>好似上述噉嘅圖喺(例如)<a href="/wiki/%E5%BB%BA%E7%AF%89%E8%A8%AD%E8%A8%88" class="mw-redirect" title="建築設計">建築設計</a>上可以用嚟分析喺一間建築物嘅入口隔離、用嚟俾<a href="/wiki/%E8%BC%AA%E6%A4%85" title="輪椅">輪椅</a>行嘅斜路嘅力學設計(將藍色四方形想像成一架輪椅)<sup id="cite_ref-65" class="reference"><a href="#cite_note-65"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading3"><h3 id="能量概念"><span id=".E8.83.BD.E9.87.8F.E6.A6.82.E5.BF.B5"></span>能量概念</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=13" title="編輯小節: 能量概念"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E8%83%BD%E9%87%8F" title="能量">能量</a>同<a href="/wiki/%E6%A9%9F%E6%A2%B0%E8%83%BD" title="機械能">機械能</a></div> <div class="mw-heading mw-heading4"><h4 id="作功"><span id=".E4.BD.9C.E5.8A.9F"></span>作功</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=14" title="編輯小節: 作功"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E4%BD%9C%E5%8A%9F" class="mw-redirect" title="作功">作功</a></div> <p>如果喺一個特定嘅參考系入面,有一股力 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da18bef8c979f3548bb0d8976f5844012d7b8256" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.683ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} }"></span> 持續噉施落一件有質量嘅物體嗰度,而且喺成個過程期間,件物體行咗 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2589325234008fec973d471bfcaace3af062fdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle \Delta \mathbf {r} }"></span> <sup id="cite_ref-66" class="reference"><a href="#cite_note-66"><span class="cite-bracket">&#91;</span>註 4<span class="cite-bracket">&#93;</span></a></sup> 咁遠嘅位移,用 <i>C</i> 代表佢行嗰條軌跡。因為成個過程入面有股力作用喺佢身上,件物體會有個非零嘅加速度,而有個非零嘅加速度代表佢個速度同動量會係噉變。成個過程入面,「嗰股力嘅<a href="/wiki/%E4%BD%9C%E5%8A%9F" class="mw-redirect" title="作功">作功</a><sup id="cite_ref-67" class="reference"><a href="#cite_note-67"><span class="cite-bracket">&#91;</span>e 34<span class="cite-bracket">&#93;</span></a></sup>」係一個冇方向嘅<a href="/wiki/%E6%A8%99%E9%87%8F" class="mw-redirect" title="標量">標量</a>,定義上係<sup id="cite_ref-68" class="reference"><a href="#cite_note-68"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=\mathbf {F} \cdot \Delta \mathbf {r} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=\mathbf {F} \cdot \Delta \mathbf {r} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e0a24c969bff1f9df67e259bb63b0c2a4191e8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:12.321ex; height:2.176ex;" alt="{\displaystyle W=\mathbf {F} \cdot \Delta \mathbf {r} \,}"></span>,或者寫做</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=m\mathbf {a} \,\cdot \Delta \mathbf {r} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=m\mathbf {a} \,\cdot \Delta \mathbf {r} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3773c5653d63015d13bf7aa853560ba9135dda54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.365ex; height:2.176ex;" alt="{\displaystyle W=m\mathbf {a} \,\cdot \Delta \mathbf {r} \,}"></span>。</dd></dl> <p>如果喺成個過程入面股力個數值唔一致,噉個功嘅值可以用<a href="/wiki/%E7%A9%8D%E5%88%86" title="積分">積分</a>(詳情睇微積分相關)嘅方法計: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=\int _{C}\mathbf {F} (\mathbf {r} )\cdot \mathrm {d} \mathbf {r} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=\int _{C}\mathbf {F} (\mathbf {r} )\cdot \mathrm {d} \mathbf {r} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb8c1f8bfefcad99d15f95301ecbc07e40645ca" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:17.749ex; height:5.676ex;" alt="{\displaystyle W=\int _{C}\mathbf {F} (\mathbf {r} )\cdot \mathrm {d} \mathbf {r} \,}"></span></dd></dl> <div style="clear: both;"></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1242160"><table class="gallery-mod gallery-mod-center"><tbody><tr><td><table class="gallery-mod-box" style="width:820px"><tbody><tr><td class="thumb" style="height:270px"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Billy_wagner_motion_2004.jpg" class="mw-file-description" title="上便呢串圖由右至左睇。"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/5/51/Billy_wagner_motion_2004.jpg" decoding="async" width="800" height="237" class="mw-file-element" data-file-width="749" data-file-height="222" /></a><figcaption><center>上便呢串圖由右至左睇。</center></figcaption></figure></td></tr><tr class="gallery-mod-text"><td class="core"><div class="caption" style="min-height:3.1em;width:807px"><center>上便呢串圖由右至左睇。</center>&#160;</div></td></tr></tbody></table></td></tr></tbody></table> <p>例如想像一個<a href="/wiki/%E6%A3%92%E7%90%83" title="棒球">棒球</a><a href="/wiki/%E6%8A%95%E6%89%8B" title="投手">投手</a>投球,啱啱開始嗰陣,個波喺佢手中唔郁(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/02ebaea2693bb5bc6bc09d54a7f77b2ac651b71a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.672ex; height:2.176ex;" alt="{\displaystyle \mathbf {v} =0}"></span>),而由「開始投」到「放手」期間,佢一路用佢隻手向個波施力,而喺呢段期間個波移動咗若干嘅距離(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2589325234008fec973d471bfcaace3af062fdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle \Delta \mathbf {r} }"></span>),令個波最後以若干非零速度(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \neq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mo>&#x2260;<!-- ≠ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \neq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4b9d8377af2a91280f8386a7d04d3cfc5cba4a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.672ex; height:2.676ex;" alt="{\displaystyle \mathbf {v} \neq 0}"></span>)飛出去<sup id="cite_ref-69" class="reference"><a href="#cite_note-69"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>順帶一提,如果有一股力,佢喺件物體身上作嘅功嘅數值總量係(只要移動嘅起點同終點不變)無論件物體嘅移動軌跡係點都一樣嘅話,呢股力就係一股<a href="/wiki/%E4%BF%9D%E5%AE%88%E5%8A%9B" title="保守力">保守力</a><sup id="cite_ref-70" class="reference"><a href="#cite_note-70"><span class="cite-bracket">&#91;</span>e 35<span class="cite-bracket">&#93;</span></a></sup>,例如<a href="/wiki/%E9%87%8D%E5%8A%9B" title="重力">重力</a>就係一股保守力,而<a href="/wiki/%E6%91%A9%E6%93%A6%E5%8A%9B" title="摩擦力">摩擦力</a>唔係<sup id="cite_ref-71" class="reference"><a href="#cite_note-71"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading4"><h4 id="動能"><span id=".E5.8B.95.E8.83.BD"></span>動能</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=15" title="編輯小節: 動能"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:1972_Citro%C3%ABn_Dyane_Luxe_(11945591865).jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/1972_Citro%C3%ABn_Dyane_Luxe_%2811945591865%29.jpg/300px-1972_Citro%C3%ABn_Dyane_Luxe_%2811945591865%29.jpg" decoding="async" width="300" height="201" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/db/1972_Citro%C3%ABn_Dyane_Luxe_%2811945591865%29.jpg/450px-1972_Citro%C3%ABn_Dyane_Luxe_%2811945591865%29.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/db/1972_Citro%C3%ABn_Dyane_Luxe_%2811945591865%29.jpg/600px-1972_Citro%C3%ABn_Dyane_Luxe_%2811945591865%29.jpg 2x" data-file-width="2129" data-file-height="1425" /></a><figcaption>一架以若干速度行駛緊嘅車;佢會帶有若干量嘅動能。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E5%8B%95%E8%83%BD" title="動能">動能</a></div> <p>有咗功呢個概念,就有得去諗力學入面有關<a href="/wiki/%E8%83%BD%E9%87%8F" title="能量">能量</a><sup id="cite_ref-72" class="reference"><a href="#cite_note-72"><span class="cite-bracket">&#91;</span>e 36<span class="cite-bracket">&#93;</span></a></sup>嘅問題<sup id="cite_ref-73" class="reference"><a href="#cite_note-73"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup>。首先,根據<a href="/wiki/%E9%81%8B%E5%8B%95%E6%96%B9%E7%A8%8B" title="運動方程">運動方程</a><sup id="cite_ref-74" class="reference"><a href="#cite_note-74"><span class="cite-bracket">&#91;</span>e 37<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-75" class="reference"><a href="#cite_note-75"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}v^{2}&amp;=v_{0}^{2}+2a\left(r-r_{0}\right)\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <mi>a</mi> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}v^{2}&amp;=v_{0}^{2}+2a\left(r-r_{0}\right)\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a420af33cf9851bfaed535c231f0a67e2537528a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:21.635ex; height:3.176ex;" alt="{\displaystyle {\begin{aligned}v^{2}&amp;=v_{0}^{2}+2a\left(r-r_{0}\right)\\\end{aligned}}}"></span>,</dd></dl> <p>呢條式描述一件加速緊嘅物體嘅速度變化,當中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e07b00e7fc0847fbd16391c778d65bc25c452597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.128ex; height:1.676ex;" alt="{\displaystyle v}"></span> 係件物體嘅最後速度,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60faad24775635f4722ccc438093dbbfe05f34ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{0}}"></span> 係佢初頭個速度。跟手執吓呢條式就會變成 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={v^{2}-v_{0}^{2} \over 2\left(r-r_{0}\right)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mi>r</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={v^{2}-v_{0}^{2} \over 2\left(r-r_{0}\right)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a29d3a17fa79d84a92ae1846925d284799a9ebc9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.585ex; height:6.843ex;" alt="{\displaystyle \mathbf {a} ={v^{2}-v_{0}^{2} \over 2\left(r-r_{0}\right)}}"></span>,即係</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ={v^{2}-v_{0}^{2} \over 2\Delta \mathbf {r} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <mn>2</mn> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ={v^{2}-v_{0}^{2} \over 2\Delta \mathbf {r} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1597f867aa029c9668b43c0b338ba0c6355fb316" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:12.438ex; height:6.176ex;" alt="{\displaystyle \mathbf {a} ={v^{2}-v_{0}^{2} \over 2\Delta \mathbf {r} }}"></span>,跟住代呢條式落去功嗰條式(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=m\mathbf {a} \,\cdot \Delta \mathbf {r} \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mspace width="thinmathspace" /> <mo>&#x22C5;<!-- ⋅ --></mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=m\mathbf {a} \,\cdot \Delta \mathbf {r} \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3773c5653d63015d13bf7aa853560ba9135dda54" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.365ex; height:2.176ex;" alt="{\displaystyle W=m\mathbf {a} \,\cdot \Delta \mathbf {r} \,}"></span>)嗰度嘅話就會出到</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=m\Delta \mathbf {r} \cdot \,{v^{2}-v_{0}^{2} \over 2\Delta \mathbf {r} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mi>m</mi> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <mn>2</mn> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=m\Delta \mathbf {r} \cdot \,{v^{2}-v_{0}^{2} \over 2\Delta \mathbf {r} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd7d8b5711a77a1c3787b95f94e3d135bb61fa11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.718ex; height:6.176ex;" alt="{\displaystyle W=m\Delta \mathbf {r} \cdot \,{v^{2}-v_{0}^{2} \over 2\Delta \mathbf {r} }}"></span>,跟住一路執:</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=m\cdot \,{v^{2}-v_{0}^{2} \over 2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mi>m</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=m\cdot \,{v^{2}-v_{0}^{2} \over 2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5dcc696a2c146e7667fd4b23ea7895739d5599a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:17.681ex; height:6.009ex;" alt="{\displaystyle W=m\cdot \,{v^{2}-v_{0}^{2} \over 2}}"></span>,</dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W={{1 \over 2}mv^{2}}-{{1 \over 2}mv_{0}^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> <msubsup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W={{1 \over 2}mv^{2}}-{{1 \over 2}mv_{0}^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f5d47e0d763fc317a228afa9b5ab6419d0c63cb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:20.816ex; height:5.176ex;" alt="{\displaystyle W={{1 \over 2}mv^{2}}-{{1 \over 2}mv_{0}^{2}}}"></span>。</dd></dl> <p>最尾呢條式表示,當有股力喺一件物體上作功,令後者速度改變嗰陣,屬於件物體嘅某個<a href="/wiki/%E7%89%A9%E7%90%86%E9%87%8F" title="物理量">物理量</a>會有所改變,而呢個物理量同件物體嘅「質量」以及「速度嘅<a href="/wiki/%E6%AC%A1%E6%96%B9" title="次方">次方</a>」成<a href="/wiki/%E6%AD%A3%E6%AF%94" class="mw-redirect" title="正比">正比</a>。呢個物理量係物理學上面所講嘅<a href="/wiki/%E5%8B%95%E8%83%BD" title="動能">動能</a><sup id="cite_ref-76" class="reference"><a href="#cite_note-76"><span class="cite-bracket">&#91;</span>e 38<span class="cite-bracket">&#93;</span></a></sup>-物體因為佢哋嘅郁動而帶嘅能量。由呢條式嗰度,仲有得推導埋<a href="/wiki/%E7%99%BD%E5%8A%AA%E5%88%A9%E5%AE%9A%E5%BE%8B" class="mw-redirect" title="白努利定律">白努利定律</a><sup id="cite_ref-77" class="reference"><a href="#cite_note-77"><span class="cite-bracket">&#91;</span>e 39<span class="cite-bracket">&#93;</span></a></sup>出嚟<sup id="cite_ref-78" class="reference"><a href="#cite_note-78"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading4"><h4 id="位能"><span id=".E4.BD.8D.E8.83.BD"></span>位能</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=16" title="編輯小節: 位能"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Terjun_paskhas.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Terjun_paskhas.png/300px-Terjun_paskhas.png" decoding="async" width="300" height="205" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0d/Terjun_paskhas.png/450px-Terjun_paskhas.png 1.5x, //upload.wikimedia.org/wikipedia/commons/0/0d/Terjun_paskhas.png 2x" data-file-width="577" data-file-height="395" /></a><figcaption>一個自由下墜緊嘅人;喺呢個過程當中,佢喪失位能,得到動能。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E4%BD%8D%E8%83%BD" title="位能">位能</a></div> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E9%81%8E%E5%B1%B1%E8%BB%8A%E7%89%A9%E7%90%86" title="過山車物理">過山車物理</a></div> <p>除咗動能之外,力學能量仲有所謂嘅<a href="/wiki/%E4%BD%8D%E8%83%BD" title="位能">位能</a><sup id="cite_ref-79" class="reference"><a href="#cite_note-79"><span class="cite-bracket">&#91;</span>e 40<span class="cite-bracket">&#93;</span></a></sup>-物體因為喺某啲力場入面嘅位置而有嘅能量。喺一個<a href="/wiki/%E5%BC%95%E5%8A%9B%E5%A0%B4" title="引力場">引力場</a><sup id="cite_ref-80" class="reference"><a href="#cite_note-80"><span class="cite-bracket">&#91;</span>e 41<span class="cite-bracket">&#93;</span></a></sup>入面,要將一件物體移離個引力場嘅中心就要抵抗引力場持續施喺件物體上嘅引力:如果除咗引力之外冇任何嘅力施件物體,俾佢<a href="/wiki/%E8%87%AA%E7%94%B1%E4%B8%8B%E5%A2%9C" title="自由下墜">自由下墜</a><sup id="cite_ref-81" class="reference"><a href="#cite_note-81"><span class="cite-bracket">&#91;</span>e 42<span class="cite-bracket">&#93;</span></a></sup>嘅話,佢會因為受引力場嘅力吸引而傾向向住個引力場嘅中心加速(牛頓第二定律)。假想有件物體喺一粒行星嘅引力場入面,唔受干擾噉樣受到股引力 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4ff1f8018d513f26ecf318397ee42716a377eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.704ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{g}}"></span> 向住粒星嘅中心跌落嘅話,佢跌咗某段距離 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2589325234008fec973d471bfcaace3af062fdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle \Delta \mathbf {r} }"></span> 之後,股引力喺佢身上作咗嘅功 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54a9c4c547f4d6111f81946cad242b18298d70b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.435ex; height:2.176ex;" alt="{\displaystyle W}"></span> 就會等如<sup id="cite_ref-82" class="reference"><a href="#cite_note-82"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W=\mathbf {F} _{g}\Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>W</mi> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W=\mathbf {F} _{g}\Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12f3d844891b43d4d11d77f92f31777ebb2dc523" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.276ex; height:2.843ex;" alt="{\displaystyle W=\mathbf {F} _{g}\Delta \mathbf {r} }"></span></dd></dl> <p>而如果要施股力 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{e}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{e}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3eb16867b0ed09536ececce7f23fad812ba3b2ab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.681ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{e}}"></span>,將一件物體喺個引力場當中移離引力場中心 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2589325234008fec973d471bfcaace3af062fdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle \Delta \mathbf {r} }"></span> 嘅距離,期間速度恆定不變-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/291217e4034696ba497f1a0f4b0de6c1cd63d175" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.56ex; height:2.176ex;" alt="{\displaystyle \mathbf {a} =0}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88ec97bade4834c8f45f78dfebd744d0edf6a192" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.944ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} =0}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{e}=\mathbf {F} _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{e}=\mathbf {F} _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16139e528ef4eb98dfcf78a4049b87a86f9dbdd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.484ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{e}=\mathbf {F} _{g}}"></span>,就總共要施以 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{g}\Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{g}\Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5ca2f00ac1b2ccb89a5a5261ac2b925cc867d18" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:5.742ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{g}\Delta \mathbf {r} }"></span> 咁多嘅作功。順帶一提,呢條式假設咗 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta \mathbf {r} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta \mathbf {r} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2589325234008fec973d471bfcaace3af062fdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.038ex; height:2.176ex;" alt="{\displaystyle \Delta \mathbf {r} }"></span> 同粒<a href="/wiki/%E8%A1%8C%E6%98%9F" title="行星">行星</a>嘅<a href="/wiki/%E7%9B%B4%E5%BE%91" title="直徑">直徑</a>比起上嚟好細,所以喺成個過程入面 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{g}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{g}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc4ff1f8018d513f26ecf318397ee42716a377eb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.704ex; height:2.843ex;" alt="{\displaystyle \mathbf {F} _{g}}"></span> 嘅數值可以當冇變(詳情睇<a href="/wiki/%E7%89%9B%E9%A0%93%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B%E5%AE%9A%E5%BE%8B" class="mw-redirect" title="牛頓萬有引力定律">牛頓萬有引力定律</a>)<sup id="cite_ref-ohanian_13-3" class="reference"><a href="#cite_note-ohanian-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>如果件物體係自由下墜,件物體因為受咗引力,所以會加速,而佢嘅速度升表示佢帶嘅動能會跟住升。如果件嘢冇因為受<a href="/wiki/%E7%A9%BA%E6%B0%A3%E9%98%BB%E5%8A%9B" class="mw-redirect" title="空氣阻力">空氣阻力</a>而減速嘅話,根據<a href="/wiki/%E8%83%BD%E9%87%8F%E5%AE%88%E6%81%86%E5%AE%9A%E5%BE%8B" title="能量守恆定律">能量守恆定律</a>,佢失去嘅位能會等如佢得到嘅動能,即係話: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{g}\Delta \mathbf {r} ={{1 \over 2}mv^{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">r</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>m</mi> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{g}\Delta \mathbf {r} ={{1 \over 2}mv^{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ca9a28ad90a5957aa3f1b48897d941ef4654b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.061ex; height:5.176ex;" alt="{\displaystyle \mathbf {F} _{g}\Delta \mathbf {r} ={{1 \over 2}mv^{2}}}"></span></dd></dl> <p>由呢條式嗰度可以睇得到「一件物體受嘅引力」、「佢自由下墜咗嘅距離」同埋「佢嘅動能改變」之間成嘅數學關係。用呢柞式計到出嚟嗰啲結果(考慮埋空氣阻力呢啲拉雜嘢嘅話)同實驗得出嘅結果吻合,所以呢柞式廣受物理學界採用<sup id="cite_ref-ohanian_13-4" class="reference"><a href="#cite_note-ohanian-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>動能同位能喺物理學同埋好多工程學領域上都係不可或缺嘅概念。例如想像家陣有架<a href="/wiki/%E9%81%8E%E5%B1%B1%E8%BB%8A" title="過山車">過山車</a>由<a href="/wiki/%E8%B7%AF%E8%BB%8C" title="路軌">路軌</a>頂點向下衝,期間架車會加速得到動能,架車所得嘅動能嘅量局部取決於架車喺頂點嗰陣嘅位能嘅量。頂點位能嘅量可以用相對簡單嘅數(頂點嘅高度等)估計,所以動能同位能嘅概念可以攞嚟幫手估計架過山車向下衝嗰陣嘅最高速度會係幾多,而知道過山車嘅最高速度對於評估過山車嘅安全嚟講有用<sup id="cite_ref-83" class="reference"><a href="#cite_note-83"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup>。詳情可以睇埋<a href="/wiki/%E9%81%8E%E5%B1%B1%E8%BB%8A%E7%89%A9%E7%90%86" title="過山車物理">過山車物理</a>嘅嘢<sup id="cite_ref-84" class="reference"><a href="#cite_note-84"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup>。 </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1242160"><table class="gallery-mod gallery-mod-center"><tbody><tr><td><table class="gallery-mod-box" style="width:470px"><tbody><tr><td class="thumb" style="height:365px"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Dodonpa_Roller_Coaster_in_2009.jpg" class="mw-file-description" title="過山車由路軌頂點向下衝嗰陣,架車會加速得到動能。"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Dodonpa_Roller_Coaster_in_2009.jpg/450px-Dodonpa_Roller_Coaster_in_2009.jpg" decoding="async" width="450" height="338" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/04/Dodonpa_Roller_Coaster_in_2009.jpg/675px-Dodonpa_Roller_Coaster_in_2009.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/04/Dodonpa_Roller_Coaster_in_2009.jpg/900px-Dodonpa_Roller_Coaster_in_2009.jpg 2x" data-file-width="2584" data-file-height="1938" /></a><figcaption><center>過山車由路軌頂點向下衝嗰陣,架車會加速得到動能。</center></figcaption></figure></td></tr><tr class="gallery-mod-text"><td class="core"><div class="caption" style="min-height:3.1em;width:457px"><center>過山車由路軌頂點向下衝嗰陣,架車會加速得到動能。</center>&#160;</div></td></tr></tbody></table></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="物理定律"><span id=".E7.89.A9.E7.90.86.E5.AE.9A.E5.BE.8B"></span>物理定律</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=17" title="編輯小節: 物理定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>古典力學理論框架當中有多條<a href="/wiki/%E7%89%A9%E7%90%86%E5%AE%9A%E5%BE%8B" title="物理定律">定律</a>。呢啲定律做嘅嘢係用方程式描述質量、位置以及力彼此之間或者同第啲<a href="/wiki/%E7%89%A9%E7%90%86%E9%87%8F" title="物理量">物理量</a>成乜關係。 </p> <div class="mw-heading mw-heading3"><h3 id="牛頓運動定律"><span id=".E7.89.9B.E9.A0.93.E9.81.8B.E5.8B.95.E5.AE.9A.E5.BE.8B"></span>牛頓運動定律</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=18" title="編輯小節: 牛頓運動定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Forces_and_resultant_forces.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Forces_and_resultant_forces.png/300px-Forces_and_resultant_forces.png" decoding="async" width="300" height="207" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Forces_and_resultant_forces.png/450px-Forces_and_resultant_forces.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Forces_and_resultant_forces.png/600px-Forces_and_resultant_forces.png 2x" data-file-width="1259" data-file-height="869" /></a><figcaption>淨力係指施喺件物體上面嘅力嘅總和。為咗簡單起見,幅圖淨係考慮打橫方向(1D)嘅力。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E7%89%9B%E9%A0%93%E9%81%8B%E5%8B%95%E5%AE%9A%E5%BE%8B" title="牛頓運動定律">牛頓運動定律</a></div> <p><a href="/wiki/%E7%89%9B%E9%A0%93%E9%81%8B%E5%8B%95%E5%AE%9A%E5%BE%8B" title="牛頓運動定律">牛頓運動定律</a><sup id="cite_ref-85" class="reference"><a href="#cite_note-85"><span class="cite-bracket">&#91;</span>e 43<span class="cite-bracket">&#93;</span></a></sup>係由<a href="/wiki/%E7%89%9B%E9%A0%93" class="mw-redirect" title="牛頓">牛頓</a>提出,描述物體嘅郁動同力之間嘅關係嘅三條物理定律,係古典力學理論框架嘅基礎。靠住呢三條定律,物理學家有得推理出各種各樣嘅力學定律出嚟,例如係描述<a href="/wiki/%E8%A1%8C%E6%98%9F" title="行星">行星</a>點圍住<a href="/wiki/%E6%81%86%E6%98%9F" title="恆星">恆星</a>轉嘅<a href="/wiki/%E9%96%8B%E6%99%AE%E5%8B%92%E5%AE%9A%E5%BE%8B" title="開普勒定律">開普勒定律</a><sup id="cite_ref-86" class="reference"><a href="#cite_note-86"><span class="cite-bracket">&#91;</span>e 44<span class="cite-bracket">&#93;</span></a></sup>噉<sup id="cite_ref-reif1995_58-2" class="reference"><a href="#cite_note-reif1995-58"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-halliday_87-0" class="reference"><a href="#cite_note-halliday-87"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading4"><h4 id="第一定律"><span id=".E7.AC.AC.E4.B8.80.E5.AE.9A.E5.BE.8B"></span>第一定律</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=19" title="編輯小節: 第一定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%B8%80%E5%AE%9A%E5%BE%8B" title="牛頓第一定律">牛頓第一定律</a></div> <p><a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%B8%80%E5%AE%9A%E5%BE%8B" title="牛頓第一定律">牛頓第一定律</a><sup id="cite_ref-88" class="reference"><a href="#cite_note-88"><span class="cite-bracket">&#91;</span>e 45<span class="cite-bracket">&#93;</span></a></sup>講,唔受外力影響(施加喺嚿物體上嘅<a href="/wiki/%E6%B7%A8%E5%8A%9B" title="淨力">淨力</a>等如 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>)嘅物體會持續佢本身嘅運動(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathrm {d} \mathbf {v} }/{\mathrm {d} t}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathrm {d} \mathbf {v} }/{\mathrm {d} t}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c313167d3522abe9d91c0c3fd65210451fb277f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.259ex; height:2.843ex;" alt="{\displaystyle {\mathrm {d} \mathbf {v} }/{\mathrm {d} t}=0}"></span>)-本嚟唔郁嘅會保持唔郁,郁緊嘅會繼續以佢本身嘅速度郁。用方程式表達嘅話就係<sup id="cite_ref-89" class="reference"><a href="#cite_note-89"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {F} _{i}=0\Rightarrow {\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\mathbf {F} _{i}=0\Rightarrow {\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39237e483fe8f429c79d41aba6772b0ead02075b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.9ex; height:6.509ex;" alt="{\displaystyle \sum _{i}\mathbf {F} _{i}=0\Rightarrow {\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}=0}"></span>;或者</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {F} _{i}=0\Rightarrow a=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i}\mathbf {F} _{i}=0\Rightarrow a=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac869c610f6d5a36bdd20e002a032b1358f11004" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.59ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {F} _{i}=0\Rightarrow a=0}"></span> <sup id="cite_ref-90" class="reference"><a href="#cite_note-90"><span class="cite-bracket">&#91;</span>註 5<span class="cite-bracket">&#93;</span></a></sup>。</dd></dl> <p>呢條定律亦都暗示咗: </p> <ul><li>唔郁嘅物體會保持唔郁,直至到有<a href="/wiki/%E6%B7%A8%E5%8A%9B" title="淨力">淨力</a><sup id="cite_ref-91" class="reference"><a href="#cite_note-91"><span class="cite-bracket">&#91;</span>e 46<span class="cite-bracket">&#93;</span></a></sup>施加喺佢身上為止。</li> <li>運動緊嘅物體,如果淨力係 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>,佢速度嘅大細同方向都唔會變,直到加喺呢嚿物體上面嘅淨力改變為止。</li></ul> <p>呢條定律引申咗<a href="/wiki/%E6%85%A3%E6%80%A7" title="慣性">慣性</a><sup id="cite_ref-92" class="reference"><a href="#cite_note-92"><span class="cite-bracket">&#91;</span>e 47<span class="cite-bracket">&#93;</span></a></sup>嘅概念-慣性嘅定義係指喺第一定律入面,物體有一種保持本嚟運動狀態嘅傾向<sup id="cite_ref-halliday_87-1" class="reference"><a href="#cite_note-halliday-87"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading4"><h4 id="第二定律"><span id=".E7.AC.AC.E4.BA.8C.E5.AE.9A.E5.BE.8B"></span>第二定律</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=20" title="編輯小節: 第二定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:STS120LaunchHiRes-edit1.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/STS120LaunchHiRes-edit1.jpg/240px-STS120LaunchHiRes-edit1.jpg" decoding="async" width="240" height="376" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/STS120LaunchHiRes-edit1.jpg/360px-STS120LaunchHiRes-edit1.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d6/STS120LaunchHiRes-edit1.jpg/480px-STS120LaunchHiRes-edit1.jpg 2x" data-file-width="1888" data-file-height="2956" /></a><figcaption>一架<a href="/wiki/%E5%A4%AA%E7%A9%BA%E8%88%B9" title="太空船">太空船</a>嘅火箭噴出大量燃料,令架太空船受到一股向上嘅淨力並且向上加速。</figcaption></figure> <div role="note" class="hatnote">内文:<a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%BA%8C%E5%AE%9A%E5%BE%8B" title="牛頓第二定律">牛頓第二定律</a></div> <p><a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%BA%8C%E5%AE%9A%E5%BE%8B" title="牛頓第二定律">牛頓第二定律</a><sup id="cite_ref-93" class="reference"><a href="#cite_note-93"><span class="cite-bracket">&#91;</span>e 48<span class="cite-bracket">&#93;</span></a></sup>講,物體嘅加速度同施喺佢上面嘅淨力成<a href="/wiki/%E6%AD%A3%E6%AF%94" class="mw-redirect" title="正比">正比</a>,同嚿物體嘅質量成<a href="/wiki/%E5%8F%8D%E6%AF%94" class="mw-redirect" title="反比">反比</a>,方向同淨力嘅方向一樣。用方程式表達嘅話<sup id="cite_ref-94" class="reference"><a href="#cite_note-94"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} \propto m\mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>&#x221D;<!-- ∝ --></mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} \propto m\mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d3dac4ee750ed3b038f913939d6f6799219118a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.121ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} \propto m\mathbf {a} }"></span></dd></dl> <p>而喺數學上,牛頓第二定律通常寫做: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} =m\mathbf {a} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mo>=</mo> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} =m\mathbf {a} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0c60fab89e8c3193952047dc565bcf8d233d115" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.121ex; height:2.176ex;" alt="{\displaystyle \mathbf {F} =m\mathbf {a} }"></span></dd></dl> <p>呢度定義咗「質量」就係淨力同加速度之間嘅比率。呢個意義下嘅質量就係所謂嘅<a href="/wiki/%E6%85%A3%E6%80%A7%E8%B3%AA%E9%87%8F" class="mw-redirect" title="慣性質量">慣性質量</a><sup id="cite_ref-95" class="reference"><a href="#cite_note-95"><span class="cite-bracket">&#91;</span>e 49<span class="cite-bracket">&#93;</span></a></sup>-即係當咗質量只不過係加喺嚿物體上嘅淨力同加速度相除得出嘅數值。喺<a href="/wiki/%E5%9C%8B%E9%9A%9B%E5%96%AE%E4%BD%8D%E5%88%B6" title="國際單位制">國際單位制</a>入面,力、加速度同埋質量嘅單位分別俾人規定做<a href="/wiki/%E7%89%9B%E9%A0%93_(%E5%96%AE%E4%BD%8D)" title="牛頓 (單位)">牛頓</a>(Newton,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a91302c621d1e18627cb635f8bd86852ab4b800b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle \mathrm {N} }"></span>)、<a href="/wiki/%E5%85%AC%E5%B0%BA" class="mw-redirect" title="公尺">公尺</a>每二次方<a href="/wiki/%E7%A7%92" class="mw-disambig" title="秒">秒</a>(m/s<sup>2</sup>)同埋<a href="/wiki/%E5%85%AC%E6%96%A4" class="mw-redirect" title="公斤">公斤</a>(kg)。施加 1 牛頓嘅力落質量係 1 公斤嘅物體度可以令到嚿物體嘅加速度變做 1 m/s<sup>2</sup>。亦即係話<sup id="cite_ref-halliday_87-2" class="reference"><a href="#cite_note-halliday-87"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\mathrm {N} =1\mathrm {kg} \cdot \mathrm {m} /\mathrm {s} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">N</mi> </mrow> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\mathrm {N} =1\mathrm {kg} \cdot \mathrm {m} /\mathrm {s} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c9aa52c284dea3bfb7da39526ac8626de7241e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.304ex; height:3.176ex;" alt="{\displaystyle 1\mathrm {N} =1\mathrm {kg} \cdot \mathrm {m} /\mathrm {s} ^{2}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="第三定律"><span id=".E7.AC.AC.E4.B8.89.E5.AE.9A.E5.BE.8B"></span>第三定律</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=21" title="編輯小節: 第三定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%B8%89%E5%AE%9A%E5%BE%8B" title="牛頓第三定律">牛頓第三定律</a></div> <p><a href="/wiki/%E7%89%9B%E9%A0%93%E7%AC%AC%E4%B8%89%E5%AE%9A%E5%BE%8B" title="牛頓第三定律">牛頓第三定律</a><sup id="cite_ref-96" class="reference"><a href="#cite_note-96"><span class="cite-bracket">&#91;</span>e 50<span class="cite-bracket">&#93;</span></a></sup>講,<a href="/wiki/%E4%BD%9C%E7%94%A8%E5%8A%9B" class="mw-redirect" title="作用力">作用力</a><sup id="cite_ref-97" class="reference"><a href="#cite_note-97"><span class="cite-bracket">&#91;</span>e 51<span class="cite-bracket">&#93;</span></a></sup>同<a href="/wiki/%E5%8F%8D%E4%BD%9C%E7%94%A8%E5%8A%9B" title="反作用力">反作用力</a><sup id="cite_ref-98" class="reference"><a href="#cite_note-98"><span class="cite-bracket">&#91;</span>e 52<span class="cite-bracket">&#93;</span></a></sup>嘅數值大細一樣,但方向就啱啱相反。當有一股力被施加喺一嚿物體上嗰陣(作用力),嗰嚿物體實會產生出另外一股大細相等得嚟方向又相反方向嘅力(反作用力)。呢條定律用方程式表達嘅話係噉嘅<sup id="cite_ref-hellingman1992_99-0" class="reference"><a href="#cite_note-hellingman1992-99"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum \mathbf {F} _{AB}=-\sum \mathbf {F} _{BA}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x2211;<!-- ∑ --></mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum \mathbf {F} _{AB}=-\sum \mathbf {F} _{BA}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eee82a578972d9493b745b0ebf3256da74105efe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:21.568ex; height:3.843ex;" alt="{\displaystyle \sum \mathbf {F} _{AB}=-\sum \mathbf {F} _{BA}}"></span></dd></dl> <p>當中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{AB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{AB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f15cd55d1f368940121a4ea76f5fb1676e064dcc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.395ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{AB}}"></span> 係物體 B 施喺物體 A 上面嘅力,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{BA}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">F</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {F} _{BA}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b70e3cb06f1e7b7d22544189c46ed8d6e9be6c8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.395ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{BA}}"></span> 係物體 A 施喺物體 B 上面嘅力。由呢條式入面睇得出,兩股力嘅數值係相等嘅,而個負號就表示咗兩股力方向相反-擺喺一個一維座標系統入面嘅話,佢哋一定會係一個向正方向一個向負方向,而且反作用力同作用力嘅物理本質應該係完全一樣嘅-如果作用力係一股<a href="/wiki/%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B" title="萬有引力">萬有引力</a>嘅話,噉反作用力都係一股萬有引力<sup id="cite_ref-hellingman1992_99-1" class="reference"><a href="#cite_note-hellingman1992-99"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading3"><h3 id="萬有引力定律"><span id=".E8.90.AC.E6.9C.89.E5.BC.95.E5.8A.9B.E5.AE.9A.E5.BE.8B"></span>萬有引力定律</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=22" title="編輯小節: 萬有引力定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">内文:<a href="/wiki/%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B%E5%AE%9A%E5%BE%8B" title="萬有引力定律">萬有引力定律</a></div> <p><a href="/wiki/%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B%E5%AE%9A%E5%BE%8B" title="萬有引力定律">萬有引力定律</a><sup id="cite_ref-100" class="reference"><a href="#cite_note-100"><span class="cite-bracket">&#91;</span>e 53<span class="cite-bracket">&#93;</span></a></sup>呢條定律話:宇宙入面嘅粒子(當佢哋係<a href="/wiki/%E9%BB%9E%E8%B3%AA%E9%87%8F" class="mw-redirect" title="點質量">點質量</a>)冚唪唥都會向第啲粒子施加一股穿過佢哋之間嘅連心線嘅吸引力;另外,一粒粒子施加落另一粒粒子嘅引力同另外嗰粒粒子施落自己嘅力數值一樣,而呢個數值係同呢兩粒粒子嘅質量成正比,但同佢哋之間嘅距離嘅平方成反比(「A 施喺 B 身上嘅萬有引力」同「B 施喺 A 身上嘅萬有引力」彼此係作用力同反作用力),同佢哋嘅<a href="/wiki/%E5%8C%96%E5%AD%B8%E6%80%A7%E8%B3%AA" title="化學性質">化學性質</a>或者其他<a href="/wiki/%E7%89%A9%E7%90%86%E6%80%A7%E8%B3%AA" title="物理性質">物理性質</a>無關,即係話<sup id="cite_ref-101" class="reference"><a href="#cite_note-101"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-102" class="reference"><a href="#cite_note-102"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> <msup> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3156e20e0c0ed9373b47b53e48663d2c6f014e46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:13.691ex; height:5.009ex;" alt="{\displaystyle F=G{\frac {m_{1}m_{2}}{r^{2}}}}"></span></dd></dl> <ul><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> 係兩件嘢之間嘅引力嘅數值;</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> 係<a href="/wiki/%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B%E5%B8%B8%E6%95%B8" title="萬有引力常數">萬有引力常數</a>;數值係 6.674×10<sup>−11</sup>&#160;N&#8201;<b>•</b>&#8201;(m/kg)<sup>2</sup> <sup id="cite_ref-103" class="reference"><a href="#cite_note-103"><span class="cite-bracket">&#91;</span>45<span class="cite-bracket">&#93;</span></a></sup>。</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{m}_{1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{m}_{1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301180698bd2ab5dbf739c179292409445c5005c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle {{m}_{1}}}"></span> 係第一件嘢嘅質量;單位係<a href="/wiki/%E5%85%AC%E6%96%A4" class="mw-redirect" title="公斤">公斤</a>(kg)。</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {{m}_{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {{m}_{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8bd08a1fe1bb494a015fcfc73471423b036665f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.095ex; height:2.009ex;" alt="{\displaystyle {{m}_{2}}}"></span> 係第二件嘢嘅質量;單位係公斤(kg)。</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>r</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d1ecb613aa2984f0576f70f86650b7c2a132538" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:1.676ex;" alt="{\displaystyle r}"></span> 係兩件嘢之間嘅距離;單位係<a href="/wiki/%E7%B1%B3_(%E9%95%B7%E5%BA%A6)" class="mw-redirect" title="米 (長度)">米</a>(m)。</li></ul> <div style="clear: both;"></div> <figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:NewtonsLawOfUniversalGravitation.svg" class="mw-file-description" title="兩件嘢互相吸引-引力係打孖出現嘅。"><img alt="兩件嘢互相吸引-引力係打孖出現嘅。" src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/NewtonsLawOfUniversalGravitation.svg/360px-NewtonsLawOfUniversalGravitation.svg.png" decoding="async" width="360" height="225" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0e/NewtonsLawOfUniversalGravitation.svg/540px-NewtonsLawOfUniversalGravitation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0e/NewtonsLawOfUniversalGravitation.svg/720px-NewtonsLawOfUniversalGravitation.svg.png 2x" data-file-width="400" data-file-height="250" /></a><figcaption>兩件嘢互相吸引-引力係打孖出現嘅。</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="第啲定律"><span id=".E7.AC.AC.E5.95.B2.E5.AE.9A.E5.BE.8B"></span>第啲定律</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=23" title="編輯小節: 第啲定律"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E8%83%A1%E5%85%8B%E5%AE%9A%E5%BE%8B" title="胡克定律">胡克定律</a><sup id="cite_ref-104" class="reference"><a href="#cite_note-104"><span class="cite-bracket">&#91;</span>e 54<span class="cite-bracket">&#93;</span></a></sup>指出,一條<a href="/wiki/%E5%BD%88%E5%BC%93" title="彈弓">彈弓</a>俾人拉長或者撳扁咗 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> 咁長嘅位移嗰陣,條彈弓會施 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f8fe463c9e2d708fff2d0e450a73b8875313a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.498ex; height:2.509ex;" alt="{\displaystyle F_{s}}"></span> 咁多嘅力嚟令自己回復原本長度,即係話, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -F_{s}=k\Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -F_{s}=k\Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/99f5c065ae723aa5d0d2ee080038f4b18065d893" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.881ex; height:2.509ex;" alt="{\displaystyle -F_{s}=k\Delta x}"></span>,當中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle k}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>k</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle k}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3c9a2c7b599b37105512c5d570edc034056dd40" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.211ex; height:2.176ex;" alt="{\displaystyle k}"></span> 係一個屬於嗰條彈弓嘅<a href="/wiki/%E5%B8%B8%E6%95%B8" title="常數">常數</a>,反映咗條彈弓嘅<a href="/wiki/%E5%89%9B%E5%BA%A6" title="剛度">剛度</a>,而個負號表示 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F_{s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F_{s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f8fe463c9e2d708fff2d0e450a73b8875313a3d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.498ex; height:2.509ex;" alt="{\displaystyle F_{s}}"></span> 喺方向上同 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> 永遠係相反嘅<sup id="cite_ref-105" class="reference"><a href="#cite_note-105"><span class="cite-bracket">&#91;</span>46<span class="cite-bracket">&#93;</span></a></sup>。</dd></dl></li></ul> <div style="clear: both;"></div> <figure class="mw-halign-center" typeof="mw:File/Thumb"><a href="/wiki/File:%E3%81%B0%E3%81%AD%E2%80%90%E8%B3%AA%E9%87%8F%E7%B3%BB%E3%81%AE%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/%E3%81%B0%E3%81%AD%E2%80%90%E8%B3%AA%E9%87%8F%E7%B3%BB%E3%81%AE%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95.gif/500px-%E3%81%B0%E3%81%AD%E2%80%90%E8%B3%AA%E9%87%8F%E7%B3%BB%E3%81%AE%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95.gif" decoding="async" width="500" height="224" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1b/%E3%81%B0%E3%81%AD%E2%80%90%E8%B3%AA%E9%87%8F%E7%B3%BB%E3%81%AE%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95.gif/750px-%E3%81%B0%E3%81%AD%E2%80%90%E8%B3%AA%E9%87%8F%E7%B3%BB%E3%81%AE%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/1/1b/%E3%81%B0%E3%81%AD%E2%80%90%E8%B3%AA%E9%87%8F%E7%B3%BB%E3%81%AE%E5%9B%BA%E6%9C%89%E6%8C%AF%E5%8B%95.gif 2x" data-file-width="1000" data-file-height="447" /></a><figcaption>胡克定律嘅動畫圖解;根據胡克定律,一條彈弓俾人拉長或者撳扁得愈勁(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> 數值愈大,當中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3890eb866b6258d7a304fc34c70ee3fb3a81a70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.266ex; height:2.176ex;" alt="{\displaystyle \Delta x}"></span> 係指條彈弓偏離咗自己自然長度幾多),佢就會施一股愈勁嘅力嚟令自己返去自然長度。可以睇埋<a href="/wiki/%E7%B0%A1%E8%AB%A7%E9%81%8B%E5%8B%95" title="簡諧運動">簡諧運動</a>。</figcaption></figure> <ul><li><a href="/wiki/%E9%81%94%E6%9E%97%E4%BC%AF%E7%89%B9%E5%8E%9F%E5%89%87" title="達林伯特原則">達林伯特原則</a><sup id="cite_ref-106" class="reference"><a href="#cite_note-106"><span class="cite-bracket">&#91;</span>e 55<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/%E6%AD%90%E6%8B%89%E6%96%B9%E7%A8%8B_(%E5%89%9B%E9%AB%94%E9%81%8B%E5%8B%95)" title="歐拉方程 (剛體運動)">歐拉方程</a><sup id="cite_ref-107" class="reference"><a href="#cite_note-107"><span class="cite-bracket">&#91;</span>e 56<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/%E5%93%88%E5%AF%86%E9%A0%93%E5%8E%9F%E5%89%87" title="哈密頓原則">哈密頓原則</a><sup id="cite_ref-108" class="reference"><a href="#cite_note-108"><span class="cite-bracket">&#91;</span>e 57<span class="cite-bracket">&#93;</span></a></sup></li></ul> <p>... 等等。 </p> <div class="mw-heading mw-heading2"><h2 id="適用範圍"><span id=".E9.81.A9.E7.94.A8.E7.AF.84.E5.9C.8D"></span>適用範圍</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=24" title="編輯小節: 適用範圍"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E7%8F%BE%E4%BB%A3%E7%89%A9%E7%90%86%E5%AD%B8" title="現代物理學">現代物理學</a></div> <p>古典力學喺研究一般地球環境下嘅物體嗰陣,都係適用嘅:喺呢種環境之下啲物體嘅尺寸大過原子好多,而且速度又低過光速一截,所以喺廿世紀打前,古典力學一路都好好用;但喺廿世紀初,人開始研究得原子咁大粒嘅物體同埋一啲以接近光速郁動嘅物體,於是發覺用古典力學嚟分析呢啲嘢嗰時計到嘅結果錯嗮,同<a href="/wiki/%E5%AF%A6%E9%A9%97" title="實驗">實驗</a>觀察到嘅結果完全唔同。喺呢個時代,好似<a href="/wiki/%E6%AD%90%E6%8B%94%C2%B7%E6%84%9B%E5%9B%A0%E6%96%AF%E5%9D%A6" title="歐拔·愛因斯坦">愛因斯坦</a>等嘅物理學家就提出咗<a href="/wiki/%E7%9B%B8%E5%B0%8D%E8%AB%96" title="相對論">相對論</a>同<a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8" title="量子力學">量子力學</a>等嘅學說,先至令科學界更加深入噉了解到呢啲嘢嘅本質。一般嚟講,古典力學可以話只不過係相對論同埋量子力學嘅一個特殊情況<sup id="cite_ref-ohanian_13-5" class="reference"><a href="#cite_note-ohanian-13"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-109" class="reference"><a href="#cite_note-109"><span class="cite-bracket">&#91;</span>47<span class="cite-bracket">&#93;</span></a></sup>。 </p><p>古典力學喺兩個條件成立之下,先會適用: </p> <div class="mw-heading mw-heading3"><h3 id="條件_1:速度"><span id=".E6.A2.9D.E4.BB.B6_1.EF.BC.9A.E9.80.9F.E5.BA.A6"></span>條件 1:速度</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=25" title="編輯小節: 條件 1:速度"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論">狹義相對論</a></div> <p>首先,啲嘢要<b>速度明顯低過光速</b>。喺古典力學當中,一粒粒子嘅動量 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60a9e20e22328367d07629008314cf17f0366638" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:1.872ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} \,\!}"></span> 係 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} =m_{0}\mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} =m_{0}\mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/768b2d1f024e86a1ddb8f9c4620c9a5946f9e180" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:9.476ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} =m_{0}\mathbf {v} \,\!}"></span></dd></dl> <p>其中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fb3a42a8f3f4c0cf5cd1d6f74a804cc7c971e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:3.482ex; height:2.009ex;" alt="{\displaystyle m_{0}\,\!}"></span> 係粒粒子嘅質量,而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} \,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {v} \,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9df6e8492015c331122565c580264dcc31144461" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.798ex; height:1.676ex;" alt="{\displaystyle \mathbf {v} \,\!}"></span> 係佢嘅速度。 </p><p>而喺<a href="/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論">狹義相對論</a><sup id="cite_ref-110" class="reference"><a href="#cite_note-110"><span class="cite-bracket">&#91;</span>e 58<span class="cite-bracket">&#93;</span></a></sup>入面,一粒粒子嘅動量係<sup id="cite_ref-wolfgang1991_111-0" class="reference"><a href="#cite_note-wolfgang1991-111"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-112" class="reference"><a href="#cite_note-112"><span class="cite-bracket">&#91;</span>49<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} ={\frac {m_{0}\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> <msqrt> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> </msqrt> </mfrac> </mrow> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} ={\frac {m_{0}\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/025ad599baf22737ce290846344d3529d1917472" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.671ex; margin-right: -0.387ex; width:14.599ex; height:7.509ex;" alt="{\displaystyle \mathbf {p} ={\frac {m_{0}\mathbf {v} }{\sqrt {1-{\frac {v^{2}}{c^{2}}}}}}\,\!}"></span></dd></dl> <p>其中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{0}\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m_{0}\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83fb3a42a8f3f4c0cf5cd1d6f74a804cc7c971e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-right: -0.387ex; width:3.482ex; height:2.009ex;" alt="{\displaystyle m_{0}\,\!}"></span> 係粒粒子嘅<a href="/wiki/%E9%9D%9C%E6%AD%A2%E8%B3%AA%E9%87%8F" title="靜止質量">靜止質量</a><sup id="cite_ref-113" class="reference"><a href="#cite_note-113"><span class="cite-bracket">&#91;</span>e 59<span class="cite-bracket">&#93;</span></a></sup>,而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/86a67b81c2de995bd608d5b2df50cd8cd7d92455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle c}"></span> 係<a href="/wiki/%E5%85%89%E9%80%9F" title="光速">光速</a>。由呢條式入面睇得到,當粒粒子嘅速度低過光速好多(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v\ll c\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>v</mi> <mo>&#x226A;<!-- ≪ --></mo> <mi>c</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v\ll c\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de530f8b21324036523a70d14aee2e7cbf3490f2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:6.136ex; height:1.843ex;" alt="{\displaystyle v\ll c\,\!}"></span>)嗰陣,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v^{2}/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v^{2}/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c1a19cc521cad009928473daa14970889ee0cd73" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.405ex; height:3.176ex;" alt="{\displaystyle v^{2}/c^{2}}"></span> ≈ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2aae8864a3c1fec9585261791a809ddec1489950" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 0}"></span>,所以 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1-v^{2}/c^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1-v^{2}/c^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/156a909d903cc57fc10385048b874616c7be8428" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.408ex; height:3.176ex;" alt="{\displaystyle 1-v^{2}/c^{2}}"></span> 嘅<a href="/wiki/%E9%96%8B%E6%96%B9" class="mw-redirect" title="開方">開方</a> ≈ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d98b82a3778f043108d4e20960a9193df57cbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.162ex; height:2.176ex;" alt="{\displaystyle 1}"></span>,<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">p</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {p} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd73e3862cb92b016721b8c492eadb4e8a577527" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.485ex; height:2.009ex;" alt="{\displaystyle \mathbf {p} }"></span> ≈ <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {m_{0}\mathbf {v} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">v</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {m_{0}\mathbf {v} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa92f5bfadf891b90936802b4400c75008b9140b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.506ex; height:2.009ex;" alt="{\displaystyle {m_{0}\mathbf {v} }}"></span>-用文字講嘅話,當一粒粒子嘅速度低過光速好多嘅時候,用古典力學計到嘅結果會同用狹義相對論計到嘅近乎一樣,但當粒粒子嘅速度愈嚟愈接近光速,用古典力學計到嘅結果同用狹義相對論計到嘅之間嘅差異會愈嚟愈大(而實驗結果都係撐狹義相對論),直至去到某一個點,古典力學計到嘅結果會同實驗數據得出嘅差異大到冇可能再靠古典力學-物理學界就係喺廿世紀初撞到呢一點。因為噉,廿一世紀嘅物理學研究唔會再用古典力學,而係會用相對論,不過因為古典力學喺一般地球環境之下都仲係啱用,而且佢啲方程式比較簡單,所以<a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%B8" title="工程學">工程學</a>好多時都仲係會用古典力學嚟計數<sup id="cite_ref-wolfgang1991_111-1" class="reference"><a href="#cite_note-wolfgang1991-111"><span class="cite-bracket">&#91;</span>48<span class="cite-bracket">&#93;</span></a></sup>。 </p> <div class="mw-heading mw-heading3"><h3 id="條件_2:尺度"><span id=".E6.A2.9D.E4.BB.B6_2.EF.BC.9A.E5.B0.BA.E5.BA.A6"></span>條件 2:尺度</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=26" title="編輯小節: 條件 2:尺度"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8" title="量子力學">量子力學</a></div> <p>除此之外,啲嘢要<b>尺度明顯大過原子</b>。 </p><p><a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8" title="量子力學">量子力學</a><sup id="cite_ref-114" class="reference"><a href="#cite_note-114"><span class="cite-bracket">&#91;</span>e 60<span class="cite-bracket">&#93;</span></a></sup>係廿世紀崛起嘅一個物理學理論,講到<a href="/wiki/%E7%89%A9%E8%B3%AA%E6%B3%A2" title="物質波">物質波</a><sup id="cite_ref-115" class="reference"><a href="#cite_note-115"><span class="cite-bracket">&#91;</span>e 61<span class="cite-bracket">&#93;</span></a></sup>嘅概念,指出<a href="/wiki/%E7%89%A9%E8%B3%AA" title="物質">物質</a>全部都會<a href="/wiki/%E6%B3%A2%E5%8B%95" title="波動">波動</a>噉嘅特性,會有<a href="/wiki/%E7%B9%9E%E5%B0%84" title="繞射">繞射</a>(波動通過物件嘅邊緣嗰陣會轉彎嘅現象)等嘅行為<sup id="cite_ref-feyman1990_116-0" class="reference"><a href="#cite_note-feyman1990-116"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-117" class="reference"><a href="#cite_note-117"><span class="cite-bracket">&#91;</span>51<span class="cite-bracket">&#93;</span></a></sup>。根據<a href="/wiki/%E5%BE%B7%E5%B8%83%E7%BE%85%E6%84%8F%E5%81%87%E8%AA%AA" class="mw-redirect" title="德布羅意假說">德布羅意假說</a><sup id="cite_ref-118" class="reference"><a href="#cite_note-118"><span class="cite-bracket">&#91;</span>e 62<span class="cite-bracket">&#93;</span></a></sup>,一粒<a href="/wiki/%E9%9D%9E%E7%9B%B8%E5%B0%8D%E8%AB%96%E5%9E%8B%E7%B2%92%E5%AD%90" class="mw-redirect" title="非相對論型粒子">非相對論型粒子</a>(指速度明顯低過光速嘅粒子,分析呢啲粒子嘅郁動唔使用到相對論)嘅<a href="/wiki/%E6%B3%A2%E9%95%B7" title="波長">波長</a>-即係所謂嘅<a href="/wiki/%E5%BE%B7%E5%B8%83%E7%BE%85%E6%84%8F%E6%B3%A2%E9%95%B7" class="mw-redirect" title="德布羅意波長">德布羅意波長</a><sup id="cite_ref-119" class="reference"><a href="#cite_note-119"><span class="cite-bracket">&#91;</span>e 63<span class="cite-bracket">&#93;</span></a></sup>可以用以下嘅式計: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda ={\frac {h}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda ={\frac {h}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ba64e374ccd3f05ca8b646070a27e94a2b28921" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:6.629ex; height:5.843ex;" alt="{\displaystyle \lambda ={\frac {h}{p}}}"></span>,</dd></dl> <p>其中 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle h\,\!}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>h</mi> <mspace width="thinmathspace" /> <mspace width="negativethinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle h\,\!}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cce181c419109da6a5ef53d7bc85d964fa293bd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; margin-right: -0.387ex; width:1.726ex; height:2.176ex;" alt="{\displaystyle h\,\!}"></span> 係<a href="/wiki/%E6%99%AE%E6%9C%97%E5%85%8B%E5%B8%B8%E6%95%B8" title="普朗克常數">普朗克常數</a><sup id="cite_ref-120" class="reference"><a href="#cite_note-120"><span class="cite-bracket">&#91;</span>e 64<span class="cite-bracket">&#93;</span></a></sup>,而 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle p}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>p</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle p}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81eac1e205430d1f40810df36a0edffdc367af36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; margin-left: -0.089ex; width:1.259ex; height:2.009ex;" alt="{\displaystyle p}"></span> 就係粒粒子嘅<a href="/wiki/%E5%8B%95%E9%87%8F" title="動量">動量</a>。一般嚟講,當研究緊嘅系統尺度接近德布羅意波長嗰陣,個系統會顯現出明顯嘅波動特性,而因為喺一般環境下物質嘅波動特性唔明顯,古典力學並冇考慮呢啲效應,所以古典力學喺研究緊嘅系統尺度接近德布羅意波長嗰時會做唔到準確嘅預測<sup id="cite_ref-feyman1990_116-1" class="reference"><a href="#cite_note-feyman1990-116"><span class="cite-bracket">&#91;</span>50<span class="cite-bracket">&#93;</span></a></sup>。 </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1242160"><table class="gallery-mod gallery-mod-center"><tbody><tr><td><table class="gallery-mod-box" style="width:520px"><tbody><tr><td class="thumb" style="height:320px"><figure class="mw-halign-center" typeof="mw:File"><a href="/wiki/File:Double-slit.svg" class="mw-file-description" title="上便呢幅圖,展示緊雙狹縫實驗個 setup。雙狹縫實驗等嘅實驗發現,分析好細小嘅物質(例如係電子噉)嗰陣,往往會觀察到呢啲物質出現好似波動噉嘅行為。"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Double-slit.svg/langyue-500px-Double-slit.svg.png" decoding="async" width="500" height="239" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Double-slit.svg/langyue-750px-Double-slit.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Double-slit.svg/langyue-1000px-Double-slit.svg.png 2x" data-file-width="512" data-file-height="245" /></a><figcaption>上便呢幅圖,展示緊<a href="/wiki/%E9%9B%99%E7%8B%B9%E7%B8%AB%E5%AF%A6%E9%A9%97" class="mw-redirect" title="雙狹縫實驗">雙狹縫實驗</a>個 setup。雙狹縫實驗等嘅<a href="/wiki/%E5%AF%A6%E9%A9%97" title="實驗">實驗</a>發現,分析好細小嘅<a href="/wiki/%E7%89%A9%E8%B3%AA" title="物質">物質</a>(例如係<a href="/wiki/%E9%9B%BB%E5%AD%90" title="電子">電子</a>噉)嗰陣,往往會觀察到呢啲物質出現好似<a href="/wiki/%E6%B3%A2%E5%8B%95" title="波動">波動</a>噉嘅行為。</figcaption></figure></td></tr><tr class="gallery-mod-text"><td class="core"><div class="caption" style="min-height:3.1em;width:507px">上便呢幅圖,展示緊<a href="/wiki/%E9%9B%99%E7%8B%B9%E7%B8%AB%E5%AF%A6%E9%A9%97" class="mw-redirect" title="雙狹縫實驗">雙狹縫實驗</a><sup id="cite_ref-121" class="reference"><a href="#cite_note-121"><span class="cite-bracket">&#91;</span>e 65<span class="cite-bracket">&#93;</span></a></sup>個 setup。雙狹縫實驗等嘅<a href="/wiki/%E5%AF%A6%E9%A9%97" title="實驗">實驗</a>發現,分析好細小嘅<a href="/wiki/%E7%89%A9%E8%B3%AA" title="物質">物質</a>(例如係<a href="/wiki/%E9%9B%BB%E5%AD%90" title="電子">電子</a>噉)嗰陣,往往會觀察到呢啲物質出現好似<a href="/wiki/%E6%B3%A2%E5%8B%95" title="波動">波動</a>噉嘅行為。&#160;</div></td></tr></tbody></table></td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="子領域"><span id=".E5.AD.90.E9.A0.98.E5.9F.9F"></span>子領域</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=27" title="編輯小節: 子領域"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:GodfreyKneller-IsaacNewton-1689.jpg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/GodfreyKneller-IsaacNewton-1689.jpg/240px-GodfreyKneller-IsaacNewton-1689.jpg" decoding="async" width="240" height="337" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/39/GodfreyKneller-IsaacNewton-1689.jpg/360px-GodfreyKneller-IsaacNewton-1689.jpg 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/39/GodfreyKneller-IsaacNewton-1689.jpg/480px-GodfreyKneller-IsaacNewton-1689.jpg 2x" data-file-width="1364" data-file-height="1916" /></a><figcaption><a href="/wiki/%E8%89%BE%E7%A2%A9%C2%B7%E7%89%9B%E9%A0%93" title="艾碩·牛頓">艾碩·牛頓</a>嘅畫像;佢發明咗<a href="/wiki/%E5%BE%AE%E7%A9%8D%E5%88%86" title="微積分">微積分</a>,對力學理論作出咗重大嘅貢獻。</figcaption></figure><p>古典力學可以分做多個子領域: </p><ul><li><a href="/wiki/%E9%9D%9C%E5%8A%9B%E5%AD%B8" title="靜力學">靜力學</a>,專門分析唔<a href="/wiki/%E5%8A%A0%E9%80%9F" class="mw-redirect" title="加速">加速</a>嘅物理系統之下嘅力結構,例如研究靜止嘅<a href="/wiki/%E5%BB%BA%E7%AF%89%E7%89%A9" class="mw-redirect" title="建築物">建築物</a>點樣因為受嘅淨力係 0 而企到喺度唔郁<sup id="cite_ref-122" class="reference"><a href="#cite_note-122"><span class="cite-bracket">&#91;</span>52<span class="cite-bracket">&#93;</span></a></sup>。</li> <li><a href="/wiki/%E5%8B%95%E5%8A%9B%E5%AD%B8" title="動力學">動力學</a>,專門分析力點樣影響物體嘅郁動,例如用<a href="/wiki/%E7%89%9B%E9%A0%93%E9%81%8B%E5%8B%95%E5%AE%9A%E5%BE%8B" title="牛頓運動定律">牛頓運動定律</a>研究<a href="/wiki/%E7%90%83%E9%A1%9E%E9%81%8B%E5%8B%95" class="mw-redirect" title="球類運動">球類運動</a>當中嘅波點樣受各種力嘅影響而郁動<sup id="cite_ref-123" class="reference"><a href="#cite_note-123"><span class="cite-bracket">&#91;</span>53<span class="cite-bracket">&#93;</span></a></sup>。</li> <li><a href="/wiki/%E9%81%8B%E5%8B%95%E5%AD%B8" title="運動學">運動學</a>,專門用唔用到「<a href="/wiki/%E5%8A%9B" title="力">力</a>」呢個概念嘅<a href="/wiki/%E6%95%B8%E5%AD%B8%E6%A8%A1%E5%9E%8B" title="數學模型">數學模型</a>嚟模擬點、物體或者多件物體組成嘅系統嘅郁動,例如用一個冇力喺入面嘅<a href="/wiki/%E5%87%BD%E6%95%B8" title="函數">函數</a>描述機械組成部份嘅<a href="/wiki/%E9%A0%BB%E7%8E%87" title="頻率">週期</a>郁動<sup id="cite_ref-124" class="reference"><a href="#cite_note-124"><span class="cite-bracket">&#91;</span>54<span class="cite-bracket">&#93;</span></a></sup>。</li> <li><a href="/wiki/%E9%80%A3%E7%BA%8C%E4%BB%8B%E8%B3%AA%E5%8A%9B%E5%AD%B8" title="連續介質力學">連續介質力學</a>將物體想像成連續嘅一大嚿物料(而唔係離散嘅<a href="/wiki/%E7%B2%92%E5%AD%90" title="粒子">粒子</a>)嚟分析物體嘅力學行為<sup id="cite_ref-125" class="reference"><a href="#cite_note-125"><span class="cite-bracket">&#91;</span>55<span class="cite-bracket">&#93;</span></a></sup>。</li> <li><a href="/wiki/%E7%B5%B1%E8%A8%88%E5%8A%9B%E5%AD%B8" title="統計力學">統計力學</a>建基於<a href="/wiki/%E6%A6%82%E7%8E%87%E8%AB%96" title="概率論">概率論</a>,嘗試思考物體嘅整體特性(例如係<a href="/wiki/%E6%BA%AB%E5%BA%A6" title="溫度">溫度</a>)點樣源自組成嚿物體嘅粒子嘅微觀力學行為<sup id="cite_ref-126" class="reference"><a href="#cite_note-126"><span class="cite-bracket">&#91;</span>56<span class="cite-bracket">&#93;</span></a></sup>。</li></ul> <p>... 等等。 </p> <div class="mw-heading mw-heading2"><h2 id="相關領域"><span id=".E7.9B.B8.E9.97.9C.E9.A0.98.E5.9F.9F"></span>相關領域</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=28" title="編輯小節: 相關領域"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <div role="note" class="hatnote">睇埋:<a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8" title="物理學">物理學</a></div> <ul><li><a href="/wiki/%E5%8F%A4%E5%85%B8%E7%89%A9%E7%90%86%E5%AD%B8" title="古典物理學">古典物理學</a></li> <li><a href="/wiki/%E5%8F%A4%E5%85%B8%E9%9B%BB%E7%A3%81%E5%AD%B8" title="古典電磁學">古典電磁學</a></li> <li><a href="/wiki/%E5%8A%9B%E5%AD%B8" title="力學">力學</a></li> <li><a href="/wiki/%E5%A4%A9%E9%AB%94%E7%89%A9%E7%90%86%E5%AD%B8" title="天體物理學">天體物理學</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="相關應用"><span id=".E7.9B.B8.E9.97.9C.E6.87.89.E7.94.A8"></span>相關應用</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=29" title="編輯小節: 相關應用"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>古典力學喺以下呢啲領域當中都會廣泛噉俾人採用嚟模擬物體喺力之下嘅行為: </p> <ul><li><a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%B8" title="工程學">工程學</a>(<a href="/wiki/%E6%A9%9F%E6%A2%B0%E5%B7%A5%E7%A8%8B" title="機械工程">機械工程</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%B5%90%E6%A7%8B%E5%B7%A5%E7%A8%8B" title="結構工程">結構工程</a>)</li> <li><a href="/wiki/%E5%BB%BA%E7%AF%89%E5%AD%B8" title="建築學">建築學</a></li> <li><a href="/wiki/%E7%94%9F%E7%89%A9%E5%8A%9B%E5%AD%B8" title="生物力學">生物力學</a></li> <li><a href="/wiki/%E9%81%8B%E5%8B%95%E7%94%9F%E7%89%A9%E5%8A%9B%E5%AD%B8" title="運動生物力學">運動生物力學</a></li> <li><a href="/wiki/%E9%81%8A%E6%88%B2%E7%89%A9%E7%90%86" title="遊戲物理">遊戲物理</a></li></ul> <p>... 等等。 </p> <div class="mw-heading mw-heading2"><h2 id="睇埋"><span id=".E7.9D.87.E5.9F.8B"></span>睇埋</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=30" title="編輯小節: 睇埋"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%E9%81%8B%E5%8B%95%E6%96%B9%E7%A8%8B" title="運動方程">運動方程</a></li> <li><a href="/wiki/%E5%90%91%E9%87%8F%E7%A9%BA%E9%96%93" title="向量空間">向量空間</a></li> <li><a href="/wiki/%E6%A9%9F%E6%A2%B0" title="機械">機械</a></li> <li><a href="/wiki/%E7%B0%A1%E5%96%AE%E6%A9%9F%E6%A2%B0" title="簡單機械">簡單機械</a></li> <li><a href="/wiki/%E9%81%8B%E5%8B%95" title="運動">運動</a></li></ul> <div style="clear: both;"></div> <div class="mw-heading mw-heading2"><h2 id="註釋"><span id=".E8.A8.BB.E9.87.8B"></span>註釋</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=31" title="編輯小節: 註釋"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r2020813">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-38"><span class="mw-cite-backlink"><a href="#cite_ref-38">↑</a></span> <span class="reference-text">架火車嘅速度係「向東時速 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 40}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>40</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 40}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/686d435c2512a705c6680b84e9d172f259941f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 40}"></span> 公里」,速率係「時速 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 40}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>40</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 40}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/686d435c2512a705c6680b84e9d172f259941f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.325ex; height:2.176ex;" alt="{\displaystyle 40}"></span> 公里」。</span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><a href="#cite_ref-39">↑</a></span> <span class="reference-text">如果兩個速度方向相反,噉佢哋會係一正一負,速度加埋嘅話會互相抵消。</span> </li> <li id="cite_note-62"><span class="mw-cite-backlink"><a href="#cite_ref-62">↑</a></span> <span class="reference-text">有關 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sin }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>sin</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sin }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee55beec18afd710e7ab767964b915b020c65093" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.856ex; height:2.176ex;" alt="{\displaystyle \sin }"></span> 嘅數學知識,可以睇<a href="/wiki/%E6%AD%A3%E5%BC%A6" title="正弦">正弦</a>。</span> </li> <li id="cite_note-66"><span class="mw-cite-backlink"><a href="#cite_ref-66">↑</a></span> <span class="reference-text">Δ<b>r</b> = <b>r</b><sub>final</sub> − <b>r</b><sub>initial</sub>;<b>r</b><sub>final</sub> 係件物體最後個位置,而 <b>r</b><sub>initial</sub> 係佢初頭個位置。</span> </li> <li id="cite_note-90"><span class="mw-cite-backlink"><a href="#cite_ref-90">↑</a></span> <span class="reference-text"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2211;<!-- ∑ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1d4e06539576633987e902f402ed46728d573b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.355ex; height:3.843ex;" alt="{\displaystyle \sum }"></span> 係指「總和」。</span> </li> </ol></div> <div class="mw-heading mw-heading2"><h2 id="參考"><span id=".E5.8F.83.E8.80.83"></span>參考</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=32" title="編輯小節: 參考"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>篇文用咗嘅<a href="/wiki/%E8%A1%8C%E8%A9%B1" title="行話">行話</a>或者<a href="/wiki/%E5%B0%88%E6%9C%89%E5%90%8D%E8%A9%9E" title="專有名詞">專有名詞</a>,<a href="/wiki/%E8%8B%B1%E6%96%87" title="英文">英文</a>版本如下: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2020813"><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">classical mechanics</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Newtonian mechanics</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><a href="#cite_ref-10">↑</a></span> <span class="reference-text">Euclidean geometry</span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><a href="#cite_ref-12">↑</a></span> <span class="reference-text">point mass</span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><a href="#cite_ref-14">↑</a></span> <span class="reference-text">mass</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><a href="#cite_ref-15">↑</a></span> <span class="reference-text">position</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><a href="#cite_ref-16">↑</a></span> <span class="reference-text">force</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><a href="#cite_ref-17">↑</a></span> <span class="reference-text">approximation</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><a href="#cite_ref-18">↑</a></span> <span class="reference-text">center of mass</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><a href="#cite_ref-19">↑</a></span> <span class="reference-text">position</span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><a href="#cite_ref-20">↑</a></span> <span class="reference-text">coordinate system</span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><a href="#cite_ref-21">↑</a></span> <span class="reference-text">origin</span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><a href="#cite_ref-22">↑</a></span> <span class="reference-text">dimension</span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><a href="#cite_ref-24">↑</a></span> <span class="reference-text">motion</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><a href="#cite_ref-25">↑</a></span> <span class="reference-text">absolute</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><a href="#cite_ref-28">↑</a></span> <span class="reference-text">displacement</span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><a href="#cite_ref-29">↑</a></span> <span class="reference-text">vector</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><a href="#cite_ref-31">↑</a></span> <span class="reference-text">distance</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><a href="#cite_ref-32">↑</a></span> <span class="reference-text">velocity</span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><a href="#cite_ref-35">↑</a></span> <span class="reference-text">speed</span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><a href="#cite_ref-36">↑</a></span> <span class="reference-text">scalar</span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><a href="#cite_ref-37">↑</a></span> <span class="reference-text">relative velocity</span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><a href="#cite_ref-41">↑</a></span> <span class="reference-text">unit vector</span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><a href="#cite_ref-42">↑</a></span> <span class="reference-text">acceleration</span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><a href="#cite_ref-45">↑</a></span> <span class="reference-text">frame of reference</span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><a href="#cite_ref-46">↑</a></span> <span class="reference-text">arbitrary</span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><a href="#cite_ref-50">↑</a></span> <span class="reference-text">linear momentum</span> </li> <li id="cite_note-53"><span class="mw-cite-backlink"><a href="#cite_ref-53">↑</a></span> <span class="reference-text">SI Units</span> </li> <li id="cite_note-55"><span class="mw-cite-backlink"><a href="#cite_ref-55">↑</a></span> <span class="reference-text">law of conservation of momentum</span> </li> <li id="cite_note-57"><span class="mw-cite-backlink"><a href="#cite_ref-57">↑</a></span> <span class="reference-text">Newton's second law</span> </li> <li id="cite_note-59"><span class="mw-cite-backlink"><a href="#cite_ref-59">↑</a></span> <span class="reference-text">free body diagram</span> </li> <li id="cite_note-60"><span class="mw-cite-backlink"><a href="#cite_ref-60">↑</a></span> <span class="reference-text">friction</span> </li> <li id="cite_note-61"><span class="mw-cite-backlink"><a href="#cite_ref-61">↑</a></span> <span class="reference-text">reaction</span> </li> <li id="cite_note-67"><span class="mw-cite-backlink"><a href="#cite_ref-67">↑</a></span> <span class="reference-text">work done</span> </li> <li id="cite_note-70"><span class="mw-cite-backlink"><a href="#cite_ref-70">↑</a></span> <span class="reference-text">conservative force</span> </li> <li id="cite_note-72"><span class="mw-cite-backlink"><a href="#cite_ref-72">↑</a></span> <span class="reference-text">energy</span> </li> <li id="cite_note-74"><span class="mw-cite-backlink"><a href="#cite_ref-74">↑</a></span> <span class="reference-text">equations of motions</span> </li> <li id="cite_note-76"><span class="mw-cite-backlink"><a href="#cite_ref-76">↑</a></span> <span class="reference-text">kinetic energy</span> </li> <li id="cite_note-77"><span class="mw-cite-backlink"><a href="#cite_ref-77">↑</a></span> <span class="reference-text">Bernoulli's principle</span> </li> <li id="cite_note-79"><span class="mw-cite-backlink"><a href="#cite_ref-79">↑</a></span> <span class="reference-text">potential energy</span> </li> <li id="cite_note-80"><span class="mw-cite-backlink"><a href="#cite_ref-80">↑</a></span> <span class="reference-text">gravitational field</span> </li> <li id="cite_note-81"><span class="mw-cite-backlink"><a href="#cite_ref-81">↑</a></span> <span class="reference-text">free fall</span> </li> <li id="cite_note-85"><span class="mw-cite-backlink"><a href="#cite_ref-85">↑</a></span> <span class="reference-text">Newton's laws of motion</span> </li> <li id="cite_note-86"><span class="mw-cite-backlink"><a href="#cite_ref-86">↑</a></span> <span class="reference-text">Kepler's laws of planetary motion</span> </li> <li id="cite_note-88"><span class="mw-cite-backlink"><a href="#cite_ref-88">↑</a></span> <span class="reference-text">Newton's first law</span> </li> <li id="cite_note-91"><span class="mw-cite-backlink"><a href="#cite_ref-91">↑</a></span> <span class="reference-text">net force</span> </li> <li id="cite_note-92"><span class="mw-cite-backlink"><a href="#cite_ref-92">↑</a></span> <span class="reference-text">inertia</span> </li> <li id="cite_note-93"><span class="mw-cite-backlink"><a href="#cite_ref-93">↑</a></span> <span class="reference-text">Newton's second law</span> </li> <li id="cite_note-95"><span class="mw-cite-backlink"><a href="#cite_ref-95">↑</a></span> <span class="reference-text">inertial mass</span> </li> <li id="cite_note-96"><span class="mw-cite-backlink"><a href="#cite_ref-96">↑</a></span> <span class="reference-text">Newton's third law</span> </li> <li id="cite_note-97"><span class="mw-cite-backlink"><a href="#cite_ref-97">↑</a></span> <span class="reference-text">action</span> </li> <li id="cite_note-98"><span class="mw-cite-backlink"><a href="#cite_ref-98">↑</a></span> <span class="reference-text">reaction</span> </li> <li id="cite_note-100"><span class="mw-cite-backlink"><a href="#cite_ref-100">↑</a></span> <span class="reference-text">Newton's law of universal gravitation</span> </li> <li id="cite_note-104"><span class="mw-cite-backlink"><a href="#cite_ref-104">↑</a></span> <span class="reference-text">Hooke's law</span> </li> <li id="cite_note-106"><span class="mw-cite-backlink"><a href="#cite_ref-106">↑</a></span> <span class="reference-text">d'Alembert principle</span> </li> <li id="cite_note-107"><span class="mw-cite-backlink"><a href="#cite_ref-107">↑</a></span> <span class="reference-text">Euler's equations</span> </li> <li id="cite_note-108"><span class="mw-cite-backlink"><a href="#cite_ref-108">↑</a></span> <span class="reference-text">Hamilton's principle</span> </li> <li id="cite_note-110"><span class="mw-cite-backlink"><a href="#cite_ref-110">↑</a></span> <span class="reference-text">special theory of relativity</span> </li> <li id="cite_note-113"><span class="mw-cite-backlink"><a href="#cite_ref-113">↑</a></span> <span class="reference-text">rest mass</span> </li> <li id="cite_note-114"><span class="mw-cite-backlink"><a href="#cite_ref-114">↑</a></span> <span class="reference-text">quantum mechanics</span> </li> <li id="cite_note-115"><span class="mw-cite-backlink"><a href="#cite_ref-115">↑</a></span> <span class="reference-text">matter wave</span> </li> <li id="cite_note-118"><span class="mw-cite-backlink"><a href="#cite_ref-118">↑</a></span> <span class="reference-text">De Broglie hypothesis</span> </li> <li id="cite_note-119"><span class="mw-cite-backlink"><a href="#cite_ref-119">↑</a></span> <span class="reference-text">De Broglie wavelength</span> </li> <li id="cite_note-120"><span class="mw-cite-backlink"><a href="#cite_ref-120">↑</a></span> <span class="reference-text">Planck constant</span> </li> <li id="cite_note-121"><span class="mw-cite-backlink"><a href="#cite_ref-121">↑</a></span> <span class="reference-text">double-slit experiment</span> </li> </ol></div> <p>篇文引用咗以下呢啲<a href="/wiki/%E6%96%87%E7%8D%BB" title="文獻">文獻</a>同<a href="/wiki/%E7%B6%B2%E9%A0%81" title="網頁">網頁</a>: </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r2020813"><div class="reflist reflist-columns references-column-width reflist-columns-3"> <ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text">Ceanga, V., &amp; Hurmuzlu, Y. (2001). A new look at an old problem: Newton's cradle. <i>J. appl. mech.</i>, 68(4), 575-583.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text">Barfield, W. R. (1998). The biomechanics of kicking in soccer. <i>Clinics in sports medicine</i>, 17(4), 711-728.</span> </li> <li id="cite_note-french-3"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-french_3-0">3.0</a></sup> <sup><a href="#cite_ref-french_3-1">3.1</a></sup> <sup><a href="#cite_ref-french_3-2">3.2</a></sup> <sup><a href="#cite_ref-french_3-3">3.3</a></sup> <sup><a href="#cite_ref-french_3-4">3.4</a></sup></span> <span class="reference-text">French, A.P. (1971). <i>Newtonian Mechanics</i>. New York: W. W. Norton &amp; Company.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><a href="#cite_ref-6">↑</a></span> <span class="reference-text">Bettini, Alessandro (2016). <i>A Course in Classical Physics</i> 1-Mechanics. Springer. p. vii.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><a href="#cite_ref-7">↑</a></span> <span class="reference-text">Kleppner, Daniel; Kolenkow, Robert (2014). <i>An Introduction to Mechanics</i> (2nd ed.). Cambridge: Cambridge University Press. p. 49.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><a href="#cite_ref-8">↑</a></span> <span class="reference-text">Thornton, Stephen T.; Marion, Jerry B. (2004). <i>Classical dynamics of particles and systems</i> (5. ed.). Belmont, Calif. [u.a.]: Brooks/Cole. p. 50</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><a href="#cite_ref-9">↑</a></span> <span class="reference-text">Feynman, Richard (1999). <i>The Feynman Lectures on Physics</i>. Perseus Publishing.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><a href="#cite_ref-11">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r2190673">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:linear-gradient(transparent,transparent),url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .references-small,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .pin1ming4,.mw-parser-output .syu1ming4{font-style:normal}.mw-parser-output .pin1ming4>.zit3,.mw-parser-output .syu1ming4>.zit3,.mw-parser-output .zyun1ming4>.zit3,.mw-parser-output .zoek6zung6>.zit3{display:inline-block}.mw-parser-output .pin1ming4 .zit3>.zit3,.mw-parser-output .syu1ming4 .zit3>.zit3,.mw-parser-output .zyun1ming4 .zit3>.zit3,.mw-parser-output .zoek6zung6 .zit3>.zit3{display:inline-flex}.mw-parser-output .pin1ming4 .hoi1,.mw-parser-output .pin1ming4 .fan1gaak3,.mw-parser-output .pin1ming4 .saan1,.mw-parser-output .syu1ming4 .hoi1,.mw-parser-output .syu1ming4 .fan1gaak3,.mw-parser-output .syu1ming4 .saan1{display:inline-block;width:0;height:0;font-size:0.1px;color:transparent}.mw-parser-output .zyun1ming4 .fan1gaak3{font-size:0.125px}.mw-parser-output .pin1ming4+.pin1ming4,.mw-parser-output .pin1ming4+.syu1ming4,.mw-parser-output .syu1ming4+.pin1ming4,.mw-parser-output .syu1ming4+.syu1ming4,.mw-parser-output .zyun1ming4-b+.zyun1ming4-b,.mw-parser-output .zyun1ming4+.zyun1ming4{margin-left:0.0833em}.mw-parser-output .pin1ming4 .hai2tau4ge3.zit3 .hai2tau4ge3.zi6:after,.mw-parser-output .syu1ming4 .hai2tau4ge3.zit3 .hai2tau4ge3.zi6:after{clip-path:inset(0 0 0 0.05em)}.mw-parser-output .pin1ming4 .hai2zeoi3tau4ge3.hai2zeoi3mei1ge3.zit3 .hai2zeoi3tau4ge3.hai2zeoi3mei1ge3.zi6:after,.mw-parser-output .syu1ming4 .hai2zeoi3tau4ge3.hai2zeoi3mei1ge3.zit3 .hai2zeoi3tau4ge3.hai2zeoi3mei1ge3.zi6:after{clip-path:inset(0 0.14em 0 0.05em)}.mw-parser-output .pin1ming4 .hai2zeoi3mei1ge3.zit3 .hai2zeoi3mei1ge3.zi6:after,.mw-parser-output .syu1ming4 .hai2zeoi3mei1ge3.zit3 .hai2zeoi3mei1ge3.zi6:after{clip-path:inset(0 0.14em 0 0)}.mw-parser-output a[href$=".pdf"].external>span[aria-label]>.pin1ming4>.saan1,.mw-parser-output a[href$=".pdf?"].external>span[aria-label]>.pin1ming4>.saan1,.mw-parser-output a[href$=".pdf#"].external>span[aria-label]>.pin1ming4>.saan1,.mw-parser-output a[href$=".PDF"].external>span[aria-label]>.pin1ming4>.saan1,.mw-parser-output a[href$=".PDF?"].external>span[aria-label]>.pin1ming4>.saan1,.mw-parser-output a[href$=".PDF#"].external>span[aria-label]>.pin1ming4>.saan1,.mw-parser-output a[href$=".pdf"].external>span[aria-label]>.syu1ming4>.saan1,.mw-parser-output a[href$=".pdf?"].external>span[aria-label]>.syu1ming4>.saan1,.mw-parser-output a[href$=".pdf#"].external>span[aria-label]>.syu1ming4>.saan1,.mw-parser-output a[href$=".PDF"].external>span[aria-label]>.syu1ming4>.saan1,.mw-parser-output a[href$=".PDF?"].external>span[aria-label]>.syu1ming4>.saan1,.mw-parser-output a[href$=".PDF#"].external>span[aria-label]>.syu1ming4>.saan1{width:unset;font-size:unset}.mw-parser-output .zyun1ming4 .hai2tau4ge3.zit3 .hai2tau4ge3.zi6:after{overflow:hidden}.mw-parser-output .zyun1ming4 .hai2tau4ge3.hai2zeoi3mei1ge3.zit3{clip-path:inset(0 0 0 0)}.mw-parser-output .zyun1ming4 .hai2tau4ge3.hai2zeoi3mei1ge3.zit3 .hai2tau4ge3.hai2zeoi3mei1ge3.zi6:after{clip-path:inset(0.14em 0 0 0)}.mw-parser-output .zyun1ming4 .hai2zeoi3mei1ge3.zit3 .hai2zeoi3mei1ge3.zi6:after{transform:rotate(90deg)translate(-0.25em,0.5em)}.mw-parser-output .fan1gaak3+.zi6:after{clip-path:inset(0 0 0 0.1em)}.mw-parser-output .pin1ming4 .zi6:after,.mw-parser-output .syu1ming4 .zi6:after,.mw-parser-output .zyun1ming4 .zi6:after,.mw-parser-output .zoek6zung6 .zi6:after{position:absolute;align-self:baseline;margin-left:-1em}.mw-parser-output .pin1ming4 .zi6:after,.mw-parser-output .syu1ming4 .zi6:after{padding-top:1em;content:"﹋"}.mw-parser-output .zyun1ming4 .zi6:after{content:"︳";transform-origin:bottom left;transform:rotate(90deg)translate(-0.25em,0.35em)}.mw-parser-output .zoek6zung6 .zi6:after{padding-top:0.6em;content:"·";width:1em;text-align:center}.mw-parser-output .koen1zo2,.mw-parser-output .pin1ming4-b .hoi1-adj,.mw-parser-output .syu1ming4-b .hoi1-adj{margin-left:-0.4em}.mw-parser-output .koen1jau6,.mw-parser-output .pin1ming4-b .saan1-adj,.mw-parser-output .syu1ming4-b .saan1-adj{margin-right:-0.4em}.mw-parser-output .zyun1ming4-b{white-space:nowrap;border-bottom:0.05em solid currentColor}.mw-parser-output .zyun1ming4-b+link+.zyun1ming4-b,.mw-parser-output .zyun1ming4-b+.zyun1ming4-b{margin-left:0.083em}.mw-parser-output .references-small>ul{margin-left:0}.mw-parser-output .references-small>ul>li{margin-left:3em;text-indent:-3em;list-style:none}.mw-parser-output .citation .mw-selflink{font-weight:inherit}</style><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://webarchive.loc.gov/all/20130709154423/http%3A//ocw.mit.edu/courses/physics/8%2D01%2Dphysics%2Di%2Dfall%2D2003/lecture%2Dnotes/binder1.pdf#">"MIT physics 8.01 lecture notes (page 12)"</a> <span class="cs1-format">(PDF)</span>. <a rel="nofollow" class="external text" href="http://ocw.mit.edu/courses/physics/8-01-physics-i-fall-2003/lecture-notes/binder1.pdf#">原著</a> <span class="cs1-format">(PDF)</span>喺2013年7月9號歸檔<span class="reference-accessdate">. 喺2018年1月28號搵到</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=MIT+physics+8.01+lecture+notes+%28page+12%29&amp;rft_id=http%3A%2F%2Focw.mit.edu%2Fcourses%2Fphysics%2F8-01-physics-i-fall-2003%2Flecture-notes%2Fbinder1.pdf%23&amp;rfr_id=info%3Asid%2Fzh-yue.wikipedia.org%3A%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" class="Z3988"></span></span> </li> <li id="cite_note-ohanian-13"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-ohanian_13-0">9.0</a></sup> <sup><a href="#cite_ref-ohanian_13-1">9.1</a></sup> <sup><a href="#cite_ref-ohanian_13-2">9.2</a></sup> <sup><a href="#cite_ref-ohanian_13-3">9.3</a></sup> <sup><a href="#cite_ref-ohanian_13-4">9.4</a></sup> <sup><a href="#cite_ref-ohanian_13-5">9.5</a></sup></span> <span class="reference-text">H.C. Ohanian, J.T. Markert (2007). <i>Physics for Engineers and Scientists</i>. 1 (3rd ed.).</span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><a href="#cite_ref-23">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://mathworld.wolfram.com/Coordinates.html">Wolfram MathWorld - Coordinates</a>.</span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><a href="#cite_ref-26">↑</a></span> <span class="reference-text">Knudsen, Jens M.; Hjorth, Poul (2012). <i>Elements of Newtonian Mechanics</i> (illustrated ed.). Springer Science &amp; Business Media. p. 30.</span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><a href="#cite_ref-27">↑</a></span> <span class="reference-text">Charleton, Walter, 1654, <i>Physiologia Epicuro-Gassendo-Charltoniana: or a Fabrick of Science Natural Upon the Hypothesis of Atoms</i>, London: Tho. Newcomb. Reprinted with indices and introduction by Robert Hugh Kargon, New York and London: Johnson Reprint Corporation, 1966.</span> </li> <li id="cite_note-hendersondisplacedistance-30"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-hendersondisplacedistance_30-0">13.0</a></sup> <sup><a href="#cite_ref-hendersondisplacedistance_30-1">13.1</a></sup></span> <span class="reference-text">Tom Henderson. "<a rel="nofollow" class="external text" href="https://www.physicsclassroom.com/Class/1DKin/U1L1c.cfm">Describing Motion with Words</a>". <i>The Physics Classroom</i>.</span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><a href="#cite_ref-33">↑</a></span> <span class="reference-text">Jesseph, Douglas M. (1998). "Leibniz on the Foundations of the Calculus: The Question of the Reality of Infinitesimal Magnitudes". <i>Perspectives on Science</i>. 6.1&amp;2: 6–40. Retrieved 31 December 2011.</span> </li> <li id="cite_note-wilson1901-34"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-wilson1901_34-0">15.0</a></sup> <sup><a href="#cite_ref-wilson1901_34-1">15.1</a></sup> <sup><a href="#cite_ref-wilson1901_34-2">15.2</a></sup> <sup><a href="#cite_ref-wilson1901_34-3">15.3</a></sup></span> <span class="reference-text">Wilson, Edwin Bidwell (1901). <i>Vector analysis: a text-book for the use of students of mathematics and physics</i>, founded upon the lectures of J. Willard Gibbs. p. 125.</span> </li> <li id="cite_note-relativevelocity-40"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-relativevelocity_40-0">16.0</a></sup> <sup><a href="#cite_ref-relativevelocity_40-1">16.1</a></sup></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://isaacphysics.org/concepts/cp_relative_velocity">Relative Velocity</a>. <i>Isaac Physics</i>.</span> </li> <li id="cite_note-bondi1980-43"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-bondi1980_43-0">17.0</a></sup> <sup><a href="#cite_ref-bondi1980_43-1">17.1</a></sup></span> <span class="reference-text">Bondi, Hermann (1980). <i>Relativity and Common Sense</i>. Courier Dover Publications. pp. 3.</span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><a href="#cite_ref-44">↑</a></span> <span class="reference-text">Lehrman, Robert L. (1998). <i>Physics the Easy Way</i>. Barron's Educational Series. pp. 27.</span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><a href="#cite_ref-47">↑</a></span> <span class="reference-text">Donald T Greenwood (1997). <i>Classical dynamics</i> (Reprint of 1977 edition by Prentice-Hall ed.). Courier Dover Publications. p. 313.</span> </li> <li id="cite_note-taylor1992-48"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-taylor1992_48-0">20.0</a></sup> <sup><a href="#cite_ref-taylor1992_48-1">20.1</a></sup></span> <span class="reference-text">Edwin F. Taylor and John Archibald Wheeler, <i>Spacetime Physics</i>, 2nd ed. (Freeman, NY, 1992)</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><a href="#cite_ref-49">↑</a></span> <span class="reference-text">Moulton, F. R. (1970). <i>An introduction to celestial mechanics</i>. Courier Corporation.</span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><a href="#cite_ref-51">↑</a></span> <span class="reference-text">Goldstein, Herbert (1980). <i>Classical mechanics</i> (2nd ed.). Reading, Mass.: Addison-Wesley Pub. Co.</span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><a href="#cite_ref-52">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.physicsclassroom.com/Class/momentum/u4l1a.cfm">The Physics Classroom - Momentum</a>.</span> </li> <li id="cite_note-54"><span class="mw-cite-backlink"><a href="#cite_ref-54">↑</a></span> <span class="reference-text">Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (2005). <i>The Feynman lectures on physics, Volume 1: Mainly Mechanics, Radiation, and Heat</i> (Definitive ed.). San Francisco: Pearson Addison-Wesley. Ch. 9.</span> </li> <li id="cite_note-56"><span class="mw-cite-backlink"><a href="#cite_ref-56">↑</a></span> <span class="reference-text">Lanczos, Cornelius (1970). <i>The Variational Principles of Mechanics</i>. Toronto: University of Toronto Press.</span> </li> <li id="cite_note-reif1995-58"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-reif1995_58-0">26.0</a></sup> <sup><a href="#cite_ref-reif1995_58-1">26.1</a></sup> <sup><a href="#cite_ref-reif1995_58-2">26.2</a></sup></span> <span class="reference-text">Reif, F. <i>Understanding Basic Mechanics 2, illustrated</i>. Wiley: pp. 95, 1995.</span> </li> <li id="cite_note-63"><span class="mw-cite-backlink"><a href="#cite_ref-63">↑</a></span> <span class="reference-text">Ruina, Andy; Pratap, Rudra (2002). <i>Introduction to Statics and Dynamics</i>. Oxford University Press. pp. 79-105.</span> </li> <li id="cite_note-64"><span class="mw-cite-backlink"><a href="#cite_ref-64">↑</a></span> <span class="reference-text">Puri, Avinash (1996). "The Art of Free-body Diagrams". <i>Physics Education</i>. 31 (3): 155.</span> </li> <li id="cite_note-65"><span class="mw-cite-backlink"><a href="#cite_ref-65">↑</a></span> <span class="reference-text">Edlich, R. F., Kelley, A. R., Morton, K., Gellman, R. E., Berkey, R., Greene, J. A., ... &amp; Long III, W. B. (2010). A case report of a severe musculoskeletal injury in a wheelchair user caused by an incorrect wheelchair ramp design. <i>The Journal of emergency medicine</i>, 38(2), 150-154.</span> </li> <li id="cite_note-68"><span class="mw-cite-backlink"><a href="#cite_ref-68">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.bbc.co.uk/bitesize/standard/physics/transport/movement_means_energy/revision/1/">Movement means energy</a> <a href="/wiki/Wayback_Machine" title="Wayback Machine">互聯網檔案館</a>嘅<a rel="nofollow" class="external text" href="https://web.archive.org/web/20180106165913/http://www.bbc.co.uk/bitesize/standard/physics/transport/movement_means_energy/revision/1/">歸檔</a>,歸檔日期2018年1月6號,..</span> </li> <li id="cite_note-69"><span class="mw-cite-backlink"><a href="#cite_ref-69">↑</a></span> <span class="reference-text">Naito, K., Takagi, H., &amp; Maruyama, T. (2011). Mechanical work, efficiency and energy redistribution mechanisms in baseball pitching. <i>Sports Technology</i>, 4(1-2), 48-64.</span> </li> <li id="cite_note-71"><span class="mw-cite-backlink"><a href="#cite_ref-71">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#cfor">Conservative Force</a>. <i>HyperPhysics</i>.</span> </li> <li id="cite_note-73"><span class="mw-cite-backlink"><a href="#cite_ref-73">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-is-kinetic-energy">What is kinetic energy?</a>.</span> </li> <li id="cite_note-75"><span class="mw-cite-backlink"><a href="#cite_ref-75">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.carolina.com/teacher-resources/Interactive/derivation-of-the-kinematics-equation/tr32615.tr">Derivation of the Kinematics Equation</a>.</span> </li> <li id="cite_note-78"><span class="mw-cite-backlink"><a href="#cite_ref-78">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://engineeringinsider.org/bernoullis-equation-applications/">Bernoulli's Equation &amp; Applications Of Bernoulli's Equation</a> <a href="/wiki/Wayback_Machine" title="Wayback Machine">互聯網檔案館</a>嘅<a rel="nofollow" class="external text" href="https://web.archive.org/web/20200316014553/https://engineeringinsider.org/bernoullis-equation-applications/">歸檔</a>,歸檔日期2020年3月16號,..</span> </li> <li id="cite_note-82"><span class="mw-cite-backlink"><a href="#cite_ref-82">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://www.khanacademy.org/science/physics/work-and-energy/work-and-energy-tutorial/a/what-is-gravitational-potential-energy">What is gravitational potential energy?</a>.</span> </li> <li id="cite_note-83"><span class="mw-cite-backlink"><a href="#cite_ref-83">↑</a></span> <span class="reference-text">Pendrill, A. M., Karlsteen, M., &amp; Rödjegård, H. (2012). Stopping a roller coaster train. <i>Physics Education</i>, 47(6), 728.</span> </li> <li id="cite_note-84"><span class="mw-cite-backlink"><a href="#cite_ref-84">↑</a></span> <span class="reference-text">Shaw, S. W., &amp; Haddow, A. G. (1992). On 'roller-coaster' experiments for nonlinear oscillators. <i>Nonlinear Dynamics</i>, 3(5), 375-384.</span> </li> <li id="cite_note-halliday-87"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-halliday_87-0">39.0</a></sup> <sup><a href="#cite_ref-halliday_87-1">39.1</a></sup> <sup><a href="#cite_ref-halliday_87-2">39.2</a></sup></span> <span class="reference-text">Halliday, D.; Robert R., Jearl Walker. <i>Fundamental of Physics</i>, 7th Ed. USA: John Wiley and Sons, Inc., 2005.</span> </li> <li id="cite_note-89"><span class="mw-cite-backlink"><a href="#cite_ref-89">↑</a></span> <span class="reference-text">Galili, I.; Tseitlin, M. Newton's First Law: Text, Translations, Interpretations and Physics Education. <i>Science &amp; Education</i>. 2003, 12 (1): 45–73.</span> </li> <li id="cite_note-94"><span class="mw-cite-backlink"><a href="#cite_ref-94">↑</a></span> <span class="reference-text">O'Sullivan, C. Newton's laws of motion: Some interpretations of the formalism. <i>American Journal of Physics</i>. Feb 1980, 48 (2): pp. 131.</span> </li> <li id="cite_note-hellingman1992-99"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-hellingman1992_99-0">42.0</a></sup> <sup><a href="#cite_ref-hellingman1992_99-1">42.1</a></sup></span> <span class="reference-text">C. Hellingman. Newton's third law revisited. <i>Phys. Educ</i>, 1992, 27 (2): 112–115.</span> </li> <li id="cite_note-101"><span class="mw-cite-backlink"><a href="#cite_ref-101">↑</a></span> <span class="reference-text">- Proposition 75, Theorem 35: p.956 - I. Bernard Cohen and Anne Whitman, translators: Isaac Newton, <i>The Principia: Mathematical Principles of Natural Philosophy</i>. Preceded by A Guide to Newton's Principia, by I.Bernard Cohen. University of California Press 1999 <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/0520088166" class="internal mw-magiclink-isbn">ISBN 0-520-08816-6</a> <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/0520088174" class="internal mw-magiclink-isbn">ISBN 0-520-08817-4</a></span> </li> <li id="cite_note-102"><span class="mw-cite-backlink"><a href="#cite_ref-102">↑</a></span> <span class="reference-text">Isaac Newton: "In [experimental] philosophy particular propositions are inferred from the phenomena and afterwards rendered general by induction": "<i>Principia</i>", Book 3, General Scholium, at p.392 in Volume 2 of Andrew Motte's English translation published 1729.</span> </li> <li id="cite_note-103"><span class="mw-cite-backlink"><a href="#cite_ref-103">↑</a></span> <span class="reference-text">Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006". <i>Reviews of Modern Physics</i>. 80 (2): 633–730.</span> </li> <li id="cite_note-105"><span class="mw-cite-backlink"><a href="#cite_ref-105">↑</a></span> <span class="reference-text">Ugural, A. C.; Fenster, S. K. (2003). <i>Advanced Strength and Applied Elasticity</i> (4th ed.). Prentice-Hall.</span> </li> <li id="cite_note-109"><span class="mw-cite-backlink"><a href="#cite_ref-109">↑</a></span> <span class="reference-text">Beiser, A. (2003). <i>Concepts of modern physics</i>. Tata McGraw-Hill Education.</span> </li> <li id="cite_note-wolfgang1991-111"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-wolfgang1991_111-0">48.0</a></sup> <sup><a href="#cite_ref-wolfgang1991_111-1">48.1</a></sup></span> <span class="reference-text">Wolfgang Rindler (1991). <i>Introduction to Special Relativity</i> (2nd ed.), Oxford University Press.</span> </li> <li id="cite_note-112"><span class="mw-cite-backlink"><a href="#cite_ref-112">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://hyperphysics.phy-astr.gsu.edu/hbase/Relativ/relmom.html">Relativistic Momentum</a>. <i>HyperPhysics</i>.</span> </li> <li id="cite_note-feyman1990-116"><span class="mw-cite-backlink">↑ <sup><a href="#cite_ref-feyman1990_116-0">50.0</a></sup> <sup><a href="#cite_ref-feyman1990_116-1">50.1</a></sup></span> <span class="reference-text">Feynman, R., <i>QED: The Strange Theory of Light and Matter</i>, Penguin 1990 Edition, p. 84.</span> </li> <li id="cite_note-117"><span class="mw-cite-backlink"><a href="#cite_ref-117">↑</a></span> <span class="reference-text">Tipler, Paul A. and Ralph A. Llewellyn (2003). <i>Modern Physics</i>. 4th ed. New York; W. H. Freeman and Co. pp. 203–4, 222–3, 236.</span> </li> <li id="cite_note-122"><span class="mw-cite-backlink"><a href="#cite_ref-122">↑</a></span> <span class="reference-text">Beer, F.P. &amp; Johnston Jr, E.R. (1992). <i>Statics and Mechanics of Materials</i>. McGraw-Hill, Inc.</span> </li> <li id="cite_note-123"><span class="mw-cite-backlink"><a href="#cite_ref-123">↑</a></span> <span class="reference-text">Asai, T., Seo, K., Kobayashi, O., &amp; Sakashita, R. (2007). Fundamental aerodynamics of the soccer ball. <i>Sports Engineering</i>, 10(2), 101-109.</span> </li> <li id="cite_note-124"><span class="mw-cite-backlink"><a href="#cite_ref-124">↑</a></span> <span class="reference-text">Edmund Taylor Whittaker (1904). <i>A Treatise on the Analytical Dynamics of Particles and Rigid Bodies</i>. Cambridge University Press. Chapter 1.</span> </li> <li id="cite_note-125"><span class="mw-cite-backlink"><a href="#cite_ref-125">↑</a></span> <span class="reference-text">Batra, R. C. (2006). <i>Elements of Continuum Mechanics</i>. Reston, VA: AIAA.</span> </li> <li id="cite_note-126"><span class="mw-cite-backlink"><a href="#cite_ref-126">↑</a></span> <span class="reference-text">Gibbs, Josiah Willard (1902). <i>Elementary Principles in Statistical Mechanics</i>. New York: Charles Scribner's Sons.</span> </li> </ol></div> <p>除咗上邊呢啲文,仲可以進一步閱讀: </p> <div class="div-col columns column-count column-count-2" style="-moz-column-count: 2; -webkit-column-count: 2; column-count: 2; font-size:90%; column-count:3"> <ul><li>Feynman, Richard; Phillips, Richard (1998). <i>Six Easy Pieces</i>. Perseus Publishing. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9780201328417" class="internal mw-magiclink-isbn">ISBN 978-0-201-32841-7</a>.</li> <li>Goldstein, Herbert; Charles P. Poole; John L. Safko (2002). <i>Classical Mechanics</i> (3rd ed.). Addison Wesley. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9780201657029" class="internal mw-magiclink-isbn">ISBN 978-0-201-65702-9</a>.</li> <li>Kibble, Tom W.B.; Berkshire, Frank H. (2004). <i>Classical Mechanics</i> (5th ed.). Imperial College Press. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9781860944246" class="internal mw-magiclink-isbn">ISBN 978-1-86094-424-6</a>.</li> <li>Kleppner, D.; Kolenkow, R.J. (1973). <i>An Introduction to Mechanics</i>. McGraw-Hill. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9780070350489" class="internal mw-magiclink-isbn">ISBN 978-0-07-035048-9</a>.</li> <li>Morin, David (2008). <i>Introduction to Classical Mechanics: With Problems and Solutions</i> (1st ed.). Cambridge: Cambridge University Press. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9780521876223" class="internal mw-magiclink-isbn">ISBN 978-0-521-87622-3</a>.</li> <li>Gerald Jay Sussman; Jack Wisdom (2001). <i>Structure and Interpretation of Classical Mechanics</i>. MIT Press. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9780262194556" class="internal mw-magiclink-isbn">ISBN 978-0-262-19455-6</a>.</li> <li>O'Donnell, Peter J. (2015). <i>Essential Dynamics and Relativity</i>. CRC Press. <a href="/wiki/Special:%E6%9B%B8%E6%9C%AC%E4%BE%86%E6%BA%90/9781466588394" class="internal mw-magiclink-isbn">ISBN 978-1-4665-8839-4</a>.</li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="拎"><span id=".E6.8B.8E"></span>拎</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;section=33" title="編輯小節: 拎"><span>編輯</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r2018312">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r2018311">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist"><a href="https://commons.wikimedia.org/wiki/%E9%A0%AD%E7%89%88" class="extiw" title="commons:頭版">維基同享</a>有多媒體嘅嘢:<br /><b><a href="https://commons.wikimedia.org/wiki/Category:Classical_mechanics" class="extiw" title="commons:Category:Classical mechanics"><span style="">古典力學</span></a></b></div></div> </div> <ul><li><span style="font-family: sans-serif; cursor: default; color: var(--color-subtle, #555); font-size: 0.8em; position: relative; bottom: 0.1em; font-weight: bold;" title="連到英文網頁">(英文)</span> Fitzpatrick, Richard, <a rel="nofollow" class="external text" href="http://farside.ph.utexas.edu/teaching/301/301.html">古典力學</a></li> <li><span style="font-family: sans-serif; cursor: default; color: var(--color-subtle, #555); font-size: 0.8em; position: relative; bottom: 0.1em; font-weight: bold;" title="連到英文網頁">(英文)</span> Horbatsch, Marko, "<a rel="nofollow" class="external text" href="http://www.yorku.ca/marko/PHYS2010/index.htm">古典力學課程碌士</a></li> <li><span style="font-family: sans-serif; cursor: default; color: var(--color-subtle, #555); font-size: 0.8em; position: relative; bottom: 0.1em; font-weight: bold;" title="連到英文網頁">(英文)</span> Rosu, Haret C., "<a rel="nofollow" class="external text" href="https://arxiv.org/abs/physics/9909035">古典力學</a>",物理學教育</li> <li><span style="font-family: sans-serif; cursor: default; color: var(--color-subtle, #555); font-size: 0.8em; position: relative; bottom: 0.1em; font-weight: bold;" title="連到英文網頁">(英文)</span> Tong, David, <a rel="nofollow" class="external text" href="http://www.damtp.cam.ac.uk/user/tong/dynamics.html">古典動力學</a>,<a href="/wiki/%E5%8A%8D%E6%A9%8B%E5%A4%A7%E5%AD%B8" title="劍橋大學">劍橋大學</a>碌士</li></ul> <div role="navigation" class="navbox" aria-labelledby="古典力學同分析力學" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><a href="/wiki/Template:%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8" title="Template:古典力學"><abbr title="去睇呢個模" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">睇</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit&amp;redlink=1" class="new" title="Template talk:古典力學 (無呢版)"><abbr title="傾呢個模" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">傾</abbr></a></li><li class="nv-edit"><a class="external text" href="https://zh-yue.wikipedia.org/w/index.php?title=Template:%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;action=edit"><abbr title="編輯呢個模" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">改</abbr></a></li></ul></div><div id="古典力學同分析力學" style="font-size:114%;margin:0 4em"><a class="mw-selflink selflink">古典力學</a>同<a href="/wiki/%E5%88%86%E6%9E%90%E5%8A%9B%E5%AD%B8" title="分析力學">分析力學</a></div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div id="研究物體點郁動嘅古典物理學理論">研究<a href="/wiki/%E7%89%A9%E9%AB%94" title="物體">物體</a>點<a href="/wiki/%E9%83%81%E5%8B%95" class="mw-redirect" title="郁動">郁動</a>嘅<a href="/wiki/%E5%8F%A4%E5%85%B8%E7%89%A9%E7%90%86%E5%AD%B8" title="古典物理學">古典物理學</a>理論</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">重<br />要<br />概<br />念</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="基礎概念" scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;">基礎概念</div></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E9%BB%9E%E7%B2%92%E5%AD%90" title="點粒子">點粒子</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%B3%AA%E9%87%8F" title="質量">質量</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E4%BD%8D%E7%BD%AE" title="位置">位置</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%89%9B%E9%AB%94" title="剛體">剛體</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%85%A3%E6%80%A7" title="慣性">慣性</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%A9%BA%E9%96%93" title="空間">空間</a>(<a href="/wiki/%E7%B5%95%E5%B0%8D%E6%99%82%E7%A9%BA" title="絕對時空">絕對時空</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8F%83%E8%80%83%E7%B3%BB" title="參考系">參考系</a>同<a href="/wiki/%E6%85%A3%E6%80%A7%E5%8F%83%E8%80%83%E7%B3%BB" title="慣性參考系">慣性參考系</a>)</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;">  <a href="/wiki/%E4%BD%8D%E7%A7%BB" title="位移">位移</a></div></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E9%83%81" title="郁">郁</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%9C%93%E5%91%A8%E9%81%8B%E5%8B%95" title="圓周運動">圓周運動</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%80%9F%E5%BA%A6" title="速度">速度</a>(<a href="/wiki/%E7%9B%B8%E5%B0%8D%E9%80%9F%E5%BA%A6" title="相對速度">相對速度</a>)<span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8A%A0%E9%80%9F%E5%BA%A6" title="加速度">加速度</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%81%8B%E5%8B%95%E6%96%B9%E7%A8%8B" title="運動方程">運動方程</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%8C%AF%E5%8B%95" title="振動">振動</a>(<a href="/wiki/%E7%B9%A9%E5%98%85%E6%8C%AF%E5%8B%95" title="繩嘅振動">繩嘅振動</a>)</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;"><a href="/wiki/%E5%8A%9B" title="力">力</a></div></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E8%87%AA%E7%94%B1%E9%AB%94%E5%9C%96" title="自由體圖">自由體圖</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8A%9B%E5%AD%B8%E5%B9%B3%E8%A1%A1" title="力學平衡">平衡</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8B%95%E9%87%8F" title="動量">動量</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%BC%95%E5%8A%9B" class="mw-redirect" title="引力">引力</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%87%8D%E9%87%8F" title="重量">重量</a>同 <a href="/wiki/G_%E5%8A%9B" title="G 力">G 力</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8A%9B%E8%87%82" title="力臂">力臂</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8A%9B%E5%81%B6" title="力偶">力偶</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%91%A9%E6%93%A6%E5%8A%9B" title="摩擦力">摩擦力</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%B0%A1%E8%AB%A7%E9%81%8B%E5%8B%95" title="簡諧運動">簡諧</a>同<a href="/wiki/%E8%A4%87%E8%AB%A7%E9%81%8B%E5%8B%95" title="複諧運動">複諧</a>運動(<a href="/wiki/%E6%93%BA" title="擺">擺</a>)</div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;"><a href="/wiki/%E5%8A%9F" title="功">功</a></div></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E6%A9%9F%E6%A2%B0%E8%83%BD" title="機械能">機械能</a>(<a href="/wiki/%E5%8B%95%E8%83%BD" title="動能">動能</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E4%BD%8D%E8%83%BD" title="位能">位能</a>)<span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8A%9F%E7%8E%87" title="功率">功率</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;"><a href="/wiki/%E8%BD%89%E5%8B%95" title="轉動">轉動</a></div></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E5%90%91%E5%BF%83%E5%8A%9B" title="向心力">向心力</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A7%92%E7%A7%BB" title="角移">角移</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A7%92%E9%80%9F%E5%BA%A6" title="角速度">角速度</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8A%9B%E7%9F%A9" title="力矩">力矩</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A7%92%E5%8A%A0%E9%80%9F%E5%BA%A6" title="角加速度">角加速度</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A7%92%E9%A0%BB%E7%8E%87" title="角頻率">角頻率</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%A7%92%E5%8B%95%E9%87%8F" title="角動量">角動量</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%9B%A2%E5%BF%83%E5%8A%9B" title="離心力">離心力</a></div></td></tr></tbody></table><div></div></td><td class="navbox-image" rowspan="6" style="width:1px;padding:0px 0px 0px 2px"><div><span typeof="mw:File"><a href="/wiki/File:Pendulum_1_(PSF).png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Pendulum_1_%28PSF%29.png/150px-Pendulum_1_%28PSF%29.png" decoding="async" width="150" height="126" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Pendulum_1_%28PSF%29.png/225px-Pendulum_1_%28PSF%29.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Pendulum_1_%28PSF%29.png/300px-Pendulum_1_%28PSF%29.png 2x" data-file-width="1152" data-file-height="967" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">主要<a href="/wiki/%E7%89%A9%E7%90%86%E5%AE%9A%E5%BE%8B" title="物理定律">定律</a></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E7%89%9B%E9%A0%93%E9%81%8B%E5%8B%95%E5%AE%9A%E5%BE%8B" title="牛頓運動定律">牛頓運動定律</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%90%AC%E6%9C%89%E5%BC%95%E5%8A%9B%E5%AE%9A%E5%BE%8B" title="萬有引力定律">萬有引力定律</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%83%A1%E5%85%8B%E5%AE%9A%E5%BE%8B" title="胡克定律">胡克定律</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%81%94%E6%9E%97%E4%BC%AF%E7%89%B9%E5%8E%9F%E5%89%87" title="達林伯特原則">達林伯特原則</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%AD%90%E6%8B%89%E6%96%B9%E7%A8%8B_(%E5%89%9B%E9%AB%94%E9%81%8B%E5%8B%95)" title="歐拉方程 (剛體運動)">歐拉方程</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%93%88%E5%AF%86%E9%A0%93%E5%8E%9F%E5%89%87" title="哈密頓原則">哈密頓原則</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%9C%80%E5%B0%8F%E4%BD%9C%E7%94%A8%E9%87%8F%E5%8E%9F%E5%89%87" title="最小作用量原則">最小作用量原則</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">子領域</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E9%9D%9C%E5%8A%9B%E5%AD%B8" title="靜力學">靜力學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%81%8B%E5%8B%95%E5%AD%B8" title="運動學">運動學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%BD%88%E9%81%93%E5%AD%B8" title="彈道學">彈道學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%8B%95%E5%8A%9B%E5%AD%B8" title="動力學">動力學</a>(<a href="/wiki/%E5%89%9B%E9%AB%94%E5%8B%95%E5%8A%9B%E5%AD%B8" title="剛體動力學">剛體動力學</a>)<span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%80%A3%E7%BA%8C%E4%BB%8B%E8%B3%AA%E5%8A%9B%E5%AD%B8" title="連續介質力學">連續介質力學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%B5%B1%E8%A8%88%E5%8A%9B%E5%AD%B8" title="統計力學">統計力學</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">應用</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="簡單機械" scope="row" class="navbox-group" style="width:1%;padding-left:0em;padding-right:0em;"><div style="padding:0em 0.75em;"><a href="/wiki/%E7%B0%A1%E5%96%AE%E6%A9%9F%E6%A2%B0" title="簡單機械">簡單機械</a></div></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E6%96%9C%E9%9D%A2" title="斜面">斜面</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%A7%93%E6%A1%BF" title="槓桿">槓桿</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%BD%A4%E8%BD%86" title="轤轆">轤轆</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%9E%BA%E6%97%8B_(%E6%A9%9F%E6%A2%B0)" title="螺旋 (機械)">螺旋</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%A5%94" title="楔">楔</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E8%BC%AA%E8%BB%B8" title="輪軸">輪軸</a></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E5%B7%A5%E7%A8%8B%E5%AD%B8" title="工程學">工程學</a>(<a href="/wiki/%E6%A9%9F%E6%A2%B0%E5%B7%A5%E7%A8%8B" title="機械工程">機械工程</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%B5%90%E6%A7%8B%E5%B7%A5%E7%A8%8B" title="結構工程">結構工程</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%BB%BA%E7%AF%89%E5%B7%A5%E7%A8%8B" title="建築工程">建築工程</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%81%8E%E5%B1%B1%E8%BB%8A%E7%89%A9%E7%90%86" title="過山車物理">過山車物理</a>)<span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%94%9F%E7%89%A9%E5%8A%9B%E5%AD%B8" title="生物力學">生物力學</a>(<a href="/wiki/%E9%81%8B%E5%8B%95%E7%94%9F%E7%89%A9%E5%8A%9B%E5%AD%B8" title="運動生物力學">運動生物力學</a>)<span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%81%8A%E6%88%B2%E7%89%A9%E7%90%86" title="遊戲物理">遊戲物理</a></div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">睇埋</th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E5%B9%BE%E4%BD%95%E5%AD%B8" title="幾何學">幾何學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%9B%BB%E7%A3%81%E5%AD%B8" title="電磁學">電磁學</a>(<a href="/wiki/%E5%8F%A4%E5%85%B8%E9%9B%BB%E7%A3%81%E5%AD%B8" title="古典電磁學">古典電磁學</a>)<span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%86%B1%E5%8A%9B%E5%AD%B8" title="熱力學">熱力學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論">狹義相對論</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8" title="量子力學">量子力學</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">理論史</th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"><a href="/wiki/%E4%BC%BD%E5%88%A9%E7%95%A5" class="mw-redirect" title="伽利略">伽利略</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E9%96%8B%E6%99%AE%E5%8B%92" class="mw-redirect" title="開普勒">開普勒</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%89%9B%E9%A0%93" class="mw-redirect" title="牛頓">牛頓</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%AD%90%E6%8B%89" class="mw-redirect" title="歐拉">歐拉</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%B0%9A%C2%B7%E9%81%94%E6%9E%97%E4%BC%AF%E7%89%B9" title="尚·達林伯特">尚·達林伯特</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%8B%89%E6%A0%BC%E6%9C%97%E6%97%A5" title="拉格朗日">拉格朗日</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%8B%89%E6%99%AE%E6%8B%89%E6%96%AF" title="拉普拉斯">拉普拉斯</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%A8%81%E5%BB%89%C2%B7%E5%93%88%E5%AF%86%E9%A0%93" title="威廉·哈密頓">哈密頓</a></div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div><a href="/wiki/Category:%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8" title="Category:經典力學">古典力學類</a></div></td></tr></tbody></table></div> <div role="navigation" class="navbox" aria-labelledby="物理學各領域" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><div class="plainlinks hlist navbar mini"><ul><li class="nv-view"><a href="/wiki/Template:%E7%89%A9%E7%90%86%E5%AD%B8%E5%88%86%E6%9E%9D" class="mw-redirect" title="Template:物理學分枝"><abbr title="去睇呢個模" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">睇</abbr></a></li><li class="nv-talk"><a href="/w/index.php?title=Template_talk:%E7%89%A9%E7%90%86%E5%AD%B8%E5%88%86%E6%9E%9D&amp;action=edit&amp;redlink=1" class="new" title="Template talk:物理學分枝 (無呢版)"><abbr title="傾呢個模" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">傾</abbr></a></li><li class="nv-edit"><a class="external text" href="https://zh-yue.wikipedia.org/w/index.php?title=Template:%E7%89%A9%E7%90%86%E5%AD%B8%E5%88%86%E6%9E%9D&amp;action=edit"><abbr title="編輯呢個模" style=";;background:none transparent;border:none;-moz-box-shadow:none;-webkit-box-shadow:none;box-shadow:none; padding:0;">改</abbr></a></li></ul></div><div id="物理學各領域" style="font-size:114%;margin:0 4em"><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8" title="物理學">物理學</a>各領域</div></th></tr><tr><td class="navbox-abovebelow" colspan="3"><div id="研究宇宙嘅基本定律嘅科學">研究<a href="/wiki/%E5%AE%87%E5%AE%99" title="宇宙">宇宙</a>嘅<a href="/wiki/%E7%89%A9%E7%90%86%E5%AE%9A%E5%BE%8B" title="物理定律">基本定律</a>嘅<a href="/wiki/%E7%A7%91%E5%AD%B8" title="科學">科學</a></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">基礎</th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8%E5%93%B2%E5%AD%B8" title="物理學哲學">物理學哲學</a></li> <li><a href="/wiki/%E7%90%86%E8%AB%96%E7%89%A9%E7%90%86%E5%AD%B8" title="理論物理學">理論</a></li> <li><a href="/wiki/%E5%AF%A6%E9%A9%97%E7%89%A9%E7%90%86%E5%AD%B8" title="實驗物理學">實驗</a></li> <li><a href="/wiki/%E6%95%B8%E7%90%86%E7%89%A9%E7%90%86%E5%AD%B8" title="數理物理學">數理</a></li> <li><a href="/wiki/%E9%81%8B%E7%AE%97%E7%89%A9%E7%90%86%E5%AD%B8" title="運算物理學">運算</a></li> <li><a href="/wiki/%E6%87%89%E7%94%A8%E7%89%A9%E7%90%86%E5%AD%B8" title="應用物理學">應用</a></li> <li><a href="/wiki/%E7%89%A9%E7%90%86%E9%87%8F" title="物理量">物理量</a></li> <li><a href="/wiki/%E8%83%BD%E9%87%8F" title="能量">能量</a></li> <li><a href="/wiki/%E7%89%A9%E8%B3%AA" title="物質">物質</a></li></ul> </div></td><td class="navbox-image" rowspan="5" style="width:1px;padding:0px 0px 0px 2px"><div><span typeof="mw:File"><a href="/wiki/File:Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png/150px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png" decoding="async" width="150" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png/225px-Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png 1.5x, //upload.wikimedia.org/wikipedia/commons/1/1f/Stylised_atom_with_three_Bohr_model_orbits_and_stylised_nucleus.png 2x" data-file-width="260" data-file-height="296" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E5%8F%A4%E5%85%B8%E7%89%A9%E7%90%86%E5%AD%B8" title="古典物理學">古<br />典</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a class="mw-selflink selflink">古典力學</a></th><td class="navbox-list navbox-even" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%80%A3%E7%BA%8C%E4%BB%8B%E8%B3%AA%E5%8A%9B%E5%AD%B8" title="連續介質力學">連續介質力學</a>(<a href="/wiki/%E5%9B%BA%E9%AB%94%E5%8A%9B%E5%AD%B8" title="固體力學">固體力學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E6%B5%81%E9%AB%94%E5%8A%9B%E5%AD%B8" title="流體力學">流體力學</a>)</li> <li><a href="/wiki/%E5%A4%A9%E9%AB%94%E5%8A%9B%E5%AD%B8" title="天體力學">天體力學</a></li> <li><a href="/wiki/%E5%88%86%E6%9E%90%E5%8A%9B%E5%AD%B8" title="分析力學">分析力學</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E9%9B%BB%E7%A3%81%E5%AD%B8" title="電磁學">電磁學</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E5%8F%A4%E5%85%B8%E9%9B%BB%E7%A3%81%E5%AD%B8" title="古典電磁學">古典電磁學</a></li> <li><a href="/wiki/%E9%9D%9C%E9%9B%BB%E5%AD%B8" title="靜電學">靜電學</a></li> <li><a href="/wiki/%E9%9D%9C%E7%A3%81%E5%AD%B8" title="靜磁學">靜磁學</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%86%B1%E5%8A%9B%E5%AD%B8" title="熱力學">熱力學</a></li> <li><a href="/wiki/%E7%B5%B1%E8%A8%88%E5%8A%9B%E5%AD%B8" title="統計力學">統計力學</a></li> <li><a href="/wiki/%E5%85%89%E5%AD%B8" title="光學">光學</a>(<a href="/wiki/%E5%B9%BE%E4%BD%95%E5%85%89%E5%AD%B8" title="幾何光學">幾何光學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E7%89%A9%E7%90%86%E5%85%89%E5%AD%B8" title="物理光學">物理光學</a>)</li> <li><a href="/wiki/%E8%81%B2%E5%AD%B8" title="聲學">聲學</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E7%8F%BE%E4%BB%A3%E7%89%A9%E7%90%86%E5%AD%B8" title="現代物理學">現<br />代</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="量子力學" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E9%87%8F%E5%AD%90%E5%8A%9B%E5%AD%B8" title="量子力學">量子力學</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E9%87%8F%E5%AD%90%E9%9B%BB%E5%8B%95%E5%8A%9B%E5%AD%B8" title="量子電動力學">量子電動力學</a></li> <li><a href="/wiki/%E9%87%8F%E5%AD%90%E5%A0%B4%E8%AB%96" title="量子場論">量子場論</a></li> <li><a href="/wiki/%E9%87%8F%E5%AD%90%E5%BC%95%E5%8A%9B" title="量子引力">量子引力</a></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%9B%B8%E5%B0%8D%E8%AB%96" title="相對論">相對論</a>(<a href="/wiki/%E7%8B%B9%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="狹義相對論">狹義相對論</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%BB%A3%E7%BE%A9%E7%9B%B8%E5%B0%8D%E8%AB%96" title="廣義相對論">廣義相對論</a>)</li> <li><a href="/wiki/%E5%8E%9F%E5%AD%90%E5%88%86%E5%AD%90%E5%90%8C%E5%85%89%E7%89%A9%E7%90%86%E5%AD%B8" title="原子分子同光物理學">AMO</a>(<a href="/wiki/%E5%8E%9F%E5%AD%90%E7%89%A9%E7%90%86%E5%AD%B8" title="原子物理學">原子物理學</a><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <a href="/wiki/%E5%88%86%E5%AD%90%E7%89%A9%E7%90%86%E5%AD%B8" title="分子物理學">分子物理學</a>)</li></ul> <ul><li><a href="/wiki/%E5%87%9D%E8%81%9A%E6%85%8B%E7%89%A9%E7%90%86%E5%AD%B8" title="凝聚態物理學">凝聚態物理學</a></li> <li><a href="/wiki/%E7%B2%92%E5%AD%90%E7%89%A9%E7%90%86%E5%AD%B8" title="粒子物理學">粒子物理學</a></li> <li><a href="/wiki/%E6%A0%B8%E5%AD%90%E7%89%A9%E7%90%86%E5%AD%B8" title="核子物理學">核子物理學</a></li> <li><a href="/wiki/%E5%A4%A9%E9%AB%94%E7%89%A9%E7%90%86%E5%AD%B8" title="天體物理學">天體物理學</a></li> <li><a href="/wiki/%E7%89%A9%E7%90%86%E5%AE%87%E5%AE%99%E5%AD%B8" title="物理宇宙學">物理宇宙學</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"> <a href="/wiki/%E8%B7%A8%E5%AD%B8%E7%A7%91" class="mw-redirect" title="跨學科">跨學科</a></th><td class="navbox-list navbox-odd hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%89%A9%E7%90%86%E5%8C%96%E5%AD%B8" title="物理化學">物理化學</a></li> <li><a href="/wiki/%E5%9C%B0%E7%90%83%E7%89%A9%E7%90%86%E5%AD%B8" title="地球物理學">地球物理學</a></li> <li><a href="/wiki/%E6%9D%90%E6%96%99%E7%A7%91%E5%AD%B8" title="材料科學">材料科學</a></li> <li><a href="/wiki/%E7%94%9F%E7%89%A9%E7%89%A9%E7%90%86%E5%AD%B8" title="生物物理學">生物物理學</a></li> <li><a href="/wiki/%E5%BF%83%E7%90%86%E7%89%A9%E7%90%86%E5%AD%B8" title="心理物理學">心理物理學</a></li> <li><a href="/wiki/%E9%87%8F%E5%AD%90%E9%81%8B%E7%AE%97" title="量子運算">量子運算</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">睇埋</th><td class="navbox-list navbox-even hlist" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8%E5%8F%B2" title="物理學史">物理學史</a></li> <li><a href="/wiki/%E7%89%A9%E7%90%86%E5%AD%B8%E5%AE%B6" title="物理學家">物理學家</a></li> <li><a href="/wiki/%E8%90%AC%E6%9C%89%E7%90%86%E8%AB%96" title="萬有理論">萬有理論</a></li> <li><a href="/wiki/%E8%AB%BE%E8%B2%9D%E7%88%BE%E7%89%A9%E7%90%86%E5%AD%B8%E7%8D%8E" title="諾貝爾物理學獎">諾貝爾物理學獎</a></li> <li><a href="/wiki/%E7%89%A9%E7%90%86%E5%BC%95%E6%93%8E" title="物理引擎">物理引擎</a></li> <li><a href="/wiki/%E6%95%B8%E5%AD%B8" title="數學">數學</a>(<a href="/wiki/%E6%87%89%E7%94%A8%E6%95%B8%E5%AD%B8" title="應用數學">應用</a>)</li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="3"><div><span typeof="mw:File"><span title="Category"><img alt="Category" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Folder_Hexagonal_Icon.svg/16px-Folder_Hexagonal_Icon.svg.png" decoding="async" width="16" height="14" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/48/Folder_Hexagonal_Icon.svg/24px-Folder_Hexagonal_Icon.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/48/Folder_Hexagonal_Icon.svg/32px-Folder_Hexagonal_Icon.svg.png 2x" data-file-width="36" data-file-height="31" /></span></span> <b><a href="/wiki/Category:%E7%89%A9%E7%90%86" title="Category:物理">物理分類</a></b><span style="white-space:nowrap; font-weight:bold;">&#160;·</span> <span typeof="mw:File"><span title="Commons page"><img alt="Commons page" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/16px-Commons-logo.svg.png" decoding="async" width="16" height="22" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/24px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/32px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span> <b><a href="https://commons.wikimedia.org/wiki/Category:Physics" class="extiw" title="commons:Category:Physics">共享資源</a></b></div></td></tr></tbody></table></div> <div role="navigation" class="navbox" aria-labelledby="權威控制" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th id="權威控制" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%E6%AC%8A%E5%A8%81%E6%8E%A7%E5%88%B6" title="權威控制">權威控制</a></th><td class="navbox-list navbox-odd" style="text-align:left;border-left-width:2px;border-left-style:solid;width:100%;padding:0px"><div style="padding:0em 0.25em"> <ul><li><a href="https://en.wikipedia.org/wiki/Integrated_Authority_File" class="extiw" title="en:Integrated Authority File">GND</a>: <span class="uid"><a rel="nofollow" class="external text" href="http://d-nb.info/gnd/4038168-7">4038168-7</a></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.eqiad.main‐5dc468848‐crpsk Cached time: 20241124060009 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.659 seconds Real time usage: 1.001 seconds Preprocessor visited node count: 5070/1000000 Post‐expand include size: 97853/2097152 bytes Template argument size: 4313/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 4/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 74321/5000000 bytes Lua time usage: 0.233/10.000 seconds Lua memory usage: 18184744/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 533.396 1 -total 45.37% 241.981 3 Template:Reflist 36.16% 192.887 1 Template:引網 8.91% 47.526 6 Template:Navbox 7.12% 37.991 1 Template:正文 6.65% 35.480 1 Template:Top_icon 6.16% 32.858 1 Template:Commons_category 5.52% 29.451 1 Template:Sister_project 5.41% 28.856 1 Template:Category_handler 5.13% 27.385 1 Template:Side_box --> <!-- Saved in parser cache with key zh_yuewiki:pcache:idhash:87371-0!canonical and timestamp 20241124060009 and revision id 2133457. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">由「<a dir="ltr" href="https://zh-yue.wikipedia.org/w/index.php?title=古典力學&amp;oldid=2133457">https://zh-yue.wikipedia.org/w/index.php?title=古典力學&amp;oldid=2133457</a>」收</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Special:%E5%88%86%E9%A1%9E" title="Special:分類">屬於2類</a>:<ul><li><a href="/w/index.php?title=Category:Pages_using_div_col_with_small_parameter&amp;action=edit&amp;redlink=1" class="new" title="Category:Pages using div col with small parameter (無呢版)">Pages using div col with small parameter</a></li><li><a href="/wiki/Category:%E7%B6%93%E5%85%B8%E5%8A%9B%E5%AD%B8" title="Category:經典力學">經典力學</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">屬於4隱類:<ul><li><a href="/wiki/Category:Webarchive%E6%A8%A1wayback%E9%80%A3%E7%B5%90" title="Category:Webarchive模wayback連結">Webarchive模wayback連結</a></li><li><a href="/wiki/Category:%E7%94%A8%E7%B7%8AISBN%E9%AD%94%E8%A1%93%E9%8F%88%E5%98%85%E7%89%88" title="Category:用緊ISBN魔術鏈嘅版">用緊ISBN魔術鏈嘅版</a></li><li><a href="/wiki/Category:%E6%AD%A3%E6%96%87" title="Category:正文">正文</a></li><li><a href="/wiki/Category:%E5%8C%85%E5%90%ABGND%E8%AD%98%E5%88%A5%E7%A2%BC%E5%98%85%E7%B6%AD%E5%9F%BA%E7%99%BE%E7%A7%91%E6%96%87%E7%AB%A0" title="Category:包含GND識別碼嘅維基百科文章">包含GND識別碼嘅維基百科文章</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 呢版上次改係2024年5月9號 (禮拜四) 13:20 嘅事。</li> <li id="footer-info-copyright">呢度嘅所有文字係根據<a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 牌照 4.0</a>嘅條款發佈;可能會有附加嘅條款。 利用呢個網站,你同意<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">利用條款</a>同埋<a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">私隱政策</a>。Wikipedia® 係<a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org/">Wikimedia Foundation, Inc.</a> 嘅註冊商標,一個非牟利機構。</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">私隱政策</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:%E9%97%9C%E6%96%BC">關於維基百科</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:%E4%B8%80%E8%88%AC%E5%85%8D%E8%B2%AC%E8%81%B2%E6%98%8E">免責聲明</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">行為準則</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">開發人員</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/zh-yue.wikipedia.org">統計</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie聲明</a></li> <li id="footer-places-mobileview"><a href="//zh-yue.m.wikipedia.org/w/index.php?title=%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">手提版</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-7pnpd","wgBackendResponseTime":207,"wgPageParseReport":{"limitreport":{"cputime":"0.659","walltime":"1.001","ppvisitednodes":{"value":5070,"limit":1000000},"postexpandincludesize":{"value":97853,"limit":2097152},"templateargumentsize":{"value":4313,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":4,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":74321,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 533.396 1 -total"," 45.37% 241.981 3 Template:Reflist"," 36.16% 192.887 1 Template:引網"," 8.91% 47.526 6 Template:Navbox"," 7.12% 37.991 1 Template:正文"," 6.65% 35.480 1 Template:Top_icon"," 6.16% 32.858 1 Template:Commons_category"," 5.52% 29.451 1 Template:Sister_project"," 5.41% 28.856 1 Template:Category_handler"," 5.13% 27.385 1 Template:Side_box"]},"scribunto":{"limitreport-timeusage":{"value":"0.233","limit":"10.000"},"limitreport-memusage":{"value":18184744,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-5dc468848-crpsk","timestamp":"20241124060009","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u53e4\u5178\u529b\u5b78","url":"https:\/\/zh-yue.wikipedia.org\/wiki\/%E5%8F%A4%E5%85%B8%E5%8A%9B%E5%AD%B8","sameAs":"http:\/\/www.wikidata.org\/entity\/Q11397","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q11397","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2013-07-14T09:32:17Z","dateModified":"2024-05-09T13:20:31Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e8\/Newtons_cradle_animation_book.gif","headline":"\u91cf\u5b50\u529b\u5b78\u51fa\u73fe\u4e4b\u524d\u5605\u725b\u9813\u529b\u5b78\u540c\u76f8\u5c0d\u8ad6\u529b\u5b78"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10