CINXE.COM

Search results for: reducing fuel

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: reducing fuel</title> <meta name="description" content="Search results for: reducing fuel"> <meta name="keywords" content="reducing fuel"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="reducing fuel" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="reducing fuel"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5072</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: reducing fuel</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5072</span> Speed Optimization Model for Reducing Fuel Consumption Based on Shipping Log Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayudhia%20P.%20Gusti">Ayudhia P. Gusti</a>, <a href="https://publications.waset.org/abstracts/search?q=Semin"> Semin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that total operating cost of a vessel is dominated by the cost of fuel consumption. How to reduce the fuel cost of ship so that the operational costs of fuel can be minimized is the question that arises. As the basis of these kinds of problem, sailing speed determination is an important factor to be considered by a shipping company. Optimal speed determination will give a significant influence on the route and berth schedule of ships, which also affect vessel operating costs. The purpose of this paper is to clarify some important issues about ship speed optimization. Sailing speed, displacement, sailing time, and specific fuel consumption were obtained from shipping log data to be further analyzed for modeling the speed optimization. The presented speed optimization model is expected to affect the fuel consumption and to reduce the cost of fuel consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maritime%20transportation" title="maritime transportation">maritime transportation</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20fuel" title=" reducing fuel"> reducing fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=shipping%20log%20data" title=" shipping log data"> shipping log data</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20optimization" title=" speed optimization"> speed optimization</a> </p> <a href="https://publications.waset.org/abstracts/61808/speed-optimization-model-for-reducing-fuel-consumption-based-on-shipping-log-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">568</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5071</span> Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Tahouni">N. Tahouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gholami"> M. Gholami</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Panjeshahi"> M. H. Panjeshahi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flaring" title="flaring">flaring</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20gas%20network" title=" fuel gas network"> fuel gas network</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=stream" title=" stream "> stream </a> </p> <a href="https://publications.waset.org/abstracts/13259/reducing-energy-consumption-and-ghg-emission-by-integration-of-flare-gas-with-fuel-gas-network-in-refinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5070</span> Implications of Fuel Reloading in Heterogeneous Thorium-Based Fuel Designs for Improved Fuel Cycle Characteristics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hendrik%20Bernard%20Van%20Der%20Walt">Hendrik Bernard Van Der Walt</a>, <a href="https://publications.waset.org/abstracts/search?q=Frik%20Van%20Niekerk"> Frik Van Niekerk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuel models render a reduction in BOL when thorium is added to a reactor core. Thorium emulates the role of a fertile poison, and is beneficial for reducing beginning of cycle (BOC) excess reactivity. In spite of the build-up of 233U over the duration of a fuel cycle, the effects of fuel reloading have a significant impact on fuel viability, especially in the case of heterogeneous thorium-based fuels. The most common practice of compensating for the reduction of BOC reactivity is the addition of fissile isotopes (uranium fuel with increased enrichment or plutonium). This study introduces a heterogeneous thorium-based fuel with minimal fissile isotope additions. A pseudo reloading scheme was developed for numerical simulations of an infinite reactor based on the North-Anna 1 reactor operating in Virginia, USA. Use of this reloading pattern allows new thorium-based fuel to be loaded into the reactor model as part of a phasing in strategy at the end of any conventional reactor cycle. Results demonstrate the effects of thorium-based fuel on fuel cycle characteristics such as fuel cycle length, neutron economy and material matrix. Application of the above mentioned approach delivered promising results and presents a heterogeneous thorium-based fuel which could replace conventional fuel of typical, currently operating (or future) reactors without the need for expensive reactor redesign or fuel recycling strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel" title="nuclear fuel">nuclear fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20characteristics" title=" nuclear characteristics"> nuclear characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20cycle" title=" nuclear fuel cycle"> nuclear fuel cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=thorium-based%20fuel" title=" thorium-based fuel"> thorium-based fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20design" title=" heterogeneous design"> heterogeneous design</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20reloading" title=" fuel reloading"> fuel reloading</a> </p> <a href="https://publications.waset.org/abstracts/122557/implications-of-fuel-reloading-in-heterogeneous-thorium-based-fuel-designs-for-improved-fuel-cycle-characteristics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5069</span> Investigating of the Fuel Consumption in Construction Machinery and Ways to Reduce Fuel Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Bahboodian">Reza Bahboodian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the most important factors in the use of construction machinery is the fuel consumption cost of this equipment. The use of diesel engines in off-road vehicles is an important source of nitrogen oxides and particulate matter. Emissions of nitrogen oxides and particulate matter 10 in off-road vehicles (construction and mining) may be high. Due to the high cost of fuel, it is necessary to minimize fuel consumption. Factors affecting the fuel consumption of these cars are very diverse. Climate changes such as changes in pressure, temperature, humidity, fuel type selection, type of gearbox used in the car are effective in fuel consumption and pollution, and engine efficiency. In this paper, methods for reducing fuel consumption and pollutants by considering valid European and European standards are examined based on new methods such as hybridization, optimal gear change, adding hydrogen to diesel fuel, determining optimal working fluids, and using oxidation catalysts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=improve%20fuel%20consumption" title="improve fuel consumption">improve fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20machinery" title=" construction machinery"> construction machinery</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20reduction" title=" pollutant reduction"> pollutant reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=determining%20the%20optimal%20working%20cycle" title=" determining the optimal working cycle"> determining the optimal working cycle</a> </p> <a href="https://publications.waset.org/abstracts/136399/investigating-of-the-fuel-consumption-in-construction-machinery-and-ways-to-reduce-fuel-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5068</span> Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee">Changyeop Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim"> Sewon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20lean%20reburn" title="fuel lean reburn">fuel lean reburn</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=LNG%20flame" title=" LNG flame"> LNG flame</a> </p> <a href="https://publications.waset.org/abstracts/17315/effect-of-fuel-lean-reburning-process-on-nox-reduction-and-co-emission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5067</span> The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Indati%20Mustapa">Siti Indati Mustapa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Ali%20Bekhet"> Hussain Ali Bekhet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO2%20emission" title="CO2 emission">CO2 emission</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming"> linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=transportation%20sector" title=" transportation sector"> transportation sector</a>, <a href="https://publications.waset.org/abstracts/search?q=Malaysia" title=" Malaysia"> Malaysia</a> </p> <a href="https://publications.waset.org/abstracts/13084/the-reduction-of-co2-emissions-level-in-malaysian-transportation-sector-an-optimization-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5066</span> Study of Temperature Distribution in Coolant Channel of Nuclear Power with Fuel Cylinder Element Using Fluent Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Zamiri">Elham Zamiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research, we have focused on numeral simulation of a fuel rod in order to examine distribution of heat temperature in components of fuel rod by Fluent software by providing steady state, single phase fluid flow, frequency heat flux in a fuel rod in nuclear reactor to numeral simulation. Results of examining different layers of a fuel rod consist of fuel layer, gap, pod, and fluid cooling flow, also examining thermal properties and fluids such as heat transition rate and pressure drop. The obtained results through analytical method and results of other sources have been compared and have appropriate correspondence. Results show that using heavy water as cooling fluid along with few layers of gas and pod have the ability of reducing the temperature from above 300 <sup>◦</sup>C to 70 <sup>◦</sup>C. This investigation is developable for any geometry and material used in the nuclear reactor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nuclear%20fuel%20fission" title="nuclear fuel fission">nuclear fuel fission</a>, <a href="https://publications.waset.org/abstracts/search?q=numberal%20simulation" title=" numberal simulation"> numberal simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rod" title=" fuel rod"> fuel rod</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=Fluent%20software" title=" Fluent software"> Fluent software</a> </p> <a href="https://publications.waset.org/abstracts/108202/study-of-temperature-distribution-in-coolant-channel-of-nuclear-power-with-fuel-cylinder-element-using-fluent-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5065</span> Reducing Weight and Fuel Consumption of Civil Aircraft by EML</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luca%20Bertola">Luca Bertola</a>, <a href="https://publications.waset.org/abstracts/search?q=Tom%20Cox"> Tom Cox</a>, <a href="https://publications.waset.org/abstracts/search?q=Pat%20Wheeler"> Pat Wheeler</a>, <a href="https://publications.waset.org/abstracts/search?q=Seamus%20Garvey"> Seamus Garvey</a>, <a href="https://publications.waset.org/abstracts/search?q=Herve%20Morvan"> Herve Morvan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electromagnetic launch systems have been proposed for military applications to accelerate jet planes on aircraft carriers. This paper proposes the implementation of similar technology to aid civil aircraft take-off, which can provide significant economic, environmental and technical benefits. Assisted launch has the potential of reducing ground noise and emissions near airports and improving overall aircraft efficiency through reducing engine thrust requirements. This paper presents a take-off performance analysis for an Airbus A320-200 taking off with and without the assistance of the electromagnetic catapult. Assisted take-off allows for a significant reduction in take-off field length, giving more capacity with existing airport footprints and reducing the necessary footprint of new airports, which will both reduce costs and increase the number of suitable sites. The electromagnetic catapult may allow the installation of smaller engines with lower rated thrust. The consequent fuel consumption and operational cost reduction are estimated. The potential of reducing the aircraft operational costs and the runway length required making electromagnetic launch system an attractive solution to the air traffic growth in busy airports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electromagnetic%20launch" title="electromagnetic launch">electromagnetic launch</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=take-off%20analysis" title=" take-off analysis"> take-off analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20reduction" title=" weight reduction"> weight reduction</a> </p> <a href="https://publications.waset.org/abstracts/56488/reducing-weight-and-fuel-consumption-of-civil-aircraft-by-eml" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5064</span> A Global Fuel Combustion Data Product and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu%20Tao">Shu Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Rong%20Wang"> Rong Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Huizhong%20Shen"> Huizhong Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Huang"> Ye Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-resolution mapping of fuel combustion is essential for reducing uncertainties in assessments of greenhouse gases and air pollutant emissions. Such inventories provide valuable information for inferring carbon sinks, modeling pollutant transport, and developing control strategies. Previous inventories included only a few fuel types and were derived using national population proxies which may distort the geographical variation within countries. In this study, a global 0.1 degree by 0.1 degree geo-referenced inventory of fuel combustion (PKU-FUEL-2007) was developed for 64 fuel sub-types along with uncertainty analysis for the year 2007. Sub-national fuel consumption of large countries and major power-station locations were used. The disaggregation error can be reduced significantly by using the sub-nationally energy data, because the uneven distribution of per-capita fuel consumption within countries is taken into consideration. The PKU-FUEL was used to generate global emission inventories of CO2 (PKU-CO2-2007), polycyclic aromatic hydrocarbons (PKU-PAHs-2007), and black carbons (PKU-BC-2007). Atmospheric transport modeling and expsoure assessment were conducted for BC and PAHs based on the inventory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel" title="fuel">fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=emission" title=" emission"> emission</a>, <a href="https://publications.waset.org/abstracts/search?q=BC" title=" BC"> BC</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20transport" title=" atmospheric transport"> atmospheric transport</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure" title=" exposure"> exposure</a> </p> <a href="https://publications.waset.org/abstracts/5743/a-global-fuel-combustion-data-product-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5063</span> Significant Reduction in Specific CO₂ Emission through Process Optimization at G Blast Furnace, Tata Steel Jamshedpur</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoumodip%20Roy">Shoumodip Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Singhania"> Ankit Singhania</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20G.%20Choudhury"> M. K. G. Choudhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Santanu%20Mallick"> Santanu Mallick</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Agarwal"> M. K. Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Ramna"> R. V. Ramna</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttam%20Singh"> Uttam Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the key corporate goals of Tata Steel company is to demonstrate Environment Leadership. Decreasing specific CO₂ emission is one of the key steps to achieve the stated corporate goal. At any Blast Furnace, specific CO₂ emission is directly proportional to fuel intake. To reduce the fuel intake at G Blast Furnace, an initial benchmarking exercise was carried out with international and domestic Blast Furnaces to determine the potential for improvement. The gap identified during the exercise revealed that the benchmark Blast Furnaces operated with superior raw material quality than that in G Blast Furnace. However, since the raw materials to G Blast Furnace are sourced from the captive mines, improvement in the raw material quality was out of scope. Therefore, trials were taken with different operating regimes, to identify the key process parameters, which on optimization could significantly reduce the fuel intake in G Blast Furnace. The key process parameters identified from the trial were the Stoichiometric Oxygen Ratio, Melting Capacity ratio and the burden distribution inside the furnace. These identified process parameters were optimized to bridge the gap in fuel intake at G Blast Furnace, thereby reducing specific CO₂ emission to benchmark levels. This paradigm shift enabled to lower the fuel intake by 70kg per ton of liquid iron produced, thereby reducing the specific CO₂ emission by 15 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmark" title="benchmark">benchmark</a>, <a href="https://publications.waset.org/abstracts/search?q=blast%20furnace" title=" blast furnace"> blast furnace</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20emission" title=" CO₂ emission"> CO₂ emission</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rate" title=" fuel rate"> fuel rate</a> </p> <a href="https://publications.waset.org/abstracts/74952/significant-reduction-in-specific-co2-emission-through-process-optimization-at-g-blast-furnace-tata-steel-jamshedpur" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5062</span> Motorist Driving Strategy-Related Factors Affecting Vehicle Fuel Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Azizi">Aydin Azizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdurrahman%20Tanira"> Abdurrahman Tanira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the onset of climate change and limited fuel resources, improving fuel efficiency has become an important part of the motor industry. To maximize fuel efficiency, development of technologies must come hand-in-hand with awareness of efficient driving strategies. This study aims to explore the various driving habits that can impact fuel efficiency by reviewing available literature. Such habits include sudden and unnecessary acceleration or deceleration, improper hardware maintenance, driving above or below optimum speed and idling. By studying such habits and ultimately applying it to driving techniques, in combination with improved mechanics of the car, will optimize the use of fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20efficiency" title="fuel efficiency">fuel efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=driving%20techniques" title=" driving techniques"> driving techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20speed" title=" optimum speed"> optimum speed</a>, <a href="https://publications.waset.org/abstracts/search?q=optimizing%20fuel%20consumption" title=" optimizing fuel consumption"> optimizing fuel consumption</a> </p> <a href="https://publications.waset.org/abstracts/44070/motorist-driving-strategy-related-factors-affecting-vehicle-fuel-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5061</span> A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Alotaibi">S. Alotaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Omer"> S. Omer</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Su"> Y. Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort &ldquo;noise, pollution&rdquo; as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title="electric vehicles">electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=zero%20emission%20car" title=" zero emission car"> zero emission car</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20economy" title=" fuel economy"> fuel economy</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20footprint" title=" CO₂ footprint"> CO₂ footprint</a> </p> <a href="https://publications.waset.org/abstracts/124768/a-review-on-the-potential-of-electric-vehicles-in-reducing-world-co2-footprints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5060</span> The Role of Natural Gas in Reducing Carbon Emissions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Nami%20Almutairi">Abdulrahman Nami Almutairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the face of escalating climate change concerns, the concept of smart cities emerges as a promising approach to mitigate carbon emissions and move towards carbon neutrality. This paper provides a comprehensive review of the role of Natural Gas in achieving carbon neutrality. Natural gas has often been seen as a transitional fuel in the context of reducing carbon emissions. Its main role stems from being cleaner than coal and oil when burned for electricity generation and industrial processes. The urgent need to address this global issue has prompted a global shift towards cleaner energy sources and sustainable practices. In this endeavor, natural gas has emerged as a pivotal player, hailed for its potential to mitigate carbon emissions, and facilitate the transition to a low-carbon economy. With its lower carbon intensity compared to conventional fossil fuels, natural gas presents itself as a promising alternative for meeting energy demands while reducing environmental impact. As the world stands at a critical juncture in the fight against climate change, exploring the potential of natural gas as a transitional fuel offers insights into pathways towards a more sustainable and resilient future. By critically evaluating its opportunities and challenges, we can harness the potential of natural gas as a transitional fuel while advancing towards a cleaner, more resilient energy system. Through collaborative efforts and informed decision-making, we can pave the way for a future where energy is not only abundant but also environmentally sustainable and socially equitable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas" title="natural gas">natural gas</a>, <a href="https://publications.waset.org/abstracts/search?q=clean%20fuel" title=" clean fuel"> clean fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20emissions" title=" carbon emissions"> carbon emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20warming" title=" global warming"> global warming</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20protection" title=" environmental protection"> environmental protection</a> </p> <a href="https://publications.waset.org/abstracts/186823/the-role-of-natural-gas-in-reducing-carbon-emissions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5059</span> Ultra-Low NOx Combustion Technology of Liquid Fuel Burner</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new concept of in-furnace partial oxidation combustion is successfully applied in this research. The burner is designed such that liquid fuel is prevaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, injection distance and fuel distribution ratio on the NOx and CO are experimentally investigated. This newly developed burner showed very low NOx emission level, about 15 ppm when light oil is used as a fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=burner" title="burner">burner</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title=" low NOx"> low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20fuel" title=" liquid fuel"> liquid fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20oxidation" title=" partial oxidation"> partial oxidation</a> </p> <a href="https://publications.waset.org/abstracts/2603/ultra-low-nox-combustion-technology-of-liquid-fuel-burner" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5058</span> Online Measurement of Fuel Stack Elongation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Ahn">Sung Ho Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintae%20Hong"> Jintae Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Young%20Joung"> Chang Young Joung</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Ho%20Yang"> Tae Ho Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Heo"> Sung Ho Heo</a>, <a href="https://publications.waset.org/abstracts/search?q=Seo%20Yun%20Jang"> Seo Yun Jang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performances of nuclear fuels and materials are qualified at an irradiation system in research reactors operating under the commercial nuclear power plant conditions. Fuel centerline temperature, coolant temperature, neutron flux, deformations of fuel stack and swelling are important parameters needed to analyze the nuclear fuel performances. The dimensional stability of nuclear fuels is a key parameter measuring the fuel densification and swelling. In this study, the fuel stack elongation is measured using a LVDT. A mockup LVDT instrumented fuel rod is developed. The performances of mockup LVDT instrumented fuel rod is evaluated by experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axial%20deformation" title="axial deformation">axial deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20measurement" title=" elongation measurement"> elongation measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=in-pile%20instrumentation" title=" in-pile instrumentation"> in-pile instrumentation</a>, <a href="https://publications.waset.org/abstracts/search?q=LVDT" title=" LVDT"> LVDT</a> </p> <a href="https://publications.waset.org/abstracts/46795/online-measurement-of-fuel-stack-elongation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46795.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">534</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5057</span> Oxygen Enriched Co-Combustion of Sub-Bituminous Coal/Biomass Waste Fuel Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chaouki%20Ghenai">Chaouki Ghenai </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computational Fluid Dynamic analysis of co-combustion of coal/biomass waste fuel blends is presented in this study. The main objective of this study is to investigate the effects of biomass portions (0%, 10%, 20%, 30%: weight percent) blended with coal and oxygen concentrations (21% for air, 35%, 50%, 75% and 100 % for pure oxygen) on the combustion performance and emissions. The goal is to reduce the air emissions from power plants coal combustion. Sub-bituminous Nigerian coal with calorific value of 32.51 MJ/kg and sawdust (biomass) with calorific value of 16.68 MJ/kg is used in this study. Coal/Biomass fuel blends co-combustion is modeled using mixture fraction/pdf approach for non-premixed combustion and Discrete Phase Modeling (DPM) to predict the trajectories and the heat/mass transfer of the fuel blend particles. The results show the effects of oxygen concentrations and biomass portions in the coal/biomass fuel blends on the gas and particles temperatures, the flow field, the devolitization and burnout rates inside the combustor and the CO2 and NOX emissions at the exit from the combustor. The results obtained in the course of this study show the benefits of enriching combustion air with oxygen and blending biomass waste with coal for reducing the harmful emissions from coal power plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-combustion" title="co-combustion">co-combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20blends" title=" fuel blends"> fuel blends</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20emissions" title=" air emissions"> air emissions</a> </p> <a href="https://publications.waset.org/abstracts/39208/oxygen-enriched-co-combustion-of-sub-bituminous-coalbiomass-waste-fuel-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5056</span> Probabilistic Safety Assessment of Koeberg Spent Fuel Pool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sibongiseni%20Thabethe">Sibongiseni Thabethe</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Korir"> Ian Korir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effective management of spent fuel pool (SFP) safety has been raised as one of the emerging issues to further enhance nuclear installation safety after the Fukushima accident on March 11, 2011. Before then, SFP safety-related issues have been mainly focused on (a) controlling the configuration of the fuel assemblies in the pool with no loss of pool coolants and (b) ensuring adequate pool storage space to prevent fuel criticality owing to chain reactions of the fission products and the ability for neutron absorption to keep the fuel cool. A probabilistic safety (PSA) assessment was performed using the systems analysis program for hands-on integrated reliability evaluations (SAPHIRE) computer code. Event and fault tree analysis was done to develop a PSA model for the Koeberg SFP. We present preliminary PSA results of events that lead to boiling and cause fuel uncovering, resulting in possible fuel damage in the Koeberg SFP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20code" title="computer code">computer code</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20assemblies" title=" fuel assemblies"> fuel assemblies</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20risk%20assessment" title=" probabilistic risk assessment"> probabilistic risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20pool" title=" spent fuel pool"> spent fuel pool</a> </p> <a href="https://publications.waset.org/abstracts/131191/probabilistic-safety-assessment-of-koeberg-spent-fuel-pool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5055</span> Synchrotron X-Ray Based Investigation of Fe Environment in Porous Anode of Shewanella oneidensis Microbial Fuel Cell </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Dehipawala">Sunil Dehipawala</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayathrie%20Amarasuriya"> Gayathrie Amarasuriya</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Gadura"> N. Gadura</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Tremberger%20Jr"> G. Tremberger Jr</a>, <a href="https://publications.waset.org/abstracts/search?q=D.Lieberman"> D.Lieberman</a>, <a href="https://publications.waset.org/abstracts/search?q=Harry%20Gafney"> Harry Gafney</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20Holden"> Todd Holden</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Cheung"> T. Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The iron environment in Fe-doped Vycor Anode was investigated with EXAFS using Brookhaven Synchrotron Light Source. The iron-reducing Shewanella oneidensis culture was grown in a microbial fuel cell under anaerobic respiration. The Fe bond length was found to decrease and correlate with the amount of biofilm growth on the Fe-doped Vycor Anode. The data suggests that Fe-doped Vycor Anode would be a good substrate to study the Shewanella oneidensis nanowire structure using EXAFS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EXAFS" title="EXAFS">EXAFS</a>, <a href="https://publications.waset.org/abstracts/search?q=fourier%20transform" title=" fourier transform"> fourier transform</a>, <a href="https://publications.waset.org/abstracts/search?q=Shewanella%20oneidensis" title=" Shewanella oneidensis"> Shewanella oneidensis</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/30103/synchrotron-x-ray-based-investigation-of-fe-environment-in-porous-anode-of-shewanella-oneidensis-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5054</span> Air Conditioning Variation of 1kW Open-Cathode Proton Exchange Membrane (PEM) Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syahirin%20Aisha">Mohammad Syahirin Aisha</a>, <a href="https://publications.waset.org/abstracts/search?q=Khairul%20Imran%20Sainan"> Khairul Imran Sainan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The PEM fuel cell is a device that generate electric by electrochemical reaction between hydrogen fuel and oxygen in the fuel cell stack. PEM fuel cell consists of an anode (hydrogen supply), a cathode (oxygen supply) and an electrolyte that allow charges move between the two positions of the fuel cell. The only product being developed after the reaction is water (H2O) and heat as the waste which does not emit greenhouse gasses. The performance of fuel cell affected by numerous parameters. This study is restricted to cathode parameters that affect fuel cell performance. At the anode side, the reactant is not going through any changes. Experiments with variation in air velocity (3m/s, 6m/s and 9m/s), temperature (10oC, 20oC, 35oC) and relative humidity (50%, 60%, and 70%) have been carried out. The experiments results are presented in the form of fuel cell stack power output over time, which demonstrate the impacts of the various air condition on the execution of the PEM fuel cell. In this study, the experimental analysis shows that with variation of air conditions, it gives different fuel cell performance behavior. The maximum power output of the experiment was measured at an ambient temperature of 25oC with relative humidity and 9m/s velocity of air. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air-breathing%20PEM%20fuel%20cell" title="air-breathing PEM fuel cell">air-breathing PEM fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=cathode%20side" title=" cathode side"> cathode side</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=variation%20in%20air%20condition" title=" variation in air condition"> variation in air condition</a> </p> <a href="https://publications.waset.org/abstracts/24926/air-conditioning-variation-of-1kw-open-cathode-proton-exchange-membrane-pem-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5053</span> Geared Turbofan with Water Alcohol Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Purohit">Abhinav Purohit</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruthi%20S.%20Pradeep"> Shruthi S. Pradeep</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today’s world, aviation industries are using turbofan engines (permutation of turboprop and turbojet) which meet the obligatory requirements to be fuel competent and to produce enough thrust to propel an aircraft. But one can imagine increasing the work output of this particular machine by reducing the input power. In striving to improve technologies, especially to augment the efficiency of the engine with some adaptations, which can be crooked to new concepts by introducing a step change in the turbofan engine development. One hopeful concept is, to de-couple the fan with the help of reduction gear box in a two spool shaft engine from the rest of the machinery to get more work output with maximum efficiency by reducing the load on the turbine shaft. By adapting this configuration we can get an additional degree of freedom to better optimize each component at different speeds. Since the components are running at different speeds we can get hold of preferable efficiency. Introducing water alcohol mixture to this concept would really help to get better results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emissions" title="emissions">emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20consumption" title=" fuel consumption"> fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=more%20power" title=" more power"> more power</a>, <a href="https://publications.waset.org/abstracts/search?q=turbofan" title=" turbofan"> turbofan</a> </p> <a href="https://publications.waset.org/abstracts/2279/geared-turbofan-with-water-alcohol-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5052</span> Investigating the Influence of Roof Fairing on Aerodynamic Drag of a Bluff Body</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kushal%20Kumar%20Chode">Kushal Kumar Chode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increase in demand for fuel saving and demand for faster vehicles with decent fuel economy, researchers around the world started investigating in various passive flow control devices to improve the fuel efficiency of vehicles. In this paper, A roof fairing was investigated for reducing the aerodynamic drag of a bluff body. The bluff body considered for this work is Ahmed model with a rake angle of 25deg was and subjected to flow with a velocity of 40m/s having Reynolds number of 2.68million was analysed using a commercial Computational Fluid Dynamic (CFD) code Star CCM+. It was evident that pressure drag is the main source of drag on an Ahmed body from the initial study. Adding a roof fairing has delayed the flow separation and resulted in delaying wake formation, thus improving the pressure in near weak and reducing the wake region. Adding a roof fairing of height and length equal to 1/7H and 1/3L respectively has shown a drag reduction by 9%. However, an optimised fairing, which was obtained by changing height, length and width by 5% increase, recorded a drag reduction close 12%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20model" title="Ahmed model">Ahmed model</a>, <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20drag" title=" aerodynamic drag"> aerodynamic drag</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20flow%20control" title=" passive flow control"> passive flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=roof%20fairing" title=" roof fairing"> roof fairing</a>, <a href="https://publications.waset.org/abstracts/search?q=wake%20formation" title=" wake formation"> wake formation</a> </p> <a href="https://publications.waset.org/abstracts/68872/investigating-the-influence-of-roof-fairing-on-aerodynamic-drag-of-a-bluff-body" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68872.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5051</span> The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun%20Pao%20Kuo">Chun Pao Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Tong%20Lin"> Chi Tong Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diesel%20engine" title="diesel engine">diesel engine</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaust%20pollution" title=" exhaust pollution"> exhaust pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20injection%20timing" title=" fuel injection timing"> fuel injection timing</a>, <a href="https://publications.waset.org/abstracts/search?q=tire%20pyrolysis%20oil" title=" tire pyrolysis oil"> tire pyrolysis oil</a> </p> <a href="https://publications.waset.org/abstracts/31810/the-study-of-tire-pyrolysis-fuel-in-ci-diesel-engine-for-spray-combustion-character-and-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5050</span> Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dimitrie%20Marinceu">Dimitrie Marinceu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20packing%20plant" title="used fuel packing plant">used fuel packing plant</a>, <a href="https://publications.waset.org/abstracts/search?q=robotic%20assembly%20cell" title=" robotic assembly cell"> robotic assembly cell</a>, <a href="https://publications.waset.org/abstracts/search?q=used%20fuel%20container" title=" used fuel container"> used fuel container</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20geological%20repository" title=" deep geological repository"> deep geological repository</a> </p> <a href="https://publications.waset.org/abstracts/56119/application-of-robotics-to-assemble-a-used-fuel-container-in-the-canadian-used-fuel-packing-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">291</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5049</span> Combustion Characteristics of Bioethanol-Biodiesel-Diesel Fuel Blends Used in a Common Rail Diesel Engine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Aydogan">Hasan Aydogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes in the performance, emission and combustion characteristics of bioethanol-safflower biodiesel and diesel fuel blends used in a common rail diesel engine were investigated in this experimental study. E20B20D60 (20% bioethanol, 20% biodiesel, 60% diesel fuel by volume), E30B20D50, E50B20D30 and diesel fuel (D) were used as fuel. The tests were performed at full throttle valve opening and variable engine speeds. The results of the tests showed decreases in engine power, engine torque, carbon monoxide (CO), hydrocarbon (HC) and smoke density values with the use of bioethanol-biodiesel and diesel fuel blends, whereas, increases were observed in nitrogen oxide (NOx) and brake specific fuel consumption (BSFC) values. When combustion characteristics were examined, it was seen that the values were close to one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol" title="bioethanol">bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=safflower" title=" safflower"> safflower</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20characteristics" title=" combustion characteristics"> combustion characteristics</a> </p> <a href="https://publications.waset.org/abstracts/6129/combustion-characteristics-of-bioethanol-biodiesel-diesel-fuel-blends-used-in-a-common-rail-diesel-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5048</span> Bio Energy from Metabolic Activity of Bacteria in Plant and Soil Using Novel Microbial Fuel Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Samuel%20Raj">B. Samuel Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20R.%20D.%20Jebakumar"> Solomon R. D. Jebakumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microbial fuel cells (MFCs) are an emerging and promising method for achieving sustainable energy since they can remove contaminated organic matter and simultaneously generate electricity. Our approach was driven in three different ways like Bacterial fuel cell, Soil Microbial fuel cell (Soil MFC) and Plant Microbial fuel cell (Plant MFC). Bacterial MFC: Sulphate reducing bacteria (SRB) were isolated and identified as the efficient electricigens which is able to produce ±2.5V (689mW/m2) and it has sustainable activity for 120 days. Experimental data with different MFC revealed that high electricity production harvested continuously for 90 days 1.45V (381mW/m2), 1.98V (456mW/m2) respectively. Biofilm formation was confirmed on the surface of the anode by high content screening (HCS) and scanning electron Microscopic analysis (SEM). Soil MFC: Soil MFC was constructed with low cost and standard Mudwatt soil MFC was purchased from keegotech (USA). Vermicompost soil (V1) produce high energy (± 3.5V for ± 400 days) compared to Agricultural soil (A1) (± 2V for ± 150 days). Biofilm formation was confirmed by HCS and SEM analysis. This finding provides a method for extracting energy from organic matter, but also suggests a strategy for promoting the bioremediation of organic contaminants in subsurface environments. Our Soil MFC were able to run successfully a 3.5V fan and three LED continuously for 150 days. Plant MFC: Amaranthus candatus (P1) and Triticum aestivium (P2) were used in Plant MFC to confirm the electricity production from plant associated microbes, four uniform size of Plant MFC were constructed and checked for energy production. P2 produce high energy (± 3.2V for 40 days) with harvesting interval of two times and P1 produces moderate energy without harvesting interval (±1.5V for 24 days). P2 is able run 3.5V fan continuously for 10days whereas P1 needs optimization of growth conditions to produce high energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title="microbial fuel cell">microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=biofilm" title=" biofilm"> biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20microbial%20fuel%20cell" title=" soil microbial fuel cell"> soil microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20microbial%20fuel%20cell" title=" plant microbial fuel cell"> plant microbial fuel cell</a> </p> <a href="https://publications.waset.org/abstracts/25813/bio-energy-from-metabolic-activity-of-bacteria-in-plant-and-soil-using-novel-microbial-fuel-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5047</span> Experimental Investigation of Performance Anode Side of PEM Fuel Cell with Spin Method Coated with YSZ+SDC</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCrol%20%C3%96nal">Gürol Önal</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Din%C3%A7er"> Kevser Dinçer</a>, <a href="https://publications.waset.org/abstracts/search?q=Salih%20Yayla"> Salih Yayla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane PEM fuel cell was experimentally investigated. Coating on the anode side of the PEM fuel cell was accomplished with the spin method by using YSZ+SDC. A solution having 0,1 gr YttriaStabilized Zirconia (YSZ) + 0,1 Samarium-Doped Ceria (SDC) + 10 mL methanol was prepared. This solution was taken out and filled into a micro-pipette. Then the anode side of PEM fuel cell was coated with YSZ+ SDC by using spin method. In the experimental study, current, voltage and power performances before and after coating were recorded and then compared to each other. It was found that the efficiency of PEM fuel cell increases after the coating with YSZ+SDC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=Polymer%20Electrolyte%20Membrane%20%28PEM%29" title=" Polymer Electrolyte Membrane (PEM)"> Polymer Electrolyte Membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/8063/experimental-investigation-of-performance-anode-side-of-pem-fuel-cell-with-spin-method-coated-with-yszsdc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">562</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5046</span> Low NOx Combustion Technology for Minimizing NOx </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Changyeop%20Lee"> Changyeop Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A noble low NOx combustion technology, based on partial oxidation combustion concept in a fuel rich combustion zone, is successfully applied in this research. The burner is designed such that a portion of fuel is heated and pre-vaporized in the furnace then injected into a fuel rich combustion zone so that a partial oxidation reaction occurs. The effects of equivalence ratio, thermal load, and fuel distribution ratio on the emissions of NOx and CO are experimentally investigated. This newly developed combustion technology is successfully applied to industrial furnace, and showed extremely low NOx emission levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20NOx" title="low NOx">low NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=burner" title=" burner"> burner</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20rich" title=" fuel rich"> fuel rich</a> </p> <a href="https://publications.waset.org/abstracts/17272/low-nox-combustion-technology-for-minimizing-nox" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5045</span> Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taehyun%20Kim">Taehyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunjoo%20Park"> Hyunjoo Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Taehyun%20Kim"> Taehyun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=local%20acceptance" title="local acceptance">local acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy%20facility" title=" renewable energy facility"> renewable energy facility</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20nuclear%20fuel%20repository" title=" spent nuclear fuel repository"> spent nuclear fuel repository</a>, <a href="https://publications.waset.org/abstracts/search?q=interview" title=" interview"> interview</a> </p> <a href="https://publications.waset.org/abstracts/96119/comparative-analysis-of-local-acceptance-of-renewable-energy-facilities-and-spent-nuclear-fuel-repositories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5044</span> Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanghoon%20Bae">Sanghoon Bae</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanju%20Cha"> Hanju Cha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computational%20flow%20dynamics%20%28CFD%29" title="computational flow dynamics (CFD)">computational flow dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=failed%20fuel%20detector%20%28FFD%29" title=" failed fuel detector (FFD)"> failed fuel detector (FFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20fuel%20assembly%20%28FFA%29" title=" fresh fuel assembly (FFA)"> fresh fuel assembly (FFA)</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20fuel%20assembly%20%28SFA%29" title=" spent fuel assembly (SFA)"> spent fuel assembly (SFA)</a> </p> <a href="https://publications.waset.org/abstracts/73722/consideration-of-failed-fuel-detector-location-through-computational-flow-dynamics-analysis-on-primary-cooling-system-flow-with-two-outlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5043</span> An Empirical Dynamic Fuel Cell Model Used for Power System Verification in Aerospace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giuliano%20Raimondo">Giuliano Raimondo</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%B6rg%20Wangemann"> Jörg Wangemann</a>, <a href="https://publications.waset.org/abstracts/search?q=Peer%20Drechsel"> Peer Drechsel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In systems development involving Fuel Cells generators, it is important to have from an early stage of the project a dynamic model for the electrical behavior of the stack to be shared between involved development parties. It allows independent and early design and tests of fuel cell related power electronic. This paper presents an empirical Fuel Cell system model derived from characterization tests on a real system. Moreover, it is illustrated how the obtained model is used to build and validate a real-time Fuel Cell system emulator which is used for aerospace electrical integration testing activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title="fuel cell">fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20emulation" title=" real time emulation"> real time emulation</a>, <a href="https://publications.waset.org/abstracts/search?q=testing" title=" testing"> testing</a> </p> <a href="https://publications.waset.org/abstracts/57838/an-empirical-dynamic-fuel-cell-model-used-for-power-system-verification-in-aerospace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=169">169</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=170">170</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=reducing%20fuel&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10