CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;7 of 7 results for author: <span class="mathjax">Vergara, R C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Vergara, R C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Vergara%2C+R+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Vergara, R C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13384">arXiv:2407.13384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13384">pdf</a>, <a href="https://arxiv.org/format/2407.13384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Movement-based models for abundance data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">Ricardo Carrizo Vergara</a>, <a href="/search/?searchtype=author&amp;query=K%C3%A9ry%2C+M">Marc K茅ry</a>, <a href="/search/?searchtype=author&amp;query=Hefley%2C+T">Trevor Hefley</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13384v2-abstract-short" style="display: inline;"> We develop two statistical models for space-time abundance data based on a stochastic underlying continuous individual movement. In contrast to current models for abundance in statistical ecology, our models exploit the explicit connection between movement and counts, including the induced space-time auto-correlation. Our first model, called Snapshot, describes the counts of free moving individual&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13384v2-abstract-full').style.display = 'inline'; document.getElementById('2407.13384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13384v2-abstract-full" style="display: none;"> We develop two statistical models for space-time abundance data based on a stochastic underlying continuous individual movement. In contrast to current models for abundance in statistical ecology, our models exploit the explicit connection between movement and counts, including the induced space-time auto-correlation. Our first model, called Snapshot, describes the counts of free moving individuals with a false-negative detection error. Our second model, called Capture, describes the capture and retention of moving individuals, and it follows an axiomatic approach based on three simple principles from which it is deduced that the density of the capture time is the solution of a Volterra integral equation of the second kind. Mild conditions are imposed to the underlying stochastic movement model, which is free to choose. We develop simulation methods for both models. The joint distribution of the space-time counts provides an example of a new multivariate distribution, here named the evolving categories multinomial distribution, for which we establish key properties. Since the general likelihood is intractable, we propose a pseudo-likelihood fitting method assuming multivariate Gaussianity respecting mean and covariance structures, justified by the central limit theorem. We conduct simulation studies to validate the method, and we fit our models to experimental data of a spreading population. We estimate movement parameters and compare our models to a basic ecological diffusion model. Movement parameters can be estimated using abundance data, but one must be aware of the necessary conditions to avoid underestimation of spread parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13384v2-abstract-full').style.display = 'none'; document.getElementById('2407.13384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.04282">arXiv:2303.04282</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.04282">pdf</a>, <a href="https://arxiv.org/ps/2303.04282">ps</a>, <a href="https://arxiv.org/format/2303.04282">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Function-measure kernels, self-integrability and uniquely-defined stochastic integrals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">Ricardo Carrizo Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.04282v1-abstract-short" style="display: inline;"> In this work we study the self-integral of a function-measure kernel and its importance on stochastic integration. A continuous-function measure kernel $K$ over $D \subset \mathbb{R}^{d}$ is a function of two variables which acts as a continuous function in the first variable and as a real Radon measure in the second. Some analytical properties of such kernels are studied, particularly in the case&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04282v1-abstract-full').style.display = 'inline'; document.getElementById('2303.04282v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.04282v1-abstract-full" style="display: none;"> In this work we study the self-integral of a function-measure kernel and its importance on stochastic integration. A continuous-function measure kernel $K$ over $D \subset \mathbb{R}^{d}$ is a function of two variables which acts as a continuous function in the first variable and as a real Radon measure in the second. Some analytical properties of such kernels are studied, particularly in the case of cross-positive-definite type kernels. The self-integral of $K$ over a bounded set $D$ is the &#34;integral of $K$ with respect to itself&#34;. It is defined using Riemann sums and denoted $\int_{D}K(x,dx)$. Some examples where such notion is well-defined are presented. This concept turns out to be crucial for unique-definiteness of stochastic integrals, that is, when the integral is independent of the way of approaching it. If $K$ is the cross-covariance kernel between a mean-square continuous stochastic process $Z$ and a random measure with measure covariance structure $M$, $\int_{D}K(x,dx)$ is the expectation of the stochastic integral $\int_{D} ZdM$ when both are uniquely-defined. It is also proven that when $Z$ and $M$ are jointly Gaussian, self-integrability properties on $K$ are necessary and sufficient to guarantee the unique-definiteness of $\int_{D}ZdM$. Results on integrations over subsets, as well as potential $蟽$-additive structures are obtained. Three applications of these results are proposed, involving tensor products of Gaussian random measures, the study of a uniquely-defined stochastic integral with respect to fractional Brownian motion with Hurst index $H &gt; \frac{1}{2}$, and the non-uniquely-defined stochastic integrals with respect to orthogonal random measures. The studied stochastic integrals are defined without use of martingale-type conditions, providing a potential filtration-free approach to stochastic calculus grounded on covariance structures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.04282v1-abstract-full').style.display = 'none'; document.getElementById('2303.04282v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 60G57; 60H50; 47B34 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14779">arXiv:2208.14779</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.14779">pdf</a>, <a href="https://arxiv.org/ps/2208.14779">ps</a>, <a href="https://arxiv.org/format/2208.14779">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> Necessary and sufficient conditions for a family of continuous functions to form a Karhunen-Lo猫ve basis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">Ricardo Carrizo Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14779v1-abstract-short" style="display: inline;"> Given an orthonormal system of $L^{2}(D)$ consistent of continuous functions $(f_{n})_{n}$, with $D \subset \mathbb{R}^{d}$ compact, and given a sequence of strictly positive coefficients $(位_{n})_{n}$ forming a convergent series, we prove that they consist in the eigenfunctions and eigenvectors of a covariance operator associated to a continuous positive-definite Kernel if and only if the sequenc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14779v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14779v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14779v1-abstract-full" style="display: none;"> Given an orthonormal system of $L^{2}(D)$ consistent of continuous functions $(f_{n})_{n}$, with $D \subset \mathbb{R}^{d}$ compact, and given a sequence of strictly positive coefficients $(位_{n})_{n}$ forming a convergent series, we prove that they consist in the eigenfunctions and eigenvectors of a covariance operator associated to a continuous positive-definite Kernel if and only if the sequence of partial sums $ \sum_{j \leq n} 位_{j} f_{j}^{2} $ is equicontinuous over $D$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14779v1-abstract-full').style.display = 'none'; document.getElementById('2208.14779v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages short result</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14202">arXiv:2203.14202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14202">pdf</a>, <a href="https://arxiv.org/ps/2203.14202">ps</a>, <a href="https://arxiv.org/format/2203.14202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Karhunen-Lo猫ve expansion of Random Measures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">Ricardo Carrizo Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14202v1-abstract-short" style="display: inline;"> We present an orthogonal expansion for real regular second-order finite random measures over $\mathbb{R}^{d}$. Such expansion, which may be seen as a Karhunen-Lo猫ve decomposition, consists in a series expansion of deterministic real finite measures weighted by uncorrelated real random variables with summable variances. The convergence of the series is in a mean-square-&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14202v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14202v1-abstract-full" style="display: none;"> We present an orthogonal expansion for real regular second-order finite random measures over $\mathbb{R}^{d}$. Such expansion, which may be seen as a Karhunen-Lo猫ve decomposition, consists in a series expansion of deterministic real finite measures weighted by uncorrelated real random variables with summable variances. The convergence of the series is in a mean-square-$\mathcal{M}_{B}(\mathbb{R}^{d})^{*}$-weak$^{*}$ sense, with $\mathcal{M}_{B}(\mathbb{R}^{d})$ being the space of bounded measurable functions over $\mathbb{R}^{d}$. This is proven profiting the extra requirement for a regular random measure that its covariance structure is identified with a covariance measure over $\mathbb{R}^{d}\times\mathbb{R}^{d}$. We also obtain a series decomposition of the covariance measure which converges in a separately $\mathcal{M}_{B}(\mathbb{R}^{d})^{*}$-weak$^{*}-$total-variation sense. We then obtain an analogous result for function-regulated regular random measures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14202v1-abstract-full').style.display = 'none'; document.getElementById('2203.14202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.01839">arXiv:2101.01839</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.01839">pdf</a>, <a href="https://arxiv.org/ps/2101.01839">ps</a>, <a href="https://arxiv.org/format/2101.01839">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> </div> </div> <p class="title is-5 mathjax"> Generalized Stochastic Processes: Linear Relations to White Noise and Orthogonal Representations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">R. Carrizo Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.01839v2-abstract-short" style="display: inline;"> We present two linear relations between an arbitrary (real tempered second order) generalized stochastic process over $\mathbb{R}^{d}$ and White Noise processes over $\mathbb{R}^{d}$. The first is that any generalized stochastic process can be obtained as a linear transformation of a White Noise. The second indicates that, under dimensional compatibility conditions, a generalized stochastic proces&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01839v2-abstract-full').style.display = 'inline'; document.getElementById('2101.01839v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.01839v2-abstract-full" style="display: none;"> We present two linear relations between an arbitrary (real tempered second order) generalized stochastic process over $\mathbb{R}^{d}$ and White Noise processes over $\mathbb{R}^{d}$. The first is that any generalized stochastic process can be obtained as a linear transformation of a White Noise. The second indicates that, under dimensional compatibility conditions, a generalized stochastic process can be linearly transformed into a White Noise. The arguments rely on the regularity theorem for tempered distributions, which is used to obtain a mean-square continuous stochastic process which is then expressed in a Karhunen-Lo猫ve expansion with respect to a convenient Hilbert space. The first linear relation obtained allows also to conclude that any generalized stochastic process has an orthogonal representation as a series expansion of deterministic tempered distributions weighted by uncorrelated random variables with summable variances. This representation is then used to conclude the second linear relation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.01839v2-abstract-full').style.display = 'none'; document.getElementById('2101.01839v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.04145">arXiv:1906.04145</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.04145">pdf</a>, <a href="https://arxiv.org/ps/1906.04145">ps</a>, <a href="https://arxiv.org/format/1906.04145">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Analysis of PDEs">math.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Functional Analysis">math.FA</span> </div> </div> <p class="title is-5 mathjax"> First-order linear evolution equations with c脿dl脿g-in-time solutions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">Ricardo Carrizo Vergara</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.04145v1-abstract-short" style="display: inline;"> In this work we study first-order linear parabolic evolution PDEs over $\mathbb{R}^{d}\times\mathbb{R}$ and $\mathbb{R}^{d}\times\mathbb{R}^{+}$ comprising a spatial operator defined through a symbol function and a source term such that its spatial Fourier transform is a slow-growing measure over $\mathbb{R}^{d}\times\mathbb{R}$. When the source term is required to has its support on&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04145v1-abstract-full').style.display = 'inline'; document.getElementById('1906.04145v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.04145v1-abstract-full" style="display: none;"> In this work we study first-order linear parabolic evolution PDEs over $\mathbb{R}^{d}\times\mathbb{R}$ and $\mathbb{R}^{d}\times\mathbb{R}^{+}$ comprising a spatial operator defined through a symbol function and a source term such that its spatial Fourier transform is a slow-growing measure over $\mathbb{R}^{d}\times\mathbb{R}$. When the source term is required to has its support on $\mathbb{R}^{d}\times\mathbb{R}^{+}$, it is shown that there exists a unique solution such that its spatial Fourier transform is a slow-growing measure with support in $\mathbb{R}^{d}\times\mathbb{R}^{+}$, which in addition has a c脿dl脿g-in-time behaviour. This allows to well-pose and analyse an initial value problem associated to this class of equations and to consider cases where the spatial operator can be a pseudo-differential operator. We also look at for solutions to the cases where the source term is such that its spatial and spatio-temporal Fourier transforms are slow-growing measures over $\mathbb{R}^{d}\times\mathbb{R}$. In such a case, it is shown that when the real part of the symbol function of the spatial operator is inferiorly bounded by a strictly positive constant, there exists a unique solution whose both spatial and spatio-temporal Fourier transforms are slow-growing measures over $\mathbb{R}^{d}\times\mathbb{R}$, and which also has a c脿dl脿g-in-time behaviour. In addition, it is proven that the solution to an associated Cauchy problem converges spatio-temporally asymptotically to this unique solution as the time flows long enough. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.04145v1-abstract-full').style.display = 'none'; document.getElementById('1906.04145v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.04999">arXiv:1806.04999</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.04999">pdf</a>, <a href="https://arxiv.org/ps/1806.04999">ps</a>, <a href="https://arxiv.org/format/1806.04999">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistics Theory">math.ST</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Probability">math.PR</span> </div> </div> <p class="title is-5 mathjax"> A general framework for SPDE-based stationary random fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&amp;query=Vergara%2C+R+C">Ricardo Carrizo Vergara</a>, <a href="/search/?searchtype=author&amp;query=Allard%2C+D">Denis Allard</a>, <a href="/search/?searchtype=author&amp;query=Desassis%2C+N">Nicolas Desassis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.04999v2-abstract-short" style="display: inline;"> This paper presents theoretical advances in the application of the Stochastic Partial Differential Equation (SPDE) approach in geostatistics. We show a general approach to construct stationary models related to a wide class of linear SPDEs, with applications to spatio-temporal models having non-trivial properties. Within the framework of Generalized Random Fields, a criterion for existence and uni&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04999v2-abstract-full').style.display = 'inline'; document.getElementById('1806.04999v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.04999v2-abstract-full" style="display: none;"> This paper presents theoretical advances in the application of the Stochastic Partial Differential Equation (SPDE) approach in geostatistics. We show a general approach to construct stationary models related to a wide class of linear SPDEs, with applications to spatio-temporal models having non-trivial properties. Within the framework of Generalized Random Fields, a criterion for existence and uniqueness of stationary solutions for this class of SPDEs is proposed and proven. Their covariance are then obtained through their spectral measure. We present a result relating the covariance in the case of a White Noise source term with that of a generic case through convolution. Then, we obtain a variety of SPDE-based stationary random fields. In particular, well-known results regarding the Mat茅rn Model and Markovian models are recovered. A new relationship between the Stein model and a particular SPDE is obtained. New spatio-temporal models obtained from evolution SPDEs of arbitrary temporal derivative order are then obtained, for which properties of separability and symmetry can be controlled. We also obtain results concerning stationary solutions for physically inspired models, such as solutions to the heat equation, the advection-diffusion equation, some Langevin&#39;s equations and the wave equation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.04999v2-abstract-full').style.display = 'none'; document.getElementById('1806.04999v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Corrected typos and style. Corrected mistakes in references (verified the cross cite, added new references and erasing non-used ones). Reorganization of the Section 6 in order to obtain a &#34;general to particular&#34; exposition. Appendix E is erased, its content is now present in the corpus. Some clarifications to proofs in Appendix B are added</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10