CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 83 results for author: <span class="mathjax">Allison, J R</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Allison, J R"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Allison%2C+J+R&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Allison, J R"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12138">arXiv:2411.12138</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12138">pdf</a>, <a href="https://arxiv.org/format/2411.12138">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> COALAS III: The ATCA CO(1-0) look at the growth and death of H$伪$ emitters in the Spiderweb protocluster at z=2.16 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez-Mart%C3%ADnez%2C+J+M">J. M. P茅rez-Mart铆nez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">H. Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B+H+C">B. H. C. Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champagne%2C+J+B">J. B. Champagne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Indermuehle%2C+B">B. Indermuehle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serra%2C+P">P. Serra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seymour%2C+N">N. Seymour</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thomson%2C+A+P">A. P. Thomson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casey%2C+C+M">C. M. Casey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Z">Z. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daikuhara%2C+K">K. Daikuhara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">C. De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Eugenio%2C+C">C. D&#39;Eugenio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drouart%2C+G">G. Drouart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatch%2C+N">N. Hatch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jin%2C+S">S. Jin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kodama%2C+T">T. Kodama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koyama%2C+Y">Y. Koyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lehnert%2C+M+D">M. D. Lehnert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macgregor%2C+P">P. Macgregor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miley%2C+G">G. Miley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naufal%2C+A">A. Naufal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=R%C3%B6ttgering%2C+H">H. R枚ttgering</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12138v1-abstract-short" style="display: inline;"> We obtain CO(1-0) molecular gas measurements with ATCA on a sample of 43 spectroscopically confirmed H$伪$ emitters in the Spiderweb protocluster at $z=2.16$ and investigate the relation between their star formation and cold gas reservoirs as a function of environment. We achieve a CO(1-0) detection rate of $\sim23\pm12\%$ with 10 dual CO(1-0) and H$伪$ detections at $10&lt;\log M_{*}/M_\odot&lt;11.5$. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12138v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12138v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12138v1-abstract-full" style="display: none;"> We obtain CO(1-0) molecular gas measurements with ATCA on a sample of 43 spectroscopically confirmed H$伪$ emitters in the Spiderweb protocluster at $z=2.16$ and investigate the relation between their star formation and cold gas reservoirs as a function of environment. We achieve a CO(1-0) detection rate of $\sim23\pm12\%$ with 10 dual CO(1-0) and H$伪$ detections at $10&lt;\log M_{*}/M_\odot&lt;11.5$. In addition, we obtain upper limits for the remaining sources. In terms of total gas fractions ($F_{gas}$), our sample is divided into two different regimes with a steep transition at $\log M_{*}/M_\odot\approx10.5$. Galaxies below that threshold have gas fractions that in some cases are close to unity, indicating that their gas reservoir has been replenished by inflows from the cosmic web. However, objects at $\log M_{*}/M_\odot&gt;10.5$ display significantly lower gas fractions and are dominated by AGN (12 out of 20). Stacking results yield $F_{gas}\approx0.55$ for massive emitters excluding AGN, and $F_{gas}\approx0.35$ when examining only AGN candidates. Furthermore, depletion times show that most H$伪$ emitters may become passive by $1&lt;z&lt;1.6$, concurrently with the surge and dominance of the red sequence in the most massive clusters. Our analyses suggest that galaxies in the outskirts of the protocluster have larger molecular-to-stellar mass ratios and lower star formation efficiencies than in the core. However, star formation across the protocluster remains consistent with the main sequence, indicating that evolution is primarily driven by the depletion of the gas reservoir towards the inner regions. We discuss the relative importance of in-/outflow processes in regulating star formation during the early phases of cluster assembly and conclude that a combination of feedback and overconsumption may be responsible for the rapid cold gas depletion these objects endure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12138v1-abstract-full').style.display = 'none'; document.getElementById('2411.12138v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 12 figures, 4 tables. Resubmitted to A&amp;A after implementing the second round of comments by the referee</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06626">arXiv:2408.06626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.06626">pdf</a>, <a href="https://arxiv.org/format/2408.06626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The First Large Absorption Survey in HI (FLASH): II. Pilot Survey data release and first results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aditya%2C+J+N+H+S">J. N. H. S. Aditya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kerrison%2C+E+F">Emily F. Kerrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">Matthew Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+O+I">O. Ivy Wong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Callingham%2C+J+R">Joseph R. Callingham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">Stephen J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darling%2C+J">Jeremy Darling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Edge%2C+A+C">Alastair C. Edge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellison%2C+S+L">Sara L. Ellison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emig%2C+K+L">Kimberly L. Emig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garratt-Smithson%2C+L">Lilian Garratt-Smithson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=German%2C+G">Gordon German</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grasha%2C+K">Kathryn Grasha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">Baerbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morganti%2C+R">Raffaella Morganti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oosterloo%2C+T">Tom Oosterloo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9roux%2C+C">C茅line P茅roux</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06626v1-abstract-short" style="display: inline;"> The First Large Absorption Survey in HI (FLASH) is a large-area radio survey for neutral hydrogen in the redshift range 0.4&lt;z&lt;1.0, using the 21cm HI absorption line as a probe of cold neutral gas. FLASH uses the ASKAP radio telescope and is the first large 21cm absorption survey to be carried out without any optical preselection of targets. We use an automated Bayesian line-finding tool to search&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06626v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06626v1-abstract-full" style="display: none;"> The First Large Absorption Survey in HI (FLASH) is a large-area radio survey for neutral hydrogen in the redshift range 0.4&lt;z&lt;1.0, using the 21cm HI absorption line as a probe of cold neutral gas. FLASH uses the ASKAP radio telescope and is the first large 21cm absorption survey to be carried out without any optical preselection of targets. We use an automated Bayesian line-finding tool to search through large datasets and assign a statistical significance to potential line detections. The survey aims to explore the neutral gas content of galaxies at a cosmic epoch where almost no HI data are currently available, and to investigate the role of neutral gas in AGN fuelling and feedback. Two Pilot Surveys, covering around 3000 deg$^2$ of sky, were carried out in 2019-22 to test and verify the strategy for the full FLASH survey. The processed data from these Pilot Surveys (spectral-line cubes, continuum images, and catalogues) are available online. Here, we describe the FLASH spectral-line and continuum data and discuss the quality of the HI spectra and the completeness of our automated line search. Finally, we present a set of 30 new HI absorption lines that were robustly detected in the Pilot Surveys. These lines span a wide range in HI optical depth, including three lines with a peak optical depth $蟿&gt;1$, and appear to be a mixture of intervening and associated systems. The overall detection rate for HI absorption lines in the Pilot Surveys (0.3 to 0.5 lines per ASKAP field) is a factor of two below the expected value. There are several possible reasons for this, but one likely factor is the presence of a range of spectral-line artefacts in the Pilot Survey data that have now been mitigated and are not expected to recur in the full FLASH survey. A future paper will discuss the host galaxies of the HI absorption systems identified here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06626v1-abstract-full').style.display = 'none'; document.getElementById('2408.06626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">46 pages, 25 figures, 10 tables. Submitted to PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16201">arXiv:2407.16201</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16201">pdf</a>, <a href="https://arxiv.org/format/2407.16201">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> RadioSED I: Bayesian inference of radio SEDs from inhomogeneous surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kerrison%2C+E+F">Emily F. Kerrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rees%2C+G+A">Glen A. Rees</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16201v1-abstract-short" style="display: inline;"> We present here RadioSED, a Bayesian inference framework tailored to modelling and classifying broadband radio spectral energy distributions (SEDs) using only data from publicly-released, large-area surveys. We outline the functionality of RadioSED, with its focus on broadband radio emissions which can trace kiloparsec-scale absorption within both the radio jets and the circumgalactic medium of Ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16201v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16201v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16201v1-abstract-full" style="display: none;"> We present here RadioSED, a Bayesian inference framework tailored to modelling and classifying broadband radio spectral energy distributions (SEDs) using only data from publicly-released, large-area surveys. We outline the functionality of RadioSED, with its focus on broadband radio emissions which can trace kiloparsec-scale absorption within both the radio jets and the circumgalactic medium of Active Galactic Nuclei (AGN). In particular, we discuss the capability of RadioSED to advance our understanding of AGN physics and composition within youngest and most compact sources, for which high resolution imaging is often unavailable. These young radio AGN typically manifest as peaked spectrum (PS) sources which, before RadioSED, were difficult to identify owing to the large, broadband frequency coverage typically required, and yet they provide an invaluable environment for understanding AGN evolution and feedback. We discuss the implementation details of RadioSED, and we validate our approach against both synthetic and observational data. Since the surveys used are drawn from multiple epochs of observation, we also consider the output from RadioSED in the context of AGN variability. Finally, we show that RadioSED recovers the expected SED shapes for a selection of well-characterised radio sources from the literature, and we discuss avenues for further study of these and other sources using radio SED fitting as a starting point. The scalability and modularity of this framework make it an exciting tool for multiwavelength astronomers as next-generation telescopes begin several all-sky surveys. Accordingly, we make the code for RadioSED, which is written in Python, available on Github. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16201v1-abstract-full').style.display = 'none'; document.getElementById('2407.16201v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 2 tables, 15 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16807">arXiv:2403.16807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16807">pdf</a>, <a href="https://arxiv.org/format/2403.16807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae684">10.1093/mnras/stae684 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A serendipitous discovery of HI-rich galaxy groups with MeerKAT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Albrow%2C+L">L. Albrow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+T">T. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elson%2C+E">E. Elson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">E. K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16807v1-abstract-short" style="display: inline;"> We report on the serendipitous discovery of 49 HI-rich galaxies in a 2.3 hour Open Time observation with MeerKAT. We present their properties including their HI masses, intensity and velocity maps, and spectra. We determine that at least three HI-rich galaxy groups have been detected, potentially as part of a supergroup. Some members of these galaxy groups show clear interaction with each other in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16807v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16807v1-abstract-full" style="display: none;"> We report on the serendipitous discovery of 49 HI-rich galaxies in a 2.3 hour Open Time observation with MeerKAT. We present their properties including their HI masses, intensity and velocity maps, and spectra. We determine that at least three HI-rich galaxy groups have been detected, potentially as part of a supergroup. Some members of these galaxy groups show clear interaction with each other in their HI emission. We cross-match the detections with PanSTARRS, WISE and GALEX, and obtain stellar masses and star formation rates. One source is found to be a potential OH megamaser, but further follow-up is required to confidently determine this. For 6 sources with sufficient spatial resolution in HI we produce rotation curves with BBarolo, generate mass models, and derive a dark matter halo mass. While the number of galaxies detected in this relatively short pointing appears to be at the high end of expectations compared to other MeerKAT observations and group HIMF studies, this finding highlights the capability of MeerKAT for other serendipitous discoveries, and the potential for many more HI-rich galaxies to be revealed within both existing and upcoming Open Time datasets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16807v1-abstract-full').style.display = 'none'; document.getElementById('2403.16807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures. Includes appendix (32 pages, primarily figures). Published in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14571">arXiv:2310.14571</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14571">pdf</a>, <a href="https://arxiv.org/format/2310.14571">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The FLASH pilot survey: an HI absorption search against MRC 1-Jy radio sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Aditya%2C+J+N+H+S">J. N. H. S. Aditya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+T">Tao An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chhetri%2C+R">Rajan Chhetri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">Stephen J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darling%2C+J">Jeremy Darling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emig%2C+K+L">Kimberly L. Emig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kerrison%2C+E">Emily Kerrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B盲rbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morgan%2C+J">John Morgan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">Matthew Whiting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14571v1-abstract-short" style="display: inline;"> We report an ASKAP search for associated HI 21-cm absorption against bright radio sources from the Molonglo Reference Catalogue (MRC) 1-Jy sample. The search uses pilot survey data from the ASKAP First Large Absorption Survey in \hi (FLASH) covering the redshift range $0.42 &lt; z &lt; 1.00$. From a sample of 62 MRC 1-Jy radio galaxies and quasars in this redshift range we report three new detections of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14571v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14571v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14571v1-abstract-full" style="display: none;"> We report an ASKAP search for associated HI 21-cm absorption against bright radio sources from the Molonglo Reference Catalogue (MRC) 1-Jy sample. The search uses pilot survey data from the ASKAP First Large Absorption Survey in \hi (FLASH) covering the redshift range $0.42 &lt; z &lt; 1.00$. From a sample of 62 MRC 1-Jy radio galaxies and quasars in this redshift range we report three new detections of associated HI 21-cm absorption, yielding an overall detection fraction of $1.8\%^{+4.0\%}_{-1.5\%}$. The detected systems comprise two radio galaxies (MRC 2216$-$281 at $z=0.657$ and MRC 0531$-$237 at $z=0.851$) and one quasar (MRC 2156$-$245 at $z=0.862$). The MRC 0531$-$237 absorption system is the strongest found to date, with a velocity integrated optical depth of $\rm 143.8 \pm 0.4 \ km \ s^{-1}$. All three objects with detected HI 21-cm absorption are peaked-spectrum or compact steep-spectrum (CSS) radio sources, classified based on our SED fits to the spectra. Two of them show strong interplanetary scintillation at 162 MHz, implying that the radio continuum source is smaller than 1 arcsec in size even at low frequencies. Among the class of peaked-spectrum and compact steep-spectrum radio sources, the HI detection fraction is $23\%^{+22\%}_{-13\%}$. This is consistent within $1蟽$ with a detection fraction of $\approx 42\%^{+21\%}_{-15\%}$ in earlier reported GPS and CSS samples at intermediate redshifts ($0.4 &lt; z &lt; 1.0$). All three detections have a high 1.4 GHz radio luminosity, with MRC 0531$-$237 and MRC 2216$-$281 having the highest values in the sample, $\rm &gt; 27.5 \ W \ Hz^{-1}$. The preponderance of extended radio sources in our sample could partially explain the overall low detection fraction, while the effects of a redshift evolution in gas properties and AGN UV luminosity on the neutral gas absorption still need to be investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14571v1-abstract-full').style.display = 'none'; document.getElementById('2310.14571v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 9 figures and 7 Tables. Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05206">arXiv:2310.05206</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.05206">pdf</a>, <a href="https://arxiv.org/format/2310.05206">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> COALAS II. Extended molecular gas reservoirs are common in a distant, forming galaxy cluster </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Z">Zhengyi Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">Helmut Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lehnert%2C+M">Matthew Lehnert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B">Bjorn Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+Q">Qiusheng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champagne%2C+J">Jaclyn Champagne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatch%2C+N">Nina Hatch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Inderm%C3%BCehle%2C+B">Balthasar Inderm眉ehle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R">Ray Norris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez-Mart%C3%ADnez%2C+J+M">Jos茅 Manuel P茅rez-Mart铆nez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=R%C3%B6ttgering%2C+H">Huub R枚ttgering</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serra%2C+P">Paolo Serra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seymour%2C+N">Nick Seymour</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shimakawa%2C+R">Rhythm Shimakawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thomson%2C+A">Alasdair Thomson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casey%2C+C+M">Caitlin M Casey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">Carlos De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drouart%2C+G">Guillaume Drouart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kodama%2C+T">Tadayuki Kodama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koyama%2C+Y">Yusei Koyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Urbina%2C+C+L">Claudia Lagos Urbina</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macgregor%2C+P">Peter Macgregor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miley%2C+G">George Miley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez-Espinosa%2C+J+M">Jos茅 Miguel Rodr铆guez-Espinosa</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05206v1-abstract-short" style="display: inline;"> This paper presents the results of 475 hours of interferometric observations with the Australia Telescope Compact Array towards the Spiderweb protocluster at \(z=2.16\). We search for large, extended molecular gas reservoirs among 46 previously detected CO(1-0) emitters, employing a customised method we developed. Based on the CO emission images and position-velocity diagrams, as well as the ranki&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05206v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05206v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05206v1-abstract-full" style="display: none;"> This paper presents the results of 475 hours of interferometric observations with the Australia Telescope Compact Array towards the Spiderweb protocluster at \(z=2.16\). We search for large, extended molecular gas reservoirs among 46 previously detected CO(1-0) emitters, employing a customised method we developed. Based on the CO emission images and position-velocity diagrams, as well as the ranking of sources using a binary weighting of six different criteria, we have identified 14 robust and 7 tentative candidates that exhibit large extended molecular gas reservoirs. These extended reservoirs are defined as having sizes greater than 40 kpc or super-galactic scale. This result suggests a high frequency of extended gas reservoirs, comprising at least \(30 \%\) of our CO-selected sample. An environmental study of the candidates is carried out based on N-th nearest neighbour and we find that the large molecular gas reservoirs tend to exist in denser regions. The spatial distribution of our candidates is mainly centred on the core region of the Spiderweb protocluster. The performance and adaptability of our method are discussed. We found 13 (potentially) extended gas reservoirs located in nine galaxy (proto)clusters from the literature. We noticed that large extended molecular gas reservoirs surrounding (normal) star-forming galaxies in protoclusters are rare. This may be attributable to the lack of observations low-J CO transitions and the lack of quantitative analyses of molecular gas morphologies. The large gas reservoirs in the Spiderweb protocluster are a potential source of the intracluster medium seen in low redshift Virgo- or Coma-like galaxy clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05206v1-abstract-full').style.display = 'none'; document.getElementById('2310.05206v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 16 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01890">arXiv:2309.01890</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.01890">pdf</a>, <a href="https://arxiv.org/ps/2309.01890">ps</a>, <a href="https://arxiv.org/format/2309.01890">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> FAST discovery of a fast neutral hydrogen outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+M">Minfeng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">S. J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tang%2C+N">Ningyu Tang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+M">Ming Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aditya%2C+J+N+H+S">J. N. H. S. Aditya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zheng Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+Z">Zhongzu Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01890v1-abstract-short" style="display: inline;"> In this letter, we report the discovery of a fast neutral hydrogen outflow in SDSS J145239.38+062738.0, a merging radio galaxy containing an optical type I active galactic nuclei (AGN). This discovery was made through observations conducted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) using redshifted 21-cm absorption. The outflow exhibits a blueshifted velocity likely up to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01890v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01890v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01890v1-abstract-full" style="display: none;"> In this letter, we report the discovery of a fast neutral hydrogen outflow in SDSS J145239.38+062738.0, a merging radio galaxy containing an optical type I active galactic nuclei (AGN). This discovery was made through observations conducted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST) using redshifted 21-cm absorption. The outflow exhibits a blueshifted velocity likely up to $\sim-1000\,\rm km\,s^{-1}$ with respect to the systemic velocity of the host galaxy with an absorption strength of $\sim -0.6\,\rm mJy\,beam^{-1}$ corresponding to an optical depth of 0.002 at $v=-500\,\rm km\,s^{-1}$. The mass outflow rate ranges between $2.8\times10^{-2}$ and $3.6\, \rm M_\odot \, yr^{-1}$, implying an energy outflow rate ranging between $4.2\times10^{39}$ and $9.7\times10^{40}\rm\,erg\,s^{-1}$, assuming 100 K $&lt;T_{\rm s}&lt;$ 1000 K. Plausible drivers of the outflow include the star bursts, the AGN radiation, and the radio jet, the last of which is considered the most likely culprit according to the kinematics. By analysing the properties of the outflow, the AGN, and the jet, we find that if the HI outflow is driven by the AGN radiation, the AGN radiation seems not powerful enough to provide negative feedback whereas the radio jet shows the potential to provide negative feedback. Our observations contribute another example of a fast outflow detected in neutral hydrogen, as well as demonstrate the capability of FAST in detecting such outflows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01890v1-abstract-full').style.display = 'none'; document.getElementById('2309.01890v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00943">arXiv:2302.00943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00943">pdf</a>, <a href="https://arxiv.org/format/2302.00943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad370">10.1093/mnras/stad370 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Does a radio jet drive the massive multi-phase outflow in the ultra-luminous infrared galaxy IRAS 10565+2448? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+M">Minfeng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">S. J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aditya%2C+J+N+H+S">J. N. H. S. Aditya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandola%2C+Y">Yogesh Chandola</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yongjun Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wu%2C+Z">Zhongzu Wu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shao%2C+X">Xi Shao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+X">Xiang Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">Marcin Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">Matthew T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00943v1-abstract-short" style="display: inline;"> We present new upgraded Giant Metrewave Radio Telescope (uGMRT) HI 21-cm observations of the ultra-luminous infrared galaxy IRAS 10565+2448, previously reported to show blueshifted, broad, and shallow HI absorption indicating an outflow. Our higher spatial resolution observations have localised this blueshifted outflow, which is $\sim$ 1.36 kpc southwest of the radio centre and has a blueshifted v&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00943v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00943v1-abstract-full" style="display: none;"> We present new upgraded Giant Metrewave Radio Telescope (uGMRT) HI 21-cm observations of the ultra-luminous infrared galaxy IRAS 10565+2448, previously reported to show blueshifted, broad, and shallow HI absorption indicating an outflow. Our higher spatial resolution observations have localised this blueshifted outflow, which is $\sim$ 1.36 kpc southwest of the radio centre and has a blueshifted velocity of $\sim 148\,\rm km\,s^{-1}$ and a full width at half maximum (FWHM) of $\sim 581\,\rm km\,s^{-1}$. The spatial extent and kinematic properties of the HI outflow are consistent with the previously detected cold molecular outflows in IRAS 10565+2448, suggesting that they likely have the same driving mechanism and are tracing the same outflow. By combining the multi-phase gas observations, we estimate a total outflowing mass rate of at least $140\, \rm M_\odot \,yr^{-1}$ and a total energy loss rate of at least $8.9\times10^{42}\,\rm erg\,s^{-1}$, where the contribution from the ionised outflow is negligible, emphasising the importance of including both cold neutral and molecular gas when quantifying the impact of outflows. We present evidence of the presence of a radio jet and argue that this may play a role in driving the observed outflows. The modest radio luminosity $L_{\rm1.4GHz}$ $\sim1.3\times10^{23}\,{\rm W\,Hz^{-1}}$ of the jet in IRAS 10565+2448 implies that the jet contribution to driving outflows should not be ignored in low radio luminosity AGN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00943v1-abstract-full').style.display = 'none'; document.getElementById('2302.00943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.09116">arXiv:2301.09116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.09116">pdf</a>, <a href="https://arxiv.org/ps/2301.09116">ps</a>, <a href="https://arxiv.org/format/2301.09116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1534">10.1093/mnras/stad1534 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Synchrotron emission from double-peaked radio light curves of the symbiotic recurrent nova V3890 Sagitarii </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nyamai%2C+M+M">Miriam M. Nyamai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linford%2C+J+D">Justin D. Linford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chomiuk%2C+L">Laura Chomiuk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woudt%2C+P+A">Patrick A. Woudt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ribeiro%2C+V+A+R+M">Val茅rio A. R. M. Ribeiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarbadhicary%2C+S+K">Sumit K. Sarbadhicary</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.09116v1-abstract-short" style="display: inline;"> We present radio observations of the symbiotic recurrent nova V3890 Sagitarii following the 2019 August eruption obtained with the MeerKAT radio telescope at 1.28 GHz and Karl G. Janksy Very Large Array (VLA) at 1.26 to 5 GHz. The radio light curves span from day 1 to 540 days after eruption and are dominated by synchrotron emission produced by the expanding nova ejecta interacting with the dense&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09116v1-abstract-full').style.display = 'inline'; document.getElementById('2301.09116v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.09116v1-abstract-full" style="display: none;"> We present radio observations of the symbiotic recurrent nova V3890 Sagitarii following the 2019 August eruption obtained with the MeerKAT radio telescope at 1.28 GHz and Karl G. Janksy Very Large Array (VLA) at 1.26 to 5 GHz. The radio light curves span from day 1 to 540 days after eruption and are dominated by synchrotron emission produced by the expanding nova ejecta interacting with the dense wind from an evolved companion in the binary system. The radio emission is detected early on (day 6) and increases rapidly to a peak on day 15. The radio luminosity increases due to a decrease in the opacity of the circumstellar material in front of the shocked material and fades as the density of the surrounding medium decreases and the velocity of the shock decelerates. Modelling the light curve provides an estimated mass-loss rate of $M_{\textrm {wind}} \approx 10^{-8} {\textrm {M}}_\odot~{\textrm {yr}}^{-1}$ from the red giant star and ejecta mass in the range of $M_{\textrm {ej}}=10^{-5}-10^{-6}~{\textrm {M}}_\odot$from the surface of the white dwarf. V3890 Sgr likely hosts a massive white dwarf similar to other symbiotic recurrent novae, thus considered a candidate for supernovae type Ia (SNe Ia) progenitor. However, its radio flux densities compared to upper limits for SNe Ia have ruled it out as a progenitor for SN 2011fe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.09116v1-abstract-full').style.display = 'none'; document.getElementById('2301.09116v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07094">arXiv:2211.07094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07094">pdf</a>, <a href="https://arxiv.org/format/2211.07094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.50">10.1017/pasa.2022.50 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WALLABY Pilot Survey: Public release of HI data for almost 600 galaxies from phase 1 of ASKAP pilot observations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Westmeier%2C+T">T. Westmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deg%2C+N">N. Deg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Spekkens%2C+K">K. Spekkens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+T+N">T. N. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+A+X">A. X. Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaudet%2C+S">S. Gaudet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goliath%2C+S">S. Goliath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huynh%2C+M+T">M. T. Huynh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venkataraman%2C+P">P. Venkataraman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lin%2C+X">X. Lin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Beirne%2C+T">T. O&#39;Beirne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catinella%2C+B">B. Catinella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cortese%2C+L">L. Cortese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elagali%2C+A">A. Elagali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/astro-ph?searchtype=author&amp;query=J%C3%B3zsa%2C+G+I+G">G. I. G. J贸zsa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Howlett%2C+C">C. Howlett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Hulst%2C+J+M">J. M. van der Hulst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jurek%2C+R+J">R. J. Jurek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kamphuis%2C+P">P. Kamphuis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kilborn%2C+V+A">V. A. Kilborn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kleiner%2C+D">D. Kleiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07094v1-abstract-short" style="display: inline;"> We present WALLABY pilot data release 1, the first public release of HI pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60~{\rm deg}^2$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07094v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07094v1-abstract-full" style="display: none;"> We present WALLABY pilot data release 1, the first public release of HI pilot survey data from the Wide-field ASKAP L-band Legacy All-sky Blind Survey (WALLABY) on the Australian Square Kilometre Array Pathfinder. Phase 1 of the WALLABY pilot survey targeted three $60~{\rm deg}^2$ regions on the sky in the direction of the Hydra and Norma galaxy clusters and the NGC 4636 galaxy group, covering the redshift range of z &lt; 0.08. The source catalogue, images and spectra of nearly 600 extragalactic HI detections and kinematic models for 109 spatially resolved galaxies are available. As the pilot survey targeted regions containing nearby group and cluster environments, the median redshift of the sample of z ~ 0.014 is relatively low compared to the full WALLABY survey. The median galaxy HI mass is $2.3 \times 10^{9}~M_{\odot}$. The target noise level of 1.6 mJy per $30&#39;&#39;$ beam and 18.5 kHz channel translates into a $5蟽$ HI mass sensitivity for point sources of about $5.2 \times 10^{8} \, (D_{\rm L} / \mathrm{100~Mpc})^{2} \, M_{\odot}$ across 50 spectral channels (~200 km/s) and a $5蟽$ HI column density sensitivity of about $8.6 \times 10^{19} \, (1 + z)^{4}~\mathrm{cm}^{-2}$ across 5 channels (~20 km/s) for emission filling the $30&#39;&#39;$ beam. As expected for a pilot survey, several technical issues and artefacts are still affecting the data quality. Most notably, there are systematic flux errors of up to several 10% caused by uncertainties about the exact size and shape of each of the primary beams as well as the presence of sidelobes due to the finite deconvolution threshold. In addition, artefacts such as residual continuum emission and bandpass ripples have affected some of the data. The pilot survey has been highly successful in uncovering such technical problems, most of which are expected to be addressed and rectified before the start of the full WALLABY survey. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07094v1-abstract-full').style.display = 'none'; document.getElementById('2211.07094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures, 5 tables, accepted for publication in PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10228">arXiv:2209.10228</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10228">pdf</a>, <a href="https://arxiv.org/format/2209.10228">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2700">10.1093/mnras/stac2700 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio observations of the Black Hole X-ray Binary EXO 1846-031 re-awakening from a 34-year slumber </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Williams%2C+D+R+A">D. R. A. Williams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Motta%2C+S+E">S. E. Motta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fender%2C+R">R. Fender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">J. C. A. Miller-Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neilsen%2C+J">J. Neilsen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bright%2C+J">J. Bright</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacob%2C+P+F+L">P. F. L. Jacob</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhodes%2C+L">L. Rhodes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tremou%2C+E">E. Tremou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woudt%2C+P">P. Woudt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Eijnden%2C+J+v+d">J. van den Eijnden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carotenuto%2C+F">F. Carotenuto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+D+A">D. A. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Titterington%2C+D">D. Titterington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saikia%2C+P">P. Saikia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10228v1-abstract-short" style="display: inline;"> We present radio [1.3 GHz MeerKAT, 4-8 GHz Karl G. Jansky Very Large Array (VLA) and 15.5 GHz Arcminute Microkelvin Imager Large Array (AMI-LA)] and X-ray (Swift and MAXI) data from the 2019 outburst of the candidate Black Hole X-ray Binary (BHXB) EXO 1846-031. We compute a Hardness-Intensity diagram, which shows the characteristic q-shaped hysteresis of BHXBs in outburst. EXO 1846-031 was monitor&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10228v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10228v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10228v1-abstract-full" style="display: none;"> We present radio [1.3 GHz MeerKAT, 4-8 GHz Karl G. Jansky Very Large Array (VLA) and 15.5 GHz Arcminute Microkelvin Imager Large Array (AMI-LA)] and X-ray (Swift and MAXI) data from the 2019 outburst of the candidate Black Hole X-ray Binary (BHXB) EXO 1846-031. We compute a Hardness-Intensity diagram, which shows the characteristic q-shaped hysteresis of BHXBs in outburst. EXO 1846-031 was monitored weekly with MeerKAT and approximately daily with AMI-LA. The VLA observations provide sub-arcsecond-resolution images at key points in the outburst, showing moving radio components. The radio and X-ray light curves broadly follow each other, showing a peak on ~MJD 58702, followed by a short decline before a second peak between ~MJD 58731-58739. We estimate the minimum energy of these radio flares from equipartition, calculating values of $E_{\rm min} \sim$ 4$\times$10$^{41}$ and 5$\times$10$^{42}$ erg, respectively. The exact date of the return to `quiescence&#39; is missed in the X-ray and radio observations, but we suggest that it likely occurred between MJD 58887 and 58905. From the Swift X-ray flux on MJD 58905 and assuming the soft-to-hard transition happened at 0.3-3 per cent Eddington, we calculate a distance range of 2.4-7.5\,kpc. We computed the radio:X-ray plane for EXO 1846-031 in the `hard&#39; state, showing that it is most likely a `radio-quiet&#39; BH, preferentially at 4.5 kpc. Using this distance and a jet inclination angle of $胃$=73$^{\circ}$, the VLA data place limits on the intrinsic jet speed of $尾_{\rm int} = 0.29c$, indicating sub-luminal jet motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10228v1-abstract-full').style.display = 'none'; document.getElementById('2209.10228v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS on 20 September 2022, 17 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04569">arXiv:2208.04569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.04569">pdf</a>, <a href="https://arxiv.org/format/2208.04569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2257">10.1093/mnras/stac2257 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FLASH Pilot Survey: Detections of associated 21 cm HI absorption in GAMA galaxies at 0.42 &lt; z &lt;1.00 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">Matthew T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aditya%2C+J+N+H+S">J. N. H. S. Aditya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellstedt%2C+S">Sabine Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robotham%2C+A+S+G">Aaron S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garratt-Smithson%2C+L">Lilian Garratt-Smithson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+M">Minfeng Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">Baerbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soria%2C+R">Roberto Soria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04569v1-abstract-short" style="display: inline;"> We present the results of a search for associated 21 cm HI absorption at redshift 0.42 &lt; z &lt; 1.00 in radio-loud galaxies from three Galaxy And Mass Assembly (GAMA) survey fields. These observations were carried out as part of a pilot survey for the ASKAP First Large Absorption Survey in HI (FLASH). From a sample of 326 radio sources with 855.5 MHz peak flux density above 10 mJy we detected two ass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04569v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04569v1-abstract-full" style="display: none;"> We present the results of a search for associated 21 cm HI absorption at redshift 0.42 &lt; z &lt; 1.00 in radio-loud galaxies from three Galaxy And Mass Assembly (GAMA) survey fields. These observations were carried out as part of a pilot survey for the ASKAP First Large Absorption Survey in HI (FLASH). From a sample of 326 radio sources with 855.5 MHz peak flux density above 10 mJy we detected two associated HI absorption systems, in SDSS J090331+010847 at z= 0.522 and SDSS J113622+004852 at z= 0.563. Both galaxies are massive (stellar mass &gt; 10$^{11}$ M$_{sun}$) and have optical spectra characteristic of luminous red galaxies,though SED fitting implies that SDSS J113622+004852 contains a dust-obscured starburst with SFR ~ 69 M$_{sun}$ yr$^{-1}$. The HI absorption lines have a high optical depth, with $蟿_{pk}$ of 1.77 $\pm$ 0.16 for SDSS J090331+010847 (the highest value for any z &gt; 0.1 associated system found to date) and 0.14 $\pm$ 0.01 for SDSS J113622+004852. In the redshift range probed by our ASKAP observations, the detection rate for associated HI absorption lines (with $蟿_{pk}$ &gt; 0.1 and at least 3$蟽$ significance) is 2.9 (+9.7 -2.6) percent. Although the current sample is small, this rate is consistent with a trend seen in other studies for a lower detection rate of associated 21 cm HI absorption systems at higher redshift. We also searched for OH absorption lines at 0.67 &lt; z &lt; 1.34, but no detection was made in the 145 radio sources searched. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04569v1-abstract-full').style.display = 'none'; document.getElementById('2208.04569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 15 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.14469">arXiv:2111.14469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.14469">pdf</a>, <a href="https://arxiv.org/format/2111.14469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/asna.20210095">10.1002/asna.20210095 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tracing X-ray and HI absorption in peaked spectrum sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kerrison%2C+E+F">Emily F. Kerrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.14469v1-abstract-short" style="display: inline;"> Recent studies have shown that both 21cm HI absorption and soft X-ray absorption serve as excellent tracers of the dense and dusty gas near the active nucleus of young radio galaxies, offering new insight into the physical nature of the circumnuclear medium. To date, a correlation between the column densities derived using these absorption processes has been observed within Compact Steep Spectrum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14469v1-abstract-full').style.display = 'inline'; document.getElementById('2111.14469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.14469v1-abstract-full" style="display: none;"> Recent studies have shown that both 21cm HI absorption and soft X-ray absorption serve as excellent tracers of the dense and dusty gas near the active nucleus of young radio galaxies, offering new insight into the physical nature of the circumnuclear medium. To date, a correlation between the column densities derived using these absorption processes has been observed within Compact Steep Spectrum (CSS) and Gigahertz-Peaked Spectrum (GPS) radio sources. While it is possible that this correlation exists within the broader radio population, many samples of radio galaxies make this difficult to test due to selection effects. This paper explores the possibility of a correlation in the broader radio population by analysing a historic sample of 168 radio sources compiled from the literature in such a way so as to minimise selection bias. From this historic sample we conclude that there is some evidence for a correlation between HI and soft X-ray absorption outside of peaked spectrum sources, but that the selection bias towards these sources makes further analysis difficult using current samples. We discuss this in the context of the SEAFOG project and how forthcoming data will change the landscape of future absorption studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.14469v1-abstract-full').style.display = 'none'; document.getElementById('2111.14469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 1 table, 1 figure, to appear in proceedings of &#34;The 6th Workshop on CSS and GPS radio sources&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.05339">arXiv:2111.05339</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.05339">pdf</a>, <a href="https://arxiv.org/format/2111.05339">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.59">10.1017/pasa.2021.59 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GASKAP-HI Pilot Survey Science I: ASKAP Zoom Observations of HI Emission in the Small Magellanic Cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pingel%2C+N+M">N. M. Pingel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dempsey%2C+J">J. Dempsey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jameson%2C+K+E">K. E. Jameson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arce%2C+H">H. Arce</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">G. Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bland-Hawthorn%2C+J">J. Bland-Hawthorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Breen%2C+S+L">S. L. Breen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckland-Willis%2C+F">F. Buckland-Willis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clark%2C+S+E">S. E. Clark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dawson%2C+J+R">J. R. Dawson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Teodoro%2C+E+M">E. M. Di Teodoro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foster%2C+T+J">Tyler J. Foster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B3mez%2C+J+F">J. F. G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Imai%2C+H">H. Imai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joncas%2C+G">G. Joncas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+C+-">C. -G. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+M+-">M. -Y. Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lynn%2C+C">C. Lynn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leahy%2C+D">D. Leahy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ma%2C+Y+K">Y. K. Ma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marchal%2C+A">A. Marchal</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.05339v2-abstract-short" style="display: inline;"> We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05339v2-abstract-full').style.display = 'inline'; document.getElementById('2111.05339v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.05339v2-abstract-full" style="display: none;"> We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal HI in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K (1.6 mJy/beam) per 0.98 km s$^{-1}$ spectral channel with an angular resolution of 30$&#39;&#39;$ ($\sim$10 pc). We discuss the calibration scheme and the custom imaging pipeline that utilizes a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire $\sim$25 deg$^2$ field-of-view. We provide an overview of the data products and characterize several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power-law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high velocity cloud with previous ASKAP+Parkes HI test observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.05339v2-abstract-full').style.display = 'none'; document.getElementById('2111.05339v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PASA, 34 pages, 18 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.09737">arXiv:2110.09737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.09737">pdf</a>, <a href="https://arxiv.org/format/2110.09737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab3041">10.1093/mnras/stab3041 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HI absorption at z~0.7 against the lobe of the powerful radio galaxy PKS 0409-75 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellison%2C+S+L">Sara L. Ellison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+S+A">Sui Ann Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morganti%2C+R">Raffaella Morganti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seta%2C+A">Amit Seta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tadhunter%2C+C+N">Clive N. Tadhunter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">Matthew T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+M">Martin Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J+D">John D. Bunton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harvey-Smith%2C+L">Lisa Harvey-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kimball%2C+A">Amy Kimball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B盲rbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">Max A. Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.09737v1-abstract-short" style="display: inline;"> We present results from a search for the HI 21-cm line in absorption towards 16 bright radio sources with the 6-antenna commissioning array of the Australian Square Kilometre Array Pathfinder (ASKAP). Our targets were selected from the 2-Jy sample, a flux-limited survey of the southern radio sky with extensive multi-wavelength follow-up. Two sources were detected in HI absorption including a new d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09737v1-abstract-full').style.display = 'inline'; document.getElementById('2110.09737v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.09737v1-abstract-full" style="display: none;"> We present results from a search for the HI 21-cm line in absorption towards 16 bright radio sources with the 6-antenna commissioning array of the Australian Square Kilometre Array Pathfinder (ASKAP). Our targets were selected from the 2-Jy sample, a flux-limited survey of the southern radio sky with extensive multi-wavelength follow-up. Two sources were detected in HI absorption including a new detection towards the bright FRII radio galaxy PKS 0409-75 at a redshift of z=0.674. The HI absorption line is blueshifted by ~3300 km/s compared to the optical redshift of the host galaxy of PKS 0409-75 at z=0.693. Deep optical imaging and spectroscopic follow-up with the GMOS instrument on the Gemini-South telescope reveal that the HI absorption is associated with a galaxy in front of the southern radio lobe with a stellar mass of $3.2 - 6.8 \times 10^{11}M_\odot$, a star-formation rate of $\sim 1.24 M_\odot$ yr$^{-1}$ and an estimated HI column density of $2.16\times10^{21}$ cm$^{-2}$, assuming a spin temperature of $T_{\rm spin}=500$ K and source covering factor of $C_{\rm f}=0.3$. Using polarisation measurements of PKS 0409-75 from the literature we estimate the magnetic field of the absorbing galaxy to be ~14.5$渭$G, consistent with field strengths observed in nearby spiral galaxies, but larger than expected for an elliptical galaxy. Results from this pilot study can inform future surveys as new wide-field telescopes allow us to search for 21-cm HI absorption towards all bright radio sources as opposed to smaller targeted samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.09737v1-abstract-full').style.display = 'none'; document.getElementById('2110.09737v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.03046">arXiv:2110.03046</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.03046">pdf</a>, <a href="https://arxiv.org/format/2110.03046">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/asna.20210040">10.1002/asna.20210040 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The gaseous natal environments of GPS and CSS sources with ASKAP -- FLASH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.03046v1-abstract-short" style="display: inline;"> GPS and CSS sources are thought to represent a young and/or confined sub-population of radio-loud active galactic nuclei (AGN) that are yet to evacuate their surrounding ambient interstellar gas. By studying the gaseous environments of these objects we can gain an insight into the inter-dependent relationship between galaxies and their supermassive black holes (SMBHs). The First Large Absorption S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03046v1-abstract-full').style.display = 'inline'; document.getElementById('2110.03046v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.03046v1-abstract-full" style="display: none;"> GPS and CSS sources are thought to represent a young and/or confined sub-population of radio-loud active galactic nuclei (AGN) that are yet to evacuate their surrounding ambient interstellar gas. By studying the gaseous environments of these objects we can gain an insight into the inter-dependent relationship between galaxies and their supermassive black holes (SMBHs). The First Large Absorption Survey in HI (FLASH) will build a census of the neutral atomic hydrogen (HI) gas in galaxies at intermediate cosmological redshifts. FLASH is expected to detect at least several hundred HI absorbers associated with GPS and CSS sources. These absorbers provide an important probe of the abundance and kinematics of line-of-sight neutral gas towards radio AGN, in some cases revealing gas associated with infalling clouds and outflows. Observations are now complete for the first phase of the FLASH Pilot Survey and early analysis has already yielded several detections, including the GPS source PKS2311$-$477. Optical imaging of this galaxy reveals an interacting system that could have supplied the neutral gas seen in absorption and triggered the radio-loud AGN. FLASH will provide a statistically significant sample with which the prevalence of such gas-rich interactions amongst compact radio galaxies can be investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.03046v1-abstract-full').style.display = 'none'; document.getElementById('2110.03046v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 3 figures, to appear in proceedings of &#34;The 6th Workshop on CSS and GPS radio sources&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.00469">arXiv:2110.00469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.00469">pdf</a>, <a href="https://arxiv.org/format/2110.00469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2022.3">10.1017/pasa.2022.3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The First Large Absorption Survey in HI (FLASH): I. Science Goals and Survey Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amaral%2C+A+D">A. D. Amaral</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+T">T. An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">S. J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darling%2C+J">J. Darling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Edge%2C+A+C">A. C. Edge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellison%2C+S+L">S. L. Ellison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emig%2C+K+L">K. L. Emig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garratt-Smithson%2C+L">L. Garratt-Smithson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Grasha%2C+K">K. Grasha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+d+P">C. del P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lah%2C+P">P. Lah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">E. K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+S+A">S. A. Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morganti%2C+R">R. Morganti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pettini%2C+M">M. Pettini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pimbblet%2C+K+A">K. A. Pimbblet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Power%2C+C">C. Power</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salas%2C+P">P. Salas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.00469v2-abstract-short" style="display: inline;"> We describe the scientific goals and survey design of the First Large Absorption Survey in HI (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (HI) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of $未\approx +40$deg at frequencies b&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00469v2-abstract-full').style.display = 'inline'; document.getElementById('2110.00469v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.00469v2-abstract-full" style="display: none;"> We describe the scientific goals and survey design of the First Large Absorption Survey in HI (FLASH), a wide field survey for 21-cm line absorption in neutral atomic hydrogen (HI) at intermediate cosmological redshifts. FLASH will be carried out with the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope and is planned to cover the sky south of $未\approx +40$deg at frequencies between 711.5 and 999.5MHz. At redshifts between $z = 0.4$ and $1.0$ (look back times of 4 - 8Gyr), the HI content of the Universe has been poorly explored due to the difficulty of carrying out radio surveys for faint 21-cm line emission and, at ultra-violet wavelengths, space-borne searches for Damped Lyman-$伪$ absorption in quasar spectra. The ASKAP wide field of view and large spectral bandwidth, in combination with a radio-quiet site, will enable a search for absorption lines in the radio spectra of bright continuum sources over 80% of the sky. This survey is expected to detect at least several hundred intervening 21-cm absorbers, and will produce an HI-absorption-selected catalogue of galaxies rich in cool, star-forming gas, some of which may be concealed from optical surveys. Likewise, at least several hundred associated 21-cm absorbers are expected to be detected within the host galaxies of radio sources at $0.4 &lt; z &lt; 1.0$, providing valuable kinematical information for models of gas accretion and jet-driven feedback in radio-loud active galactic nuclei. FLASH will also detect OH 18-cm absorbers in diffuse molecular gas, megamaser OH emission, radio recombination lines, and stacked HI emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.00469v2-abstract-full').style.display = 'none'; document.getElementById('2110.00469v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 10 figures, 6 tables, accepted for publication in PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.10875">arXiv:2109.10875</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.10875">pdf</a>, <a href="https://arxiv.org/format/2109.10875">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac747">10.1093/mnras/stac747 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observations of cold extragalactic gas clouds at $z = 0.45$ towards PKS 1610-771 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Weng%2C+S">Simon Weng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Foster%2C+C">Caroline Foster</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peroux%2C+C">C茅line Peroux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Su%2C+R">Renzhi Su</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">Matthew T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+H">Hyein Yoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.10875v2-abstract-short" style="display: inline;"> We present results from MUSE observations of a 21-cm HI absorption system detected with the Australian Square Kilometre Array Pathfinder radio telescope at redshift $z = 0.4503$ towards the $z = 1.71$ quasar PKS 1610-771. We identify four galaxies (A, B, X and Y) at the same redshift as the 21-cm H I Damped Lyman-伪 (DLA) absorption system, with impact parameters ranging from less than 10 kpc to al&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10875v2-abstract-full').style.display = 'inline'; document.getElementById('2109.10875v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.10875v2-abstract-full" style="display: none;"> We present results from MUSE observations of a 21-cm HI absorption system detected with the Australian Square Kilometre Array Pathfinder radio telescope at redshift $z = 0.4503$ towards the $z = 1.71$ quasar PKS 1610-771. We identify four galaxies (A, B, X and Y) at the same redshift as the 21-cm H I Damped Lyman-伪 (DLA) absorption system, with impact parameters ranging from less than 10 kpc to almost 200 kpc from the quasar sightline. Ca II and Na I absorption is seen in the MUSE spectrum of the background QSO, with velocities coinciding with the initial HI 21-cm detection, but tracing less dense and warmer gas. This metal-line component aligns with the rotating ionised disc of galaxy B (impact parameter 18 kpc from the QSO) and appears to be co-rotating with the galaxy disc. In contrast, the 21-cm HI absorber is blueshifted relative to the galaxies nearest the absorber and has the opposite sign to the velocity field of galaxy B. Since galaxies A and B are separated by only 17 kpc on the sky and $70$ km s$^{-1}$ in velocity, it appears likely that the 21-cm detection traces extragalactic clouds of gas formed from their interaction. This system reveals that the cold 100 K neutral gas critical for star formation can be associated with complex structures beyond the galaxy disc, and is a first case study made in preparation for future large 21-cm absorption surveys like the ASKAP First Large Absorption Survey in HI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.10875v2-abstract-full').style.display = 'none'; document.getElementById('2109.10875v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted. 13 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.04273">arXiv:2109.04273</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.04273">pdf</a>, <a href="https://arxiv.org/format/2109.04273">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2601">10.1093/mnras/stab2601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the baryonic Tully-Fisher relation below the detection threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ponomareva%2C+A+A">Anastasia A. Ponomareva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+M+G">Mario G. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frank%2C+B+S">Bradley S. Frank</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.04273v1-abstract-short" style="display: inline;"> We present a novel 2D flux density model for observed HI emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes HI lines described either with Gaussian or busy function profiles, and HI data cubes with a range of noise and survey areas similar to the MeerKAT Inter&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04273v1-abstract-full').style.display = 'inline'; document.getElementById('2109.04273v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.04273v1-abstract-full" style="display: none;"> We present a novel 2D flux density model for observed HI emission lines combined with a Bayesian stacking technique to measure the baryonic Tully-Fisher relation below the nominal detection threshold. We simulate a galaxy catalogue, which includes HI lines described either with Gaussian or busy function profiles, and HI data cubes with a range of noise and survey areas similar to the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. With prior knowledge of redshifts, stellar masses and inclinations of spiral galaxies, we find that our model can reconstruct the input baryonic Tully-Fisher parameters (slope and zero point) most accurately in a relatively broad redshift range from the local Universe to $z = 0.3$ for all the considered levels of noise and survey areas, and up to $z = 0.55$ for a nominal noise of $90\,渭$Jy/channel over 5 deg$^{2}$. Our model can also determine the $M_{\rm HI} - M_{\star}$ relation for spiral galaxies beyond the local Universe, and account for the detailed shape of the HI emission line, which is crucial for understanding the dynamics of spiral galaxies. Thus, we have developed a Bayesian stacking technique for measuring the baryonic Tully-Fisher relation for galaxies at low stellar and/or HI masses and/or those at high redshift, where the direct detection of HI requires prohibitive exposure times. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.04273v1-abstract-full').style.display = 'none'; document.getElementById('2109.04273v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.06039">arXiv:2108.06039</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.06039">pdf</a>, <a href="https://arxiv.org/format/2108.06039">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.44">10.1017/pasa.2021.44 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The ASKAP Variables and Slow Transients (VAST) Pilot Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+T">Tara Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stewart%2C+A+J">Adam J. Stewart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+A">Andrew O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenc%2C+E">Emil Lenc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pintaldi%2C+S">Sergio Pintaldi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pritchard%2C+J">Joshua Pritchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dobie%2C+D">Dougal Dobie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fox%2C+A">Archibald Fox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+K">James K. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+T">Tao An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+M+E">Martin E. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broderick%2C+J+W">Jess W. Broderick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chatterjee%2C+S">Shami Chatterjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dai%2C+S">Shi Dai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=d%27Antonio%2C+D">Daniele d&#39;Antonio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Doyle%2C+J+G">J. Gerry Doyle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaensler%2C+B+M">B. M. Gaensler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heald%2C+G">George Heald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+M+L">Megan L. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">David McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">Wasim Raja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramsay%2C+G">Gavin Ramsay</a> , et al. (30 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.06039v1-abstract-short" style="display: inline;"> The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $\sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim 162$ hours of o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06039v1-abstract-full').style.display = 'inline'; document.getElementById('2108.06039v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.06039v1-abstract-full" style="display: none;"> The Variables and Slow Transients Survey (VAST) on the Australian Square Kilometre Array Pathfinder (ASKAP) is designed to detect highly variable and transient radio sources on timescales from 5 seconds to $\sim 5$ years. In this paper, we present the survey description, observation strategy and initial results from the VAST Phase I Pilot Survey. This pilot survey consists of $\sim 162$ hours of observations conducted at a central frequency of 888~MHz between 2019 August and 2020 August, with a typical rms sensitivity of 0.24~mJy~beam$^{-1}$ and angular resolution of $12-20$ arcseconds. There are 113 fields, \red{each of which was observed for 12 minutes integration time}, with between 5 and 13 repeats, with cadences between 1 day and 8 months. The total area of the pilot survey footprint is 5\,131 square degrees, covering six distinct regions of the sky. An initial search of two of these regions, totalling 1\,646 square degrees, revealed 28 highly variable and/or transient sources. Seven of these are known pulsars, including the millisecond pulsar J2039--5617. Another seven are stars, four of which have no previously reported radio detection (SCR~J0533--4257, LEHPM~2-783, UCAC3~89--412162 and 2MASS J22414436--6119311). Of the remaining 14 sources, two are active galactic nuclei, six are associated with galaxies and the other six have no multiwavelength counterparts and are yet to be identified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.06039v1-abstract-full').style.display = 'none'; document.getElementById('2108.06039v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.00569">arXiv:2108.00569</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2108.00569">pdf</a>, <a href="https://arxiv.org/format/2108.00569">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.42">10.1017/pasa.2021.42 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Evolutionary Map of the Universe Pilot Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R+P">Ray P. Norris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marvil%2C+J">Joshua Marvil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kapinska%2C+A+D">Anna D. Kapinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+A+N">Andrew N. O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rudnick%2C+L">L. Rudnick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andernach%2C+H">Heinz Andernach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Asorey%2C+J">Jacobo Asorey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+M+J+I">Michael J. I. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruggen%2C+M">Marcus Bruggen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+E">Evan Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=English%2C+J">Jayanne English</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rahman%2C+S+F+u">Syed Faisal ur Rahman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filipovic%2C+M+D">Miroslav D. Filipovic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gordon%2C+Y">Yjan Gordon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gurkan%2C+G">Gulay Gurkan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hale%2C+C">Catherine Hale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hopkins%2C+A+M">Andrew M. Hopkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huynh%2C+M+T">Minh T. Huynh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=HyeongHan%2C+K">Kim HyeongHan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jee%2C+M+J">M. James Jee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">Baerbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenc%2C+E">Emil Lenc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luken%2C+K">Kieran Luken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parkinson%2C+D">David Parkinson</a> , et al. (23 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.00569v1-abstract-short" style="display: inline;"> We present the data and initial results from the first Pilot Survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers 270 \sqdeg of an area covered by the Dark Energy Survey, reaching a depth of 25--30 \ujybm\ rms at a spatial resolution of $\sim$ 11--18 arcsec, resulting in a catalogue of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00569v1-abstract-full').style.display = 'inline'; document.getElementById('2108.00569v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.00569v1-abstract-full" style="display: none;"> We present the data and initial results from the first Pilot Survey of the Evolutionary Map of the Universe (EMU), observed at 944 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP) telescope. The survey covers 270 \sqdeg of an area covered by the Dark Energy Survey, reaching a depth of 25--30 \ujybm\ rms at a spatial resolution of $\sim$ 11--18 arcsec, resulting in a catalogue of $\sim$ 220,000 sources, of which $\sim$ 180,000 are single-component sources. Here we present the catalogue of single-component sources, together with (where available) optical and infrared cross-identifications, classifications, and redshifts. This survey explores a new region of parameter space compared to previous surveys. Specifically, the EMU Pilot Survey has a high density of sources, and also a high sensitivity to low surface-brightness emission. These properties result in the detection of types of sources that were rarely seen in or absent from previous surveys. We present some of these new results here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.00569v1-abstract-full').style.display = 'none'; document.getElementById('2108.00569v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.08884">arXiv:2103.08884</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.08884">pdf</a>, <a href="https://arxiv.org/format/2103.08884">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202040232">10.1051/0004-6361/202040232 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> COALAS: I. ATCA CO(1-0) survey and luminosity function in the Spiderweb protocluster at z=2.16 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jin%2C+S">S. Jin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">H. Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B">B. Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serra%2C+P">P. Serra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">C. D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thomson%2C+A+P">A. P. Thomson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bassini%2C+L">L. Bassini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lehnert%2C+M">M. Lehnert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Champagne%2C+J+B">J. B. Champagne</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Indermuhle%2C+B">B. Indermuhle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Seymour%2C+N">N. Seymour</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shimakawa%2C+R">R. Shimakawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casey%2C+C+M">C. M. Casey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">C. De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drouart%2C+G">G. Drouart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatch%2C+N">N. Hatch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kodama%2C+T">T. Kodama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koyama%2C+Y">Y. Koyama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macgregor%2C+P">P. Macgregor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miley%2C+G">G. Miley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Overzier%2C+R">R. Overzier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perez-Martinez%2C+J+M">J. M. Perez-Martinez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez-Espinosa%2C+J+M">J. M. Rodriguez-Espinosa</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.08884v1-abstract-short" style="display: inline;"> We report a detailed CO(1-0) survey of a galaxy protocluster field at $z=2.16$, based on 475 hours of observations with the Australia Telescope Compact Array. We constructed a large mosaic of 13 individual pointings, covering an area of 21 arcmin$^2$ and $\pm6500$ km/s range in velocity. We obtain a robust sample of 46 CO(1-0) detections spanning $z=2.09-2.22$, constituting the largest sample of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08884v1-abstract-full').style.display = 'inline'; document.getElementById('2103.08884v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.08884v1-abstract-full" style="display: none;"> We report a detailed CO(1-0) survey of a galaxy protocluster field at $z=2.16$, based on 475 hours of observations with the Australia Telescope Compact Array. We constructed a large mosaic of 13 individual pointings, covering an area of 21 arcmin$^2$ and $\pm6500$ km/s range in velocity. We obtain a robust sample of 46 CO(1-0) detections spanning $z=2.09-2.22$, constituting the largest sample of molecular gas measurements in protoclusters to date. The CO emitters show an overdensity at $z=2.12-2.21$, suggesting a galaxy super-protocluster or a protocluster connected to large-scale filaments with ~120 cMpc size. We find that 90% CO emitters have distances $&gt;0&#39;.5-4&#39;$ to the center galaxy, indicating that small area surveys would miss the majority of gas reservoirs in similar structures. Half of the CO emitters have velocities larger than escape velocities, which appears gravitationally unbound to the cluster core. These unbound sources are barely found within the $R_{200}$ radius around the center, which is consistent with a picture in which the cluster core is collapsed while outer regions are still in formation. Compared to other protoclusters, this structure contains relatively more CO emitters with relatively narrow line width and high luminosity, indicating galaxy mergers. We use these CO emitters to place the first constraint on the CO luminosity function and molecular gas density in an overdense environment. The amplitude of the CO luminosity function is 1.6$\pm$0.5 orders of magnitudes higher than observed for field galaxy samples at $z\sim2$, and one order of magnitude higher than predictions for galaxy protoclusters from semi-analytical SHARK models. We derive a high molecular gas density of $0.6-1.3\times10^{9}$ $M_\odot$ cMpc$^{-3}$ for this structure, consistent with predictions for cold gas density of massive structures from hydro-dynamical DIANOGA simulations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.08884v1-abstract-full').style.display = 'none'; document.getElementById('2103.08884v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages + Appendices, 9 figures, 6 tables. Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 652, A11 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.09927">arXiv:2102.09927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.09927">pdf</a>, <a href="https://arxiv.org/format/2102.09927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab518">10.1093/mnras/stab518 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A statistical measurement of the HI spin temperature in DLAs at cosmological distances </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.09927v2-abstract-short" style="display: inline;"> Evolution of the cosmic star formation rate (SFR) and molecular gas mass density is expected to be matched by a similarly strong evolution of the fraction of atomic hydrogen (HI) in the cold neutral medium (CNM). We use results from a recent commissioning survey for intervening 21-cm absorbers with the Australian Square Kilometre Array Pathfinder (ASKAP) to construct a Bayesian statistical model o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09927v2-abstract-full').style.display = 'inline'; document.getElementById('2102.09927v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.09927v2-abstract-full" style="display: none;"> Evolution of the cosmic star formation rate (SFR) and molecular gas mass density is expected to be matched by a similarly strong evolution of the fraction of atomic hydrogen (HI) in the cold neutral medium (CNM). We use results from a recent commissioning survey for intervening 21-cm absorbers with the Australian Square Kilometre Array Pathfinder (ASKAP) to construct a Bayesian statistical model of the $N_{\rm HI}$-weighted harmonic mean spin temperature ($T_{\rm s}$) at redshifts between $z = 0.37$ and $1.0$. We find that $T_{\rm s} \leq 274$K with 95 per cent probability, suggesting that at these redshifts the typical HI gas in galaxies at equivalent DLA column densities may be colder than the Milky Way interstellar medium ($T_{\rm s, MW} \sim 300$K). This result is consistent with an evolving CNM fraction that mirrors the molecular gas towards the SFR peak at $z \sim 2$. We expect that future surveys for HI 21-cm absorption with the current SKA pathfinder telescopes will provide constraints on the CNM fraction that are an order of magnitude greater than presented here. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.09927v2-abstract-full').style.display = 'none'; document.getElementById('2102.09927v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 8 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.01870">arXiv:2102.01870</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.01870">pdf</a>, <a href="https://arxiv.org/format/2102.01870">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2021.1">10.1017/pasa.2021.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Australian Square Kilometre Array Pathfinder: I. System Description </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A+W">A. W. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chippendale%2C+A+P">A. P. Chippendale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tuthill%2C+J">J. Tuthill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amy%2C+S+W">S. W. Amy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huynh%2C+M+T">M. T. Huynh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K+W">K. W. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bastholm%2C+E">E. Bastholm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beresford%2C+R">R. Beresford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+D+C+-">D. C. -J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolton%2C+R">R. Bolton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chapman%2C+J+M">J. M. Chapman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chow%2C+K">K. Chow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooray%2C+F+R">F. R. Cooray</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cornwell%2C+T+J">T. J. Cornwell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diamond%2C+P+J">P. J. Diamond</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Edwards%2C+P+G">P. G. Edwards</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feain%2C+I+J">I. J. Feain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franzen%2C+T+M+O">T. M. O. Franzen</a> , et al. (41 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.01870v1-abstract-short" style="display: inline;"> In this paper we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 square degrees&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01870v1-abstract-full').style.display = 'inline'; document.getElementById('2102.01870v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.01870v1-abstract-full" style="display: none;"> In this paper we describe the system design and capabilities of the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope at the conclusion of its construction project and commencement of science operations. ASKAP is one of the first radio telescopes to deploy phased array feed (PAF) technology on a large scale, giving it an instantaneous field of view that covers 31 square degrees at 800 MHz. As a two-dimensional array of 36x12m antennas, with baselines ranging from 22m to 6km, ASKAP also has excellent snapshot imaging capability and 10 arcsecond resolution. This, combined with 288 MHz of instantaneous bandwidth and a unique third axis of rotation on each antenna, gives ASKAP the capability to create high dynamic range images of large sky areas very quickly. It is an excellent telescope for surveys between 700 MHz and 1800 MHz and is expected to facilitate great advances in our understanding of galaxy formation, cosmology and radio transients while opening new parameter space for discovery of the unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.01870v1-abstract-full').style.display = 'none'; document.getElementById('2102.01870v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 24 figures, accepted for publication in PASA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publ. Astron. Soc. Aust. 38 (2021) e009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.00747">arXiv:2012.00747</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.00747">pdf</a>, <a href="https://arxiv.org/format/2012.00747">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2020.41">10.1017/pasa.2020.41 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Rapid ASKAP Continuum Survey I: Design and First Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hale%2C+C+L">C. L. Hale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banfield%2C+J+K">J. K. Banfield</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heald%2C+G">George Heald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A+W">A. W. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leung%2C+J+K">James K. Leung</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+T">Tara Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Brien%2C+A">Andrew O&#39;Brien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pritchard%2C+J">Joshua Pritchard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">Wasim Raja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stewart%2C+A">Adam Stewart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thomson%2C+A+J+M">Alec J. M. Thomson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amy%2C+S+W">S. W. Amy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C">C. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ball%2C+L">Lewis Ball</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K+W">Keith W. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+M">Martin Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bock%2C+D+C+-">Douglas C. -J. Bock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolton%2C+R">Russ Bolton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a> , et al. (24 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.00747v1-abstract-short" style="display: inline;"> The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP ban&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00747v1-abstract-full').style.display = 'inline'; document.getElementById('2012.00747v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.00747v1-abstract-full" style="display: none;"> The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of $700-1800$ MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with $\sim 15$ arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination $+41^\circ$ made over a 288 MHz band centred at 887.5 MHz. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.00747v1-abstract-full').style.display = 'none'; document.getElementById('2012.00747v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuum</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publications of the Astronomical Society of Australia, 37, 2020, E048 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.01769">arXiv:2010.01769</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.01769">pdf</a>, <a href="https://arxiv.org/format/2010.01769">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3033">10.1093/mnras/staa3033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A pilot search for extragalactic OH absorption with FAST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+Z">Zheng Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+D">Di Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tang%2C+N">Ningyu Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.01769v1-abstract-short" style="display: inline;"> OH absorption is currently the only viable way to detect OH molecules in non-masing galaxies at cosmological distances. There have been only 6 such detections at z&gt;0.05 to date and so it is hard to put a statistically robust constraint on OH column densities in distant galaxies. We carried out a pilot OH absorption survey towards 8 associated and 1 intervening HI 21-cm absorbers using the Five-hun&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01769v1-abstract-full').style.display = 'inline'; document.getElementById('2010.01769v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.01769v1-abstract-full" style="display: none;"> OH absorption is currently the only viable way to detect OH molecules in non-masing galaxies at cosmological distances. There have been only 6 such detections at z&gt;0.05 to date and so it is hard to put a statistically robust constraint on OH column densities in distant galaxies. We carried out a pilot OH absorption survey towards 8 associated and 1 intervening HI 21-cm absorbers using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). We were able to constrain the OH abundance relative to HI ([OH]/[HI]) to be lower than 10^-6 ~ 10^-8 for redshifts z within [0.1919, 0.2241]. Although no individual detection was made, stacking three associated absorbers free of RFI provides a sensitive OH column density 3-sigma upper-limit ~ 1.57 x 10^14 (Tx/10K)(1/fc) cm^-2, which corresponds to a [OH]/[HI] &lt; 5.45 x 10^-8. Combining with archival data, we show that associated absorbers have a slightly lower OH abundance than intervening absorbers. Our results are consistent with a trend of decreasing OH abundance with decreasing redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.01769v1-abstract-full').style.display = 'none'; document.getElementById('2010.01769v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.14419">arXiv:2009.14419</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.14419">pdf</a>, <a href="https://arxiv.org/format/2009.14419">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnrasl/slaa195">10.1093/mnrasl/slaa195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the distance to the black hole candidate X-ray binary MAXI J1348-630 using HI absorption </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chauhan%2C+J">J. Chauhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">J. C. A. Miller-Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">W. Raja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jacob%2C+P+F+L">P. F. L. Jacob</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+G+E">G. E. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carotenuto%2C+F">F. Carotenuto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corbel%2C+S">S. Corbel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fender%2C+R">R. Fender</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A">A. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woudt%2C+P+A">P. A. Woudt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B">B. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E">E. Mahony</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.14419v2-abstract-short" style="display: inline;"> We present HI absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348-630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP HI spectrum shows a maximum negative radial velocity (with respect to the local standard of rest) of $-31\pm4$ km s$^{-1}$ for MAXI J1348-630, as compared to $-50\pm4$ km s$^{-1}$ for a stacked spectrum of several nearb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14419v2-abstract-full').style.display = 'inline'; document.getElementById('2009.14419v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.14419v2-abstract-full" style="display: none;"> We present HI absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348-630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP HI spectrum shows a maximum negative radial velocity (with respect to the local standard of rest) of $-31\pm4$ km s$^{-1}$ for MAXI J1348-630, as compared to $-50\pm4$ km s$^{-1}$ for a stacked spectrum of several nearby extragalactic sources. This implies a most probable distance of $2.2^{+0.5}_{-0.6}$ kpc for MAXI J1348-630, and a strong upper limit of the tangent point distance at $5.3\pm0.1$ kpc. Our preferred distance implies that MAXI J1348-630 reached $17\pm10$ % of the Eddington luminosity at the peak of its outburst, and that the source transited from the soft to the hard X-ray spectral state at $2.5\pm1.5$ % of the Eddington luminosity. The MeerKAT HI spectrum of MAXI J1348-630 (obtained from the older, low-resolution 4k mode) is consistent with the re-binned ASKAP spectrum, highlighting the potential of the eventual capabilities of MeerKAT for XRB spectral line studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.14419v2-abstract-full').style.display = 'none'; document.getElementById('2009.14419v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.09302">arXiv:2008.09302</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.09302">pdf</a>, <a href="https://arxiv.org/format/2008.09302">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3870">10.1093/mnras/staa3870 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The distribution and properties of DLAs at z $\leq$ 2 in the EAGLE simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Garratt-Smithson%2C+L">Lilian Garratt-Smithson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Power%2C+C">Chris Power</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+d+P">Claudia del P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stevens%2C+A+R+H">Adam R. H. Stevens</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.09302v2-abstract-short" style="display: inline;"> Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damped Lyman-alpha absorbers (DLAs) that are associated with galaxies and their underlying dark matter haloes between 0 $\leq$ z $\leq$ 2. We find that th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09302v2-abstract-full').style.display = 'inline'; document.getElementById('2008.09302v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.09302v2-abstract-full" style="display: none;"> Determining the spatial distribution and intrinsic physical properties of neutral hydrogen on cosmological scales is one of the key goals of next-generation radio surveys. We use the EAGLE galaxy formation simulations to assess the properties of damped Lyman-alpha absorbers (DLAs) that are associated with galaxies and their underlying dark matter haloes between 0 $\leq$ z $\leq$ 2. We find that the covering fraction of DLAs increases at higher redshift; a significant fraction of neutral atomic hydrogen (HI) resides in the outskirts of galaxies with stellar mass greater than or equal to 10$^{10}$ M$_\odot$; and the covering fraction of DLAs in the circumgalactic medium (CGM) is enhanced relative to that of the interstellar medium (ISM) with increasing halo mass. Moreover, we find that the mean density of the HI in galaxies increases with increasing stellar mass, while the DLAs in high- and low-halo-mass systems have higher column densities than those in galaxies with intermediate halo masses (~ 10$^{12}$ M$_\odot$ at z = 0). These high-impact CGM DLAs in high-stellar-mass systems tend to be metal-poor, likely tracing smooth accretion. Overall, our results point to the CGM playing an important role in DLA studies at high redshift (z $\geq$ 1). However, their properties are impacted both by numerical resolution and the detailed feedback prescriptions employed in cosmological simulations, particularly that of AGN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.09302v2-abstract-full').style.display = 'none'; document.getElementById('2008.09302v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.05648">arXiv:2007.05648</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.05648">pdf</a>, <a href="https://arxiv.org/format/2007.05648">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa2390">10.1093/mnras/staa2390 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A successful search for intervening 21 cm HI absorption in galaxies at 0.4 &lt; z &lt;1.0 with the Australian Square Kilometre Array Pathfinder (ASKAP) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">Elaine M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">Vanessa A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">Elizabeth K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">Matthew T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnston%2C+H+M">Helen M. Johnston</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellison%2C+S+L">Sara L. Ellison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+d+P">Claudia del P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B盲rbel S. Koribalski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.05648v2-abstract-short" style="display: inline;"> We have used the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope to search for intervening 21 cm neutral hydrogen (HI) absorption along the line of sight to 53 bright radio continuum sources. Our observations are sensitive to HI column densities typical of Damped Lyman Alpha absorbers (DLAs) in cool gas with an HI spin temperature below about 300-500 K. The six-dish Boolardy E&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05648v2-abstract-full').style.display = 'inline'; document.getElementById('2007.05648v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.05648v2-abstract-full" style="display: none;"> We have used the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope to search for intervening 21 cm neutral hydrogen (HI) absorption along the line of sight to 53 bright radio continuum sources. Our observations are sensitive to HI column densities typical of Damped Lyman Alpha absorbers (DLAs) in cool gas with an HI spin temperature below about 300-500 K. The six-dish Boolardy Engineering Test Array (BETA) and twelve-antenna Early Science array (ASKAP-12) covered a frequency range corresponding to redshift $0.4&lt;z&lt;1.0$ and $0.37&lt;z&lt;0.77$ respectively for the HI line. Fifty of the 53 radio sources observed have reliable optical redshifts, giving a total redshift path $螖z$ = 21.37. This was a spectroscopically-untargeted survey, with no prior assumptions about the location of the lines in redshift space. Four intervening HI lines were detected, two of them new. In each case, the estimated HI column density lies above the DLA limit for HI spin temperatures above 50-80 K, and we estimate a DLA number density at redshift $z\sim0.6$ of $n(z)=0.19\substack{+0.15 \\ -0.09}$. This value lies somewhat above the general trend of $n(z)$ with redshift seen in optical DLA studies. Although the current sample is small, it represents an important proof of concept for the much larger 21cm First Large Absorption Survey in HI (FLASH) project to be carried out with the full 36-antenna ASKAP telescope, probing a total redshift path $螖z\sim\,50,000$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.05648v2-abstract-full').style.display = 'none'; document.getElementById('2007.05648v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures. Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.00847">arXiv:2004.00847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.00847">pdf</a>, <a href="https://arxiv.org/format/2004.00847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa949">10.1093/mnras/staa949 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FLASH Early Science -- Discovery of an intervening HI 21-cm absorber from an ASKAP survey of the GAMA 23 field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellstedt%2C+S">S. Bellstedt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davies%2C+L+J+M">L. J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Driver%2C+S+P">S. P. Driver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellison%2C+S+L">S. L. Ellison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huynh%2C+M">M. Huynh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kapinska%2C+A+D">A. D. Kapinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">E. K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robotham%2C+A+S+G">A. S. G. Robotham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">M. T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">S. J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Darling%2C+J">J. Darling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A+W">A. W. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hunstead%2C+R+W">R. W. Hunstead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">C. D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pettini%2C+M">M. Pettini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pimbblet%2C+K+A">K. A. Pimbblet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.00847v2-abstract-short" style="display: inline;"> We present early science results from the First Large Absorption Survey in HI (FLASH), a spectroscopically blind survey for 21-cm absorption lines in cold hydrogen HI gas at cosmological distances using the Australian Square Kilometre Array Pathfinder (ASKAP). We have searched for HI absorption towards 1253 radio sources in the GAMA 23 field, covering redshifts between $z = 0.34$ and $0.79$ over a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00847v2-abstract-full').style.display = 'inline'; document.getElementById('2004.00847v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.00847v2-abstract-full" style="display: none;"> We present early science results from the First Large Absorption Survey in HI (FLASH), a spectroscopically blind survey for 21-cm absorption lines in cold hydrogen HI gas at cosmological distances using the Australian Square Kilometre Array Pathfinder (ASKAP). We have searched for HI absorption towards 1253 radio sources in the GAMA 23 field, covering redshifts between $z = 0.34$ and $0.79$ over a sky area of approximately 50 deg$^{2}$. In a purely blind search we did not obtain any detections of 21-cm absorbers above our reliability threshold. Assuming a fiducial value for the HI spin temperature of $T_{\rm spin}$ = 100 K and source covering fraction $c_{\rm f} = 1$, the total comoving absorption path length sensitive to all Damped Lyman $伪$ Absorbers (DLAs; $N_{\rm HI} \geq 2 \times 10^{20}$ cm$^{-2}$) is $螖{X} = 6.6 \pm 0.3$ ($螖{z} = 3.7 \pm 0.2$) and super-DLAs ($N_{\rm HI} \geq 2 \times 10^{21}$ cm$^{-2}$) is $螖{X} = 111 \pm 6$ ($螖{z} = 63 \pm 3$). We estimate upper limits on the HI column density frequency distribution function that are consistent with measurements from prior surveys for redshifted optical DLAs, and nearby 21-cm emission and absorption. By cross matching our sample of radio sources with optical spectroscopic identifications of galaxies in the GAMA 23 field, we were able to detect 21-cm absorption at $z = 0.3562$ towards NVSS J224500$-$343030, with a column density of $N_{\rm HI} = (1.2 \pm 0.1) \times 10^{20} (T_{\rm spin}/100~\mathrm{K})$ cm$^{-2}$. The absorber is associated with GAMA J22450.05$-$343031.7, a massive early-type galaxy at an impact parameter of 17 kpc with respect to the radio source and which may contain a massive ($M_{\rm HI} \gtrsim 3 \times 10^{9}$ M$_{\odot}$) gas disc. Such gas-rich early types are rare, but have been detected in the nearby Universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.00847v2-abstract-full').style.display = 'none'; document.getElementById('2004.00847v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 12 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01771">arXiv:1912.01771</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1912.01771">pdf</a>, <a href="https://arxiv.org/format/1912.01771">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz3439">10.1093/mnras/stz3439 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Radio Observations of Supernova Remnant G1.9+0.3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Luken%2C+K+J">Kieran J. Luken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filipovi%C4%87%2C+M+D">Miroslav D. Filipovi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maxted%2C+N+I">Nigel I. Maxted</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kothes%2C+R">Roland Kothes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R+P">Ray P. Norris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blackwell%2C+R">Rebecca Blackwell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Braiding%2C+C">Catherine Braiding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brose%2C+R">Robert Brose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burton%2C+M">Michael Burton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Horta%2C+A+Y">Ain Y. De Horta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galvin%2C+T+J">Tim J. Galvin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harvey-Smith%2C+L">Lisa Harvey-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hurley-Walker%2C+N">Natasha Hurley-Walker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leahy%2C+D">Denis Leahy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ralph%2C+N+O">Nicholas O. Ralph</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roper%2C+Q">Quentin Roper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rowell%2C+G">Gavin Rowell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sushch%2C+I">Iurii Sushch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Uro%C5%A1evi%C4%87%2C+D">Dejan Uro拧evi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+G+F">Graeme F. Wong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01771v1-abstract-short" style="display: inline;"> We present 1 to 10GHz radio continuum flux density, spectral index, polarisation and Rotation Measure (RM) images of the youngest known Galactic Supernova Remnant (SNR) G1.9+0.3, using observations from the Australia Telescope Compact Array (ATCA). We have conducted an expansion study spanning 8 epochs between 1984 and 2017, yielding results consistent with previous expansion studies of G1.9+0.3.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01771v1-abstract-full').style.display = 'inline'; document.getElementById('1912.01771v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01771v1-abstract-full" style="display: none;"> We present 1 to 10GHz radio continuum flux density, spectral index, polarisation and Rotation Measure (RM) images of the youngest known Galactic Supernova Remnant (SNR) G1.9+0.3, using observations from the Australia Telescope Compact Array (ATCA). We have conducted an expansion study spanning 8 epochs between 1984 and 2017, yielding results consistent with previous expansion studies of G1.9+0.3. We find a mean radio continuum expansion rate of ($0.78 \pm 0.09$) per cent year$^{-1}$ (or $\sim8900$ km s$^{-1}$ at an assumed distance of 8.5 kpc), although the expansion rate varies across the SNR perimeter. In the case of the most recent epoch between 2016 and 2017, we observe faster-than-expected expansion of the northern region. We find a global spectral index for G1.9+0.3 of $-0.81\pm0.02$ (76 MHz$-$10 GHz). Towards the northern region, however, the radio spectrum is observed to steepen significantly ($\sim -$1). Towards the two so called (east &amp; west) &#34;ears&#34; of G1.9+0.3, we find very different RM values of 400-600 rad m$^{2}$ and 100-200 rad m$^{2}$ respectively. The fractional polarisation of the radio continuum emission reaches (19 $\pm$ 2)~per~cent, consistent with other, slightly older, SNRs such as Cas~A. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01771v1-abstract-full').style.display = 'none'; document.getElementById('1912.01771v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 Pages, 13 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.08624">arXiv:1909.08624</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.08624">pdf</a>, <a href="https://arxiv.org/format/1909.08624">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2660">10.1093/mnras/stz2660 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ALMACAL VI: Molecular gas mass density across cosmic time via a blind search for intervening molecular absorbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Klitsch%2C+A">Anne Klitsch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peroux%2C+C">Celine Peroux</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zwaan%2C+M+A">Martin A. Zwaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smail%2C+I">Ian Smail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nelson%2C+D">Dylan Nelson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+G">Gergo Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C">Chian-Chou Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diemer%2C+B">Benedikt Diemer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ivison%2C+R+J">R. J. Ivison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muller%2C+S">Sebastien Muller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swinbank%2C+A+M">A. Mark Swinbank</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamanowicz%2C+A">Aleksandra Hamanowicz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Biggs%2C+A+D">Andrew D. Biggs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutta%2C+R">Rajeshwari Dutta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.08624v1-abstract-short" style="display: inline;"> We are just starting to understand the physical processes driving the dramatic change in cosmic star-formation rate between $z\sim 2$ and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measured through independent methods to explore variations due to cosmic variance and systematic uncertainties. We use intervening CO absorption lines in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08624v1-abstract-full').style.display = 'inline'; document.getElementById('1909.08624v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.08624v1-abstract-full" style="display: none;"> We are just starting to understand the physical processes driving the dramatic change in cosmic star-formation rate between $z\sim 2$ and the present day. A quantity directly linked to star formation is the molecular gas density, which should be measured through independent methods to explore variations due to cosmic variance and systematic uncertainties. We use intervening CO absorption lines in the spectra of mm-bright background sources to provide a census of the molecular gas mass density of the Universe. The data used in this work are taken from ALMACAL, a wide and deep survey utilizing the ALMA calibrator archive. While we report multiple Galactic absorption lines and one intrinsic absorber, no extragalactic intervening molecular absorbers are detected. However, thanks to the large redshift path surveyed ($螖z=182$), we provide constraints on the molecular column density distribution function beyond $z\sim 0$. In addition, we probe column densities of N(H$_2$) &gt; 10$^{16}$ atoms~cm$^{-2}$, five orders of magnitude lower than in previous studies. We use the cosmological hydrodynamical simulation IllustrisTNG to show that our upper limits of $蟻({\rm H}_2)\lesssim 10^{8.3} \text{M}_{\odot} \text{Mpc}^{-3}$ at $0 &lt; z \leq 1.7$ already provide new constraints on current theoretical predictions of the cold molecular phase of the gas. These results are in agreement with recent CO emission-line surveys and are complementary to those studies. The combined constraints indicate that the present decrease of the cosmic star-formation rate history is consistent with an increasing depletion of molecular gas in galaxies compared to $z\sim 2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.08624v1-abstract-full').style.display = 'none'; document.getElementById('1909.08624v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 10 figures, 2 tables, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.00813">arXiv:1909.00813</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.00813">pdf</a>, <a href="https://arxiv.org/format/1909.00813">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2452">10.1093/mnras/stz2452 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An ASKAP survey for HI absorption towards dust-obscured quasars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">E. K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Callingham%2C+J+R">J. R. Callingham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ellison%2C+S+L">S. L. Ellison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">M. T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chippendale%2C+A+P">A. P. Chippendale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">W. Raja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.00813v1-abstract-short" style="display: inline;"> Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically-selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for HI absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00813v1-abstract-full').style.display = 'inline'; document.getElementById('1909.00813v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.00813v1-abstract-full" style="display: none;"> Obscuration of quasars by accreted gas and dust, or dusty intervening galaxies, can cause active galactic nuclei (AGN) to be missed in optically-selected surveys. Radio observations can overcome this dust bias. In particular, radio surveys searching for HI absorption inform us on how the AGN can impact on the cold neutral gas medium within the host galaxy, or the population of intervening galaxies through the observed line of sight gas kinematics. We present the results of a HI absorption line survey at $0.4 &lt; z &lt; 1$ towards 34 obscured quasars with the Australian SKA Pathfinder (ASKAP) commissioning array. We detect three HI absorption lines, with one of these systems previously unknown. Through optical follow-up for two sources, we find that in all detections the HI gas is associated with the AGN, and hence that these AGN are obscured by material within their host galaxies. Most of our sample are compact, and in addition, are either gigahertz peaked spectrum (GPS), or steep spectrum (CSS) sources, both thought to represent young or recently re-triggered radio AGN. The radio spectral energy distribution classifications for our sample agree with galaxy evolution models in which the obscured AGN has only recently become active. Our associated HI detection rate for GPS and compact SS sources matches those of other surveys towards such sources. We also find shallow and asymmetric HI absorption features, which agrees with previous findings that the cold neutral medium in compact radio galaxies is typically kinematically disturbed by the AGN. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.00813v1-abstract-full').style.display = 'none'; document.getElementById('1909.00813v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS. 19 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.10404">arXiv:1907.10404</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1907.10404">pdf</a>, <a href="https://arxiv.org/format/1907.10404">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz3030">10.1093/mnras/stz3030 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the HI mass function below the detection threshold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pan%2C+H">Hengxing Pan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jarvis%2C+M+J">Matt J. Jarvis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">Ian Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+M+G">Mario G. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maddox%2C+N">Natasha Maddox</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frank%2C+B+S">Bradley S. Frank</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+X">Xi Kang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.10404v2-abstract-short" style="display: inline;"> We present a Bayesian Stacking technique to directly measure the HI mass function (HIMF) and its evolution with redshift using galaxies formally below the nominal detection threshold. We generate galaxy samples over several sky areas given an assumed HIMF described by a Schechter function and simulate the HI emission lines with different levels of background noise to test the technique. We use Mul&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10404v2-abstract-full').style.display = 'inline'; document.getElementById('1907.10404v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.10404v2-abstract-full" style="display: none;"> We present a Bayesian Stacking technique to directly measure the HI mass function (HIMF) and its evolution with redshift using galaxies formally below the nominal detection threshold. We generate galaxy samples over several sky areas given an assumed HIMF described by a Schechter function and simulate the HI emission lines with different levels of background noise to test the technique. We use Multinest to constrain the parameters of the HIMF in a broad redshift bin, demonstrating that the HIMF can be accurately reconstructed, using the simulated spectral cube far below the HI mass limit determined by the $5蟽$ flux-density limit, i.e. down to $M_{\rm HI} = 10^{7.5}$ M$_{\odot}$ over the redshift range $0 &lt; z &lt; 0.55$ for this particular simulation, with a noise level similar to that expected for the MIGHTEE survey. We also find that the constraints on the parameters of the Schechter function, $蠁_{\star}$, $M_\star$ and $伪$ can be reliably fit, becoming tighter as the background noise decreases as expected, although the constraints on the redshift evolution are not significantly affected. All the parameters become better constrained as the survey area increases. In summary, we provide an optimal method for estimating the HI mass at cosmological distances that allows us to constrain the HI mass function below the detection threshold in forthcoming HI surveys. This study is a first step towards the measurement of the HIMF at high ($z&gt;0.1$) redshifts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.10404v2-abstract-full').style.display = 'none'; document.getElementById('1907.10404v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures, revised manuscript accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.09491">arXiv:1905.09491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.09491">pdf</a>, <a href="https://arxiv.org/format/1905.09491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz1448">10.1093/mnras/stz1448 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WALLABY Early Science - III. An HI Study of the Spiral Galaxy NGC 1566 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Elagali%2C+A">A. Elagali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhee%2C+J">J. Rhee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+O+I">O. I. Wong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bosma%2C+A">A. Bosma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Westmeier%2C+T">T. Westmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kleiner%2C+D">D. Kleiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madrid%2C+J+P">J. P. Madrid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+A">A. Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+T+N">T. N. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer%2C+M+J">M. J. Meyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">C. D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serra%2C+P">P. Serra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shao%2C+L">L. Shao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bekiaris%2C+G">G. Bekiaris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kamphuis%2C+P">P. Kamphuis</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.09491v1-abstract-short" style="display: inline;"> This paper reports on the atomic hydrogen gas (HI) observations of the spiral galaxy NGC 1566 using the newly commissioned Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. We measure an integrated HI flux density of $180.2$ Jy km s$^{-1}$ emanating from this galaxy, which translates to an HI mass of $1.94\times10^{10}$M$_\circ$ at an assumed distance of $21.3$ Mpc. Our observa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09491v1-abstract-full').style.display = 'inline'; document.getElementById('1905.09491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.09491v1-abstract-full" style="display: none;"> This paper reports on the atomic hydrogen gas (HI) observations of the spiral galaxy NGC 1566 using the newly commissioned Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. We measure an integrated HI flux density of $180.2$ Jy km s$^{-1}$ emanating from this galaxy, which translates to an HI mass of $1.94\times10^{10}$M$_\circ$ at an assumed distance of $21.3$ Mpc. Our observations show that NGC 1566 has an asymmetric and mildly warped HI disc. The HI-to-stellar mass fraction of NGC 1566 is $0.29$, which is high in comparison with galaxies that have the same stellar mass ($10^{10.8}$M$_\circ$). We also derive the rotation curve of this galaxy to a radius of $50$ kpc and fit different mass models to it. The NFW, Burkert and pseudo-isothermal dark matter halo profiles fit the observed rotation curve reasonably well and recover dark matter fractions of $0.62$, $0.58$ and $0.66$, respectively. Down to the column density sensitivity of our observations ($N_{HI} = 3.7\times10^{19}$ cm$^{-2}$), we detect no HI clouds connected to, or in the nearby vicinity of, the HI disc of NGC 1566 nor nearby interacting systems. We conclude that, based on a simple analytic model, ram pressure interactions with the IGM can affect the HI disc of NGC 1566 and is possibly the reason for the asymmetries seen in the HI morphology of NGC 1566. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.09491v1-abstract-full').style.display = 'none'; document.getElementById('1905.09491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.08497">arXiv:1905.08497</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.08497">pdf</a>, <a href="https://arxiv.org/format/1905.08497">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnrasl/slz113">10.1093/mnrasl/slz113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An HI absorption distance to the black hole candidate X-ray binary MAXI J1535-571 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chauhan%2C+J">Jaiverdhan Chauhan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller-Jones%2C+J+C+A">James C. A. Miller-Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+G+E">Gemma E. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">Wasim Raja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bahramian%2C+A">Arash Bahramian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A">Aidan Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Indermuehle%2C+B">Balt Indermuehle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">Matthew Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C">Craig Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J">John Bunton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B">Baerbel Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E">Elizabeth Mahony</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.08497v2-abstract-short" style="display: inline;"> With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535--571 over seven epochs from 21 September to 2 October 2017. Using ASKAP observations, we studied the HI absorption spectrum from gas clouds along the line-of-sight and thereby constrained the distance to the source. The maximum negative radial velocities measured from the HI&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08497v2-abstract-full').style.display = 'inline'; document.getElementById('1905.08497v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.08497v2-abstract-full" style="display: none;"> With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535--571 over seven epochs from 21 September to 2 October 2017. Using ASKAP observations, we studied the HI absorption spectrum from gas clouds along the line-of-sight and thereby constrained the distance to the source. The maximum negative radial velocities measured from the HI absorption spectra for MAXI J1535--571 and an extragalactic source in the same field of view are $-69\pm4$ km s$^{-1}$ and $-89\pm4$ km s$^{-1}$, respectively. This rules out the far kinematic distance ($9.3^{+0.5}_{-0.6}$ kpc), giving a most likely distance of $4.1^{+0.6}_{-0.5}$ kpc, with a strong upper limit of the tangent point at $6.7^{+0.1}_{-0.2}$ kpc. At our preferred distance, the peak unabsorbed luminosity of MAXI J1535--571 was $&gt;78$ per cent of the Eddington luminosity, and shows that the soft-to-hard spectral state transition occurred at the very low luminosity of 1.2 -- 3.4 $\times$ 10$^{-5}$ times the Eddington luminosity. Finally, this study highlights the capabilities of new wide-field radio telescopes to probe Galactic transient outbursts, by allowing us to observe both a target source and a background comparison source in a single telescope pointing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.08497v2-abstract-full').style.display = 'none'; document.getElementById('1905.08497v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised after favorable referee report from MNRAS Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.00831">arXiv:1905.00831</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1905.00831">pdf</a>, <a href="https://arxiv.org/format/1905.00831">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2019.16">10.1017/pasa.2019.16 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> ASKAP Commissioning Observations of the GAMA 23 Field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Leahy%2C+D+A">Denis A. Leahy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hopkins%2C+A+M">A. M. Hopkins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marvil%2C+J">J. Marvil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taylor%2C+E+N">E. N. Taylor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C">C. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+M">M. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bilicki%2C+M">M. Bilicki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bland-Hawthorn%2C+J">J. Bland-Hawthorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brough%2C+S">S. Brough</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+M+J+I">M. J. I. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Driver%2C+S">S. Driver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gurkan%2C+G">G. Gurkan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harvey-Smith%2C+L">L. Harvey-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holwerda%2C+B+W">B. W. Holwerda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liske%2C+J">J. Liske</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopez-Sanchez%2C+A+R">A. R. Lopez-Sanchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moffett%2C+A">A. Moffett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Owers%2C+M+S">M. S. Owers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pimbblet%2C+K+A">K. A. Pimbblet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">W. Raja</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.00831v1-abstract-short" style="display: inline;"> We have observed the G23 field of the Galaxy And Mass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase, to validate the performance of the telescope and to characterize the detected galaxy populations. This observation covers $\sim$48 deg$^2$ with synthesized beam of 32.7$^{\prime\prime}$ by 17.8$^{\prime\prime}$ at 936 MHz, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00831v1-abstract-full').style.display = 'inline'; document.getElementById('1905.00831v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.00831v1-abstract-full" style="display: none;"> We have observed the G23 field of the Galaxy And Mass Assembly (GAMA) survey using the Australian Square Kilometre Array Pathfinder (ASKAP) in its commissioning phase, to validate the performance of the telescope and to characterize the detected galaxy populations. This observation covers $\sim$48 deg$^2$ with synthesized beam of 32.7$^{\prime\prime}$ by 17.8$^{\prime\prime}$ at 936 MHz, and $\sim$39 deg$^2$ with synthesized beam of 15.8$^{\prime\prime}$ by 12.0$^{\prime\prime}$ at 1320 MHz. At both frequencies, the r.m.s. (root-mean-square) noise is $\sim$0.1 mJy/beam. We combine these radio observations with the GAMA galaxy data, which includes spectroscopy of galaxies that are i-band selected with a magnitude limit of 19.2. Wide-field Infrared Survey Explorer (WISE) infrared (IR) photometry is used to determine which galaxies host an active galactic nucleus (AGN). In properties including source counts, mass distributions, and IR vs. radio luminosity relation, the ASKAP detected radio sources behave as expected. Radio galaxies have higher stellar mass and luminosity in IR, optical and UV than other galaxies. We apply optical and IR AGN diagnostics and find that they disagree for $\sim$30% of the galaxies in our sample. We suggest possible causes for the disagreement. Some cases can be explained by optical extinction of the AGN, but for more than half of the cases we do not find a clear explanation. Radio sources are more likely ($\sim$6%) to have an AGN than radio quiet galaxies ($\sim$1%), but the majority of AGN are not detected in radio at this sensitivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.00831v1-abstract-full').style.display = 'none'; document.getElementById('1905.00831v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 22 figures, 6 tables. Accepted for publication in Publications of the Astronomical Society of Australia</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Publ. Astron. Soc. Aust. 36 (2019) e024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00887">arXiv:1901.00887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00887">pdf</a>, <a href="https://arxiv.org/ps/1901.00887">ps</a>, <a href="https://arxiv.org/format/1901.00887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz038">10.1093/mnras/stz038 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ionisation of the atomic gas in redshifted radio sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Curran%2C+S+J">S. J. Curran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hunstead%2C+R+W">R. W. Hunstead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnston%2C+H+M">H. M. Johnston</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">M. T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Athreya%2C+R">R. Athreya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00887v1-abstract-short" style="display: inline;"> We report the results of a survey for HI 21-cm absorption at z &lt; 0.4 in a new sample of radio sources with the Giant Metrewave Radio Telescope. Of the 11 sources for which there are good data, we obtain zero detections, where four are expected upon accounting for the ionising photon rates and sensitivity. Adding these to the previously published values, we confirm that the non-detection of 21-cm a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00887v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00887v1-abstract-full" style="display: none;"> We report the results of a survey for HI 21-cm absorption at z &lt; 0.4 in a new sample of radio sources with the Giant Metrewave Radio Telescope. Of the 11 sources for which there are good data, we obtain zero detections, where four are expected upon accounting for the ionising photon rates and sensitivity. Adding these to the previously published values, we confirm that the non-detection of 21-cm absorption in active sources at high redshift is due to photo-ionisation of the gas rather than excitation by 21-cm photons (significant at 6.09 sigma and 2.90 sigma, respectively). We also confirm a strong correlation between the absorption strength and the reddening of the source, suggesting that dust plays a significant role in shielding the gas from the ambient ultra-violet field. An anti-correlation between the 21-cm detection rate and the radio turnover frequency is also found, which runs contrary to what is expected on the basis that the higher the turnover frequency, the more compact the source. It is, however, consistent with the hypothesis that the turnover frequency is related to the electron density, supported by a correlation between the turnover frequency and ionising photon rate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00887v1-abstract-full').style.display = 'none'; document.getElementById('1901.00887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00241">arXiv:1901.00241</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1901.00241">pdf</a>, <a href="https://arxiv.org/format/1901.00241">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz017">10.1093/mnras/stz017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WALLABY Early Science - II. The NGC 7232 galaxy group </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">B. S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Westmeier%2C+T">T. Westmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elagali%2C+A">A. Elagali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=For%2C+B+-">B. -Q. For</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kleiner%2C+D">D. Kleiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madrid%2C+J+P">J. P. Madrid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+A">A. Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+T+N">T. N. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhee%2C+J">J. Rhee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serra%2C+P">P. Serra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shao%2C+L">L. Shao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+J">J. Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">M. T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+O+I">O. I. Wong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhandari%2C+S">S. Bhandari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marvil%2C+J">J. Marvil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ord%2C+S+M">S. M. Ord</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00241v1-abstract-short" style="display: inline;"> We report on neutral hydrogen (HI) observations of the NGC 7232 group with the Australian Square Kilometre Array Pathfinder (ASKAP). These observations were conducted as part of the Wide-field ASKAP L-Band Legacy All-sky Blind surveY (WALLABY) Early Science program with an array of 12 ASKAP antennas equipped with Phased Array Feeds, which were used to form 36 beams to map a field of view of 30 squ&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00241v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00241v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00241v1-abstract-full" style="display: none;"> We report on neutral hydrogen (HI) observations of the NGC 7232 group with the Australian Square Kilometre Array Pathfinder (ASKAP). These observations were conducted as part of the Wide-field ASKAP L-Band Legacy All-sky Blind surveY (WALLABY) Early Science program with an array of 12 ASKAP antennas equipped with Phased Array Feeds, which were used to form 36 beams to map a field of view of 30 square degrees. Analyzing a subregion of the central beams, we detect 17 HI sources. Eleven of these detections are identified as galaxies and have stellar counterparts, of which five are newly resolved HI galaxy sources. The other six detections appear to be tidal debris in the form of HI clouds that are associated with the central triplet, NGC 7232/3, comprising the spiral galaxies NGC 7232, NGC7232B and NGC7233. One of these HI clouds has a mass of M_HI ~ 3 x 10^8 M_sol and could be the progenitor of a long-lived tidal dwarf galaxy. The remaining HI clouds are likely transient tidal knots that are possibly part of a diffuse tidal bridge between NGC 7232/3 and another group member, the lenticular galaxy IC 5181. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00241v1-abstract-full').style.display = 'none'; document.getElementById('1901.00241v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages (including appendix), 9 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.01772">arXiv:1811.01772</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1811.01772">pdf</a>, <a href="https://arxiv.org/format/1811.01772">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-018-0608-8">10.1038/s41550-018-0608-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cold gas outflows from the Small Magellanic Cloud traced with ASKAP </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=McClure-Griffiths%2C+N+M">N. M. McClure-Griffiths</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%C3%A9nes%2C+H">H. D茅nes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dickey%2C+J+M">J. M. Dickey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanimirovi%C4%87%2C+S">S. Stanimirovi膰</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staveley-Smith%2C+L">L. Staveley-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jameson%2C+K">Katherine Jameson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Teodoro%2C+E">Enrico Di Teodoro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chippendale%2C+A+P">A. P. Chippendale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franzen%2C+T">T. Franzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%BCrkan%2C+G">G眉lay G眉rkan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heald%2C+G">G. Heald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A">A. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kleiner%2C+D">D. Kleiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+A">A. Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhee%2C+J">Jonghwan Rhee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riseley%2C+C+J">C. J. Riseley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.01772v1-abstract-short" style="display: inline;"> Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous galaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the prese&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.01772v1-abstract-full').style.display = 'inline'; document.getElementById('1811.01772v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.01772v1-abstract-full" style="display: none;"> Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous galaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the presence of intense stellar feedback. Here, we show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming bar of the galaxy. The outflows are cold, $T&lt;400~{\rm K}$, and may have formed during a period of active star formation $25 - 60$ million years (Myr) ago. The total mass of atomic gas in the outflow is $\sim 10^7$ solar masses, ${\rm M_{\odot}}$, or $\sim 3$% of the total atomic gas of the galaxy. The inferred mass flux in atomic gas alone, $\dot{M}_{HI}\sim 0.2 - 1.0~{\rm M_{\odot}~yr^{-1}}$, is up to an order of magnitude greater than the star formation rate. We suggest that most of the observed outflow will be stripped from the SMC through its interaction with its companion, the Large Magellanic Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen encircling the Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.01772v1-abstract-full').style.display = 'none'; document.getElementById('1811.01772v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Astronomy, 29 October 2018, http://dx.doi.org/10.1038/s41550-018-0608-8</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Astronomy 2, pg 901 - 906 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.12466">arXiv:1810.12466</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.12466">pdf</a>, <a href="https://arxiv.org/format/1810.12466">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2930">10.1093/mnras/sty2930 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> WALLABY Early Science - I. The NGC 7162 Galaxy Group </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Reynolds%2C+T+N">Tristan N. Reynolds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Westmeier%2C+T">Tobias Westmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Staveley-Smith%2C+L">Lister Staveley-Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elagali%2C+A">Ahmed Elagali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=For%2C+B">Bi-Qing For</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kleiner%2C+D">Dane Kleiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koribalski%2C+B+S">Baerbel S. Koribalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee-Waddell%2C+K">Karen Lee-Waddell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madrid%2C+J+P">Juan P. Madrid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+A">Attila Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhee%2C+J">Jonghwan Rhee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">Matthew Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+O+I">O. Ivy Wong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davies%2C+L+J+M">Luke J. M. Davies</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Driver%2C+S">Simon Driver</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robotham%2C+A">Aaron Robotham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bekiaris%2C+G">Georgios Bekiaris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">Jordan D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heald%2C+G">George Heald</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meyer%2C+M">Martin Meyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chippendale%2C+A+P">Aaron P. Chippendale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=MacLeod%2C+A">Adam MacLeod</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">Maxim A. Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.12466v1-abstract-short" style="display: inline;"> We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12466v1-abstract-full').style.display = 'inline'; document.getElementById('1810.12466v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.12466v1-abstract-full" style="display: none;"> We present Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY) early science results from the Australian Square Kilometre Array Pathfinder (ASKAP) observations of the NGC 7162 galaxy group. We use archival HIPASS and Australia Telescope Compact Array (ATCA) observations of this group to validate the new ASKAP data and the data reduction pipeline ASKAPsoft. We detect six galaxies in the neutral hydrogen (HI) 21-cm line, expanding the NGC 7162 group membership from four to seven galaxies. Two of the new detections are also the first HI detections of the dwarf galaxies, AM 2159-434 and GALEXASC J220338.65-431128.7, for which we have measured velocities of $cz=2558$ and $cz=2727$ km s$^{-1}$, respectively. We confirm that there is extended HI emission around NGC 7162 possibly due to past interactions in the group as indicated by the $40^{\circ}$ offset between the kinematic and morphological major axes for NGC 7162A, and its HI richness. Taking advantage of the increased resolution (factor of $\sim1.5$) of the ASKAP data over archival ATCA observations, we fit a tilted ring model and use envelope tracing to determine the galaxies&#39; rotation curves. Using these we estimate the dynamical masses and find, as expected, high dark matter fractions of $f_{\mathrm{DM}}\sim0.81-0.95$ for all group members. The ASKAP data are publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.12466v1-abstract-full').style.display = 'none'; document.getElementById('1810.12466v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 11 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.08507">arXiv:1810.08507</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.08507">pdf</a>, <a href="https://arxiv.org/format/1810.08507">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty2852">10.1093/mnras/sty2852 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> PKSB1740-517: An ALMA view of the cold gas feeding a distant interacting young radio galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahony%2C+E+K">E. K. Mahony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">M. T. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+R+F">R. F. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bland-Hawthorn%2C+J">J. Bland-Hawthorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B+H+C">B. H. C. Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lagos%2C+C+D+P">C. D. P. Lagos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morganti%2C+R">R. Morganti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tremblay%2C+G">G. Tremblay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zwaan%2C+M">M. Zwaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C+S">C. S. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bunton%2C+J+D">J. D. Bunton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.08507v1-abstract-short" style="display: inline;"> Cold neutral gas is a key ingredient for growing the stellar and central black hole mass in galaxies throughout cosmic history. We have used the Atacama Large Millimetre Array (ALMA) to detect a rare example of redshifted $^{12}$CO(2-1) absorption in PKS B1740-517, a young ($t \sim 1.6 \times 10^{3}$ yr) and luminous ($L_{\rm 5 GHz} \sim 6.6 \times 10^{43}$ erg s$^{-1}$ ) radio galaxy at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08507v1-abstract-full').style.display = 'inline'; document.getElementById('1810.08507v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.08507v1-abstract-full" style="display: none;"> Cold neutral gas is a key ingredient for growing the stellar and central black hole mass in galaxies throughout cosmic history. We have used the Atacama Large Millimetre Array (ALMA) to detect a rare example of redshifted $^{12}$CO(2-1) absorption in PKS B1740-517, a young ($t \sim 1.6 \times 10^{3}$ yr) and luminous ($L_{\rm 5 GHz} \sim 6.6 \times 10^{43}$ erg s$^{-1}$ ) radio galaxy at $z = 0.44$ that is undergoing a tidal interaction with at least one lower-mass companion. The coincident HI 21-cm and molecular absorption have very similar line profiles and reveal a reservoir of cold gas ($M_{\rm gas} \sim 10^{7} - 10^{8}$ M$_{\odot}$), likely distributed in a disc or ring within a few kiloparsecs of the nucleus. A separate HI component is kinematically distinct and has a very narrow line width ($螖{v}_{\rm FWHM} \lesssim 5$ km s$^{-1}$), consistent with a single diffuse cloud of cold ($T_{\rm k} \sim 100$ K) atomic gas. The $^{12}$CO(2-1) absorption is not associated with this component, which suggests that the cloud is either much smaller than 100 pc along our sight-line and/or located in low-metallicity gas that was possibly tidally stripped from the companion. We argue that the gas reservoir in PKS B1740-517 may have accreted onto the host galaxy $\sim$50 Myr before the young radio AGN was triggered, but has only recently reached the nucleus. This is consistent with the paradigm that powerful luminous radio galaxies are triggered by minor mergers and interactions with low-mass satellites and represent a brief, possibly recurrent, active phase in the life cycle of massive early type galaxies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.08507v1-abstract-full').style.display = 'none'; document.getElementById('1810.08507v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.04356">arXiv:1810.04356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1810.04356">pdf</a>, <a href="https://arxiv.org/format/1810.04356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2019.1">10.1017/pasa.2019.1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Performance and Calibration of the CRAFT Fly&#39;s Eye Fast Radio Burst Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=James%2C+C+W">C. W. James</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K+W">K. W. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Macquart%2C+J+-">J. -P. Macquart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ekers%2C+R+D">R. D. Ekers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oslowski%2C+S">S. Oslowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shannon%2C+R+M">R. M. Shannon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chippendale%2C+A+P">A. P. Chippendale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franzen%2C+T">T. Franzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A+W">A. W. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leach%2C+M">M. Leach</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pilawa%2C+M+A">M. A. Pilawa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M+T">M. T. Whiting</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.04356v2-abstract-short" style="display: inline;"> Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly&#39;s eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04356v2-abstract-full').style.display = 'inline'; document.getElementById('1810.04356v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.04356v2-abstract-full" style="display: none;"> Since January 2017, the Commensal Real-time ASKAP Fast Transients survey (CRAFT) has been utilising commissioning antennas of the Australian SKA Pathfinder (ASKAP) to survey for fast radio bursts (FRBs) in fly&#39;s eye mode. This is the first extensive astronomical survey using phased array feeds (PAFs), and a total of 20 FRBs have been reported. Here we present a calculation of the sensitivity and total exposure of this survey, using the pulsars B1641-45 (J1644-4559) and B0833-45 (J0835-4510, i.e.\ Vela) as calibrators. The design of the survey allows us to benchmark effects due to PAF beamshape, antenna-dependent system noise, radio-frequency interference, and fluctuations during commissioning on timescales from one hour to a year. Observation time, solid-angle, and search efficiency are calculated as a function of FRB fluence threshold. Using this metric, effective survey exposures and sensitivities are calculated as a function of the source counts distribution. The implied FRB rate is significantly lower than the $37$\,sky$^{-1}$\,day$^{-1}$ calculated using nominal exposures and sensitivities for this same sample by \citet{craft_nature}. At the Euclidean power-law index of $-1.5$, the rate is $10.7_{-1.8}^{+2.7}\,{\rm (sys)} \, \pm \, 3\,{\rm (stat)}$\,sky$^{-1}$\,day$^{-1}$ above a threshold of $57\pm6\,{\rm (sys)}$\,Jy\,ms, while for the best-fit index for this sample of $-2.1$, it is $16.6_{-1.5}^{+1.9} \,{\rm (sys)}\, \pm 4.7\,{\rm (stat)}$\,sky$^{-1}$\,day$^{-1}$ above a threshold of $41.6\pm1.5\,{\rm (sys)}$\,Jy\,ms. This strongly suggests that these calculations be performed for other FRB-hunting experiments, allowing meaningful comparisons to be made between them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.04356v2-abstract-full').style.display = 'none'; document.getElementById('1810.04356v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures, 2 tables, accepted for publication in PASA</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1804.11048">arXiv:1804.11048</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1804.11048">pdf</a>, <a href="https://arxiv.org/format/1804.11048">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty1157">10.1093/mnras/sty1157 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A pilot survey for transients and variables with the Australian Square Kilometre Array Pathfinder </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bhandari%2C+S">S. Bhandari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K+W">K. W. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+T">T. Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+M">M. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raja%2C+W">W. Raja</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marvil%2C+J">J. Marvil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hancock%2C+P+J">P. J. Hancock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Whiting%2C+M">M. Whiting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Flynn%2C+C+M">C. M. Flynn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collier%2C+J+D">J. D. Collier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">D. L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+C">C. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heywood%2C+I">I. Heywood</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotan%2C+A">A. Hotan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hunstead%2C+R">R. Hunstead</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee-Waddell%2C+K">K. Lee-Waddell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Madrid%2C+J+P">J. P. Madrid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McConnell%2C+D">D. McConnell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Popping%2C+A">A. Popping</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rhee%2C+J">J. Rhee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E">E. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Voronkov%2C+M+A">M. A. Voronkov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1804.11048v2-abstract-short" style="display: inline;"> We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg$^{2}$ area centred on the NGC 7232 galaxy group over 8 epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.11048v2-abstract-full').style.display = 'inline'; document.getElementById('1804.11048v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1804.11048v2-abstract-full" style="display: none;"> We present a pilot search for variable and transient sources at 1.4 GHz with the Australian Square Kilometre Array Pathfinder (ASKAP). The search was performed in a 30 deg$^{2}$ area centred on the NGC 7232 galaxy group over 8 epochs and observed with a near-daily cadence. The search yielded nine potential variable sources, rejecting the null hypothesis that the flux densities of these sources do not change with 99.9% confidence. These nine sources displayed flux density variations with modulation indices m $\geq 0.1$ above our flux density limit of 1.5 mJy. They are identified to be compact AGN/quasars or galaxies hosting an AGN, whose variability is consistent with refractive interstellar scintillation. We also detect a highly variable source with modulation index m $ &gt; 0.5$ over a time interval of a decade between the Sydney University Molonglo Sky Survey (SUMSS) and our latest ASKAP observations. We find the source to be consistent with the properties of long-term variability of a quasar. No transients were detected on timescales of days and we place an upper limit $蟻&lt; 0.01$ deg$^{2}$ with 95% confidence for non-detections on near-daily timescales. The future VAST-Wide survey with 36-ASKAP dishes will probe the transient phase space with a similar cadence to our pilot survey, but better sensitivity, and will detect and monitor rarer brighter events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1804.11048v2-abstract-full').style.display = 'none'; document.getElementById('1804.11048v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures. Accepted in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.08742">arXiv:1802.08742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1802.08742">pdf</a>, <a href="https://arxiv.org/format/1802.08742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnrasl/sly034">10.1093/mnrasl/sly034 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant galaxy growing from recycled gas: ALMA maps the circumgalactic molecular medium of the Spiderweb in [CI] </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Emonts%2C+B+H+C">B. H. C. Emonts</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lehnert%2C+M+D">M. D. Lehnert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dannerbauer%2C+H">H. Dannerbauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Breuck%2C+C">C. De Breuck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villar-Martin%2C+M">M. Villar-Martin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miley%2C+G+K">G. K. Miley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gullberg%2C+B">B. Gullberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hatch%2C+N+A">N. A. Hatch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guillard%2C+P">P. Guillard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+M+Y">M. Y. Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Norris%2C+R+P">R. P. Norris</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.08742v1-abstract-short" style="display: inline;"> The circumgalactic medium (CGM) of the massive Spiderweb Galaxy, a conglomerate of merging proto-cluster galaxies at z=2.2, forms an enriched interface where feedback and recycling act on accreted gas. This is shown by observations of [CI], CO(1-0) and CO(4-3) performed with the Atacama Large Millimeter Array (ALMA) and Australia Telescope Compact Array (ATCA). [CI] and CO(4-3) are detected across&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08742v1-abstract-full').style.display = 'inline'; document.getElementById('1802.08742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.08742v1-abstract-full" style="display: none;"> The circumgalactic medium (CGM) of the massive Spiderweb Galaxy, a conglomerate of merging proto-cluster galaxies at z=2.2, forms an enriched interface where feedback and recycling act on accreted gas. This is shown by observations of [CI], CO(1-0) and CO(4-3) performed with the Atacama Large Millimeter Array (ALMA) and Australia Telescope Compact Array (ATCA). [CI] and CO(4-3) are detected across ~50 kpc, following the distribution of previously detected low-surface-brightness CO(1-0) across the CGM. This confirms our previous results on the presence of a cold molecular halo. The central radio galaxy MRC1138-262 shows a very high global $L&#39;_{\rm CO(4-3)}$/$L&#39;_{\rm CO(1-0)}$ ~ 1, suggesting that mechanisms other than FUV-heating by star formation prevail at the heart of the Spiderweb Galaxy. Contrary, the CGM has $L&#39;_{\rm CO(4-3)}$/$L&#39;_{\rm CO(1-0)}$ and $L&#39;_{\rm [CI]}$/$L&#39;_{\rm CO(1-0)}$ similar to the ISM of five galaxies in the wider proto-cluster, and its carbon abundance, $X_{\rm [CI]}$/$X_{\rm H2}$, resembles that of the Milky Way and starforming galaxies. The molecular CGM is thus metal-rich and not diffuse, confirming a link between the cold gas and in-situ star formation. Thus, the Spiderweb Galaxy grows not directly through accretion of gas from the cosmic web, but from recycled gas in the GCM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.08742v1-abstract-full').style.display = 'none'; document.getElementById('1802.08742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication as a Letter in MNRAS (5 pages, 4 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.08140">arXiv:1801.08140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1801.08140">pdf</a>, <a href="https://arxiv.org/ps/1801.08140">ps</a>, <a href="https://arxiv.org/format/1801.08140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty228">10.1093/mnras/sty228 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An ALMA view of star formation efficiency suppression in early-type galaxies after gas-rich minor mergers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=van+de+Voort%2C+F">Freeke van de Voort</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davis%2C+T+A">Timothy A. Davis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Matsushita%2C+S">Satoki Matsushita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rowlands%2C+K">Kate Rowlands</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shabala%2C+S+S">Stanislav S. Shabala</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">James R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ting%2C+Y">Yuan-Sen Ting</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sansom%2C+A+E">Anne E. Sansom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Werf%2C+P+P">Paul P. van der Werf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.08140v1-abstract-short" style="display: inline;"> Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08140v1-abstract-full').style.display = 'inline'; document.getElementById('1801.08140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.08140v1-abstract-full" style="display: none;"> Gas-rich minor mergers contribute significantly to the gas reservoir of early-type galaxies (ETGs) at low redshift, yet the star formation efficiency (SFE; the star formation rate divided by the molecular gas mass) appears to be strongly suppressed following some of these events, in contrast to the more well-known merger-driven starbursts. We present observations with the Atacama Large Millimeter/submillimeter Array (ALMA) of six ETGs, which have each recently undergone a gas-rich minor merger, as evidenced by their disturbed stellar morphologies. These galaxies were selected because they exhibit extremely low SFEs. We use the resolving power of ALMA to study the morphology and kinematics of the molecular gas. The majority of our galaxies exhibit spatial and kinematical irregularities, such as detached gas clouds, warps, and other asymmetries. These asymmetries support the interpretation that the suppression of the SFE is caused by dynamical effects stabilizing the gas against gravitational collapse. Through kinematic modelling we derive high velocity dispersions and Toomre Q stability parameters for the gas, but caution that such measurements in edge-on galaxies suffer from degeneracies. We estimate merger ages to be about 100~Myr based on the observed disturbances in the gas distribution. Furthermore, we determine that these galaxies lie, on average, two orders of magnitude below the Kennicutt-Schmidt relation for star-forming galaxies as well as below the relation for relaxed ETGs. We discuss potential dynamical processes responsible for this strong suppression of star formation surface density at fixed molecular gas surface density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.08140v1-abstract-full').style.display = 'none'; document.getElementById('1801.08140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, 2018, Volume 476, Issue 1, p.122-132 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05846">arXiv:1710.05846</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05846">pdf</a>, <a href="https://arxiv.org/format/1710.05846">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/pasa.2017.65">10.1017/pasa.2017.65 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Follow up of GW170817 and its electromagnetic counterpart by Australian-led observing programs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">I. Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ackley%2C+K">K. Ackley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooke%2C+J">J. Cooke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Acharyya%2C+A">A. Acharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+G+E">G. E. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashley%2C+M+C+B">M. C. B. Ashley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baade%2C+D">D. Baade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bailes%2C+M">M. Bailes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K">K. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beardsley%2C+A">A. Beardsley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bessell%2C+M+S">M. S. Bessell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bian%2C+F">F. Bian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bland%2C+P+A">P. A. Bland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boer%2C+M">M. Boer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booler%2C+T">T. Booler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brandeker%2C+A">A. Brandeker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+I+S">I. S. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D">D. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chang%2C+S+-">S. -W. Chang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coward%2C+D+M">D. M. Coward</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crawford%2C+S">S. Crawford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crisp%2C+H">H. Crisp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crosse%2C+B">B. Crosse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cucchiara%2C+A">A. Cucchiara</a> , et al. (100 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05846v1-abstract-short" style="display: inline;"> The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescope&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05846v1-abstract-full').style.display = 'inline'; document.getElementById('1710.05846v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05846v1-abstract-full" style="display: none;"> The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid-infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source afterglow cooled from approximately 6400K to 2100K over a 7-day period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (about 2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05846v1-abstract-full').style.display = 'none'; document.getElementById('1710.05846v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 9 figures, 15 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05436">arXiv:1710.05436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05436">pdf</a>, <a href="https://arxiv.org/format/1710.05436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aap9455">10.1126/science.aap9455 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Illuminating Gravitational Waves: A Concordant Picture of Photons from a Neutron Star Merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">M. M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakar%2C+E">E. Nakar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singer%2C+L+P">L. P. Singer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">D. L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cook%2C+D+O">D. O. Cook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Sistine%2C+A">A. Van Sistine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lau%2C+R+M">R. M. Lau</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">C. Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gottlieb%2C+O">O. Gottlieb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J+E">J. E. Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+S+M">S. M. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feindt%2C+U">U. Feindt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotokezaka%2C+K">K. Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+S">S. Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yu%2C+P+-">P. -C. Yu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piran%2C+T">T. Piran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balasubramanian%2C+A">A. Balasubramanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K+W">K. W Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bally%2C+J">J. Bally</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barnes%2C+J">J. Barnes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barway%2C+S">S. Barway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">E. Bellm</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05436v1-abstract-short" style="display: inline;"> Merging neutron stars offer an exquisite laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart EM170817 to gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic dataset, we demonstrate that merging neutron stars are a long-sought production&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05436v1-abstract-full').style.display = 'inline'; document.getElementById('1710.05436v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05436v1-abstract-full" style="display: none;"> Merging neutron stars offer an exquisite laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart EM170817 to gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic dataset, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma-rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultra-relativistic jets. Instead, we suggest that breakout of a wide-angle, mildly-relativistic cocoon engulfing the jet elegantly explains the low-luminosity gamma-rays, the high-luminosity ultraviolet-optical-infrared and the delayed radio/X-ray emission. We posit that all merging neutron stars may lead to a wide-angle cocoon breakout; sometimes accompanied by a successful jet and sometimes a choked jet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05436v1-abstract-full').style.display = 'none'; document.getElementById('1710.05436v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Science, in press DOI 10.1126/science.aap9455, 83 pages, 3 tables, 16 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.05435">arXiv:1710.05435</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.05435">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aap9855">10.1126/science.aap9855 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Radio Counterpart to a Neutron Star Merger </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hallinan%2C+G">G. Hallinan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">A. Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mooley%2C+K+P">K. P. Mooley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotokezaka%2C+K">K. Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakar%2C+E">E. Nakar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">M. M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">D. L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frail%2C+D+A">D. A. Frail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Myers%2C+S+T">S. T. Myers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Murphy%2C+T">T. Murphy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">K. De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dobie%2C+D">D. Dobie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+K+W">K. W. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">V. Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+P">P. Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+T+E">T. E. Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giacintucci%2C+S">S. Giacintucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">A. Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">A. Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kassim%2C+N+E">N. E. Kassim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lenc%2C+E">E. Lenc</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lockman%2C+F+J">F. J. Lockman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lynch%2C+C">C. Lynch</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.05435v1-abstract-short" style="display: inline;"> Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05435v1-abstract-full').style.display = 'inline'; document.getElementById('1710.05435v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.05435v1-abstract-full" style="display: none;"> Gravitational waves have been detected from a binary neutron star merger event, GW170817. The detection of electromagnetic radiation from the same source has shown that the merger occurred in the outskirts of the galaxy NGC 4993, at a distance of 40 megaparsecs from Earth. We report the detection of a counterpart radio source that appears 16 days after the event, allowing us to diagnose the energetics and environment of the merger. The observed radio emission can be explained by either a collimated ultra-relativistic jet viewed off-axis, or a cocoon of mildly relativistic ejecta. Within 100 days of the merger, the radio light curves will distinguish between these models and very long baseline interferometry will have the capability to directly measure the angular velocity and geometry of the debris. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.05435v1-abstract-full').style.display = 'none'; document.getElementById('1710.05435v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 October, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Science, in press, 26 pages, DOI:10.1126/science.aap9855</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.08634">arXiv:1709.08634</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1709.08634">pdf</a>, <a href="https://arxiv.org/ps/1709.08634">ps</a>, <a href="https://arxiv.org/format/1709.08634">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> WISE data as a photometric redshift indicator for radio AGN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Glowacki%2C+M">M. Glowacki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allison%2C+J+R">J. R. Allison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sadler%2C+E+M">E. M. Sadler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moss%2C+V+A">V. A. Moss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jarrett%2C+T+H">T. H. Jarrett</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.08634v1-abstract-short" style="display: inline;"> We show that mid-infrared data from the all-sky WISE survey can be used as a robust photometric redshift indicator for powerful radio AGN, in the absence of other spectroscopic or multi-band photometric information. Our work is motivated by a desire to extend the well-known K-z relation for radio galaxies to the wavelength range covered by the all-sky WISE mid-infrared survey. Using the LARGESS ra&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08634v1-abstract-full').style.display = 'inline'; document.getElementById('1709.08634v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.08634v1-abstract-full" style="display: none;"> We show that mid-infrared data from the all-sky WISE survey can be used as a robust photometric redshift indicator for powerful radio AGN, in the absence of other spectroscopic or multi-band photometric information. Our work is motivated by a desire to extend the well-known K-z relation for radio galaxies to the wavelength range covered by the all-sky WISE mid-infrared survey. Using the LARGESS radio spectroscopic sample as a training set, and the mid-infrared colour information to classify radio sources, we generate a set of redshift probability distributions for the hosts of high-excitation and low-excitation radio AGN. We test the method using spectroscopic data from several other radio AGN studies, and find good agreement between our WISE-based redshift estimates and published spectroscopic redshifts out to z ~ 1 for galaxies and z ~ 3-4 for radio-loud QSOs. Our chosen method is also compared against other classification methods and found to perform reliably. This technique is likely to be particularly useful in the analysis of upcoming large-area radio surveys with SKA pathfinder telescopes, and our code is publicly available. As a consistency check, we show that our WISE-based redshift estimates for sources in the 843 MHz SUMSS survey reproduce the redshift distribution seen in the CENSORS study up to z ~ 2. We also discuss two specific applications of our technique for current and upcoming radio surveys; an interpretation of large scale HI absorption surveys, and a determination of whether low-frequency peaked spectrum sources lie at high redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.08634v1-abstract-full').style.display = 'none'; document.getElementById('1709.08634v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 11 figures, 11 tables; submitted to MNRAS</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Allison%2C+J+R&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10