CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 227 results for author: <span class="mathjax">Bellm, E</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Bellm%2C+E">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Bellm, E"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Bellm%2C+E&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Bellm, E"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12796">arXiv:2411.12796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.12796">pdf</a>, <a href="https://arxiv.org/format/2411.12796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Expanding the ultracompacts: gravitational wave-driven mass transfer in the shortest-period binaries with accretion disks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chakraborty%2C+J">Joheen Chakraborty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rappaport%2C+S+A">Saul A. Rappaport</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Munday%2C+J">James Munday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+H">Hai-Liang Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez-Gil%2C+P">Pablo Rodr铆guez-Gil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hughes%2C+S+A">Scott A. Hughes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nelemans%2C+G">Gijs Nelemans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kara%2C+E">Erin Kara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A+J">Alex J. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Segura%2C+N+C">Noel Castro Segura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+X">Tracy X. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chickles%2C+E">Emma Chickles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dyer%2C+M+J">Martin J. Dyer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">Andrew J. Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garbutt%2C+J">James Garbutt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+M+J">Matthew J. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jarvis%2C+D">Dan Jarvis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennedy%2C+M+R">Mark R. Kennedy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kerry%2C+P">Paul Kerry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12796v1-abstract-short" style="display: inline;"> We report the discovery of three ultracompact binary white dwarf systems hosting accretion disks, with orbital periods of 7.95, 8.68, and 13.15 minutes. This significantly augments the population of mass-transferring binaries at the shortest periods, and provides the first evidence that accretors in ultracompacts can be dense enough to host accretion disks even below 10 minutes (where previously o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12796v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12796v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12796v1-abstract-full" style="display: none;"> We report the discovery of three ultracompact binary white dwarf systems hosting accretion disks, with orbital periods of 7.95, 8.68, and 13.15 minutes. This significantly augments the population of mass-transferring binaries at the shortest periods, and provides the first evidence that accretors in ultracompacts can be dense enough to host accretion disks even below 10 minutes (where previously only direct-impact accretors were known). In the two shortest-period systems, we measured changes in the orbital periods driven by the combined effect of gravitational wave emission and mass transfer; we find $\dot{P}$ is negative in one case, and positive in the other. This is only the second system measured with a positive $\dot{P}$, and it the most compact binary known that has survived a period minimum. Using these systems as examples, we show how the measurement of $\dot{P}$ is a powerful tool in constraining the physical properties of binaries, e.g. the mass and mass-radius relation of the donor stars. We find that the chirp masses of ultracompact binaries at these periods seem to cluster around $\mathcal{M}_c \sim 0.3 M_\odot$, perhaps suggesting a common origin for these systems or a selection bias in electromagnetic discoveries. Our new systems are among the highest-amplitude known gravitational wave sources in the millihertz regime, providing exquisite opportunity for multi-messenger study with future space-based observatories such as \textit{LISA} and TianQin; we discuss how such systems provide fascinating laboratories to study the unique regime where the accretion process is mediated by gravitational waves. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12796v1-abstract-full').style.display = 'none'; document.getElementById('2411.12796v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.07973">arXiv:2411.07973</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.07973">pdf</a>, <a href="https://arxiv.org/format/2411.07973">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Nature of Optical Afterglows Without Gamma-ray Bursts: Identification of AT2023lcr and Multiwavelength Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+M+L">Maggie L. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ryan%2C+G">Geoffrey Ryan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">Gavin P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayana%2C+A+J">A. J. Nayana</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berger%2C+E">Edo Berger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+P">Poonam Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M">Mansi Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keating%2C+G+K">Garrett K. Keating</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+R+A">Richard A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J">Josiah Purdum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rao%2C+R">Ramprasad Rao</a> , et al. (7 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.07973v1-abstract-short" style="display: inline;"> In the past few years, the improved sensitivity and cadence of wide-field optical surveys have enabled the discovery of several afterglows without associated detected gamma-ray bursts (GRBs). We present the identification, observations, and multiwavelength modeling of a recent such afterglow (AT2023lcr), and model three literature events (AT2020blt, AT2021any, and AT2021lfa) in a consistent fashio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07973v1-abstract-full').style.display = 'inline'; document.getElementById('2411.07973v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.07973v1-abstract-full" style="display: none;"> In the past few years, the improved sensitivity and cadence of wide-field optical surveys have enabled the discovery of several afterglows without associated detected gamma-ray bursts (GRBs). We present the identification, observations, and multiwavelength modeling of a recent such afterglow (AT2023lcr), and model three literature events (AT2020blt, AT2021any, and AT2021lfa) in a consistent fashion. For each event, we consider the following possibilities as to why a GRB was not observed: 1) the jet was off-axis; 2) the jet had a low initial Lorentz factor; and 3) the afterglow was the result of an on-axis classical GRB (on-axis jet with physical parameters typical of the GRB population), but the emission was undetected by gamma-ray satellites. We estimate all physical parameters using afterglowpy and Markov Chain Monte Carlo methods from emcee. We find that AT2023lcr, AT2020blt, and AT2021any are consistent with on-axis classical GRBs, and AT2021lfa is consistent with both on-axis low Lorentz factor ($螕_0 \approx 5 - 13$) and off-axis ($胃_\text{obs}=2胃_\text{jet}$) high Lorentz factor ($螕_0 \approx 100$) jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.07973v1-abstract-full').style.display = 'none'; document.getElementById('2411.07973v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 18 figures, 20 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.04793">arXiv:2411.04793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.04793">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Rubin ToO 2024: Envisioning the Vera C. Rubin Observatory LSST Target of Opportunity program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Margutti%2C+R">Raffaella Margutti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banovetz%2C+J">John Banovetz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Greenstreet%2C+S">Sarah Greenstreet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hebert%2C+C">Claire-Alice Hebert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lister%2C+T">Tim Lister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palmese%2C+A">Antonella Palmese</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piranomonte%2C+S">Silvia Piranomonte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">S. J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+G+P">Graham P. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bannister%2C+M+T">Michele T. Bannister</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolin%2C+B+T">Bryce T. Bolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bom%2C+C+R">Clecio R. Bom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brethauer%2C+D">Daniel Brethauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brucker%2C+M+J">Melissa J. Brucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">David A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+P">Poonam Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chornock%2C+R">Ryan Chornock</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christensen%2C+E">Eric Christensen</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.04793v1-abstract-short" style="display: inline;"> The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory is planned to begin in the Fall of 2025. The LSST survey cadence has been designed via a community-driven process regulated by the Survey Cadence Optimization Committee (SCOC), which recommended up to 3% of the observing time to carry out Target of Opportunity (ToO) observations. Experts from the scientific community, Rubin Ob&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04793v1-abstract-full').style.display = 'inline'; document.getElementById('2411.04793v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.04793v1-abstract-full" style="display: none;"> The Legacy Survey of Space and Time (LSST) at Vera C. Rubin Observatory is planned to begin in the Fall of 2025. The LSST survey cadence has been designed via a community-driven process regulated by the Survey Cadence Optimization Committee (SCOC), which recommended up to 3% of the observing time to carry out Target of Opportunity (ToO) observations. Experts from the scientific community, Rubin Observatory personnel, and members of the SCOC were brought together to deliver a recommendation for the implementation of the ToO program during a workshop held in March 2024. Four main science cases were identified: gravitational wave multi-messenger astronomy, high energy neutrinos, Galactic supernovae, and small potentially hazardous asteroids possible impactors. Additional science cases were identified and briefly addressed in the documents, including lensed or poorly localized gamma-ray bursts and twilight discoveries. Trigger prioritization, automated response, and detailed strategies were discussed for each science case. This document represents the outcome of the Rubin ToO 2024 workshop, with additional contributions from members of the Rubin Science Collaborations. The implementation of the selection criteria and strategies presented in this document has been endorsed in the SCOC Phase 3 Recommendations document (PSTN-056). Although the ToO program is still to be finalized, this document serves as a baseline plan for ToO observations with the Rubin Observatory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.04793v1-abstract-full').style.display = 'none'; document.getElementById('2411.04793v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.04346">arXiv:2409.04346</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.04346">pdf</a>, <a href="https://arxiv.org/format/2409.04346">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> ZTF SN Ia DR2: Overview </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rigault%2C+M">Mickael Rigault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">Mathew Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goobar%2C+A">Ariel Goobar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">Kate Maguire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimitriadis%2C+G">Georgios Dimitriadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgaz%2C+U">Umut Burgaz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">Suhail Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Regnault%2C+N">Nicolas Regnault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalski%2C+M">Marek Kowalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amenouche%2C+M">Melissa Amenouche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aubert%2C+M">Marie Aubert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barjou-Delayre%2C+C">Chlo茅 Barjou-Delayre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bautista%2C+J">Julian Bautista</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Josh S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carreres%2C+B">Bastien Carreres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+X">Tracy X. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Copin%2C+Y">Yannick Copin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">Maxime Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fouchez%2C+D">Dominique Fouchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galbany%2C+L">Lluis Galbany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ginolin%2C+M">Madeleine Ginolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Matthew Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mancy M. Kasliwal</a> , et al. (31 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.04346v1-abstract-short" style="display: inline;"> We present the first homogeneous release of several thousand Type Ia supernovae (SNe Ia), all having spectroscopic classification, and spectroscopic redshifts for half the sample. This release, named the &#34;DR2&#34;, contains 3628 nearby (z &lt; 0.3) SNe Ia discovered, followed and classified by the Zwicky Transient Facility survey between March 2018 and December 2020. Of these, 3000 have good-to-excellent&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04346v1-abstract-full').style.display = 'inline'; document.getElementById('2409.04346v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.04346v1-abstract-full" style="display: none;"> We present the first homogeneous release of several thousand Type Ia supernovae (SNe Ia), all having spectroscopic classification, and spectroscopic redshifts for half the sample. This release, named the &#34;DR2&#34;, contains 3628 nearby (z &lt; 0.3) SNe Ia discovered, followed and classified by the Zwicky Transient Facility survey between March 2018 and December 2020. Of these, 3000 have good-to-excellent sampling and 2667 pass standard cosmology light-curve quality cuts. This release is thus the largest SN Ia release to date, increasing by an order of magnitude the number of well characterized low-redshift objects. With the &#34;DR2&#34;, we also provide a volume-limited (z &lt; 0.06) sample of nearly a thousand SNe Ia. With such a large, homogeneous and well controlled dataset, we are studying key current questions on SN cosmology, such as the linearity SNe Ia standardization, the SN and host dependencies, the diversity of the SN Ia population, and the accuracy of the current light-curve modeling. These, and more, are studied in detail in a series of articles associated with this release. Alongside the SN Ia parameters, we publish our force-photometry gri-band light curves, 5138 spectra, local and global host properties, observing logs, and a python tool to ease use and access of these data. The photometric accuracy of the &#34;DR2&#34; is not yet suited for cosmological parameter inference, which will follow as &#34;DR2.5&#34; release. We nonetheless demonstrate that the multi-thousand SN Ia Hubble Diagram has a typical 0.15 mag scatter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.04346v1-abstract-full').style.display = 'none'; document.getElementById('2409.04346v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ZTF SN Ia DR2 release paper. Submitted to A&amp;A (ZTF DR2 Special Issue). Already 1 response to referee</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02054">arXiv:2409.02054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02054">pdf</a>, <a href="https://arxiv.org/format/2409.02054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> A cosmic formation site of silicon and sulphur revealed by a new type of supernova explosion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dessart%2C+L">Luc Dessart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A+A">Adam A. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woosley%2C+S+E">Stan E. Woosley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yaron%2C+O">Ofer Yaron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsuna%2C+D">Daichi Tsuna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunnan%2C+R">Ragnhild Lunnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">Nikhil Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brennan%2C+S+J">Sean J. Brennan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R+J">Rachel J. Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">Suhail Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fransson%2C+C">Claes Fransson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangopadhyay%2C+A">Anjasha Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irani%2C+I">Ido Irani</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02054v1-abstract-short" style="display: inline;"> The cores of stars are the cosmic furnaces where light elements are fused into heavier nuclei. The fusion of hydrogen to helium initially powers all stars. The ashes of the fusion reactions are then predicted to serve as fuel in a series of stages, eventually transforming massive stars into a structure of concentric shells. These are composed of natal hydrogen on the outside, and consecutively hea&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02054v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02054v1-abstract-full" style="display: none;"> The cores of stars are the cosmic furnaces where light elements are fused into heavier nuclei. The fusion of hydrogen to helium initially powers all stars. The ashes of the fusion reactions are then predicted to serve as fuel in a series of stages, eventually transforming massive stars into a structure of concentric shells. These are composed of natal hydrogen on the outside, and consecutively heavier compositions inside, predicted to be dominated by helium, carbon/oxygen, oxygen/neon/magnesium, and oxygen/silicon/sulphur. Silicon and sulphur are fused into inert iron, leading to the collapse of the core and either a supernova explosion or the direct formation of a black hole. Stripped stars, where the outer hydrogen layer has been removed and the internal He-rich layer (in Wolf-Rayet WN stars) or even the C/O layer below it (in Wolf-Rayet WC/WO stars) are exposed, provide evidence for this shell structure, and the cosmic element production mechanism it reflects. The types of supernova explosions that arise from stripped stars embedded in shells of circumstellar material (most notably Type Ibn supernovae from stars with outer He layers, and Type Icn supernovae from stars with outer C/O layers) confirm this scenario. However, direct evidence for the most interior shells, which are responsible for the production of elements heavier than oxygen, is lacking. Here, we report the discovery of the first-of-its-kind supernova arising from a star peculiarly stripped all the way to the silicon and sulphur-rich internal layer. Whereas the concentric shell structure of massive stars is not under debate, it is the first time that such a thick, massive silicon and sulphur-rich shell, expelled by the progenitor shortly before the SN explosion, has been directly revealed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02054v1-abstract-full').style.display = 'none'; document.getElementById('2409.02054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 12 figures and 10 tables. Submitted to a high-impact journal. The reduced spectra and photometry will be made available via the journal webpage and the WISeREP archive after the acceptance of the paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.15086">arXiv:2408.15086</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.15086">pdf</a>, <a href="https://arxiv.org/format/2408.15086">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Sample of hydrogen-rich superluminous supernovae from the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pessi%2C+P+J">P. J. Pessi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lunnan%2C+R">R. Lunnan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">J. Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gkini%2C+A">A. Gkini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangopadhyay%2C+A">A. Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yan%2C+L">L. Yan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">A. Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">D. A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T+-">T. -W. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K+R">K. R. Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brennan%2C+S+J">S. J. Brennan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+Y">Y. Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singh%2C+A">A. Singh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">I. Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cook%2C+D+O">D. O. Cook</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">C. Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">A. Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+Y">Y. Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Velzen%2C+S">S. van Velzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wold%2C+A">A. Wold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">E. C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">J. S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">M. J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">M. M. Kasliwal</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.15086v1-abstract-short" style="display: inline;"> Hydrogen-rich superluminous supernovae (SLSNe II) are rare. The exact mechanism producing their extreme light curve peaks is not understood. Analysis of single events and small samples suggest that CSM interaction is the main responsible for their features. However, other mechanisms can not be discarded. Large sample analysis can provide clarification. We aim to characterize the light curves of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15086v1-abstract-full').style.display = 'inline'; document.getElementById('2408.15086v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.15086v1-abstract-full" style="display: none;"> Hydrogen-rich superluminous supernovae (SLSNe II) are rare. The exact mechanism producing their extreme light curve peaks is not understood. Analysis of single events and small samples suggest that CSM interaction is the main responsible for their features. However, other mechanisms can not be discarded. Large sample analysis can provide clarification. We aim to characterize the light curves of a sample of 107 SLSNe II to provide valuable information that can be used to validate theoretical models. We analyze the gri light curves of SLSNe II obtained through ZTF. We study peak absolute magnitudes and characteristic timescales. When possible we compute g-r colors, pseudo-bolometric light curves, and estimate lower limits for their total radiated energy. We also study the luminosity distribution of our sample and estimate the percentage of them that would be observable by the LSST. Finally, we compare our sample to other H-rich SNe and to H-poor SLSNe I. SLSNe II are heterogeneous. Their median peak absolute magnitude is -20.3 mag in optical bands. Their rise can take from two weeks to over three months, and their decline from twenty days to over a year. We found no significant correlations between peak magnitude and timescales. SLSNe II tend to show fainter peaks, longer declines and redder colors than SLSNe I. We present the largest sample of SLSNe II light curves to date, comprising of 107 events. Their diversity could be explained by considering different CSM morphologies. Although, theoretical analysis is needed to explore alternative scenarios. Other luminous transients, such as Active Galactic Nuclei, Tidal Disruption Events or SNe Ia-CSM, can easily become contaminants. Thus, good multi-wavelength light curve coverage becomes paramount. LSST could miss 30 percent of the ZTF events in the its footprint in gri bands. Redder bands become important to construct complete samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.15086v1-abstract-full').style.display = 'none'; document.getElementById('2408.15086v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages. 27 figures. 9 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.14586">arXiv:2408.14586</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.14586">pdf</a>, <a href="https://arxiv.org/format/2408.14586">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Optical and Radio Analysis of Systematically Classified Broad-lined Type Ic Supernovae from the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez-Fleming%2C+M">Marquice Sanchez-Fleming</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pope%2C+J">Jack Pope</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">Nikhil Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omand%2C+C">Conor Omand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R">Rachel Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gangopadhyay%2C+A">Anjasha Gangopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J+E">Jacob E. Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.14586v3-abstract-short" style="display: inline;"> We study a magnitude-limited sample of 36 Broad-lined Type Ic Supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between March 2018 and August 2021), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe, and analyze the shape of the LCs to derive empirical parameters, along wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14586v3-abstract-full').style.display = 'inline'; document.getElementById('2408.14586v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.14586v3-abstract-full" style="display: none;"> We study a magnitude-limited sample of 36 Broad-lined Type Ic Supernovae (SNe Ic-BL) from the Zwicky Transient Facility Bright Transient Survey (detected between March 2018 and August 2021), which is the largest systematic study of SNe Ic-BL done in literature thus far. We present the light curves (LCs) for each of the SNe, and analyze the shape of the LCs to derive empirical parameters, along with the explosion epochs for every event. The sample has an average absolute peak magnitude in the r band of $M_r^{max}$ = -18.51 $\pm$ 0.15 mag. Using spectra obtained around peak light, we compute expansion velocities from the Fe II 5169 Angstrom line for each event with high enough signal-to-noise ratio spectra, and find an average value of $v_{ph}$ = 16,100 $\pm$ 1,100 km $s^{-1}$. We also compute bolometric LCs, study the blackbody temperature and radii evolution over time, and derive the explosion properties of the SNe. The explosion properties of the sample have average values of $M_{Ni}$ = $0.37_{-0.06}^{+0.08}$ solar masses, $M_{ej}$ = $2.45_{-0.41}^{+0.47}$ solar masses, and $E_K$= $4.02_{-1.00}^{+1.37} \times 10^{51}$ erg. Thirteen events have radio observations from the Very Large Array, with 8 detections and 5 non-detections. We find that the populations that have radio detections and radio non-detections are indistinct from one another with respect to their optically-inferred explosion properties, and there are no statistically significant correlations present between the events&#39; radio luminosities and optically-inferred explosion properties. This provides evidence that the explosion properties derived from optical data alone cannot give inferences about the radio properties of SNe Ic-BL, and likely their relativistic jet formation mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.14586v3-abstract-full').style.display = 'none'; document.getElementById('2408.14586v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">52 pages, 34 Figures, 8 Tables; Accepted to ApJ, Revised Title from Proofs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02073">arXiv:2406.02073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02073">pdf</a>, <a href="https://arxiv.org/format/2406.02073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> ZTF SN Ia DR2: Study of Type Ia Supernova lightcurve fits </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rigault%2C+M">M. Rigault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">M. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Regnault%2C+N">N. Regnault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kenworthy%2C+D+W">D. W. Kenworthy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">K. Maguire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goobar%2C+A">A. Goobar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimitriadis%2C+G">G. Dimitriadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amenouche%2C+M">M. Amenouche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aubert%2C+M">M. Aubert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barjou-Delayre%2C+C">C. Barjou-Delayre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+C+E">C. E. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgaz%2C+U">U. Burgaz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carreres%2C+B">B. Carreres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Copin%2C+Y">Y. Copin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">M. Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Jaeger%2C+T">T. de Jaeger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">S. Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feinstein%2C+F">F. Feinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fouchez%2C+D">D. Fouchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galbany%2C+L">L. Galbany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ginolin%2C+M">M. Ginolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+J+M">J. M. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+-">Y. -L. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalski%2C+M">M. Kowalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuhn%2C+D">D. Kuhn</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02073v1-abstract-short" style="display: inline;"> Type Ia supernova (SN Ia) cosmology relies on the estimation of lightcurve parameters to derive precision distances that leads to the estimation of cosmological parameters. The empirical SALT2 lightcurve modeling that relies on only two parameters, a stretch x1, and a color c, has been used by the community for almost two decades. In this paper we study the ability of the SALT2 model to fit the ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02073v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02073v1-abstract-full" style="display: none;"> Type Ia supernova (SN Ia) cosmology relies on the estimation of lightcurve parameters to derive precision distances that leads to the estimation of cosmological parameters. The empirical SALT2 lightcurve modeling that relies on only two parameters, a stretch x1, and a color c, has been used by the community for almost two decades. In this paper we study the ability of the SALT2 model to fit the nearly 3000 cosmology-grade SN Ia lightcurves from the second release of the Zwicky Transient Facility (ZTF) cosmology science working group. While the ZTF data was not used to train SALT2, the algorithm is modeling the ZTF SN Ia optical lightcurves remarkably well, except for lightcurve points prior to -10 d from maximum, where the training critically lacks statistics. We find that the lightcurve fitting is robust against the considered choice of phase-range, but we show the [-10; +40] d range to be optimal in terms of statistics and accuracy. We do not detect any significant features in the lightcurve fit residuals that could be connected to the host environment. Potential systematic population differences related to the SN Ia host properties might thus not be accountable for by the addition of extra lightcurve parameters. However, a small but significant inconsistency between residuals of blue- and red-SN Ia strongly suggests the existence of a phase-dependent color term, with potential implications for the use of SNe Ia in precision cosmology. We thus encourage modellers to explore this avenue and we emphasize the importance that SN Ia cosmology must include a SALT2 retraining to accurately model the lightcurves and avoid biasing the derivation of cosmological parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02073v1-abstract-full').style.display = 'none'; document.getElementById('2406.02073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 9 figures. Submitted to Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20965">arXiv:2405.20965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20965">pdf</a>, <a href="https://arxiv.org/format/2405.20965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> ZTF SN Ia DR2: Environmental dependencies of stretch and luminosity of a volume limited sample of 1,000 Type Ia Supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ginolin%2C+M">M. Ginolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigault%2C+M">M. Rigault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">M. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Copin%2C+Y">Y. Copin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ruppin%2C+F">F. Ruppin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimitriadis%2C+G">G. Dimitriadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goobar%2C+A">A. Goobar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">J. Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">K. Maguire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nordin%2C+J">J. Nordin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amenouche%2C+M">M. Amenouche</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aubert%2C+M">M. Aubert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barjou-Delayre%2C+C">C. Barjou-Delayre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Betoule%2C+M">M. Betoule</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burgaz%2C+U">U. Burgaz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carreres%2C+B">B. Carreres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">M. Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">S. Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feinstein%2C+F">F. Feinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fouchez%2C+D">D. Fouchez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galbany%2C+L">L. Galbany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ganot%2C+C">C. Ganot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harvey%2C+L">L. Harvey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Jaeger%2C+T">T. de Jaeger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kenworthy%2C+W+D">W. D. Kenworthy</a> , et al. (21 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20965v1-abstract-short" style="display: inline;"> To get distances, Type Ia Supernovae magnitudes are corrected for their correlation with lightcurve width and colour. Here we investigate how this standardisation is affected by the SN environment, with the aim to reduce scatter and improve standardisation. We first study the SN Ia stretch distribution, as well as its dependence on environment, as characterised by local and global (g-z) colour and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20965v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20965v1-abstract-full" style="display: none;"> To get distances, Type Ia Supernovae magnitudes are corrected for their correlation with lightcurve width and colour. Here we investigate how this standardisation is affected by the SN environment, with the aim to reduce scatter and improve standardisation. We first study the SN Ia stretch distribution, as well as its dependence on environment, as characterised by local and global (g-z) colour and stellar mass. We then look at the standardisation parameter $伪$, which accounts for the correlation between residuals and stretch, along with its environment dependence and linearity. We finally compute magnitude offsets between SNe in different astrophysical environments after colour and stretch standardisation, aka steps. This analysis is made possible due to the unprecedented statistics of the ZTF SN Ia DR2 volume-limited sample. The stretch distribution exhibits a bimodal behaviour, as previously found in literature. However, we find the distribution means to decrease with host stellar mass at a 9.0$蟽$ significance. We demonstrate, at the 14.3$蟽$ level, that the stretch-magnitude relation is non-linear, challenging the usual linear stretch-residuals relation. Fitting for a broken-$伪$ model, we indeed find two different slopes between stretch regimes ($x_1&lt;-0.49\pm0.06$): $伪_{low}=0.28\pm0.01$ and $伪_{high}=0.09\pm0.01$, a $螖_伪=-0.19\pm0.01$ difference. As the relative proportion of SNe Ia in the high-/low-stretch modes evolves with redshift and environment, this implies that a linear $伪$ also evolves with redshift and environment. Concerning the environmental magnitude offset $纬$, we find it to be greater than 0.14 mag regardless of the considered environmental tracer used (local or global colour and stellar mass), all measured at the $\geq 6蟽$ level, increased to $\sim0.18\pm0.01$ mag when accounting for the stretch-non linearity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20965v1-abstract-full').style.display = 'none'; document.getElementById('2405.20965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures, submitted to Astronomy and Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18589">arXiv:2405.18589</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18589">pdf</a>, <a href="https://arxiv.org/format/2405.18589">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Candidate strongly-lensed Type Ia supernovae in the Zwicky Transient Facility archive </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Townsend%2C+A">A. Townsend</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nordin%2C+J">J. Nordin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carracedo%2C+A+S">A. Sagu茅s Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalski%2C+M">M. Kowalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arendse%2C+N">N. Arendse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">S. Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goobar%2C+A">A. Goobar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">J. Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6rtsell%2C+E">E. M枚rtsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">I. Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez%2C+E">E. Fern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+A+G">A. G. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+P+E">P. E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prada%2C+F">F. Prada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigault%2C+M">M. Rigault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sarin%2C+N">N. Sarin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+D">D. Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">E. C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">M. W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">R. Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">S. L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacroix%2C+L">L. Lacroix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R+R">R. R. Laher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">R. Riddle</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18589v1-abstract-short" style="display: inline;"> Gravitationally lensed Type Ia supernovae (glSNe Ia) are unique astronomical tools for studying cosmological parameters, distributions of dark matter, the astrophysics of the supernovae and the intervening lensing galaxies themselves. Only a few highly magnified glSNe Ia have been discovered by ground-based telescopes, such as the Zwicky Transient Facility (ZTF), but simulations predict the existe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18589v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18589v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18589v1-abstract-full" style="display: none;"> Gravitationally lensed Type Ia supernovae (glSNe Ia) are unique astronomical tools for studying cosmological parameters, distributions of dark matter, the astrophysics of the supernovae and the intervening lensing galaxies themselves. Only a few highly magnified glSNe Ia have been discovered by ground-based telescopes, such as the Zwicky Transient Facility (ZTF), but simulations predict the existence of a fainter, undetected population. We present a systematic search in the ZTF archive of alerts from 1 June 2019 to 1 September 2022. Using the AMPEL platform, we developed a pipeline that distinguishes candidate glSNe Ia from other variable sources. Initial cuts were applied to the ZTF alert photometry before forced photometry was obtained for the remaining candidates. Additional cuts were applied to refine the candidates based on their light curve colours, lens galaxy colours, and the resulting parameters from fits to the SALT2 SN Ia template. Candidates were also cross-matched with the DESI spectroscopic catalogue. Seven transients passed all the cuts and had an associated galaxy DESI redshift, which we present as glSN Ia candidates. While superluminous supernovae (SLSNe) cannot be fully rejected, two events, ZTF19abpjicm and ZTF22aahmovu, are significantly different from typical SLSNe and their light curves can be modelled as two-image glSN Ia systems. From this two-image modelling, we estimate time delays of 22 $\pm$ 3 and 34 $\pm$ 1 days for the two events, respectively, which suggests that we have uncovered a population with longer time delays. The pipeline is efficient and sensitive enough to parse full alert streams. It is currently being applied to the live ZTF alert stream to identify and follow-up future candidates while active. This pipeline could be the foundation for glSNe Ia searches in future surveys, like the Vera C. Rubin Observatory&#39;s Legacy Survey of Space and Time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18589v1-abstract-full').style.display = 'none'; document.getElementById('2405.18589v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12403">arXiv:2405.12403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12403">pdf</a>, <a href="https://arxiv.org/format/2405.12403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Searching for gravitational wave optical counterparts with the Zwicky Transient Facility: summary of O4a </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gupta%2C+V">Vaidehi Gupta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V+R">Viraj R. Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R+D">Robert D. Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waratkar%2C+G">Gaurav Waratkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anumarlapudi%2C+A">Akash Anumarlapudi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toivonen%2C+A">Andrew Toivonen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wold%2C+A">Avery Wold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Salgundi%2C+A">Anirudh Salgundi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suresh%2C+A">Aswin Suresh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a> , et al. (27 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12403v1-abstract-short" style="display: inline;"> During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network (IGWN), the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star-black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (FAR &lt; 1 per year) BNS and NSBH candida&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12403v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12403v1-abstract-full" style="display: none;"> During the first half of the fourth observing run (O4a) of the International Gravitational Wave Network (IGWN), the Zwicky Transient Facility (ZTF) conducted a systematic search for kilonova (KN) counterparts to binary neutron star (BNS) and neutron star-black hole (NSBH) merger candidates. Here, we present a comprehensive study of the five high-significance (FAR &lt; 1 per year) BNS and NSBH candidates in O4a. Our follow-up campaigns relied on both target-of-opportunity observations (ToO) and re-weighting of the nominal survey schedule to maximize coverage. We describe the toolkit we have been developing, Fritz, an instance of SkyPortal, instrumental in coordinating and managing our telescope scheduling, candidate vetting, and follow-up observations through a user-friendly interface. ZTF covered a total of 2841 deg$^2$ within the skymaps of the high-significance GW events, reaching a median depth of g~20.2 mag. We circulated 15 candidates, but found no viable KN counterpart to any of the GW events. Based on the ZTF non-detections of the high-significance events in O4a, we used a Bayesian approach, nimbus, to quantify the posterior probability of KN model parameters that are consistent with our non-detections. Our analysis favors KNe with initial absolute magnitude fainter than -16 mag. The joint posterior probability of a GW170817-like KN associated with all our O4a follow-ups was 64%. Additionally, we use a survey simulation software, simsurvey, to determine that our combined filtered efficiency to detect a GW170817-like KN is 36%, when considering the 5 confirmed astrophysical events in O3 (1 BNS and 4 NSBH), along with our O4a follow-ups. Following Kasliwal et al. (2020), we derived joint constraints on the underlying KN luminosity function based on our O3 and O4a follow-ups, determining that no more than 76% of KNe fading at 1 mag/day can peak at a magnitude brighter than -17.5 mag. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12403v1-abstract-full').style.display = 'none'; document.getElementById('2405.12403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.02780">arXiv:2402.02780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.02780">pdf</a>, <a href="https://arxiv.org/format/2402.02780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Dramatic rebrightening of the type-changing stripped-envelope supernova SN 2023aew </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+Y">Yashvi Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T+J">Takashi J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barmentloo%2C+S">Stan Barmentloo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausnaugh%2C+M">Michael Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jerkstrand%2C+A">Anders Jerkstrand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A">Andrew Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hall%2C+S">Saarah Hall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K+R">K. R. Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A+A">Adam A. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nir%2C+G">Guy Nir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J+N">Josiah N. Purdum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Qin%2C+Y">Yu-Jing Qin</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.02780v1-abstract-short" style="display: inline;"> Multi-peaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility (ZTF). Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (-17.4 mag) and lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02780v1-abstract-full').style.display = 'inline'; document.getElementById('2402.02780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.02780v1-abstract-full" style="display: none;"> Multi-peaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility (ZTF). Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (-17.4 mag) and long (~100 days) unusual first peak (possibly precursor). SN 2023aew was classified as a Type IIb supernova during the first peak but changed its type to resemble a stripped-envelope supernova (SESN) after the marked rebrightening. We present comparisons of SN 2023aew&#39;s spectral evolution with SESN subtypes and argue that it is similar to SNe Ibc during its main peak. P-Cygni Balmer lines are present during the first peak, but vanish during the second peak&#39;s photospheric phase, before H$伪$ resurfaces again during the nebular phase. The nebular lines ([O I], [Ca II], Mg I], H$伪$) exhibit a double-peaked structure which hints towards a clumpy or non-spherical ejecta. We analyze the second peak in the light curve of SN 2023aew and find it to be broader than normal SESNe as well as requiring a very high $^{56}$Ni mass to power the peak luminosity. We discuss the possible origins of SN 2023aew including an eruption scenario where a part of the envelope is ejected during the first peak which also powers the second peak of the light curve through SN-CSM interaction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.02780v1-abstract-full').style.display = 'none'; document.getElementById('2402.02780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16470">arXiv:2401.16470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.16470">pdf</a>, <a href="https://arxiv.org/ps/2401.16470">ps</a>, <a href="https://arxiv.org/format/2401.16470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> AT2019pim: A Luminous Orphan Afterglow from a Moderately Relativistic Outflow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fausnaugh%2C+M">Michael Fausnaugh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lamb%2C+G+P">Gavin P. Lamb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">Eric Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolin%2C+B">Bryce Bolin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burns%2C+E">Eric Burns</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Filippenko%2C+A+V">Alexei V. Filippenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frederiks%2C+D">Dmitry Frederiks</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+A">Adam Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hamburg%2C+R">Rachel Hamburg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jayaraman%2C+R">Rahul Jayaraman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jonker%2C+P+G">Peter G. Jonker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kool%2C+E+C">Erik C. Kool</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S">Shrinivas Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R">Russ Laher</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16470v1-abstract-short" style="display: inline;"> Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultra-relativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first secu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16470v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16470v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16470v1-abstract-full" style="display: none;"> Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultra-relativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first secure example of this phenomenon to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising (t ~ 2 hr), luminous (M_UV,peak ~ -24.4 mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing strong limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of Gamma_0 ~ 30-50, significantly lower than in any well-observed GRB and consistent with the theoretically-predicted &#34;dirty fireball&#34; scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-Gamma, off-axis from a classical high-Gamma jet core. This event represents a milestone in orphan afterglow searches, demonstrating that luminous afterglows with weak or no detectable gamma-ray radiation exist in nature and can be discovered by high-cadence optical surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16470v1-abstract-full').style.display = 'none'; document.getElementById('2401.16470v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09980">arXiv:2312.09980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09980">pdf</a>, <a href="https://arxiv.org/format/2312.09980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202349010">10.1051/0004-6361/202349010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Four new eclipsing accreting ultracompact white dwarf binaries found with the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Khalil%2C+J+M">J. M. Khalil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">J. van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">E. C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">J. S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">R. Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">A. J. Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">M. J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">S. L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R+R">R. R. Laher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahabal%2C+A+A">A. A. Mahabal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prince%2C+T">T. Prince</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">R. Riddle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09980v1-abstract-short" style="display: inline;"> Context. Accreting ultracompact binaries contain a white dwarf that is accreting from a degenerate object and have orbital periods shorter than 65 minutes. Aims. The aims of this letter are to report the discovery and the orbital period of four new eclipsing accreting ultracompact binaries found using the Zwicky Transient Facility, and to discuss their photometric properties. Methods. We searc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09980v1-abstract-full').style.display = 'inline'; document.getElementById('2312.09980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09980v1-abstract-full" style="display: none;"> Context. Accreting ultracompact binaries contain a white dwarf that is accreting from a degenerate object and have orbital periods shorter than 65 minutes. Aims. The aims of this letter are to report the discovery and the orbital period of four new eclipsing accreting ultracompact binaries found using the Zwicky Transient Facility, and to discuss their photometric properties. Methods. We searched through a list of 4171 dwarf novae compiled using the Zwicky Transient Facility and used the Box Least Square method to search for periodic signals in the data. Results. We found four new eclipsing accreting ultracompact binaries with orbital periods between 25.9-56 minutes, one of which is previously published as an AM CVn, while the other three systems are new discoveries. The other two shorter period systems are likely also AM CVn systems, while the longest period system with a period of 56 minutes shows multiple super-outbursts observed in two years which is more consistent with it being a Helium-CV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09980v1-abstract-full').style.display = 'none'; document.getElementById('2312.09980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 683, L10 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18627">arXiv:2311.18627</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18627">pdf</a>, <a href="https://arxiv.org/format/2311.18627">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Microlensing Events in Five Years of Photometry from the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhai%2C+R">Ruocheng Zhai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+A+C">Antonio C. Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mao%2C+S">Shude Mao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lam%2C+C+Y">Casey Y. Lam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J">Josiah Purdum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wold%2C+A">Avery Wold</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18627v2-abstract-short" style="display: inline;"> Microlensing has a unique advantage for detecting dark objects in the Milky Way, such as free-floating planets, neutron stars, and stellar-mass black holes. Most microlensing surveys focus on the Galactic bulge, where higher stellar density leads to a higher event rate. However, microlensing events in the Galactic plane have closer lenses and longer timescales, which leads to a greater chance of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18627v2-abstract-full').style.display = 'inline'; document.getElementById('2311.18627v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18627v2-abstract-full" style="display: none;"> Microlensing has a unique advantage for detecting dark objects in the Milky Way, such as free-floating planets, neutron stars, and stellar-mass black holes. Most microlensing surveys focus on the Galactic bulge, where higher stellar density leads to a higher event rate. However, microlensing events in the Galactic plane have closer lenses and longer timescales, which leads to a greater chance of measuring microlens parallax, providing an additional constraint on the mass of the lens. This work searches for microlensing events in Zwicky Transient Facility (ZTF) Data Release 17 from 2018--2023 in the Galactic plane region. We find 124 high-confidence microlensing events and 54 possible events, all available online\footref{online_resources}. Thus, with two years of additional ZTF data in DR17, we have more than doubled the number of microlensing events (60) found in the previous three-year DR5 search. In the event selection, we use the efficient \texttt{EventFinder} algorithm to detect microlensing signals, which could be used for large datasets such as future ZTF data releases or data from the Rubin Observatory Legacy Survey of Space and Time (LSST). Using detection efficiencies of ZTF fields obtained from catalog-level simulations, we calculate the mean Einstein timescale to be $\langle t_\mathrm{E}\rangle=51.7\pm3.3$ days, smaller than previous results of the Galactic plane but within 1.5$蟽$. We also calculate optical depths and event rates, although some caution is needed due to the use of visual inspection when creating our final sample. Spectroscopy of three possible candidates confirms their microlensing nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18627v2-abstract-full').style.display = 'none'; document.getElementById('2311.18627v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18150">arXiv:2311.18150</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18150">pdf</a>, <a href="https://arxiv.org/format/2311.18150">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> An Optical Search for New Outbursting Low Mass X-Ray Binaries </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuankun Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crossland%2C+A">Allison Crossland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarkson%2C+W+I">William I. Clarkson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mazzi%2C+A">Alessandro Mazzi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R+R">Russ R. Laher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rusholme%2C+B">Ben Rusholme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18150v1-abstract-short" style="display: inline;"> Transient Low-Mass X-ray binaries (LMXBs) are discovered largely by X-ray and gamma-ray all-sky monitors. The X-ray outburst is also accompanied by an optical brightening, which empirically can precede detection of X-rays. Newly sensitive optical synoptic surveys may offer a complementary pathway for discovery, and potential for insight into the initial onset and propagation of the thermal instabi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18150v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18150v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18150v1-abstract-full" style="display: none;"> Transient Low-Mass X-ray binaries (LMXBs) are discovered largely by X-ray and gamma-ray all-sky monitors. The X-ray outburst is also accompanied by an optical brightening, which empirically can precede detection of X-rays. Newly sensitive optical synoptic surveys may offer a complementary pathway for discovery, and potential for insight into the initial onset and propagation of the thermal instability that leads to the ionization of the accretion disk. We use the Zwicky Transient Facility (ZTF) alert stream to perform a comprehensive search at optical wavelengths for previously undiscovered outbursting LMXBs. Our pipeline first crossmatches the positions of the alerts to cataloged X-ray sources, and then analyzes the 30-day lightcurve of matched alerts by thresholding on differences with an 8-day exponentially weighted moving average. In addition to an nineteen month-long live search, we ran our pipeline over four years of ZTF archival data, recovering 4 known LMXBs. We also independently detected an outburst of MAXI J1957+032 in the live search and found the first outburst of Swift J1943.4+0228, an unclassified X-ray transient, in 10 years. Using Monte Carlo simulations of the Galactic LMXB population, we estimate that 29% of outbursting LMXBs are detectable by ZTF and that 4.4% of LMXBs would be present in the crossmatched X-ray catalogs, giving an estimated Galactic population of $3390^{+3980}_{-1930}$. We estimate that our current pipeline can detect 1.3% of all outbursting LMXBs, including those previously unknown, but that Rubin Observatory&#39;s Legacy Survey of Space and Time (LSST) will be able to detect 43% of outbursting LMXBs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18150v1-abstract-full').style.display = 'none'; document.getElementById('2311.18150v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 10 figures, Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17862">arXiv:2311.17862</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17862">pdf</a>, <a href="https://arxiv.org/format/2311.17862">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.33232/001c.122349">10.33232/001c.122349 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Pilot Search for Gravitational Self-Lensing Binaries with the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Crossland%2C+A">Allison Crossland</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klein%2C+C">Courtney Klein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davenport%2C+J+R+A">James R. A. Davenport</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kupfer%2C+T">Thomas Kupfer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R+R">Russ R. Laher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17862v2-abstract-short" style="display: inline;"> Binary systems containing a compact object may exhibit periodic brightening episodes due to gravitational lensing as the compact object transits the companion star. Such ``self-lensing&#39;&#39; signatures have been detected before for white dwarf binaries. We attempt to use these signatures to identify detached stellar-mass neutron star and black hole binaries using data from the Zwicky Transient Facilit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17862v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17862v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17862v2-abstract-full" style="display: none;"> Binary systems containing a compact object may exhibit periodic brightening episodes due to gravitational lensing as the compact object transits the companion star. Such ``self-lensing&#39;&#39; signatures have been detected before for white dwarf binaries. We attempt to use these signatures to identify detached stellar-mass neutron star and black hole binaries using data from the Zwicky Transient Facility (ZTF). We present a systematic search for self-lensing signals in Galactic binaries from a subset of high-cadence ZTF data taken in 2018. We identify 12 plausible candidates from the search, although because each candidate is observed to only brighten once, other origins such as stellar flares are more likely. We discuss prospects for more comprehensive future searches of the ZTF data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17862v2-abstract-full').style.display = 'none'; document.getElementById('2311.17862v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages. Accepted to the Open Journal of Astrophysics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.10195">arXiv:2311.10195</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.10195">pdf</a>, <a href="https://arxiv.org/format/2311.10195">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06673-6">10.1038/s41586-023-06673-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Minutes-duration Optical Flares with Supernova Luminosities </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V">Vik Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Suresh%2C+A">Aswin Suresh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bremer%2C+M">Michael Bremer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smartt%2C+S+J">Stephen J. Smartt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anderson%2C+J+P">Joseph P. Anderson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Awiphan%2C+S">Supachai Awiphan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barway%2C+S">Sudhanshu Barway</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ben-Ami%2C+S">Sagi Ben-Ami</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Boer%2C+T">Thomas de Boer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T+G">Thomas G. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burruss%2C+R">Rick Burruss</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+P">Poonam Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T">Ting-Wan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+W">Wen-Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cooke%2C+J">Jeff Cooke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.10195v1-abstract-short" style="display: inline;"> In recent years, certain luminous extragalactic optical transients have been observed to last only a few days. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae) whose timescale is weeks. Some short-duration transients, most notably AT2018cow, display blue optical colours and bright radio and X-ray emission. Seve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10195v1-abstract-full').style.display = 'inline'; document.getElementById('2311.10195v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.10195v1-abstract-full" style="display: none;"> In recent years, certain luminous extragalactic optical transients have been observed to last only a few days. Their short observed duration implies a different powering mechanism from the most common luminous extragalactic transients (supernovae) whose timescale is weeks. Some short-duration transients, most notably AT2018cow, display blue optical colours and bright radio and X-ray emission. Several AT2018cow-like transients have shown hints of a long-lived embedded energy source, such as X-ray variability, prolonged ultraviolet emission, a tentative X-ray quasiperiodic oscillation, and large energies coupled to fast (but subrelativistic) radio-emitting ejecta. Here we report observations of minutes-duration optical flares in the aftermath of an AT2018cow-like transient, AT2022tsd (the &#34;Tasmanian Devil&#34;). The flares occur over a period of months, are highly energetic, and are likely nonthermal, implying that they arise from a near-relativistic outflow or jet. Our observations confirm that in some AT2018cow-like transients the embedded energy source is a compact object, either a magnetar or an accreting black hole. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.10195v1-abstract-full').style.display = 'none'; document.getElementById('2311.10195v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">79 pages, 3 figures (main text) + 7 figures (extended data) + 2 figures (supplementary information). Published online in Nature on 15 November 2023</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.16885">arXiv:2310.16885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.16885">pdf</a>, <a href="https://arxiv.org/format/2310.16885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The Early Ultraviolet Light-Curves of Type II Supernovae and the Radii of Their Progenitor Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Irani%2C+I">Ido Irani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Morag%2C+J">Jonathan Morag</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waxman%2C+E">Eli Waxman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strotjohann%2C+N+L">Nora L. Strotjohann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yaron%2C+O">Ofer Yaron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerman%2C+E+A">Erez A. Zimmerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R">Rachel Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ofek%2C+E+O">Eran O. Ofek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soumagnac%2C+M+T">Maayane T. Soumagnac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hale%2C+D">David Hale</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.16885v2-abstract-short" style="display: inline;"> We present a sample of 34 normal SNe II detected with the Zwicky Transient Facility, with multi-band UV light-curves starting at $t \leq 4$ days after explosion, as well as X-ray detections and upper limits. We characterize the early UV-optical colors and provide prescriptions for empirical host-extinction corrections. We show that the $t &gt; 2\,$days UV-optical colors and the blackbody evolution of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16885v2-abstract-full').style.display = 'inline'; document.getElementById('2310.16885v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.16885v2-abstract-full" style="display: none;"> We present a sample of 34 normal SNe II detected with the Zwicky Transient Facility, with multi-band UV light-curves starting at $t \leq 4$ days after explosion, as well as X-ray detections and upper limits. We characterize the early UV-optical colors and provide prescriptions for empirical host-extinction corrections. We show that the $t &gt; 2\,$days UV-optical colors and the blackbody evolution of the sample are consistent with the predictions of spherical phase shock-cooling (SC), independently of the presence of `flash ionization&#34; features. We present a framework for fitting SC models which can reproduce the parameters of a set of multi-group simulations without a significant bias up to 20% in radius and velocity. Observations of about half of the SNe II in the sample are well-fit by models with breakout radii $&lt;10^{14}\,$cm. The other half are typically more luminous, with observations from day 1 onward that are better fit by a model with a large $&gt;10^{14}\,$cm breakout radius. However, these fits predict an early rise during the first day that is too slow. We suggest these large-breakout events are explosions of stars with an inflated envelope or a confined CSM with a steep density profile, at which breakout occurs. Using the X-ray data, we derive constraints on the extended ($\sim10^{15}$ cm) CSM density independent of spectral modeling, and find most SNe II progenitors lose $&lt;10^{-4} M_{\odot}\, \rm yr^{-1}$ a few years before explosion. This provides independent evidence the CSM around many SNe II progenitors is confined. We show that the overall observed breakout radius distribution is skewed to higher radii due to a luminosity bias. We argue that the $66^{+11}_{-22}\%$ of red supergiants (RSG) explode as SNe II with breakout radii consistent with the observed distribution of field RSG, with a tail extending to large radii, likely due to the presence of CSM. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.16885v2-abstract-full').style.display = 'none'; document.getElementById('2310.16885v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ. Comments are welcome at ido.irani@weizmann.ac.il or idoirani@gmail.com. Accepted version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14397">arXiv:2310.14397</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.14397">pdf</a>, <a href="https://arxiv.org/format/2310.14397">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Characterizing the Ordinary Broad-lined Type Ic SN 2023pel from the Energetic GRB 230812B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Swain%2C+V">Vishwajeet Swain</a>, <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B+M">Brendan M. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tom谩s Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guessoum%2C+N">Nidhal Guessoum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hussenot-Desenonges%2C+T">Thomas Hussenot-Desenonges</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hello%2C+P">Patrice Hello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lesage%2C+S">Stephen Lesage</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+M+C">M. Coleman Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhalerao%2C+V">Varun Bhalerao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dutta%2C+A">Anirban Dutta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaodand%2C+A+D">Amruta D. Jaodand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14397v2-abstract-short" style="display: inline;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 230812B, and its associated supernova (SN) SN 2023pel. The proximity ($z = 0.36$) and high energy ($E_{纬, \rm{iso}} \sim 10^{53}$ erg) make it an important event to study as a probe of the connection between massive star core-collapse and relativistic jet formation. With a phenomenological power-law model for&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14397v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14397v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14397v2-abstract-full" style="display: none;"> We report observations of the optical counterpart of the long gamma-ray burst (LGRB) GRB 230812B, and its associated supernova (SN) SN 2023pel. The proximity ($z = 0.36$) and high energy ($E_{纬, \rm{iso}} \sim 10^{53}$ erg) make it an important event to study as a probe of the connection between massive star core-collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak $r$-band magnitude of $M_r = -19.46 \pm 0.18$ mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of $M_{\rm{Ni}} = 0.38 \pm 0.01$ $\rm{M_\odot}$, and a peak bolometric luminosity of $L_{\rm{bol}} \sim 1.3 \times 10^{43}$ $\rm{erg}$ $\rm{s^{-1}}$. We confirm SN 2023pel&#39;s classification as a broad-lined Type Ic SN with a spectrum taken 15.5 days after its peak in $r$ band, and derive a photospheric expansion velocity of $v_{\rm{ph}} = 11,300 \pm 1,600$ $\rm{km}$ $\rm{s^{-1}}$ at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass $M_{\rm{ej}} = 1.0 \pm 0.6$ $\rm{M_\odot}$ and kinetic energy $E_{\rm{KE}} = 1.3^{+3.3}_{-1.2} \times10^{51}$ $\rm{erg}$. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and $E_{纬, \rm{iso}}$ for their associated GRBs, across a broad range of 7 orders of magnitude, provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14397v2-abstract-full').style.display = 'none'; document.getElementById('2310.14397v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 7 Figures, 1 Table, Accepted to ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07784">arXiv:2310.07784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07784">pdf</a>, <a href="https://arxiv.org/format/2310.07784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> A 12.4 day periodicity in a close binary system after a supernova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Post%2C+R+S">Richard S. Post</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+C">Chang Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ofek%2C+E+O">Eran O. Ofek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Das%2C+K+K">Kaustav K. Das</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horesh%2C+A">Assaf Horesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Katz%2C+B">Boaz Katz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kushnir%2C+D">Doron Kushnir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shri R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+D">Dezi Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+X">Xiangkun Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A+A">Adam A. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rose%2C+K">Kovi Rose</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Waxman%2C+E">Eli Waxman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zackay%2C+B">Barak Zackay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">Andrew J. Drake</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07784v1-abstract-short" style="display: inline;"> Neutron stars and stellar-mass black holes are the remnants of massive star explosions. Most massive stars reside in close binary systems, and the interplay between the companion star and the newly formed compact object has been theoretically explored, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07784v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07784v1-abstract-full" style="display: none;"> Neutron stars and stellar-mass black holes are the remnants of massive star explosions. Most massive stars reside in close binary systems, and the interplay between the companion star and the newly formed compact object has been theoretically explored, but signatures for binarity or evidence for the formation of a compact object during a supernova explosion are still lacking. Here we report a stripped-envelope supernova, SN 2022jli, which shows 12.4-day periodic undulations during the declining light curve. Narrow H$伪$ emission is detected in late-time spectra with concordant periodic velocity shifts, likely arising from hydrogen gas stripped from a companion and accreted onto the compact remnant. A new Fermi/LAT $纬$-ray source is temporally and positionally consistent with SN 2022jli. The observed properties of SN 2022jli, including periodic undulations in the optical light curve, coherent H$伪$ emission shifting, and evidence for association with a $纬$-ray source, point to the explosion of a massive star in a binary system leaving behind a bound compact remnant. Mass accretion from the companion star onto the compact object powers the light curve of the supernova and generates the $纬$-ray emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07784v1-abstract-full').style.display = 'none'; document.getElementById('2310.07784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03782">arXiv:2310.03782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03782">pdf</a>, <a href="https://arxiv.org/format/2310.03782">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> The first systematically identified repeating partial tidal disruption event </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guolo%2C+M">Muryel Guolo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Matthew Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+Y">Yashvi Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Velzen%2C+S">Sjoert van Velzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03782v1-abstract-short" style="display: inline;"> Tidal disruption events (TDEs) occur when a star enters the tidal radius of a supermassive black hole (SMBH). If the star only grazes the tidal radius, a fraction of the stellar mass will be accreted in a partial TDE (pTDE). The remainder can continue orbiting and may re-disrupted at pericenter, causing a repeating pTDE. pTDEs may be as or more common than full TDEs (fTDEs), yet few are known. In&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03782v1-abstract-full').style.display = 'inline'; document.getElementById('2310.03782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03782v1-abstract-full" style="display: none;"> Tidal disruption events (TDEs) occur when a star enters the tidal radius of a supermassive black hole (SMBH). If the star only grazes the tidal radius, a fraction of the stellar mass will be accreted in a partial TDE (pTDE). The remainder can continue orbiting and may re-disrupted at pericenter, causing a repeating pTDE. pTDEs may be as or more common than full TDEs (fTDEs), yet few are known. In this work, we present the discovery of the first repeating pTDE from a systematically-selected sample, AT\,2020vdq. AT\,2020vdq was originally identified as an optically- and radio-flaring TDE. Around $3$ years after its discovery, it rebrightened dramatically and rapidly in the optical. The optical flare was remarkably fast and luminous compared to previous TDEs. It was accompanied by extremely broad (${\sim}0.1c$) optical/UV spectral features and faint X-ray emission ($L_X \sim 3\times10^{41}$\,erg\,s$^{-1}$), but no new radio-emitting component. Based on the transient optical/UV spectral features and the broadband light curve, we show that AT\,2020vdq is a repeating pTDE. We then use it to constrain TDE models; in particular, we favor a star originally in a very tight binary system that is tidally broken apart by the Hills mechanism. We also constrain the repeating pTDE rate to be $10^{-6}$ to $10^{-5}$ yr$^{-1}$ galaxy$^{-1}$, with uncertainties dominated by the unknown distribution of pTDE repeat timescales. In the Hills framework, this means the binary fraction in the galactic nucleus is of the order few percent. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03782v1-abstract-full').style.display = 'none'; document.getElementById('2310.03782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 13 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.10742">arXiv:2309.10742</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.10742">pdf</a>, <a href="https://arxiv.org/format/2309.10742">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> An Optically-Discovered Outburst from XTE J1859+226 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuankun Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">Jan van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Phillipson%2C+R+A">Rebecca A. Phillipson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tomsick%2C+J+A">John A. Tomsick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+B">Brian Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J">Josiah Purdum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rusholme%2C+B">Ben Rusholme</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bealo%2C+P">Peter Bealo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lora%2C+S">Stefano Lora</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muyllaert%2C+E">Eddy Muyllaert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peretto%2C+I">Ivo Peretto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwendeman%2C+E+J">Erik J. Schwendeman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.10742v1-abstract-short" style="display: inline;"> Using the Zwicky Transient Facility, in 2021 February we identified the first known outburst of the Black Hole X-ray Transient XTE J1859+226 since its discovery in 1999. The outburst was visible at X-ray, UV, and optical wavelengths for less than 20 days, substantially shorter than its 320-day full outburst in 1999, and the observed peak luminosity was two orders of magnitude lower. Its peak bolom&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10742v1-abstract-full').style.display = 'inline'; document.getElementById('2309.10742v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.10742v1-abstract-full" style="display: none;"> Using the Zwicky Transient Facility, in 2021 February we identified the first known outburst of the Black Hole X-ray Transient XTE J1859+226 since its discovery in 1999. The outburst was visible at X-ray, UV, and optical wavelengths for less than 20 days, substantially shorter than its 320-day full outburst in 1999, and the observed peak luminosity was two orders of magnitude lower. Its peak bolometric luminosity was only $2\times 10^{35}$ erg s$^{-1}$, implying an Eddington fraction of about $3\times10^{-4}$. The source remained in the hard spectral state throughout the outburst. From optical spectroscopy measurements we estimate an outer disk radius of 10$^{11}$ cm. The low observed X-ray luminosity is not sufficient to irradiate the entire disk, but we observe a surprising exponential decline in the X-ray lightcurve. These observations highlight the potential of optical and infrared (O/IR) synoptic surveys to discover low-luminosity activity from X-ray transients. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.10742v1-abstract-full').style.display = 'none'; document.getElementById('2309.10742v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.07430">arXiv:2308.07430</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.07430">pdf</a>, <a href="https://arxiv.org/format/2308.07430">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-06171-9">10.1038/s41586-023-06171-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A rotating white dwarf shows different compositions on its opposite faces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tremblay%2C+P">Pier-Emmanuel Tremblay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+J">James Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ferrario%2C+L">Lilia Ferrario</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaensicke%2C+B+T">Boris T. Gaensicke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hermes%2C+J+J">J. J. Hermes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heyl%2C+J">Jeremy Heyl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawka%2C+A">Adela Kawka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsh%2C+T+R">Thomas R. Marsh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mroz%2C+P">Przemek Mroz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prince%2C+T+A">Thomas A. Prince</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Richer%2C+H+B">Harvey B. Richer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+A+C">Antonio C. Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">Jan van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vanderbosch%2C+Z+P">Zachary P. Vanderbosch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vennes%2C+S">Stephane Vennes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wickramasinghe%2C+D">Dayal Wickramasinghe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V+S">Vikram S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Littlefair%2C+S+P">Stuart P. Littlefair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Munday%2C+J">James Munday</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pelisoli%2C+I">Ingrid Pelisoli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.07430v1-abstract-short" style="display: inline;"> White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterised by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink toward the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium. Several mechanisms comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07430v1-abstract-full').style.display = 'inline'; document.getElementById('2308.07430v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.07430v1-abstract-full" style="display: none;"> White dwarfs, the extremely dense remnants left behind by most stars after their death, are characterised by a mass comparable to that of the Sun compressed into the size of an Earth-like planet. In the resulting strong gravity, heavy elements sink toward the centre and the upper layer of the atmosphere contains only the lightest element present, usually hydrogen or helium. Several mechanisms compete with gravitational settling to change a white dwarf&#39;s surface composition as it cools, and the fraction of white dwarfs with helium atmospheres is known to increase by a factor ~2.5 below a temperature of about 30,000 K; therefore, some white dwarfs that appear to have hydrogen-dominated atmospheres above 30,000 K are bound to transition to be helium-dominated as they cool below it. Here we report observations of ZTF J203349.8+322901.1, a transitioning white dwarf with two faces: one side of its atmosphere is dominated by hydrogen and the other one by helium. This peculiar nature is likely caused by the presence of a small magnetic field, which creates an inhomogeneity in temperature, pressure or mixing strength over the surface. ZTF J203349.8+322901.1 might be the most extreme member of a class of magnetic, transitioning white dwarfs -- together with GD 323, a white dwarf that shows similar but much more subtle variations. This new class could help shed light on the physical mechanisms behind white dwarf spectral evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.07430v1-abstract-full').style.display = 'none'; document.getElementById('2308.07430v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 620, 61-66 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13959">arXiv:2307.13959</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13959">pdf</a>, <a href="https://arxiv.org/format/2307.13959">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Swift Deep Galactic Plane Survey Classification of Swift J170800$-$402551.8 as a Candidate Intermediate Polar Cataclysmic Variable </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B">B. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gogus%2C+E">E. Gogus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hare%2C+J">J. Hare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukai%2C+K">K. Mukai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huppenkothen%2C+D">D. Huppenkothen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+J">J. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baring%2C+M+G">M. G. Baring</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stewart%2C+R">R. Stewart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woudt%2C+P">P. Woudt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">E. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Granot%2C+J">J. Granot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hailey%2C+C">C. Hailey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+F">F. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Potter%2C+S+B">S. B. Potter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slane%2C+P+O">P. O. Slane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">D. Stern</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13959v3-abstract-short" style="display: inline;"> Here, we present the results of our multi-wavelength campaign aimed at classifying \textit{Swift} J170800$-$402551.8 as part of the \textit{Swift} Deep Galactic Plane Survey (DGPS). We utilized Target of Opportunity (ToO) observations with \textit{Swift}, \textit{NICER}, \textit{XMM-Newton}, \textit{NuSTAR}, and the Southern African Large Telescope (SALT), as well as multi-wavelength archival obse&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13959v3-abstract-full').style.display = 'inline'; document.getElementById('2307.13959v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13959v3-abstract-full" style="display: none;"> Here, we present the results of our multi-wavelength campaign aimed at classifying \textit{Swift} J170800$-$402551.8 as part of the \textit{Swift} Deep Galactic Plane Survey (DGPS). We utilized Target of Opportunity (ToO) observations with \textit{Swift}, \textit{NICER}, \textit{XMM-Newton}, \textit{NuSTAR}, and the Southern African Large Telescope (SALT), as well as multi-wavelength archival observations from \textit{Gaia}, VPHAS, and VVV. The source displays a periodicity of 784 s in our \textit{XMM-Newton} observation. The X-ray spectrum (\textit{XMM-Newton} and \textit{NuSTAR}) can be described by thermal bremsstrahlung radiation with a temperature of $kT$\,$\approx$\,$30$ keV. The phase-folded X-ray lightcurve displays a double-peaked, energy-dependent pulse-profile. We used \textit{Chandra} to precisely localize the source, allowing us to identify and study the multi-wavelength counterpart. Spectroscopy with SALT identified a Balmer H$伪$ line, and potential HeI lines, from the optical counterpart. The faintness of the counterpart ($r$\,$\approx$\,$21$ AB mag) favors a low-mass donor star. Based on these criteria, we classify \textit{Swift} J170800$-$402551.8 as a candidate intermediate polar cataclysmic variable, where the spin period of the white dwarf is 784 s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13959v3-abstract-full').style.display = 'none'; document.getElementById('2307.13959v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.14354">arXiv:2306.14354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.14354">pdf</a>, <a href="https://arxiv.org/format/2306.14354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The Swift Deep Galactic Plane Survey (DGPS) Phase-I Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B">B. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gorgone%2C+N">N. Gorgone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Kooten%2C+A+J">A. J. van Kooten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gagnon%2C+S">S. Gagnon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+H">H. Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baring%2C+M+G">M. G. Baring</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">E. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beniamini%2C+P">P. Beniamini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+J">J. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Egbo%2C+O+D">O. D. Egbo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gogus%2C+E">E. Gogus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Granot%2C+J">J. Granot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hailey%2C+C">C. Hailey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hare%2C+J">J. Hare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+F">F. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huppenkothen%2C+D">D. Huppenkothen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kargaltsev%2C+O">O. Kargaltsev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.14354v3-abstract-short" style="display: inline;"> The \textit{Swift} Deep Galactic Plane Survey is a \textit{Swift} Key Project consisting of 380 tiled pointings covering 40 deg$^{2}$ of the Galactic Plane between longitude $10$\,$&lt;$\,$|l|$\,$&lt;$\,$30$ deg and latitude $|b|$\,$&lt;$\,$0.5$ deg. Each pointing has a $5$ ks exposure, yielding a total of 1.9 Ms spread across the entire survey footprint. Phase-I observations were carried out between March&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14354v3-abstract-full').style.display = 'inline'; document.getElementById('2306.14354v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.14354v3-abstract-full" style="display: none;"> The \textit{Swift} Deep Galactic Plane Survey is a \textit{Swift} Key Project consisting of 380 tiled pointings covering 40 deg$^{2}$ of the Galactic Plane between longitude $10$\,$&lt;$\,$|l|$\,$&lt;$\,$30$ deg and latitude $|b|$\,$&lt;$\,$0.5$ deg. Each pointing has a $5$ ks exposure, yielding a total of 1.9 Ms spread across the entire survey footprint. Phase-I observations were carried out between March 2017 and May 2021. The Survey is complete to depth $L_X$\,$&gt;$\,$10^{34}$ erg s$^{-1}$ to the edge of the Galaxy. The main Survey goal is to produce a rich sample of new X-ray sources and transients, while also covering a broad discovery space. Here, we introduce the Survey strategy and present a catalog of sources detected during Phase-I observations. In total, we identify 928 X-ray sources, of which 348 are unique to our X-ray catalog. We report on the characteristics of sources in our catalog and highlight sources newly classified and published by the DGPS team. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.14354v3-abstract-full').style.display = 'none'; document.getElementById('2306.14354v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ApJS. This is the final version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.12409">arXiv:2306.12409</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.12409">pdf</a>, <a href="https://arxiv.org/format/2306.12409">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Discovery of Gaia17bpp, a Giant Star with the Deepest and Longest Known Dimming Event </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tzanidakis%2C+A">Anastasios Tzanidakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davenport%2C+J+R+A">James R. A. Davenport</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuankun Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.12409v1-abstract-short" style="display: inline;"> We report the serendipitous discovery of Gaia17bpp/2MASS J19372316+1759029, a star with a deep single large-amplitude dimming event of $\sim$4.5 magnitudes that lasted over 6.5 years. Using the optical to IR spectral energy distribution (SED), we constrain the primary star to be a cool giant M0-III star with effective temperature $T_{\text{eff}}$=3,850 K and radius R=58 R$_{\odot}$. Based on the S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12409v1-abstract-full').style.display = 'inline'; document.getElementById('2306.12409v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.12409v1-abstract-full" style="display: none;"> We report the serendipitous discovery of Gaia17bpp/2MASS J19372316+1759029, a star with a deep single large-amplitude dimming event of $\sim$4.5 magnitudes that lasted over 6.5 years. Using the optical to IR spectral energy distribution (SED), we constrain the primary star to be a cool giant M0-III star with effective temperature $T_{\text{eff}}$=3,850 K and radius R=58 R$_{\odot}$. Based on the SED fitting, we obtained a bimodal posterior distribution of primary stellar masses at 1.5 M${\odot}$ and 3.7 M${\odot}$. Within the last 66 years of photometric coverage, no other significant dimming events of this depth and duration were identified in the optical light curves. Using a Gaussian Process, we fit a high-order Gaussian model to the optical and IR light curves and conclude the dimming event exhibits moderate asymmetries from optical to IR. At the minimum of the dimming event, the (W$_{1}$-W$_{2}$) color was bluer by $\sim$0.2 mag relative to the primary star outside the dimming event. The ingress and egress colors show a shallow reddening profile. We suggest that the main culprit of the dimming event is likely due to the presence of a large, optically thick disk transiting the primary giant star. By fitting a monochromatic transit model of an oblate disk transiting a star, we found good agreement with a slow-moving, 0.005 km sec$^{-1}$, disk with a $\sim$1.4 AU radius. We propose that Gaia17bpp belongs to a rare binary star population similar to the Epsilon Aurigae system, which consists of a secondary star enshrouded by an optically thick debris disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.12409v1-abstract-full').style.display = 'none'; document.getElementById('2306.12409v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 12 figures, submitted to ApJ, comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11784">arXiv:2306.11784</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11784">pdf</a>, <a href="https://arxiv.org/format/2306.11784">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> NANCY: Next-generation All-sky Near-infrared Community surveY </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+J+J">Jiwon Jesse Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dey%2C+A">Arjun Dey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Price-Whelan%2C+A+M">Adrian M. Price-Whelan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Najita%2C+J">Joan Najita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schlafly%2C+E+F">Edward F. Schlafly</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saydjari%2C+A">Andrew Saydjari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wechsler%2C+R+H">Risa H. Wechsler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonaca%2C+A">Ana Bonaca</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schlegel%2C+D+J">David J Schlegel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Conroy%2C+C">Charlie Conroy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raichoor%2C+A">Anand Raichoor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drlica-Wagner%2C+A">Alex Drlica-Wagner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kollmeier%2C+J+A">Juna A. Kollmeier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koposov%2C+S+E">Sergey E. Koposov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Besla%2C+G">Gurtina Besla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rix%2C+H">Hans-Walter Rix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goodman%2C+A">Alyssa Goodman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Finkbeiner%2C+D">Douglas Finkbeiner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+A">Abhijeet Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ashby%2C+M">Matthew Ashby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bahr-Kalus%2C+B">Benedict Bahr-Kalus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R">Rachel Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Behera%2C+J">Jayashree Behera</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+E+F">Eric F. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C Bellm</a> , et al. (184 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11784v1-abstract-short" style="display: inline;"> The Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GAL&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11784v1-abstract-full').style.display = 'inline'; document.getElementById('2306.11784v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11784v1-abstract-full" style="display: none;"> The Nancy Grace Roman Space Telescope is capable of delivering an unprecedented all-sky, high-spatial resolution, multi-epoch infrared map to the astronomical community. This opportunity arises in the midst of numerous ground- and space-based surveys that will provide extensive spectroscopy and imaging together covering the entire sky (such as Rubin/LSST, Euclid, UNIONS, SPHEREx, DESI, SDSS-V, GALAH, 4MOST, WEAVE, MOONS, PFS, UVEX, NEO Surveyor, etc.). Roman can uniquely provide uniform high-spatial-resolution (~0.1 arcsec) imaging over the entire sky, vastly expanding the science reach and precision of all of these near-term and future surveys. This imaging will not only enhance other surveys, but also facilitate completely new science. By imaging the full sky over two epochs, Roman can measure the proper motions for stars across the entire Milky Way, probing 100 times fainter than Gaia out to the very edge of the Galaxy. Here, we propose NANCY: a completely public, all-sky survey that will create a high-value legacy dataset benefiting innumerable ongoing and forthcoming studies of the universe. NANCY is a pure expression of Roman&#39;s potential: it images the entire sky, at high spatial resolution, in a broad infrared bandpass that collects as many photons as possible. The majority of all ongoing astronomical surveys would benefit from incorporating observations of NANCY into their analyses, whether these surveys focus on nearby stars, the Milky Way, near-field cosmology, or the broader universe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11784v1-abstract-full').style.display = 'none'; document.getElementById('2306.11784v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the call for white papers for the Roman Core Community Survey (June 16th, 2023), and to the Bulletin of the AAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05576">arXiv:2306.05576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.05576">pdf</a>, <a href="https://arxiv.org/format/2306.05576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Identification of 1RXS J165424.6-433758 as a polar cataclysmic variable </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=O%27Connor%2C+B">B. O&#39;Connor</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+J">J. Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mukai%2C+K">K. Mukai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kouveliotou%2C+C">C. Kouveliotou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gogus%2C+E">E. Gogus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Potter%2C+S+B">S. B. Potter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Woudt%2C+P">P. Woudt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lien%2C+A">A. Lien</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Levan%2C+A">A. Levan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kargaltsev%2C+O">O. Kargaltsev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baring%2C+M+G">M. G. Baring</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">E. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. B. Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+P+A">P. A. Evans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Granot%2C+J">J. Granot</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hailey%2C+C">C. Hailey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harrison%2C+F">F. Harrison</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D">D. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Horst%2C+A+J">A. J. van der Horst</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huppenkothen%2C+D">D. Huppenkothen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaper%2C+L">L. Kaper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennea%2C+J+A">J. A. Kennea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slane%2C+P+O">P. O. Slane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">D. Stern</a> , et al. (3 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05576v2-abstract-short" style="display: inline;"> We present the results of our X-ray, ultraviolet, and optical follow-up campaigns of 1RXS J165424.6-433758, an X-ray source detected with the \textit{Swift} Deep Galactic Plane Survey (DGPS). The source X-ray spectrum (\textit{Swift} and \textit{NuSTAR}) is described by thermal bremsstrahlung radiation with a temperature of $kT=10.1\pm1.2$ keV, yielding an X-ray ($0.3-10$ keV) luminosity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05576v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05576v2-abstract-full" style="display: none;"> We present the results of our X-ray, ultraviolet, and optical follow-up campaigns of 1RXS J165424.6-433758, an X-ray source detected with the \textit{Swift} Deep Galactic Plane Survey (DGPS). The source X-ray spectrum (\textit{Swift} and \textit{NuSTAR}) is described by thermal bremsstrahlung radiation with a temperature of $kT=10.1\pm1.2$ keV, yielding an X-ray ($0.3-10$ keV) luminosity $L_X=(6.5\pm0.8)\times10^{31}$ erg s$^{-1}$ at a \textit{Gaia} distance of 460 pc. Spectroscopy with the Southern African Large Telescope (SALT) revealed a flat continuum dominated by emission features, demonstrating an inverse Balmer decrement, the $\lambda4640$ Bowen blend, almost a dozen HeI lines, and HeII $\lambda4541$, $\lambda4686$ and $位5411$. Our high-speed photometry demonstrates a preponderance of flickering and flaring episodes, and revealed the orbital period of the system, $P_\textrm{orb}=2.87$ hr, which fell well within the cataclysmic variable (CV) period gap between $2-3$ hr. These features classify 1RXS J165424.6-433758 as a nearby polar magnetic CV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05576v2-abstract-full').style.display = 'none'; document.getElementById('2306.05576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11988">arXiv:2305.11988</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11988">pdf</a>, <a href="https://arxiv.org/format/2305.11988">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acd6f4">10.3847/1538-4365/acd6f4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> LSST Survey Strategy in the Galactic Plane and Magellanic Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Street%2C+R+A">R. A. Street</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">X. Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khakpash%2C+S">S. Khakpash</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">E. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Girardi%2C+L">L. Girardi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jones%2C+L">L. Jones</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Abrams%2C+N+S">N. S. Abrams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tsapras%2C+Y">Y. Tsapras</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hundertmark%2C+M+P+G">M. P. G. Hundertmark</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bachelet%2C+E">E. Bachelet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gandhi%2C+P">P. Gandhi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szkody%2C+P">P. Szkody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarkson%2C+W+I">W. I. Clarkson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szabo%2C+R">R. Szabo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prisinzano%2C+L">L. Prisinzano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonito%2C+R">R. Bonito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D+A+H">D. A. H. Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marais%2C+J+P">J. P. Marais</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Stefano%2C+R">R. Di Stefano</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11988v1-abstract-short" style="display: inline;"> Galactic science encompasses a wide range of subjects in the study of the Milky Way and Magellanic Clouds, from Young Stellar Objects to X-ray Binaries. Mapping these populations, and exploring transient phenomena within them, are among the primary science goals of the Vera C. Rubin Observatory&#39;s Legacy Survey of Space and Time (LSST). While early versions of the survey strategy dedicated relative&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11988v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11988v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11988v1-abstract-full" style="display: none;"> Galactic science encompasses a wide range of subjects in the study of the Milky Way and Magellanic Clouds, from Young Stellar Objects to X-ray Binaries. Mapping these populations, and exploring transient phenomena within them, are among the primary science goals of the Vera C. Rubin Observatory&#39;s Legacy Survey of Space and Time (LSST). While early versions of the survey strategy dedicated relatively few visits to the Galactic Plane region, more recent strategies under consideration envision higher cadence within selected regions of high scientific interest. The range of galactic science presents a challenge in evaluating which strategies deliver the highest scientific returns. Here we present metrics designed to evaluate Rubin survey strategy simulations based on the cadence of observations they deliver within regions of interest to different topics in galactic science, using variability categories defined by timescale. We also compare the fractions of exposures obtained in each filter with those recommended for the different science goals. We find that the baseline_v2.x simulations deliver observations of the high-priority regions at sufficiently high cadence to reliably detect variability on timescales &gt;10 d or more. Follow-up observations may be necessary to properly characterize variability, especially transients, on shorter timescales. Combining the regions of interest for all the science cases considered, we identify those areas of the Galactic Plane and Magellanic Clouds of highest priority. We recommend that these refined survey footprints be used in future simulations to explore rolling cadence scenarios, and to optimize the sequence of observations in different bandpasses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11988v1-abstract-full').style.display = 'none'; document.getElementById('2305.11988v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJS. 26 pages and 36 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00108">arXiv:2305.00108</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00108">pdf</a>, <a href="https://arxiv.org/format/2305.00108">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acdee1">10.3847/1538-4365/acdee1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A data science platform to enable time-domain astronomy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nir%2C+G">Guy Nir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antier%2C+S">Sarah Antier</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laz%2C+T+J+d">Theophile Jegou du Laz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+der+Walt%2C+S">St茅fan van der Walt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crellin-Quick%2C+A">Arien Crellin-Quick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Culino%2C+T">Thomas Culino</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Duev%2C+D+A">Dmitry A. Duev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldstein%2C+D+A">Daniel A. Goldstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Healy%2C+B+F">Brian F. Healy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lilleboe%2C+J">Jada Lilleboe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shin%2C+K+M">Kyung Min Shin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kostadinova%2C+I">Ivona Kostadinova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kiendrebeogo%2C+R+W">R. Weizmann Kiendrebeogo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jenkins%2C+S">Sydney Jenkins</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00108v2-abstract-short" style="display: inline;"> SkyPortal is an open-source software package designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, a SkyPortal-based platform has been oper&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00108v2-abstract-full').style.display = 'inline'; document.getElementById('2305.00108v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00108v2-abstract-full" style="display: none;"> SkyPortal is an open-source software package designed to efficiently discover interesting transients, manage follow-up, perform characterization, and visualize the results. By enabling fast access to archival and catalog data, cross-matching heterogeneous data streams, and the triggering and monitoring of on-demand observations for further characterization, a SkyPortal-based platform has been operating at scale for 2 yr for the Zwicky Transient Facility Phase II community, with hundreds of users, containing tens of millions of time-domain sources, interacting with dozens of telescopes, and enabling community reporting. While SkyPortal emphasizes rich user experiences (UX) across common frontend workflows, recognizing that scientific inquiry is increasingly performed programmatically, SkyPortal also surfaces an extensive and well-documented API system. From backend and frontend software to data science analysis tools and visualization frameworks, the SkyPortal design emphasizes the re-use and leveraging of best-in-class approaches, with a strong extensibility ethos. For instance, SkyPortal now leverages ChatGPT large-language models (LLMs) to automatically generate and surface source-level human-readable summaries. With the imminent re-start of the next-generation of gravitational wave detectors, SkyPortal now also includes dedicated multi-messenger features addressing the requirements of rapid multi-messenger follow-up: multi-telescope management, team/group organizing interfaces, and cross-matching of multi-messenger data streams with time-domain optical surveys, with interfaces sufficiently intuitive for the newcomers to the field. (abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00108v2-abstract-full').style.display = 'none'; document.getElementById('2305.00108v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.12361">arXiv:2304.12361</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.12361">pdf</a>, <a href="https://arxiv.org/format/2304.12361">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2316">10.1093/mnras/stad2316 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SN 2020udy: a SN Iax with strict limits on interaction consistent with a helium-star companion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">Kate Maguire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Magee%2C+M+R">Mark R. Magee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Leloudas%2C+G">Giorgos Leloudas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A+A">Adam A. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dimitriadis%2C+G">Georgios Dimitriadis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pursiainen%2C+M">Miika Pursiainen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V+R">Viraj R. Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nordin%2C+J">Jakob Nordin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reusch%2C+S">Simeon Reusch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Terreran%2C+G">Giacomo Terreran</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacroix%2C+L">Leander Lacroix</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J+N">Josiah N. Purdum</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.12361v1-abstract-short" style="display: inline;"> Early observations of transient explosions can provide vital clues to their progenitor origins. In this paper we present the nearby Type Iax (02cx-like) supernova (SN), SN 2020udy that was discovered within hours ($\sim$7 hr) of estimated first light. An extensive dataset of ultra-violet, optical, and near-infrared observations was obtained, covering out to $\sim$150 d after explosion. SN 2020udy&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12361v1-abstract-full').style.display = 'inline'; document.getElementById('2304.12361v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.12361v1-abstract-full" style="display: none;"> Early observations of transient explosions can provide vital clues to their progenitor origins. In this paper we present the nearby Type Iax (02cx-like) supernova (SN), SN 2020udy that was discovered within hours ($\sim$7 hr) of estimated first light. An extensive dataset of ultra-violet, optical, and near-infrared observations was obtained, covering out to $\sim$150 d after explosion. SN 2020udy peaked at -17.86$\pm$0.43 mag in the r band and evolved similarly to other &#39;luminous&#39; SNe Iax, such as SNe 2005hk and 2012Z. Its well-sampled early light curve allows strict limits on companion interaction to be placed. Main-sequence companion stars with masses of 2 and 6 M$_\odot$ are ruled out at all viewing angles, while a helium-star companion is allowed from a narrow range of angles (140-180$^\circ$ away from the companion). The spectra and light curves of SN2020udy are in good agreement with those of the &#39;N5def&#39; deflagration model of a near Chandrasekhar-mass carbon-oxygen white dwarf. However, as has been seen in previous studies of similar luminosity events, SN 2020udy evolves slower than the model. Broad-band linear polarisation measurements taken at and after peak are consistent with no polarisation, in agreement with the predictions of the companion-star configuration from the early light curve measurements. The host galaxy environment is low metallicity and is consistent with a young stellar population. Overall, we find the most plausible explosion scenario to be the incomplete disruption of a CO white dwarf near the Chandrasekhar-mass limit, with a helium-star companion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.12361v1-abstract-full').style.display = 'none'; document.getElementById('2304.12361v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures, submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.16925">arXiv:2303.16925</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.16925">pdf</a>, <a href="https://arxiv.org/format/2303.16925">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346526">10.1051/0004-6361/202346526 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The broad-lined Type-Ic supernova SN 2022xxf with extraordinary two-humped light curves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kuncarayakti%2C+H">H. Kuncarayakti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">J. Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">L. Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maeda%2C+K">K. Maeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">S. Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">S. Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angus%2C+C+R">C. R. Angus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aubert%2C+M">M. Aubert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">K. Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Della+Valle%2C+M">M. Della Valle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dessart%2C+L">L. Dessart</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K. Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kankare%2C+E">E. Kankare</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kawabata%2C+M">M. Kawabata</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lundqvist%2C+P">P. Lundqvist</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakaoka%2C+T">T. Nakaoka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">D. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raimundo%2C+S+I">S. I. Raimundo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strotjohann%2C+N+L">N. L. Strotjohann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Taguchi%2C+K">K. Taguchi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cai%2C+Y+-">Y. -Z. Cai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charalampopoulos%2C+P">P. Charalampopoulos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fang%2C+Q">Q. Fang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fraser%2C+M">M. Fraser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutierrez%2C+C+P">C. P. Gutierrez</a> , et al. (38 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.16925v2-abstract-short" style="display: inline;"> We report on our study of supernova (SN) 2022xxf based on observations obtained during the first four months of its evolution. The light curves (LCs) display two humps of similar maximum brightness separated by 75 days, unprecedented for a broad-lined (BL) Type Ic supernova (SN IcBL). SN 2022xxf is the most nearby SN IcBL to date (in NGC 3705, $z = 0.0037$, at a distance of about 20 Mpc). Optical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16925v2-abstract-full').style.display = 'inline'; document.getElementById('2303.16925v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.16925v2-abstract-full" style="display: none;"> We report on our study of supernova (SN) 2022xxf based on observations obtained during the first four months of its evolution. The light curves (LCs) display two humps of similar maximum brightness separated by 75 days, unprecedented for a broad-lined (BL) Type Ic supernova (SN IcBL). SN 2022xxf is the most nearby SN IcBL to date (in NGC 3705, $z = 0.0037$, at a distance of about 20 Mpc). Optical and near-infrared photometry and spectroscopy are used to identify the energy source powering the LC. Nearly 50 epochs of high signal-to-noise-ratio spectroscopy were obtained within 130 days, comprising an unparalleled dataset for a SN IcBL, and one of the best-sampled SN datasets to date. The global spectral appearance and evolution of SN 2022xxf points to typical SN Ic/IcBL, with broad features (up to $\sim14000$ km s$^{-1}$) and a gradual transition from the photospheric to the nebular phase. However, narrow emission lines (corresponding to $\sim1000-2500$ km s$^{-1}$) are present in the spectra from the time of the second rise, suggesting slower-moving circumstellar material (CSM). These lines are subtle, in comparison to the typical strong narrow lines of CSM-interacting SNe, for example, Type IIn, Ibn, and Icn, but some are readily noticeable at late times such as in Mg I $位$5170 and [O I] $位$5577. Unusually, the near-infrared spectra show narrow line peaks in a number of features formed by ions of O and Mg. We infer the presence of CSM that is free of H and He. We propose that the radiative energy from the ejecta-CSM interaction is a plausible explanation for the second LC hump. This interaction scenario is supported by the color evolution, which progresses to the blue as the light curve evolves along the second hump, and the slow second rise and subsequent rapid LC drop. (Abstract abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.16925v2-abstract-full').style.display = 'none'; document.getElementById('2303.16925v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 678, A209 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13573">arXiv:2303.13573</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13573">pdf</a>, <a href="https://arxiv.org/format/2303.13573">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ace7cf">10.3847/2041-8213/ace7cf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Orbital decay in an accreting and eclipsing 13.7 minute orbital period binary with a luminous donor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rappaport%2C+S">Saul Rappaport</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wong%2C+T+L+S">Tin Long Sunny Wong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bauer%2C+E+B">Evan B. Bauer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bildsten%2C+L">Lars Bildsten</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chakrabarty%2C+D">Deepto Chakrabarty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chickles%2C+E">Emma Chickles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kara%2C+E">Erin Kara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsh%2C+T+R">Thomas R. Marsh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nynka%2C+M">Melania Nynka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prince%2C+T+A">Thomas A. Prince</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simcoe%2C+R+A">Robert A. Simcoe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">Jan van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vanderbosch%2C+Z">Zach Vanderbosch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R+G">Richard G. Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">Andrew J. Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helou%2C+G">George Helou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Milburn%2C+J">Jennifer Milburn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13573v1-abstract-short" style="display: inline;"> We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post-common envelope carbon-oxygen (CO) white dwarf, and a warm donor ($T_{\rm eff,\,donor}= 16,400\pm1000\,\rm K$). The donor probably formed during a common envelope phase between the CO white dwarf and an e&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13573v1-abstract-full').style.display = 'inline'; document.getElementById('2303.13573v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13573v1-abstract-full" style="display: none;"> We report the discovery of ZTF J0127+5258, a compact mass-transferring binary with an orbital period of 13.7 minutes. The system contains a white dwarf accretor, which likely originated as a post-common envelope carbon-oxygen (CO) white dwarf, and a warm donor ($T_{\rm eff,\,donor}= 16,400\pm1000\,\rm K$). The donor probably formed during a common envelope phase between the CO white dwarf and an evolving giant which left behind a helium star or helium white dwarf in a close orbit with the CO white dwarf. We measure gravitational wave-driven orbital inspiral with $\sim 35蟽$ significance, which yields a joint constraint on the component masses and mass transfer rate. While the accretion disk in the system is dominated by ionized helium emission, the donor exhibits a mixture of hydrogen and helium absorption lines. Phase-resolved spectroscopy yields a donor radial-velocity semi-amplitude of $771\pm27\,\rm km\, s^{-1}$, and high-speed photometry reveals that the system is eclipsing. We detect a {\it Chandra} X-ray counterpart with $L_{X}\sim 3\times 10^{31}\,\rm erg\,s^{-1}$. Depending on the mass-transfer rate, the system will likely evolve into either a stably mass-transferring helium CV, merge to become an R Crb star, or explode as a Type Ia supernova in the next million years. We predict that the Laser Space Interferometer Antenna (LISA) will detect the source with a signal-to-noise ratio of $24\pm6$ after 4 years of observations. The system is the first \emph{LISA}-loud mass-transferring binary with an intrinsically luminous donor, a class of sources that provide the opportunity to leverage the synergy between optical and infrared time domain surveys, X-ray facilities, and gravitational-wave observatories to probe general relativity, accretion physics, and binary evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13573v1-abstract-full').style.display = 'none'; document.getElementById('2303.13573v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures, 2 tables, submitted to ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.06523">arXiv:2303.06523</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.06523">pdf</a>, <a href="https://arxiv.org/format/2303.06523">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Tidal Disruption Event Demographics with the Zwicky Transient Facility: Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ravi%2C+V">Vikram Ravi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">Suvi Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Velzen%2C+S">Sjoert van Velzen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hammerstein%2C+E">Erica Hammerstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nicholl%2C+M">Matt Nicholl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ricarte%2C+A">Angelo Ricarte</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chadayammuri%2C+U">Urmila Chadayammuri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Quataert%2C+E">Eliot Quataert</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">Andrew J. Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahabal%2C+A+A">Ashish A. Mahabal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prince%2C+T+A">Thomas A. Prince</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.06523v2-abstract-short" style="display: inline;"> We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over three years (from October 2018 to September 2021). We infer the black hole (BH) mass ($M_{\rm BH}$) with host galaxy scaling relations, showing that the sa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06523v2-abstract-full').style.display = 'inline'; document.getElementById('2303.06523v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.06523v2-abstract-full" style="display: none;"> We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over three years (from October 2018 to September 2021). We infer the black hole (BH) mass ($M_{\rm BH}$) with host galaxy scaling relations, showing that the sample $M_{\rm BH}$ ranges from $10^{5.1}\,M_\odot$ to $10^{8.2}\,M_\odot$. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frame $g$-band luminosity function (LF) can be well described by a broken power-law of $蠁(L_g)\propto [(L_g / L_{\rm bk})^{0.3} + (L_g / L_{\rm bk})^{2.6}]^{-1}$, with $L_{\rm bk}=10^{43.1}\,{\rm erg\,s^{-1}}$. In the BH mass regime of $10^{5.3}\lesssim (M_{\rm BH}/M_\odot) \lesssim 10^{7.3}$, the TDE mass function follows $蠁(M_{\rm BH})\propto M_{\rm BH}^{-0.25}$, which favors a flat local BH mass function ($dn_{\rm BH}/d{\rm log}M_{\rm BH}\approx{\rm constant}$). We confirm the significant rate suppression at the high-mass end ($M_{\rm BH}\gtrsim 10^{7.5}\,M_\odot$), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass of $M_{\rm gal}\sim 10^{10}\,M_\odot$, the average optical TDE rate is $\approx 3.2\times 10^{-5}\,{\rm galaxy^{-1}\,yr^{-1}}$. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6$]\times 10^{-5}\,{\rm galaxy^{-1}\,yr^{-1}}$ in galaxies with red, green, and blue colors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.06523v2-abstract-full').style.display = 'none'; document.getElementById('2303.06523v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Replaced following peer-review process. 38 pages, 23 figures. Accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.00897">arXiv:2302.00897</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.00897">pdf</a>, <a href="https://arxiv.org/format/2302.00897">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acb684">10.3847/1538-4365/acb684 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Young stellar objects, accretion disks, and their variability with Rubin Observatory LSST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bonito%2C+R">R. Bonito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Venuti%2C+L">L. Venuti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ustamujic%2C+S">S. Ustamujic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoachim%2C+P">P. Yoachim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Street%2C+R+A">R. A. Street</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prisinzano%2C+L">L. Prisinzano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartigan%2C+P">P. Hartigan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guarcello%2C+M+G">M. G. Guarcello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stassun%2C+K+G">K. G. Stassun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Giannini%2C+T">T. Giannini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feigelson%2C+E+D">E. D. Feigelson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">A. Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Orlando%2C+S">S. Orlando</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarkson%2C+W+I">W. I. Clarkson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McGehee%2C+P">P. McGehee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">E. C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gizis%2C+J+E">J. E. Gizis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.00897v1-abstract-short" style="display: inline;"> Vera C. Rubin Observatory, through the Legacy Survey of Space and Time (LSST), will allow us to derive a panchromatic view of variability in young stellar objects (YSOs) across all relevant timescales. Indeed, both short-term variability (on timescales of hours to days) and long-term variability (months to years), predominantly driven by the dynamics of accretion processes in disk-hosting YSOs, ca&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00897v1-abstract-full').style.display = 'inline'; document.getElementById('2302.00897v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.00897v1-abstract-full" style="display: none;"> Vera C. Rubin Observatory, through the Legacy Survey of Space and Time (LSST), will allow us to derive a panchromatic view of variability in young stellar objects (YSOs) across all relevant timescales. Indeed, both short-term variability (on timescales of hours to days) and long-term variability (months to years), predominantly driven by the dynamics of accretion processes in disk-hosting YSOs, can be explored by taking advantage of the multi-band filters option available in Rubin LSST, in particular the $u,g,r,i$ filters that enable us to discriminate between photospheric stellar properties and accretion signatures. The homogeneity and depth of sky coverage that will be achieved with LSST will provide us with a unique opportunity to characterize the time evolution of disk accretion as a function of age and varying environmental conditions (e.g. field crowdedness, massive neighbors, metallicity), by targeting different star-forming regions. In this contribution to the Rubin LSST Survey Strategy Focus Issue, we discuss how implementing a dense observing cadence to explore short-term variability in YSOs represents a key complementary effort to the Wide-Fast-Deep observing mode that will be used to survey the sky over the full duration of the main survey ($\approx$10 years). The combination of these two modes will be vital to investigate the connection between the inner disk dynamics and longer-term eruptive variability behaviors, such as those observed on EXor objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.00897v1-abstract-full').style.display = 'none'; document.getElementById('2302.00897v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 4 figures, 1 table; accepted for publication in The Astrophysical Journal Supplement Series</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.04637">arXiv:2301.04637</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.04637">pdf</a>, <a href="https://arxiv.org/format/2301.04637">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acbc16">10.3847/1538-4357/acbc16 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Systematic Study of Ia-CSM Supernovae from the ZTF Bright Transient Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+Y">Yashvi Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irani%2C+I">Ido Irani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strotjohann%2C+N+L">Nora Linn Strotjohann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">Kate Maguire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kool%2C+E+C">Erik C. Kool</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brink%2C+T">Thomas Brink</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R">Rachel Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Deckers%2C+M">Maxime Deckers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R">Richard Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dugas%2C+A">Alison Dugas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Goldwasser%2C+S">Samantha Goldwasser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+L">Melissa L. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hankins%2C+M">Matt Hankins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">Jacob Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J+P">Joel P. Johansson</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.04637v1-abstract-short" style="display: inline;"> Among the supernovae (SNe) that show strong interaction with the circumstellar medium, there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, that show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted over-luminous Type Ia spectrum. In the only previous systematic study of this class (Silverman et al. 2013), 16 objects were identified, 8 historic and 8 from the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04637v1-abstract-full').style.display = 'inline'; document.getElementById('2301.04637v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.04637v1-abstract-full" style="display: none;"> Among the supernovae (SNe) that show strong interaction with the circumstellar medium, there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, that show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted over-luminous Type Ia spectrum. In the only previous systematic study of this class (Silverman et al. 2013), 16 objects were identified, 8 historic and 8 from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional objects of this type through the systematic Bright Transient Survey (BTS). In this study, we present and analyze the optical and mid-IR light curves, optical spectra, and host galaxy properties of this sample. Consistent with previous studies, we find the objects to have slowly evolving light curves compared to normal SNe Ia with peak absolute magnitudes between -19.1 and -21, spectra having weak H$尾$, large Balmer decrements of ~7 and strong Ca NIR emission. Out of 10 SNe from our sample observed by NEOWISE, 9 have $3蟽$ detections, along with some showing a clear reduction in red-wing of H$伪$, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent width of He I $\lambda5876$ than SNe IIn as observed in Silverman et al. 2013. The hosts tend to be late-type galaxies with recent star formation. We also derive a rate estimate of 29$^{+27}_{-21}$ Gpc$^{-3}$ yr$^{-1}$ for SNe Ia-CSM which is ~0.02--0.2 % of the SN Ia rate. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al. 2013, increasing the total number to 28. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.04637v1-abstract-full').style.display = 'none'; document.getElementById('2301.04637v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 14 figures, 5 tables. Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.03313">arXiv:2212.03313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.03313">pdf</a>, <a href="https://arxiv.org/format/2212.03313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd8be">10.3847/1538-4357/acd8be <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The prevalence and influence of circumstellar material around hydrogen-rich supernova progenitors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bruch%2C+R+J">Rachel J. Bruch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yaron%2C+O">Ofer Yaron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+P">Ping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strotjohann%2C+N+L">Nora L. Strotjohann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Irani%2C+I">Ido Irani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zimmerman%2C+E">Erez Zimmerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yi Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y">Young-Lo Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bulla%2C+M">Mattia Bulla</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rigault%2C+M">Mickael Rigault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ofek%2C+E">Eran Ofek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soumagnac%2C+M">Maayane Soumagnac</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nordin%2C+J">Jakob Nordin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adams%2C+S">S. Adams</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adreoni%2C+I">Igor Adreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blagorodnova%2C+N">Nadia Blagorodnova</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.03313v2-abstract-short" style="display: inline;"> Narrow transient emission lines (flash-ionization features) in early supernova (SN) spectra trace the presence of circumstellar material (CSM) around the massive progenitor stars of core-collapse SNe. The lines disappear within days after the SN explosion, suggesting that this material is spatially confined, and originates from enhanced mass loss shortly (months to a few years) prior to explosion.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03313v2-abstract-full').style.display = 'inline'; document.getElementById('2212.03313v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.03313v2-abstract-full" style="display: none;"> Narrow transient emission lines (flash-ionization features) in early supernova (SN) spectra trace the presence of circumstellar material (CSM) around the massive progenitor stars of core-collapse SNe. The lines disappear within days after the SN explosion, suggesting that this material is spatially confined, and originates from enhanced mass loss shortly (months to a few years) prior to explosion. We performed a systematic survey of H-rich (Type II) SNe discovered within less than two days from explosion during the first phase of the Zwicky Transient Facility (ZTF) survey (2018-2020), finding thirty events for which a first spectrum was obtained within $&lt; 2$ days from explosion. The measured fraction of events showing flash ionisation features ($&gt;36\%$ at $95\%$ confidence level) confirms that elevated mass loss in massive stars prior to SN explosion is common. We find that SNe II showing flash ionisation features are not significantly brighter, nor bluer, nor more slowly rising than those without. This implies that CSM interaction does not contribute significantly to their early continuum emission, and that the CSM is likely optically thin. We measured the persistence duration of flash ionisation emission and find that most SNe show flash features for $\approx 5 $ days. Rarer events, with persistence timescales $&gt;10$ days, are brighter and rise longer, suggesting these may be intermediate between regular SNe II and strongly-interacting SNe IIn. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.03313v2-abstract-full').style.display = 'none'; document.getElementById('2212.03313v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16530">arXiv:2211.16530</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.16530">pdf</a>, <a href="https://arxiv.org/format/2211.16530">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05465-8">10.1038/s41586-022-05465-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A very luminous jet from the disruption of a star by a massive black hole </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+W">Wenbin Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kumar%2C+H">Harsh Kumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Postigo%2C+A+d+U">Antonio de Ugarte Postigo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sagues-Carracedo%2C+A">Ana Sagues-Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kann%2C+D+A">D. Alexander Kann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanvir%2C+N">Nial Tanvir</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rest%2C+A">Armin Rest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Izzo%2C+L">Luca Izzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Somalwar%2C+J+J">Jean J. Somalwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anupama%2C+G+C">G. C. Anupama</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Auchettl%2C+K">Katie Auchettl</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barway%2C+S">Sudhanshu Barway</a> , et al. (56 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16530v1-abstract-short" style="display: inline;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jett&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16530v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16530v1-abstract-full" style="display: none;"> Tidal disruption events (TDEs) are bursts of electromagnetic energy released when supermassive black holes (SMBHs) at the centers of galaxies violently disrupt a star that passes too close. TDEs provide a new window to study accretion onto SMBHs; in some rare cases, this accretion leads to launching of a relativistic jet, but the necessary conditions are not fully understood. The best studied jetted TDE to date is Swift J1644+57, which was discovered in gamma-rays, but was too obscured by dust to be seen at optical wavelengths. Here we report the optical discovery of AT2022cmc, a rapidly fading source at cosmological distance (redshift z=1.19325) whose unique lightcurve transitioned into a luminous plateau within days. Observations of a bright counterpart at other wavelengths, including X-rays, sub-millimeter, and radio, supports the interpretation of AT2022cmc as a jetted TDE containing a synchrotron &#34;afterglow&#34;, likely launched by a SMBH with spin $a \gtrsim 0.3$. Using 4 years of Zwicky Transient Facility (ZTF) survey data, we calculate a rate of $0.02 ^{+ 0.04 }_{- 0.01 }$ Gpc$^{-3}$ yr$^{-1}$ for on-axis jetted TDEs based on the luminous, fast-fading red component, thus providing a measurement complementary to the rates derived from X-ray and radio observations. Correcting for the beaming angle effects, this rate confirms that about 1% of TDEs have relativistic jets. Optical surveys can use AT2022cmc as a prototype to unveil a population of jetted TDEs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16530v1-abstract-full').style.display = 'none'; document.getElementById('2211.16530v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.09202">arXiv:2211.09202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.09202">pdf</a>, <a href="https://arxiv.org/format/2211.09202">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3363">10.1093/mnras/stac3363 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Deep Drilling in the Time Domain with DECam: Survey Characterization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+L">Melissa L. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Knop%2C+R+A">Robert A. Knop</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kennedy%2C+T">Thomas Kennedy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nugent%2C+P+E">Peter E. Nugent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">Eric Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catelan%2C+M">M谩rcio Catelan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patel%2C+A">Avi Patel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smotherman%2C+H">Hayden Smotherman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soraisam%2C+M">Monika Soraisam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stetzler%2C+S">Steven Stetzler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aldoroty%2C+L+N">Lauren N. Aldoroty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Awbrey%2C+A">Autumn Awbrey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baeza-Villagra%2C+K">Karina Baeza-Villagra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bernardinelli%2C+P+H">Pedro H. Bernardinelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianco%2C+F">Federica Bianco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brout%2C+D">Dillon Brout</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarke%2C+R">Riley Clarke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Clarkson%2C+W+I">William I. Clarkson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collett%2C+T">Thomas Collett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davenport%2C+J+R+A">James R. A. Davenport</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+S">Shenming Fu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gizis%2C+J+E">John E. Gizis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Heinze%2C+A">Ari Heinze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hu%2C+L">Lei Hu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jha%2C+S+W">Saurabh W. Jha</a> , et al. (19 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.09202v1-abstract-short" style="display: inline;"> This paper presents a new optical imaging survey of four deep drilling fields (DDFs), two Galactic and two extragalactic, with the Dark Energy Camera (DECam) on the 4 meter Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO). During the first year of observations in 2021, $&gt;$4000 images covering 21 square degrees (7 DECam pointings), with $\sim$40 epochs (nights) per field and 5&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09202v1-abstract-full').style.display = 'inline'; document.getElementById('2211.09202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.09202v1-abstract-full" style="display: none;"> This paper presents a new optical imaging survey of four deep drilling fields (DDFs), two Galactic and two extragalactic, with the Dark Energy Camera (DECam) on the 4 meter Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO). During the first year of observations in 2021, $&gt;$4000 images covering 21 square degrees (7 DECam pointings), with $\sim$40 epochs (nights) per field and 5 to 6 images per night per filter in $g$, $r$, $i$, and/or $z$, have become publicly available (the proprietary period for this program is waived). We describe the real-time difference-image pipeline and how alerts are distributed to brokers via the same distribution system as the Zwicky Transient Facility (ZTF). In this paper, we focus on the two extragalactic deep fields (COSMOS and ELAIS-S1), characterizing the detected sources and demonstrating that the survey design is effective for probing the discovery space of faint and fast variable and transient sources. We describe and make publicly available 4413 calibrated light curves based on difference-image detection photometry of transients and variables in the extragalactic fields. We also present preliminary scientific analysis regarding Solar System small bodies, stellar flares and variables, Galactic anomaly detection, fast-rising transients and variables, supernovae, and active galactic nuclei. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.09202v1-abstract-full').style.display = 'none'; document.getElementById('2211.09202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 17 figures, 2 tables. Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.00656">arXiv:2211.00656</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.00656">pdf</a>, <a href="https://arxiv.org/format/2211.00656">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-023-01981-3">10.1038/s41550-023-01981-3 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uncovering a population of gravitational lens galaxies with magnified standard candle SN Zwicky </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Goobar%2C+A">Ariel Goobar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arendse%2C+N">Nikki Arendse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carracedo%2C+A+S">Ana Sagu茅s Carracedo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhawan%2C+S">Suhail Dhawan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%B6rtsell%2C+E">Edvard M枚rtsell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yan%2C+L">Lin Yan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D">Daniel Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Joseph%2C+R">R茅my Joseph</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hinds%2C+K">K-Ryan Hinds</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meynardie%2C+W">William Meynardie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">Eric Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J">Josh Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Collett%2C+T+E">Thomas E. Collett</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A">Andrew Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Matthew Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M">Mansi Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S">Shri Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lemon%2C+C">Cameron Lemon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Miller%2C+A+A">Adam A. Miller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neill%2C+J+D">James D. Neill</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.00656v2-abstract-short" style="display: inline;"> Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. High-cadence optical observations with the Zwicky Transient Facility, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00656v2-abstract-full').style.display = 'inline'; document.getElementById('2211.00656v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.00656v2-abstract-full" style="display: none;"> Detecting gravitationally lensed supernovae is among the biggest challenges in astronomy. It involves a combination of two very rare phenomena: catching the transient signal of a stellar explosion in a distant galaxy and observing it through a nearly perfectly aligned foreground galaxy that deflects light towards the observer. High-cadence optical observations with the Zwicky Transient Facility, with an unparalleled large field of view, led to the detection of a multiply-imaged Type Ia supernova (SN Ia), ``SN Zwicky&#34;, a.k.a. SN 2022qmx. Magnified nearly twenty-five times, the system was found thanks to the ``standard candle&#34; nature of SNe Ia. High-spatial resolution imaging with the Keck telescope resolved four images of the supernova with very small angular separation, corresponding to an Einstein radius of only $胃_E =0.167&#34;$ and almost identical arrival times. The small $胃_E$ and faintness of the lensing galaxy is very unusual, highlighting the importance of supernovae to fully characterise the properties of galaxy-scale gravitational lenses, including the impact of galaxy substructures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.00656v2-abstract-full').style.display = 'none'; document.getElementById('2211.00656v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Matches published version in Nature Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09536">arXiv:2210.09536</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09536">pdf</a>, <a href="https://arxiv.org/format/2210.09536">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> A search for relativistic ejecta in a sample of ZTF broad-lined Type Ic supernovae </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Corsi%2C+A">Alessandra Corsi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ho%2C+A+Y+Q">Anna Y. Q. Ho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Srinivasaragavan%2C+G+P">Gokul P. Srinivasaragavan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omand%2C+C+M+B">Conor M. B. Omand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balasubramanian%2C+A">Arvind Balasubramanian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frail%2C+D+A">Dale A. Frail</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yao%2C+Y">Yuhan Yao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dahiwale%2C+A+S">Aishwarya S. Dahiwale</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dugas%2C+A">Alison Dugas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hankins%2C+M">Matthew Hankins</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jencson%2C+J">Jacob Jencson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tzanidakis%2C+A">Anastasios Tzanidakis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R+R">Russ R. Laher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J+N">Josiah N. Purdum</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09536v1-abstract-short" style="display: inline;"> The dividing line between gamma-ray bursts (GRBs) and ordinary stripped-envelope core-collapse supernovae (SNe) is yet to be fully understood. Observationally mapping the variety of ejecta outcomes (ultra-relativistic, mildly-relativistic or non-relativistic) in SNe of Type Ic with broad lines (Ic-BL) can provide a key test to stellar explosion models. However, this requires large samples of the r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09536v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09536v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09536v1-abstract-full" style="display: none;"> The dividing line between gamma-ray bursts (GRBs) and ordinary stripped-envelope core-collapse supernovae (SNe) is yet to be fully understood. Observationally mapping the variety of ejecta outcomes (ultra-relativistic, mildly-relativistic or non-relativistic) in SNe of Type Ic with broad lines (Ic-BL) can provide a key test to stellar explosion models. However, this requires large samples of the rare Ic-BL events with follow-up observations in the radio, where fast ejecta can be probed largely free of geometry and viewing angle effects. Here, we present the results of a radio (and X-ray) follow-up campaign of 16 SNe Ic-BL detected by the Zwicky Transient Facility (ZTF). Our radio campaign resulted in 4 counterpart detections and 12 deep upper limits. None of the events in our sample is as relativistic as SN 1998bw and we constrain the fraction of SN 1998bw-like explosions to $&lt; 19\%$ (3$蟽$ Gaussian equivalent), a factor of $\approx 2$ smaller than previously established. We exclude relativistic ejecta with radio luminosity densities in between $\approx 5\times10^{27}$ erg s$^{-1}$ Hz$^{-1}$ and $\approx 10^{29}$ erg s$^{-1}$ Hz$^{-1}$ at $t\gtrsim 20$ d since explosion for $\approx 60\%$ of the events in our sample. This shows that SNe Ic-BL similar to the GRB-associated SN 1998bw, SN 2003lw, SN 2010dh, or to the relativistic SN 2009bb and iPTF17cw, are rare. Our results also exclude an association of the SNe Ic-BL in our sample with largely off-axis GRBs with energies $E\gtrsim 10^{50}$ erg. The parameter space of SN2006aj-like events (faint and fast-peaking radio emission) is, on the other hand, left largely unconstrained and systematically exploring it represents a promising line of future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09536v1-abstract-full').style.display = 'none'; document.getElementById('2210.09536v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 11 figures, submitted to AAS journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07725">arXiv:2210.07725</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07725">pdf</a>, <a href="https://arxiv.org/format/2210.07725">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05916-w">10.1038/s41586-023-05916-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A radio-detected Type Ia supernova with helium-rich circumstellar material </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kool%2C+E+C">Erik C. Kool</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johansson%2C+J">Joel Johansson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mold%C3%B3n%2C+J">Javier Mold贸n</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moriya%2C+T+J">Takashi J. Moriya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schulze%2C+S">Steve Schulze</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chomiuk%2C+L">Laura Chomiuk</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Harris%2C+C">Chelsea Harris</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez-Torres%2C+M">Miguel P茅rez-Torres</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mattila%2C+S">Seppo Mattila</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lundqvist%2C+P">Peter Lundqvist</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Matthew Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Sheng Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perley%2C+D+A">Daniel A. Perley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Strotjohann%2C+N+L">Nora Linn Strotjohann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gal-Yam%2C+A">Avishay Gal-Yam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lezmy%2C+J">Jeremy Lezmy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maguire%2C+K">Kate Maguire</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Omand%2C+C">Conor Omand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+M">Mathew Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07725v2-abstract-short" style="display: inline;"> Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf (WD) stars destabilized by mass accretion from a companion star, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds or binary interaction prior to exp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07725v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07725v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07725v2-abstract-full" style="display: none;"> Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf (WD) stars destabilized by mass accretion from a companion star, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds or binary interaction prior to explosion, and the SN ejecta crashing into this nearby circumstellar material (CSM) should result in radio synchrotron emission. However, despite extensive efforts, no SN Ia has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate WD star. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich CSM, as revealed by its spectral features, infrared emission and, for the first time in a SN Ia, a radio counterpart. Based on our modeling, we conclude the CSM likely originates from a single-degenerate (SD) binary system where a WD accretes material from a helium donor star, an often hypothesized formation channel for SNe Ia. We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07725v2-abstract-full').style.display = 'none'; document.getElementById('2210.07725v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">62 pages, 10 figures, 4 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 617 (2023), 477 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.01809">arXiv:2210.01809</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.01809">pdf</a>, <a href="https://arxiv.org/format/2210.01809">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05195-x">10.1038/s41586-022-05195-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A dense $\mathbf{0.1 M_{\rm \odot}}$ star in a 51-minute orbital period eclipsing binary </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsh%2C+T+R">Thomas R. Marsh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rappaport%2C+S">Saul Rappaport</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+W+R">Warren R. Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chakrabarty%2C+D">Deepto Chakrabarty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+J">Jim Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%A4nsicke%2C+B+T">Boris T. G盲nsicke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kara%2C+E">Erin Kara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Littlefair%2C+S+P">S. P. Littlefair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez-Gil%2C+P">Pablo Rodr铆guez-Gil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">Jan van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simcoe%2C+R+A">Robert A. Simcoe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drake%2C+A+J">Andrew J. Drake</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dekany%2C+R+G">Richard G. Dekany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Laher%2C+R+R">Russ R. Laher</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.01809v1-abstract-short" style="display: inline;"> In over a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution prior to interacting with the white dwarf, and it is expected that these objects will transition to helium accretion. These&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01809v1-abstract-full').style.display = 'inline'; document.getElementById('2210.01809v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.01809v1-abstract-full" style="display: none;"> In over a thousand known cataclysmic variables (CVs), where a white dwarf is accreting from a hydrogen-rich star, only a dozen have orbital periods below 75 minutes. One way to achieve these short periods requires the donor star to have undergone substantial nuclear evolution prior to interacting with the white dwarf, and it is expected that these objects will transition to helium accretion. These transitional CVs have been proposed as progenitors of helium CVs. However, no known transitional CV is expected to reach an orbital period short enough to account for most of the helium CV population, leaving the role of this evolutionary pathway unclear. Here we report observations of ZTF J1813+4251, a 51-minute orbital period, fully eclipsing binary system consisting of a star with a temperature comparable to that of the Sun but a density 100 times greater due to its helium-rich composition, accreting onto a white dwarf. Phase-resolved spectra, multi-band light curves and the broadband spectral energy distribution allow us to obtain precise and robust constraints on the masses, radii and temperatures of both components. Evolutionary modeling shows that ZTF J1813+4251 is destined to become a helium CV binary, reaching an orbital period under 20 minutes, rendering ZTF J1813+4251 a previously missing link between helium CV binaries and hydrogen-rich CVs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.01809v1-abstract-full').style.display = 'none'; document.getElementById('2210.01809v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 Pages, 12 figures, 2 tables, Published online by Nature on Oct 5, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 610 467-471 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13004">arXiv:2209.13004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13004">pdf</a>, <a href="https://arxiv.org/format/2209.13004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aca480">10.3847/1538-4357/aca480 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A light in the dark: searching for electromagnetic counterparts to black hole-black hole mergers in LIGO/Virgo O3 with the Zwicky Transient Facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McKernan%2C+B">Barry McKernan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ford%2C+K+E+S">K. E. Saavik Ford</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stern%2C+D">Daniel Stern</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Djorgovski%2C+S+G">S. G. Djorgovski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M">Michael Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helou%2C+G">George Helou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahabal%2C+A+A">Ashish A. Mahabal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Purdum%2C+J">Josiah Purdum</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rosnet%2C+P">Philippe Rosnet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rusholme%2C+B">Ben Rusholme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13004v1-abstract-short" style="display: inline;"> The accretion disks of active galactic nuclei (AGN) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high density environment, mergers within AGN are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGN with unusual flaring activity observed by&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13004v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13004v1-abstract-full" style="display: none;"> The accretion disks of active galactic nuclei (AGN) are promising locations for the merger of compact objects detected by gravitational wave (GW) observatories. Embedded within a baryon-rich, high density environment, mergers within AGN are the only GW channel where an electromagnetic (EM) counterpart must occur (whether detectable or not). Considering AGN with unusual flaring activity observed by the Zwicky Transient Facility (ZTF), we describe a search for candidate EM counterparts to binary black hole (BBH) mergers detected by LIGO/Virgo in O3. After removing probable false positives, we find nine candidate counterparts to BBH mergers mergers during O3 (seven in O3a, two in O3b) with a $p$-value of 0.019. Based on ZTF sky coverage, AGN geometry, and merger geometry, we expect $\approx 3(N_{\rm BBH}/83)(f_{\rm AGN}/0.5)$ potentially detectable EM counterparts from O3, where $N_{\rm BBH}$ is the total number of observed BBH mergers and $f_{\rm AGN}$ is the fraction originating in AGN. Further modeling of breakout and flaring phenomena in AGN disks is required to reduce our false positive rate. Two of the events are also associated with mergers with total masses $&gt; 100M_\odot$, which is the expected rate for O3 if hierarchical (large mass) mergers occur in the AGN channel. Candidate EM counterparts in future GW observing runs can be better constrained by coverage of the Southern sky as well as spectral monitoring of unusual AGN flaring events in LIGO/Virgo alert volumes. A future set of reliable AGN EM counterparts to BBH mergers will yield an independent means of measuring cosmic expansion ($H_0$) as a function of redshift. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13004v1-abstract-full').style.display = 'none'; document.getElementById('2209.13004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04499">arXiv:2208.04499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.04499">pdf</a>, <a href="https://arxiv.org/format/2208.04499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Rubin Observatory LSST Transients and Variable Stars Roadmap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hambleton%2C+K+M">Kelly M. Hambleton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bianco%2C+F+B">Federica B. Bianco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Street%2C+R">Rachel Street</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+K">Keaton Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buckley%2C+D">David Buckley</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Melissa Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hernitschek%2C+N">Nina Hernitschek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lund%2C+M+B">Michael B. Lund</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+E">Elena Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pepper%2C+J">Joshua Pepper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prsa%2C+A">Andrej Prsa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rabus%2C+M">Markus Rabus</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raiteri%2C+C+M">Claudia M. Raiteri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szabo%2C+R">Robert Szabo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szkody%2C+P">Paula Szkody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antoniucci%2C+S">Simone Antoniucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Balmaverde%2C+B">Barbara Balmaverde</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E">Eric Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bonito%2C+R">Rosaria Bonito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bono%2C+G">Giuseppe Bono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Botticella%2C+M+T">Maria Teresa Botticella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brocato%2C+E">Enzo Brocato</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bricman%2C+K+B">Katja Bucar Bricman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cappellaro%2C+E">Enrico Cappellaro</a> , et al. (57 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04499v1-abstract-short" style="display: inline;"> The Vera C. Rubin Legacy Survey of Space and Time holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04499v1-abstract-full').style.display = 'inline'; document.getElementById('2208.04499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04499v1-abstract-full" style="display: none;"> The Vera C. Rubin Legacy Survey of Space and Time holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey&#39;s first light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04499v1-abstract-full').style.display = 'none'; document.getElementById('2208.04499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">202 pages (in book format) 34 figures plus chapter heading figures (13)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09696">arXiv:2206.09696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.09696">pdf</a>, <a href="https://arxiv.org/format/2206.09696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acaa9e">10.3847/1538-4357/acaa9e <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Prospects of Gravitational Wave Follow-up Through a Wide-field Ultra-violet Satellite: a Dorado Case Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Dorsman%2C+B">Bas Dorsman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Raaijmakers%2C+G">Geert Raaijmakers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenko%2C+S+B">S. Bradley Cenko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nissanke%2C+S">Samaya Nissanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Singer%2C+L+P">Leo P. Singer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Piro%2C+A+L">Anthony L. Piro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+D+H">Dieter H. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hotokezaka%2C+K">Kenta Hotokezaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Luko%C5%A1i%C5%ABt%C4%97%2C+K">Kamil臈 Luko拧i奴t臈</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09696v1-abstract-short" style="display: inline;"> The detection of gravitational waves from binary neuron star merger GW170817 and electromagnetic counterparts GRB170817 and AT2017gfo kick-started the field of gravitational wave multimessenger astronomy. The optically red to near infra-red emission (`red&#39; component) of AT2017gfo was readily explained as produced by the decay of newly created nuclei produced by rapid neutron capture (a kilonova).&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09696v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09696v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09696v1-abstract-full" style="display: none;"> The detection of gravitational waves from binary neuron star merger GW170817 and electromagnetic counterparts GRB170817 and AT2017gfo kick-started the field of gravitational wave multimessenger astronomy. The optically red to near infra-red emission (`red&#39; component) of AT2017gfo was readily explained as produced by the decay of newly created nuclei produced by rapid neutron capture (a kilonova). However, the ultra-violet to optically blue emission (`blue&#39; component) that was dominant at early times (up to 1.5 days) received no consensus regarding its driving physics. Among many explanations, two leading contenders are kilonova radiation from a lanthanide-poor ejecta component or shock interaction (cocoon emission). In this work, we simulate AT2017gfo-like light curves and perform a Bayesian analysis to study whether an ultra-violet satellite capable of rapid gravitational wave follow-up, could distinguish between physical processes driving the early `blue&#39; component. We find that a Dorado-like ultra-violet satellite, with a 50 sq. deg. field of view and a limiting magnitude (AB) of 20.5 for a 10 minute exposure is able to distinguish radiation components up to at least 160 Mpc if data collection starts within 3.2 or 5.2 hours for two possible AT2017gfo-like light curve scenarios. We also study the degree to which parameters can be constrained with the obtained photometry. We find that, while ultra-violet data alone constrains parameters governing the outer ejecta properties, the combination of both ground-based optical and space-based ultra-violet data allows for tight constraints for all but one parameter of the kilonova model up to 160 Mpc. These results imply that an ultra-violet mission like Dorado would provide unique insights into the early evolution of the post-merger system and its driving emission physics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09696v1-abstract-full').style.display = 'none'; document.getElementById('2206.09696v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 tables, 7 figures. Comments welcome. To be submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.04714">arXiv:2206.04714</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.04714">pdf</a>, <a href="https://arxiv.org/format/2206.04714">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acbb6f">10.3847/1538-4357/acbb6f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of Two Polars from a Crossmatch of ZTF and the SRG/eFEDS X-ray Catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+A+C">Antonio C. Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">Shrinivas R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prince%2C+T+A">Thomas A. Prince</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Szkody%2C+P">Paula Szkody</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">Jan van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vanderbosch%2C+Z+P">Zachary P. Vanderbosch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=El-Badry%2C+K">Kareem El-Badry</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%A4nsicke%2C+B+T">Boris T. G盲nsicke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahabal%2C+A+A">Ashish A. Mahabal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masci%2C+F+J">Frank J. Masci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Riddle%2C+R">Reed Riddle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rusholme%2C+B">Ben Rusholme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.04714v1-abstract-short" style="display: inline;"> Magnetic CVs are luminous Galactic X-ray sources but have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope aboard the Spektr-RG (SRG) mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04714v1-abstract-full').style.display = 'inline'; document.getElementById('2206.04714v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.04714v1-abstract-full" style="display: none;"> Magnetic CVs are luminous Galactic X-ray sources but have been difficult to find in purely optical surveys due to their lack of outburst behavior. The eROSITA telescope aboard the Spektr-RG (SRG) mission is conducting an all-sky X-ray survey and recently released the public eROSITA Final Equatorial Depth Survey (eFEDS) catalog. We crossmatched the eFEDS catalog with photometry from the Zwicky Transient Facility (ZTF) and discovered two new magnetic cataclysmic variables (CVs). We obtained high-cadence optical photometry and phase-resolved spectroscopy for each magnetic CV candidate and found them both to be polars. Among the newly discovered magnetic CVs is ZTFJ0850+0443, an eclipsing polar with orbital period $P_\textrm{orb} = 1.72$ hr, white dwarf mass $M_\textrm{WD} = 0.81 \pm 0.08 M_\odot$ and accretion rate $\dot{M} \sim 10^{-11} M_\odot$/yr. We suggest that ZTFJ0850+0443 is a low magnetic field strength polar, with $B_\textrm{WD} \lesssim 10$ MG. We also discovered a non-eclipsing polar, ZTFJ0926+0105, with orbital period $P_\textrm{orb} = 1.48$ hr, magnetic field strength $B_\textrm{WD} \gtrsim 26$ MG, and accretion rate $\dot{M} \sim 10^{-12} M_\odot$/yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.04714v1-abstract-full').style.display = 'none'; document.getElementById('2206.04714v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.02278">arXiv:2205.02278</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.02278">pdf</a>, <a href="https://arxiv.org/format/2205.02278">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-04551-1">10.1038/s41586-022-04551-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A 62-minute orbital period black widow binary in a wide hierarchical triple </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Burdge%2C+K+B">Kevin B. Burdge</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marsh%2C+T+R">Thomas R. Marsh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fuller%2C+J">Jim Fuller</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caiazzo%2C+I">Ilaria Caiazzo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chakrabarty%2C+D">Deepto Chakrabarty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M+W">Michael W. Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dhillon%2C+V+S">V. S. Dhillon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M+J">Matthew J. Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=guez-Gil%2C+P+R">Pablo Rodr铆 guez-Gil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jaodand%2C+A+D">Amruta D. Jaodand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kara%2C+E">Erin Kara</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kong%2C+A+K+H">Albert K. H. Kong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kulkarni%2C+S+R">S. R. Kulkarni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+K">Kwan-Lok Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Littlefair%2C+S+P">S. P. Littlefair</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majid%2C+W+A">Walid A. Majid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mr%C3%B3z%2C+P">Przemek Mr贸z</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pearlman%2C+A+B">Aaron B. Pearlman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Phinney%2C+E+S">E. S. Phinney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Roestel%2C+J">Jan van Roestel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Simcoe%2C+R+A">Robert A. Simcoe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a> , et al. (8 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.02278v1-abstract-short" style="display: inline;"> Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original &#34;black widow&#34;, the 8-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20), high energy emission originating from the pulsar is irradiating and may eventually destroy a low-mass companion. These systems are not only physical laboratories that reveal the dramatic result of exposin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02278v1-abstract-full').style.display = 'inline'; document.getElementById('2205.02278v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.02278v1-abstract-full" style="display: none;"> Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original &#34;black widow&#34;, the 8-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20), high energy emission originating from the pulsar is irradiating and may eventually destroy a low-mass companion. These systems are not only physical laboratories that reveal the dramatic result of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars, allowing for robust tests of the neutron star equation of state. Here, we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate whose optical flux varies by a factor of more than 10. ZTF J1406+1222 pushes the boundaries of evolutionary models, falling below the 80 minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic center, making it a probe of formation channels, neutron star kick physics, and binary evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.02278v1-abstract-full').style.display = 'none'; document.getElementById('2205.02278v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">63 pages, 15 figures, 2 tables, published in Nature on May 4, 2022</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature 605, 41-45 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.17135">arXiv:2203.17135</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.17135">pdf</a>, <a href="https://arxiv.org/format/2203.17135">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad767">10.1093/mnras/stad767 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino follow-up with the Zwicky Transient Facility: Results from the first 24 campaigns </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Stein%2C+R">Robert Stein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reusch%2C+S">Simeon Reusch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Franckowiak%2C+A">Anna Franckowiak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kowalski%2C+M">Marek Kowalski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Necker%2C+J">Jannis Necker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weimann%2C+S">Sven Weimann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kasliwal%2C+M+M">Mansi M. Kasliwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sollerman%2C+J">Jesper Sollerman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ahumada%2C+T">Tomas Ahumada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amaro-Seoane%2C+P">Pau Amaro-Seoane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anand%2C+S">Shreya Anand</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Andreoni%2C+I">Igor Andreoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bellm%2C+E+C">Eric C. Bellm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bloom%2C+J+S">Joshua S. Bloom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coughlin%2C+M">Michael Coughlin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De%2C+K">Kishalay De</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fremling%2C+C">Christoffer Fremling</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gezari%2C+S">Suvi Gezari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Graham%2C+M">Matthew Graham</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Groom%2C+S+L">Steven L. Groom</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Helou%2C+G">George Helou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaplan%2C+D+L">David L. Kaplan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karambelkar%2C+V">Viraj Karambelkar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kong%2C+A+K+H">Albert K. H. Kong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kool%2C+E+C">Erik C. Kool</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.17135v3-abstract-short" style="display: inline;"> The Zwicky Transient Facility (ZTF) performs a systematic neutrino follow-up program, searching for optical counterparts to high-energy neutrinos with dedicated Target-of-Opportunity (ToO) observations. Since first light in March 2018, ZTF has taken prompt observations for 24 high-quality neutrino alerts from the IceCube Neutrino Observatory, with a median latency of 12.2 hours from initial neutri&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17135v3-abstract-full').style.display = 'inline'; document.getElementById('2203.17135v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.17135v3-abstract-full" style="display: none;"> The Zwicky Transient Facility (ZTF) performs a systematic neutrino follow-up program, searching for optical counterparts to high-energy neutrinos with dedicated Target-of-Opportunity (ToO) observations. Since first light in March 2018, ZTF has taken prompt observations for 24 high-quality neutrino alerts from the IceCube Neutrino Observatory, with a median latency of 12.2 hours from initial neutrino detection. From two of these campaigns, we have already reported tidal disruption event (TDE) AT 2019dsg and likely TDE AT 2019fdr as probable counterparts, suggesting that TDEs contribute &gt;7.8% of the astrophysical neutrino flux. We here present the full results of our program through to December 2021. No additional candidate neutrino sources were identified by our program, allowing us to place the first constraints on the underlying optical luminosity function of astrophysical neutrino sources. Transients with optical absolutes magnitudes brighter that $-21$ can contribute no more than 87% of the total, while transients brighter than $-22$ can contribute no more than 58% of the total, neglecting the effect of extinction and assuming they follow the star formation rate. These are the first observational constraints on the neutrino emission of bright populations such as superluminous supernovae. None of the neutrinos were coincident with bright optical AGN flares comparable to that observed for TXS 0506+056/IC170922A, with such optical blazar flares producing no more than 26% of the total neutrino flux. We highlight the outlook for electromagnetic neutrino follow-up programs, including the expected potential for the Rubin Observatory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.17135v3-abstract-full').style.display = 'none'; document.getElementById('2203.17135v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS, 521, 4, 2023, 5046-5063 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Bellm%2C+E&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10