CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;13 of 13 results for author: <span class="mathjax">Johnson, A T C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Johnson%2C+A+T+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Johnson, A T C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Johnson%2C+A+T+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Johnson, A T C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.04473">arXiv:2408.04473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.04473">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.device.2024.100474">10.1016/j.device.2024.100474 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Klein Tunneling of Gigahertz Elastic Waves in Nanoelectromechanical Metamaterials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+D">Daehun Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Jiang%2C+Y">Yue Jiang</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+X">Xiaoru Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Jahanbani%2C+S">Shahin Jahanbani</a>, <a href="/search/physics?searchtype=author&amp;query=Wen%2C+C">Chengyu Wen</a>, <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qicheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+K">Keji Lai</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.04473v1-abstract-short" style="display: inline;"> Klein tunneling, the perfect transmission of a normally incident relativistic particle through an energy barrier, has been tested in various electronic, photonic, and phononic systems. Its potential in guiding and filtering classical waves in the Ultra High Frequency regime, on the other hand, has not been explored. Here, we report the realization of acoustic Klein tunneling in a nanoelectromechan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04473v1-abstract-full').style.display = 'inline'; document.getElementById('2408.04473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.04473v1-abstract-full" style="display: none;"> Klein tunneling, the perfect transmission of a normally incident relativistic particle through an energy barrier, has been tested in various electronic, photonic, and phononic systems. Its potential in guiding and filtering classical waves in the Ultra High Frequency regime, on the other hand, has not been explored. Here, we report the realization of acoustic Klein tunneling in a nanoelectromechanical metamaterial system operating at gigahertz frequencies. The piezoelectric potential profiles are obtained by transmission-mode microwave impedance microscopy, from which reciprocal-space maps can be extracted. The transmission rate of normally incident elastic waves is near unity in the Klein tunneling regime and drops significantly outside this frequency range, consistent with microwave network analysis. Strong angular dependent transmission is also observed by controlling the launching angle of the emitter interdigital transducer. This work broadens the horizon in exploiting high-energy-physics phenomena for practical circuit applications in both classical and quantum regimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.04473v1-abstract-full').style.display = 'none'; document.getElementById('2408.04473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures, 14 pages of SI</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.02412">arXiv:2202.02412</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.02412">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41928-022-00732-y">10.1038/s41928-022-00732-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Gigahertz Topological Valley Hall Effect in Nanoelectromechanical Phononic Crystals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhang%2C+Q">Qicheng Zhang</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+D">Daehun Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Zheng%2C+L">Lu Zheng</a>, <a href="/search/physics?searchtype=author&amp;query=Ma%2C+X">Xuejian Ma</a>, <a href="/search/physics?searchtype=author&amp;query=Meyer%2C+S+I">Shawn I. Meyer</a>, <a href="/search/physics?searchtype=author&amp;query=He%2C+L">Li He</a>, <a href="/search/physics?searchtype=author&amp;query=Ye%2C+H">Han Ye</a>, <a href="/search/physics?searchtype=author&amp;query=Gong%2C+Z">Ze Gong</a>, <a href="/search/physics?searchtype=author&amp;query=Zhen%2C+B">Bo Zhen</a>, <a href="/search/physics?searchtype=author&amp;query=Lai%2C+K">Keji Lai</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.02412v2-abstract-short" style="display: inline;"> Topological phononics offers numerous opportunities in manipulating elastic waves that can propagate in solids without being backscattered. Due to the lack of nanoscale imaging tools that aid the system design, however, acoustic topological metamaterials have been mostly demonstrated in macroscale systems operating at low (kilohertz to megahertz) frequencies. Here, we report the realization of gig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02412v2-abstract-full').style.display = 'inline'; document.getElementById('2202.02412v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.02412v2-abstract-full" style="display: none;"> Topological phononics offers numerous opportunities in manipulating elastic waves that can propagate in solids without being backscattered. Due to the lack of nanoscale imaging tools that aid the system design, however, acoustic topological metamaterials have been mostly demonstrated in macroscale systems operating at low (kilohertz to megahertz) frequencies. Here, we report the realization of gigahertz topological valley Hall effect in nanoelectromechanical AlN membranes. Propagation of elastic wave through phononic crystals is directly visualized by microwave microscopy with unprecedented sensitivity and spatial resolution. The valley Hall edge states, protected by band topology, are vividly seen in both real- and momentum-space. The robust valley-polarized transport is evident from the wave transmission across local disorder and around sharp corners, as well as the power distribution into multiple edge channels. Our work paves the way to exploit topological physics in integrated acousto-electronic systems for classical and quantum information processing in the microwave regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.02412v2-abstract-full').style.display = 'none'; document.getElementById('2202.02412v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Electronics 5 (3), 157-163, 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.04525">arXiv:1712.04525</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.04525">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4990798">10.1063/1.4990798 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable Graphene Aptasensors for Drug Quantification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Vishnubhotla%2C+R">Ramya Vishnubhotla</a>, <a href="/search/physics?searchtype=author&amp;query=Ping%2C+J">Jinglei Ping</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhaoli Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+A">Abigail Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Saouaf%2C+O">Olivia Saouaf</a>, <a href="/search/physics?searchtype=author&amp;query=Vrudhula%2C+A">Amey Vrudhula</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.04525v1-abstract-short" style="display: inline;"> Simpler and more rapid approaches for therapeutic drug-level monitoring are highly desirable to enable use at the point-of-care. We have developed an all-electronic approach for detection of the HIV drug tenofovir based on scalable fabrication of arrays of graphene field-effect transistors (GFETs) functionalized with a commercially available DNA aptamer. The shift in the Dirac voltage of the GFETs&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04525v1-abstract-full').style.display = 'inline'; document.getElementById('1712.04525v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.04525v1-abstract-full" style="display: none;"> Simpler and more rapid approaches for therapeutic drug-level monitoring are highly desirable to enable use at the point-of-care. We have developed an all-electronic approach for detection of the HIV drug tenofovir based on scalable fabrication of arrays of graphene field-effect transistors (GFETs) functionalized with a commercially available DNA aptamer. The shift in the Dirac voltage of the GFETs varied systematically with the concentration of tenofovir in deionized water, with a detection limit less than 1 ng/mL. Tests against a set of negative controls confirmed the specificity of the sensor response. This approach offers the potential for further development into a rapid and convenient point-of-care tool with clinically relevant performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.04525v1-abstract-full').style.display = 'none'; document.getElementById('1712.04525v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 7, 115111 (2017) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1710.06913">arXiv:1710.06913</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1710.06913">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> </div> <p class="title is-5 mathjax"> pH sensing properties of flexible, bias-free graphene microelectrodes in complex fluids: from phosphate buffer solution to human serum </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ping%2C+J">Jinglei Ping</a>, <a href="/search/physics?searchtype=author&amp;query=Blum%2C+J+E">Jacquelyn E. Blum</a>, <a href="/search/physics?searchtype=author&amp;query=Vishnubhotla%2C+R">Ramya Vishnubhotla</a>, <a href="/search/physics?searchtype=author&amp;query=Vrudhula%2C+A">Amey Vrudhula</a>, <a href="/search/physics?searchtype=author&amp;query=Naylor%2C+C+H">Carl H. Naylor</a>, <a href="/search/physics?searchtype=author&amp;query=Gao%2C+Z">Zhaoli Gao</a>, <a href="/search/physics?searchtype=author&amp;query=Saven%2C+J+G">Jeffery G. Saven</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1710.06913v1-abstract-short" style="display: inline;"> Advances in techniques for monitoring pH in complex fluids could have significant impact on analytical and biomedical applications ranging from water quality assessment to in vivo diagnostics. We developed flexible graphene microelectrodes (GEs) for rapid (&lt; 5 seconds), very low power (femtowatt) detection of the pH of complex biofluids. The method is based on real-time measurement of Faradaic cha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06913v1-abstract-full').style.display = 'inline'; document.getElementById('1710.06913v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1710.06913v1-abstract-full" style="display: none;"> Advances in techniques for monitoring pH in complex fluids could have significant impact on analytical and biomedical applications ranging from water quality assessment to in vivo diagnostics. We developed flexible graphene microelectrodes (GEs) for rapid (&lt; 5 seconds), very low power (femtowatt) detection of the pH of complex biofluids. The method is based on real-time measurement of Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current varied monotonically and systematically with the pH with resolution of ~0.2 pH unit. The current-pH dependence was well described by a hybrid analytical-computational model where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups described by the Langmuir-Freundlich adsorption isotherm. We also tested the GEs in more complex bio-solutions. In the case of a ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, showed a strong signal associated with the disassembly of the ferritin and the release of ferric ions at pH ~ 2.0. For samples of human serum, the Faradaic current showed a reproducible rapid (&lt;20s) response to pH. By combining the Faradaic current and real time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1710.06913v1-abstract-full').style.display = 'none'; document.getElementById('1710.06913v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08974">arXiv:1708.08974</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.08974">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1128/mSphere.00274-17">10.1128/mSphere.00274-17 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An aptamer-biosensor for azole class antifungal drugs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wiedman%2C+G+R">Gregory R Wiedman</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yunan Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Mustaev%2C+A">Arkady Mustaev</a>, <a href="/search/physics?searchtype=author&amp;query=Ping%2C+J">Jinglei Ping</a>, <a href="/search/physics?searchtype=author&amp;query=Vishnubhotla%2C+R">Ramya Vishnubhotla</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Perlin%2C+D+S">David S Perlin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08974v1-abstract-short" style="display: inline;"> This report describes the development of an aptamer for sensing azole antifungal drugs for therapeutic drug monitoring. Modified Synthetic Evolution of Ligands through Exponential Enrichment (SELEX) was used to discover a DNA aptamer recognizing azole class antifungal drugs. This aptamer undergoes a secondary structural change upon binding to its target molecule as shown through fluorescence aniso&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08974v1-abstract-full').style.display = 'inline'; document.getElementById('1708.08974v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08974v1-abstract-full" style="display: none;"> This report describes the development of an aptamer for sensing azole antifungal drugs for therapeutic drug monitoring. Modified Synthetic Evolution of Ligands through Exponential Enrichment (SELEX) was used to discover a DNA aptamer recognizing azole class antifungal drugs. This aptamer undergoes a secondary structural change upon binding to its target molecule as shown through fluorescence anisotropy-based binding measurements. Experiments using circular dichroism spectroscopy, revealed a unique double G-quadruplex structure that was essential and specific for binding to the azole antifungal target. Aptamer-functionalized Graphene Field Effect Transistor (GFET) devices were created and used to measure the binding of strength of azole antifungals to this surface. In total this aptamer and the supporting sensing platform could provide a valuable tool for improving the treatment of patients with invasive fungal infections. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08974v1-abstract-full').style.display = 'none'; document.getElementById('1708.08974v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08970">arXiv:1708.08970</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.08970">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/C7SC01565H">10.1039/C7SC01565H <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structural-Functional Analysis of Engineered Protein-Nanoparticle Assemblies Using Graphene Microelectrodes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ping%2C+J">Jinglei Ping</a>, <a href="/search/physics?searchtype=author&amp;query=Pulsipher%2C+K+W">Katherine W. Pulsipher</a>, <a href="/search/physics?searchtype=author&amp;query=Vishnubhotla%2C+R">Ramya Vishnubhotla</a>, <a href="/search/physics?searchtype=author&amp;query=Villegas%2C+J+A">Jose A. Villegas</a>, <a href="/search/physics?searchtype=author&amp;query=Hicks%2C+T+L">Tacey L. Hicks</a>, <a href="/search/physics?searchtype=author&amp;query=Honig%2C+S">Stephanie Honig</a>, <a href="/search/physics?searchtype=author&amp;query=Saven%2C+J+G">Jeffery G. Saven</a>, <a href="/search/physics?searchtype=author&amp;query=Dmochowski%2C+I+J">Ivan J. Dmochowski</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08970v1-abstract-short" style="display: inline;"> The characterization of protein-nanoparticle assemblies in solution remains a challenge. We demonstrate a technique based on a graphene microelectrode for structural-functional analysis of model systems composed of nanoparticles enclosed in open-pore and closed-pore ferritin molecules. The method readily resolves the difference in accessibility of the enclosed nanoparticle for charge transfer and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08970v1-abstract-full').style.display = 'inline'; document.getElementById('1708.08970v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08970v1-abstract-full" style="display: none;"> The characterization of protein-nanoparticle assemblies in solution remains a challenge. We demonstrate a technique based on a graphene microelectrode for structural-functional analysis of model systems composed of nanoparticles enclosed in open-pore and closed-pore ferritin molecules. The method readily resolves the difference in accessibility of the enclosed nanoparticle for charge transfer and offers the prospect for quantitative analysis of pore-mediated transport shed light on the spatial orientation of the protein subunits on the nanoparticle surface, faster and with higher sensitivity than conventional catalysis methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08970v1-abstract-full').style.display = 'none'; document.getElementById('1708.08970v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1708.08963">arXiv:1708.08963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1708.08963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acsnano.6b04110">10.1021/acsnano.6b04110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable production of high sensitivity, label-free DNA biosensors based on back-gated graphene field-effect transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ping%2C+J">Jinglei Ping</a>, <a href="/search/physics?searchtype=author&amp;query=Vishnubhotla%2C+R">Ramya Vishnubhotla</a>, <a href="/search/physics?searchtype=author&amp;query=Vrudhula%2C+A">Amey Vrudhula</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1708.08963v1-abstract-short" style="display: inline;"> Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (&gt; 90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08963v1-abstract-full').style.display = 'inline'; document.getElementById('1708.08963v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1708.08963v1-abstract-full" style="display: none;"> Scalable production of all-electronic DNA biosensors with high sensitivity and selectivity is a critical enabling step for research and applications associated with detection of DNA hybridization. We have developed a scalable and very reproducible (&gt; 90% yield) fabrication process for label-free DNA biosensors based upon graphene field effect transistors (GFETs) functionalized with single-stranded probe DNA. The shift of the GFET sensor Dirac point voltage varied systematically with the concentration of target DNA. The biosensors demonstrated a broad analytical range and limit of detection of 1 fM for 60-mer DNA oligonucleotide. In control experiments with mismatched DNA oligomers, the impact of the mismatch position on the DNA hybridization strength was confirmed. This class of highly sensitive DNA biosensors offers the prospect of detection of DNA hybridization and sequencing in a rapid, inexpensive, and accurate way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1708.08963v1-abstract-full').style.display = 'none'; document.getElementById('1708.08963v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2017. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.03750">arXiv:1511.03750</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.03750">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.5b04588">10.1021/acs.nanolett.5b04588 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Strong exciton-plasmon coupling in MoS2 coupled with plasmonic lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wenjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Lee%2C+B">Bumsu Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Naylor%2C+C+H">Carl H. Naylor</a>, <a href="/search/physics?searchtype=author&amp;query=Ee%2C+H">Ho-Seok Ee</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J">Joohee Park</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Ritesh Agarwal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.03750v1-abstract-short" style="display: inline;"> We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, lo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03750v1-abstract-full').style.display = 'inline'; document.getElementById('1511.03750v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.03750v1-abstract-full" style="display: none;"> We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton-plasmon coupling strength, polariton composition and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.03750v1-abstract-full').style.display = 'none'; document.getElementById('1511.03750v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1503.03440">arXiv:1503.03440</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1503.03440">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.nanolett.5b01563">10.1021/acs.nanolett.5b01563 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fano resonance and spectrally modified photoluminescence enhancement in monolayer MoS2 integrated with plasmonic nanoantenna array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lee%2C+B">Bumsu Lee</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+J">Joohee Park</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+G+H">Gang Hee Han</a>, <a href="/search/physics?searchtype=author&amp;query=Ee%2C+H">Ho-Seok Ee</a>, <a href="/search/physics?searchtype=author&amp;query=Naylor%2C+C+H">Carl H. Naylor</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+W">Wenjing Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a>, <a href="/search/physics?searchtype=author&amp;query=Agarwal%2C+R">Ritesh Agarwal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1503.03440v1-abstract-short" style="display: inline;"> The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03440v1-abstract-full').style.display = 'inline'; document.getElementById('1503.03440v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1503.03440v1-abstract-full" style="display: none;"> The manipulation of light-matter interactions in two-dimensional atomically thin crystals is critical for obtaining new optoelectronic functionalities in these strongly confined materials. Here, by integrating chemically grown monolayers of MoS2 with a silver-bowtie nanoantenna array supporting narrow surface-lattice plasmonic resonances, a unique two-dimensional optical system has been achieved. The enhanced exciton-plasmon coupling enables profound changes in the emission and excitation processes leading to spectrally tunable, large photoluminescence enhancement as well as surface-enhanced Raman scattering at room temperature. Furthermore, at low temperatures, due to the decreased damping of MoS2 excitons interacting with the plasmonic resonances of the bowtie array, stronger exciton-plasmon coupling is achieved resulting in a Fano lineshape in the reflection spectrum. The Fano lineshape, which is due to the interference between the pathways involving the excitation of the exciton and plasmon, can be tuned by altering the coupling strengths between the two systems via changing the design of the bowties lattice. The ability to manipulate the optical properties of two-dimensional systems with tunable plasmonic resonators offers a new platform for the design of novel optical devices with precisely tailored responses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1503.03440v1-abstract-full').style.display = 'none'; document.getElementById('1503.03440v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2015. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1405.3244">arXiv:1405.3244</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1405.3244">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nl5006349">10.1021/nl5006349 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable Production of Highly-Sensitive Nanosensors Based on Graphene Functionalized with a Designed G Protein-Coupled Receptor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lerner%2C+M+B">Mitchell B. Lerner</a>, <a href="/search/physics?searchtype=author&amp;query=Matsunaga%2C+F">Felipe Matsunaga</a>, <a href="/search/physics?searchtype=author&amp;query=Han%2C+G+H">Gang Hee Han</a>, <a href="/search/physics?searchtype=author&amp;query=Hong%2C+S+J">Sung Ju Hong</a>, <a href="/search/physics?searchtype=author&amp;query=Xi%2C+J">Jin Xi</a>, <a href="/search/physics?searchtype=author&amp;query=Crook%2C+A">Alexander Crook</a>, <a href="/search/physics?searchtype=author&amp;query=Perez-Aguilar%2C+J+M">Jose Manuel Perez-Aguilar</a>, <a href="/search/physics?searchtype=author&amp;query=Park%2C+Y+W">Yung Woo Park</a>, <a href="/search/physics?searchtype=author&amp;query=Saven%2C+J+G">Jeffery G. Saven</a>, <a href="/search/physics?searchtype=author&amp;query=Liu%2C+R">Renyu Liu</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1405.3244v1-abstract-short" style="display: inline;"> We have developed a novel, all-electronic biosensor for opioids that consists of an engineered mu opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding. A variant of the receptor protein that provided chemical recognition was computationally redesigned to enhance its solubility and stability in an aqueous&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.3244v1-abstract-full').style.display = 'inline'; document.getElementById('1405.3244v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1405.3244v1-abstract-full" style="display: none;"> We have developed a novel, all-electronic biosensor for opioids that consists of an engineered mu opioid receptor protein, with high binding affinity for opioids, chemically bonded to a graphene field-effect transistor to read out ligand binding. A variant of the receptor protein that provided chemical recognition was computationally redesigned to enhance its solubility and stability in an aqueous environment. A shadow mask process was developed to fabricate arrays of hundreds of graphene transistors with average mobility of ~1500 cm2 V-1 s-1 and yield exceeding 98%. The biosensor exhibits high sensitivity and selectivity for the target naltrexone, an opioid receptor antagonist, with a detection limit of 10 pg/mL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1405.3244v1-abstract-full').style.display = 'none'; document.getElementById('1405.3244v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Nano Letters 2014</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1304.7253">arXiv:1304.7253</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1304.7253">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.4804438">10.1063/1.4804438 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scalable, Non-Invasive Glucose Sensor Based on Boronic Acid Functionalized Carbon Nanotube Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lerner%2C+M+B">Mitchell B. Lerner</a>, <a href="/search/physics?searchtype=author&amp;query=Kybert%2C+N">Nicholas Kybert</a>, <a href="/search/physics?searchtype=author&amp;query=Mendoza%2C+R">Ryan Mendoza</a>, <a href="/search/physics?searchtype=author&amp;query=Villechenon%2C+R">Romain Villechenon</a>, <a href="/search/physics?searchtype=author&amp;query=Lopez%2C+M+A+B">Manuel A. Bonilla Lopez</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1304.7253v1-abstract-short" style="display: inline;"> We developed a scalable, label-free all-electronic sensor for D-glucose based on a carbon nanotube transistor functionalized with pyrene-1-boronic acid. This sensor responds to glucose in the range 1 uM - 100 mM, which includes typical glucose concentrations in human blood and saliva. Control experiments establish that functionalization with the boronic acid provides high sensitivity and selectivi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.7253v1-abstract-full').style.display = 'inline'; document.getElementById('1304.7253v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1304.7253v1-abstract-full" style="display: none;"> We developed a scalable, label-free all-electronic sensor for D-glucose based on a carbon nanotube transistor functionalized with pyrene-1-boronic acid. This sensor responds to glucose in the range 1 uM - 100 mM, which includes typical glucose concentrations in human blood and saliva. Control experiments establish that functionalization with the boronic acid provides high sensitivity and selectivity for glucose. The devices show better sensitivity than commercial blood glucose meters and could represent a general strategy to bloodless glucose monitoring by detecting low concentrations of glucose in saliva. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1304.7253v1-abstract-full').style.display = 'none'; document.getElementById('1304.7253v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, to appear in Applied Physics Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.2961">arXiv:1302.2961</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.2961">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.bios.2013.01.035">10.1016/j.bios.2013.01.035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detecting Lyme Disease Using Antibody-Functionalized Single-Walled Carbon Nanotube Transistors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lerner%2C+M+B">Mitchell B. Lerner</a>, <a href="/search/physics?searchtype=author&amp;query=Dailey%2C+J">Jennifer Dailey</a>, <a href="/search/physics?searchtype=author&amp;query=Goldsmith%2C+B+R">Brett R. Goldsmith</a>, <a href="/search/physics?searchtype=author&amp;query=Brisson%2C+D">Dustin Brisson</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.2961v1-abstract-short" style="display: inline;"> We examined the potential of antibody-functionalized single-walled carbon nanotube (SWNT) field-effect transistors (FETs) for use as a fast and accurate sensor for a Lyme disease antigen. Biosensors were fabricated on oxidized silicon wafers using chemical vapor deposition grown carbon nanotubes that were functionalized using diazonium salts. Attachment of Borrelia burgdorferi (Lyme) flagellar ant&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.2961v1-abstract-full').style.display = 'inline'; document.getElementById('1302.2961v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.2961v1-abstract-full" style="display: none;"> We examined the potential of antibody-functionalized single-walled carbon nanotube (SWNT) field-effect transistors (FETs) for use as a fast and accurate sensor for a Lyme disease antigen. Biosensors were fabricated on oxidized silicon wafers using chemical vapor deposition grown carbon nanotubes that were functionalized using diazonium salts. Attachment of Borrelia burgdorferi (Lyme) flagellar antibodies to the nanotubes was verified by Atomic Force Microscopy and electronic measurements. A reproducible shift in the turn-off voltage of the semiconducting SWNT FETs was seen upon incubation with Borrelia burgdorferi flagellar antigen, indicative of the nanotube FET being locally gated by the residues of flagellar protein bound to the antibody. This sensor effectively detected antigen in buffer at concentrations as low as 1 ng/ml, and the response varied strongly over a concentration range coinciding with levels of clinical interest. Generalizable binding chemistry gives this biosensing platform the potential to be expanded to monitor other relevant antigens, enabling a multiple vector sensor for Lyme disease. The speed and sensitivity of this biosensor make it an ideal candidate for development as a medical diagnostic test. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.2961v1-abstract-full').style.display = 'none'; document.getElementById('1302.2961v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 3 figures, appears in Biosensors and Bioelectronics</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1302.2958">arXiv:1302.2958</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1302.2958">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/nn300819s">10.1021/nn300819s <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hybrids of a Genetically Engineered Antibody and a Carbon Nanotube Transistor for Detection of Prostate Cancer Biomarkers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Lerner%2C+M+B">Mitchell B. Lerner</a>, <a href="/search/physics?searchtype=author&amp;query=DSouza%2C+J">Jimson DSouza</a>, <a href="/search/physics?searchtype=author&amp;query=Pazina%2C+T">Tatiana Pazina</a>, <a href="/search/physics?searchtype=author&amp;query=Dailey%2C+J">Jennifer Dailey</a>, <a href="/search/physics?searchtype=author&amp;query=Goldsmith%2C+B+R">Brett R. Goldsmith</a>, <a href="/search/physics?searchtype=author&amp;query=Robinson%2C+M+K">Matthew K. Robinson</a>, <a href="/search/physics?searchtype=author&amp;query=Johnson%2C+A+T+C">A. T. Charlie Johnson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1302.2958v1-abstract-short" style="display: inline;"> We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force micro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.2958v1-abstract-full').style.display = 'inline'; document.getElementById('1302.2958v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1302.2958v1-abstract-full" style="display: none;"> We developed a novel detection method for osteopontin (OPN), a new biomarker for prostate cancer, by attaching a genetically engineered single chain variable fragment (scFv) protein with high binding affinity for OPN to a carbon nanotube field-effect transistor (NTFET). Chemical functionalization using diazonium salts is used to covalently attach scFv to NT-FETs, as confirmed by atomic force microscopy, while preserving the activity of the biological binding site for OPN. Electron transport measurements indicate that functionalized NT-FET may be used to detect the binding of OPN to the complementary scFv protein. A concentration-dependent increase in the source-drain current is observed in the regime of clinical significance, with a detection limit of approximately 30 fM. The scFv-NT hybrid devices exhibit selectivity for OPN over other control proteins. These devices respond to the presence of OPN in a background of concentrated bovine serum albumin, without loss of signal. Based on these observations, the detection mechanism is attributed to changes in scattering at scFv protein-occupied defect sites on the carbon nanotube sidewall. The functionalization procedure described here is expected to be generalizable to any antibody containing an accessible amine group, and to result in biosensors appropriate for detection of corresponding complementary proteins at fM concentrations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1302.2958v1-abstract-full').style.display = 'none'; document.getElementById('1302.2958v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures, appears in ACS Nano</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10