CINXE.COM

Search results for: standing postural control

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: standing postural control</title> <meta name="description" content="Search results for: standing postural control"> <meta name="keywords" content="standing postural control"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="standing postural control" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="standing postural control"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 11126</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: standing postural control</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11126</span> Sensory Integration for Standing Postural Control Among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eglal%20Y.%20Ali">Eglal Y. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Rao"> Smita Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Anat%20Lubetzky"> Anat Lubetzky</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Ling"> Wen Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model Analysis of Variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weight visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on the stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorders" title="autism spectrum disorders">autism spectrum disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20sway" title=" postural sway"> postural sway</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20weighting%20and%20reweighting" title=" sensory weighting and reweighting"> sensory weighting and reweighting</a>, <a href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control" title=" standing postural control"> standing postural control</a> </p> <a href="https://publications.waset.org/abstracts/166946/sensory-integration-for-standing-postural-control-among-children-and-adolescents-with-autistic-spectrum-disorder-compared-with-typically-developing-children-and-adolescents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11125</span> Sensory Weighting and Reweighting for Standing Postural Control among Children and Adolescents with Autistic Spectrum Disorder Compared with Typically Developing Children and Adolescents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eglal%20Y.%20Ali">Eglal Y. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Rao"> Smita Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=Anat%20Lubetzky"> Anat Lubetzky</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen%20Ling"> Wen Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Postural abnormalities, rigidity, clumsiness, and frequent falls are common among children with autism spectrum disorders (ASD). The central nervous system’s ability to process all reliable sensory inputs (weighting) and disregard potentially perturbing sensory input (reweighting) is critical for successfully maintaining standing postural control. This study examined how sensory inputs (visual and somatosensory) are weighted and reweighted to maintain standing postural control in children with ASD compared with typically developing (TD) children. Subjects: Forty (20 (TD) and 20 ASD) children and adolescents participated in this study. The groups were matched for age, weight, and height. Participants had normal somatosensory (no somatosensory hypersensitivity), visual, and vestibular perception. Participants with ASD were categorized with severity level 1 according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) and Social Responsiveness Scale. Methods: Using one force platform, the center of pressure (COP) was measured during quiet standing for 30 seconds, 3 times first standing on stable surface with eyes open (Condition 1), followed by randomization of the following 3 conditions: Condition 2 standing on stable surface with eyes closed, (visual input perturbed); Condition 3 standing on a compliant foam surface with eyes open, (somatosensory input perturbed); and Condition 4 standing on a compliant foam surface with eyes closed, (both visual and somatosensory inputs perturbed). Standing postural control was measured by three outcome measures: COP sway area, COP anterior-posterior (AP), and mediolateral (ML) path length (PL). A repeated measure mixed model analysis of variance was conducted to determine whether there was a significant difference between the two groups in the mean of the three outcome measures across the four conditions. Results: According to all three outcome measures, both groups showed a gradual increase in postural sway from condition 1 to condition 4. However, TD participants showed a larger postural sway than those with ASD. There was a significant main effect of the condition on three outcome measures (p< 0.05). Only the COP AP PL showed a significant main effect of the group (p<0.05) and a significant group by condition interaction (p<0.05). In COP AP PL, TD participants showed a significant difference between condition 2 and the baseline (p<0.05), whereas the ASD group did not. This suggests that the ASD group did not weigh visual input as much as the TD group. A significant difference between conditions for the ASD group was seen only when participants stood on foam regardless of the visual condition, suggesting that the ASD group relied more on the somatosensory inputs to maintain the standing postural control. Furthermore, the ASD group exhibited significantly smaller postural sway compared with TD participants during standing on a stable surface, whereas the postural sway of the ASD group was close to that of the TD group on foam. Conclusion: These results suggest that participants with high-functioning ASD (level 1, no somatosensory hypersensitivity in ankles and feet) over-rely on somatosensory inputs and use a stiffening strategy for standing postural control. This deviation in the reweighting mechanism might explain the postural abnormalities mentioned above among children with ASD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorders" title="autism spectrum disorders">autism spectrum disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20sway" title=" postural sway"> postural sway</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20weighting%20and%20reweighting" title=" sensory weighting and reweighting"> sensory weighting and reweighting</a>, <a href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control" title=" standing postural control"> standing postural control</a> </p> <a href="https://publications.waset.org/abstracts/151281/sensory-weighting-and-reweighting-for-standing-postural-control-among-children-and-adolescents-with-autistic-spectrum-disorder-compared-with-typically-developing-children-and-adolescents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11124</span> The Effect of Peripheral Fatigue and Visual Feedback on Postural Control and Strength in Obese People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Azimzadeh">Elham Azimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Sepehri"> Saeedeh Sepehri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamidollah%20Hassanlouei"> Hamidollah Hassanlouei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obesity is associated with postural instability, might influence the quality of daily life, and could be considered a potential factor for falling in obese people. The fat body mass especially in the abdominal area may increase body sway. Furthermore, loss of visual feedback may induce a larger postural sway in obese people. Moreover, Muscle fatigue may impair the work capacity of the skeletal muscle and may alter joint proprioception. So, the purpose of this study was to investigate the effect of physical fatigue and visual feedback on body sway and strength of lower extremities in obese people. 12 obese (4 female, 8 male; BMI >30 kg/m2), and 12 normal weight (4 female, 8 male; BMI: 20-25 kg/m2) subjects aged 37- 47 years participated in this study. The postural stability test on the Biodex balance system was used to characterize postural control along the anterior-posterior (AP) and mediolateral (ML) directions in eyes open and eyes closed conditions and maximal voluntary contraction (MVC) of knee extensors and flexors were measured before and after the high-intensity exhausting exercise protocol on the ergometer bike to confirm the presence of fatigue. Results indicated that the obese group demonstrated significantly greater body sway, in all indices (ML, AP, overall) compared with the normal weight group (eyes open). However, when visual feedback was eliminated, fatigue impaired the balance in the overall and AP indicators in both groups; ML sway was higher only in the obese group after exerting the fatigue in the eyes closed condition. Also, maximal voluntary contraction of knee extensors was impaired in the fatigued normal group but, there was no significant impairment in knee flexors MVC in both group. According to the findings, peripheral fatigue was associated with altered postural control in upright standing when eyes were closed, and that mechanoreceptors of the feet may be less able to estimate the position of the body COM over the base of support in the loss of visual feedback. This suggests that the overall capability of the postural control system during upright standing especially in the ML direction could be lower due to fatigue in obese individuals and could be a predictor of future falls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximal%20voluntary%20contraction" title="maximal voluntary contraction">maximal voluntary contraction</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=peripheral%20fatigue" title=" peripheral fatigue"> peripheral fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20feedback" title=" visual feedback"> visual feedback</a> </p> <a href="https://publications.waset.org/abstracts/165320/the-effect-of-peripheral-fatigue-and-visual-feedback-on-postural-control-and-strength-in-obese-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11123</span> Relationship between Static Balance and Body Characteristics in the Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20W.%20Kim">J. W. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20R.%20Kwon"> Y. R. Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Ho"> Y. J. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Jeon"> H. M. Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20M.%20Eom"> G. M. Eom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the association of anthropometry with static balance in the elderly and their possible gender difference. Forty six subjects (23 men and 23 women) participated in this study. COP (Center of Pressure) was measured on a force-platform during quiet feet-together standing. As outcome measures, mean distance were derived from the COP. Weight was significantly correlated with postural variable only in the elderly men. This result suggests that the gender should be considered when normalizing postural variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20characteristics" title="body characteristics">body characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20balance" title=" postural balance"> postural balance</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20difference" title=" gender difference"> gender difference</a> </p> <a href="https://publications.waset.org/abstracts/4354/relationship-between-static-balance-and-body-characteristics-in-the-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11122</span> The Effect of Tai Chi Exercises on Postural Stability and Control in Older Patients with Knee Osteoarthritis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Ghandali">Elham Ghandali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Talebian%20Moghadam"> Saeed Talebian Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Hadian"> Mohammad Reza Hadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Gholamreza%20Olyaei"> Gholamreza Olyaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Shohreh%20Jalaie"> Shohreh Jalaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaheh%20Sajjadi"> Elaheh Sajjadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: A few studies have examined the effect of Tai Chi on balance in elderly patients with knee osteoarthritis (OA). The aim of this study was to determine the balance measures in elderly patients with knee OA after Tai Chi exercises. For this purpose, 14 females and 6 males with knee OA were chosen. The area and mean velocity of the center of pressure movements (CoP) were measured by force plate in standing positions (on foam and rigid surfaces). The measurements of area and mean velocity of CoP were performed before and after 60 min of Tai Chi sessions (twice a week for 8 weeks). Results: The results showed that the area of CoP in a standing position on a rigid surface was significantly decreased (P < 0.01) after Tai Chi exercises. Furthermore, the mean velocity of CoP was significantly decreased after Tai Chi exercises on both rigid and foam surfaces (P < 0.001). Our study also indicated that changes in surfaces (rigid and foam) would cause significant differences regarding the area of CoP in standing positions. How- ever, similar findings were not found regarding the mean velocity of CoP. Considering the effects of Tai Chi on the mean velocity of CoP, it might be concluded that motor control and Postural stability improvements have occurred. Conclusions: Therefore, based on these results, Tai Chi exercises could be recommended for elderly patients with knee OA as part of their rehabilitation and physical therapy protocols. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai%20Chi" title="Tai Chi">Tai Chi</a>, <a href="https://publications.waset.org/abstracts/search?q=balance" title=" balance"> balance</a>, <a href="https://publications.waset.org/abstracts/search?q=knee%20osteoarthritis" title=" knee osteoarthritis"> knee osteoarthritis</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20patients" title=" elderly patients"> elderly patients</a>, <a href="https://publications.waset.org/abstracts/search?q=different%20surfaces" title=" different surfaces"> different surfaces</a> </p> <a href="https://publications.waset.org/abstracts/166397/the-effect-of-tai-chi-exercises-on-postural-stability-and-control-in-older-patients-with-knee-osteoarthritis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166397.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11121</span> The Effects of a Hippotherapy Simulator in Children with Cerebral Palsy: A Pilot Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canan%20Gunay%20Yazici">Canan Gunay Yazici</a>, <a href="https://publications.waset.org/abstracts/search?q=Zubeyir%20Sar%C4%B1"> Zubeyir Sarı</a>, <a href="https://publications.waset.org/abstracts/search?q=Devrim%20Tarakci"> Devrim Tarakci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Hippotherapy considered as global techniques used in rehabilitation of children with cerebral palsy as it improved gait pattern, balance, postural control, balance and gross motor skills development but it encounters some problems (such as the excess of the cost of horses' care, nutrition, housing). Hippotherapy simulator is being developed in recent years to overcome these problems. These devices aim to create the effects of hippotherapy made with a real horse on patients by simulating the movements of a real horse. Objectives: To evaluate the efficacy of hippotherapy simulator on gross motor functions, sitting postural control and dynamic balance of children with cerebral palsy (CP). Methods: Fourteen children with CP, aged 6–15 years, seven with a diagnosis of spastic hemiplegia, five of diplegia, two of triplegia, Gross Motor Function Classification System level I-III. The Horse Riding Simulator (HRS), including four-speed program (warm-up, level 1-2-3), was used for hippotherapy simulator. Firstly, each child received Neurodevelopmental Therapy (NDT; 45min twice weekly eight weeks). Subsequently, the same children completed HRS+NDT (30min and 15min respectively, twice weekly eight weeks). Children were assessed pre-treatment, at the end of 8th and 16th week. Gross motor function, sitting postural control, dynamic sitting and standing balance were evaluated by Gross Motor Function Measure-88 (GMFM-88, Dimension B, D, E and Total Score), Trunk Impairment Scale (TIS), Pedalo® Sensamove Balance Test and Pediatric Balance Scale (PBS) respectively. Unit of Scientific Research Project of Marmara University supported our study. Results: All measured variables were a significant increase compared to baseline values after both intervention (NDT and HRS+NDT), except for dynamic sitting balance evaluated by Pedalo®. Especially HRS+NDT, increase in the measured variables was considerably higher than NDT. After NDT, the Total scores of GMFM-88 (mean baseline 62,2 ± 23,5; mean NDT: 66,6 ± 22,2; p < 0,05), TIS (10,4 ± 3,4; 12,1 ± 3; p < 0,05), PBS (37,4 ± 14,6; 39,6 ± 12,9; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 92,3 ± 5,2; p > 0,05) and Pedalo® standing balance points (80,2 ± 10,8; 82,5 ± 11,5; p < 0,05) increased by 7,1%, 2%, 3,9%, 5,2% and 6 % respectively. After HRS+NDT treatment, the total scores of GMFM-88 (mean baseline: 62,2 ± 23,5; mean HRS+NDT: 71,6 ± 21,4; p < 0,05), TIS (10,4 ± 3,4; 15,6 ± 2,9; p < 0,05), PBS (37,4 ± 14,6; 42,5 ± 12; p < 0,05), Pedalo® sitting (91,2 ± 6,7; 93,8 ± 3,7; p > 0,05) and standing balance points (80,2 ± 10,8; 86,2 ± 5,6; p < 0,05) increased by 15,2%, 6%, 7,3%, 6,4%, and 11,9%, respectively, compared to the initial values. Conclusion: Neurodevelopmental therapy provided significant improvements in gross motor functions, sitting postural control, sitting and standing balance of children with CP. When the hippotherapy simulator added to the treatment program, it was observed that these functions were further developed (especially with gross motor functions and dynamic balance). As a result, this pilot study showed that the hippotherapy simulator could be a useful alternative to neurodevelopmental therapy for the improvement of gross motor function, sitting postural control and dynamic balance of children with CP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=cerebral%20palsy" title=" cerebral palsy"> cerebral palsy</a>, <a href="https://publications.waset.org/abstracts/search?q=hippotherapy" title=" hippotherapy"> hippotherapy</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/87845/the-effects-of-a-hippotherapy-simulator-in-children-with-cerebral-palsy-a-pilot-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11120</span> Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Rusnakova">K. Rusnakova</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Gerych"> D. Gerych</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Stehlik"> M. Stehlik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body&#39;s movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroticism" title="neuroticism">neuroticism</a>, <a href="https://publications.waset.org/abstracts/search?q=conscientiousness" title=" conscientiousness"> conscientiousness</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20stability" title=" postural stability"> postural stability</a>, <a href="https://publications.waset.org/abstracts/search?q=combat%20troops" title=" combat troops "> combat troops </a> </p> <a href="https://publications.waset.org/abstracts/127668/relationship-between-personality-traits-and-postural-stability-among-czech-military-combat-troops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11119</span> The Effect of Emotional Stimuli Related to Body Imbalance in Postural Control and the Phenomenological Experience of Young Healthy Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Martinez-Pernia">David Martinez-Pernia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Rivera-Rei"> Alvaro Rivera-Rei</a>, <a href="https://publications.waset.org/abstracts/search?q=Alejandro%20Troncoso"> Alejandro Troncoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Forno"> Gonzalo Forno</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Slachevsky"> Andrea Slachevsky</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Huepe"> David Huepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Silva-Mack"> Victoria Silva-Mack</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Calderon"> Jorge Calderon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayte%20Vergara"> Mayte Vergara</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Carrera"> Valentina Carrera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Recent theories in the field of emotions have taken the relevance of motor control beyond a system related to personal autonomy (walking, running, grooming), and integrate it into the emotional dimension. However, to our best knowledge, there are no studies that specifically investigate how emotional stimuli related to motor control modify emotional states in terms of postural control and phenomenological experience. Objective: The main aim of this work is to investigate the emotions produced by stimuli of bodily imbalance (neutral, pleasant and unpleasant) in the postural control and the phenomenological experience of young, healthy adults. Methodology: 46 healthy young people are shown emotional videos (neutral, pleasant, motor unpleasant, and non-motor unpleasant) related to the body imbalance. During the period of stimulation of each of the videos (60 seconds) the participant is standing on a force platform to collect temporal and spatial data of postural control. In addition, the electrophysiological activity of the heart and electrodermal activity is recorded. In relation to the two unpleasant conditions (motor versus non-motor), a phenomenological interview is carried out to collect the subjective experience of emotion and body perception. Results: Pleasant and unpleasant emotional videos have significant changes with respect to the neutral condition in terms of greater area, higher mean velocity, and greater mean frequency power on the anterior-posterior axis. The results obtained with respect to the electrodermal response was that the pleasurable and unpleasant conditions produced a significant increase in the phasic component with respect to the neutral condition. Regarding the electrophysiology of the heart, no significant change was found in any condition. Phenomenological experiences in the two unpleasant conditions differ in body perception and the emotional meaning of the experience. Conclusion: Emotional stimuli related to bodily imbalance produce changes in postural control, electrodermal activity, and phenomenological experience. This experimental setting could be relevant to be implemented in people with motor disorders (Parkinson, Stroke, TBI) to know how emotions affect motor control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20imbalance%20stimuli" title="body imbalance stimuli">body imbalance stimuli</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion" title=" emotion"> emotion</a>, <a href="https://publications.waset.org/abstracts/search?q=phenomenological%20experience" title=" phenomenological experience"> phenomenological experience</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a> </p> <a href="https://publications.waset.org/abstracts/108464/the-effect-of-emotional-stimuli-related-to-body-imbalance-in-postural-control-and-the-phenomenological-experience-of-young-healthy-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">174</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11118</span> The Effect of Elastic-Resistance Training on Postural Control in Sedentary Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yagmur%20Kocaoglu">Yagmur Kocaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurtekin%20Erkmen"> Nurtekin Erkmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine effects of elastic resistance band training on body composition and postural control in sedentary women. Thirty-four sedentary females participated voluntarily for this study. Subjects' age was 21.88 ± 1.63 years, height was 161.50 ± 4.45 cm, and weight was 59.47 ± 7.03 kg. Participants were randomly placed into one of two groups (Experimental = 17, Control = 17). The elastic resistance training program lasted 8 weeks with 3 sessions per week. Experimental Group performed elastic resistance band training with red color for first 3 weeks, blue color for second 3 weeks and for last 2 weeks. The subjects carried out exercises 3 set, 10-15 repetitions with 15 seconds rest between exercises. The rest between sets was 30 seconds. The subjects underwent a standard warm-up for 10 minutes in every session. The elastic resistance training lasted 40 minutes for each session. After the training, all subjects performed a standard cool down for 10 minutes in each session. After and before 8 weeks training period, all subjects in experimental group and control group participated body composition and postural control measurements. Independent t-Test and Mann Whitney U Test were conducted to compare differences between experimental and control groups. Paired t-Test and Wilcoxon Z Test were used to compare differences between pre and posttests. There is no significant difference between pre and posttests in BMI (p>0.05). After the elastic resistance training, postural control scores and body fat significantly decreased in experimental group (p<0.05). In conclusion, it can be concluded that elastic resistance training improves postural control and body composition in sedentary women. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20resistance%20band" title=" elastic resistance band"> elastic resistance band</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a>, <a href="https://publications.waset.org/abstracts/search?q=sedentary%20women" title=" sedentary women"> sedentary women</a> </p> <a href="https://publications.waset.org/abstracts/62260/the-effect-of-elastic-resistance-training-on-postural-control-in-sedentary-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11117</span> Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Barbolyas">Boris Barbolyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Kristina%20Buckova"> Kristina Buckova</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Volensky"> Tomas Volensky</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Belavy"> Cyril Belavy</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladislav%20Dedik"> Ladislav Dedik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant&#39;s body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (<em>&lambda;</em>) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=center%20of%20pressure%20%28CoP%29" title="center of pressure (CoP)">center of pressure (CoP)</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20developed%20statokinesigram%20trajectory%20%28MDST%29" title=" method of developed statokinesigram trajectory (MDST)"> method of developed statokinesigram trajectory (MDST)</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20of%20postural%20system%20behavior" title=" model of postural system behavior"> model of postural system behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=retroreflective%20marker%20data" title=" retroreflective marker data"> retroreflective marker data</a> </p> <a href="https://publications.waset.org/abstracts/36965/comparison-of-developed-statokinesigram-and-marker-data-signals-by-model-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11116</span> Postural Orthostatic Tachycardia Syndrome: A Case Study and Discussion of Its Epidemiology, Pathophysiology, Diagnosis, and Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zayd%20Parekh">Zayd Parekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Amish%20Prasad"> Amish Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Baraa%20Souman"> Baraa Souman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Postural orthostatic tachycardia syndrome (POTS) is characterized by orthostatic intolerance due to an exaggerated tachycardia in response to standing upright. This exaggerated orthostatic tachycardia is defined as the heart rate (HR) rising 30 beats above a baseline value while supine or seated within ten minutes. The tachycardia can lead to symptoms of orthostatic intolerance such as palpitations, lightheadedness, exercise intolerance, fatigue, and anxiety. POTS can go undiagnosed for many years due to its similarities with other cardiac and psychiatric conditions and nonspecific presentation, making it crucial to raise awareness for it in the medical field. The following case study discusses a 30-year-old female who was evaluated in the emergency room several times before being referred to the clinic for POTS. An overview of what tests are performed with this patient is also provided, highlighting the diagnostic work-up for POTS and the process of ruling out other differentials being considered. Finally, the epidemiology, the various theories regarding its pathophysiology, the diagnostic process, and pharmacological and non-pharmacological management for POTS are reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=orthostatic%20intolerance" title="orthostatic intolerance">orthostatic intolerance</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20orthostatic%20tachycardia%20syndrome" title=" postural orthostatic tachycardia syndrome"> postural orthostatic tachycardia syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=syncope" title=" syncope"> syncope</a>, <a href="https://publications.waset.org/abstracts/search?q=tachycardia" title=" tachycardia"> tachycardia</a> </p> <a href="https://publications.waset.org/abstracts/170677/postural-orthostatic-tachycardia-syndrome-a-case-study-and-discussion-of-its-epidemiology-pathophysiology-diagnosis-and-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11115</span> Changes in Postural Stability after Coordination Exercise</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Struh%C3%A1r">Ivan Struhár</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Sebera"> Martin Sebera</a>, <a href="https://publications.waset.org/abstracts/search?q=Lenka%20Dovrt%C4%9Blov%C3%A1"> Lenka Dovrtělová</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to find out if the special type of exercise with elastic cord can improve the level of postural stability. The exercise programme was conducted twice a week for 3 months. The participants were randomly divided into an experimental group and a control group. The electronic balance board was used for testing of postural stability. All participants trained for 18 hours at the time of experiment without any special form of coordination programme. The experimental group performed 90 minutes plus of coordination exercise. The result showed that differences between pre-test and post-test occurred in the experimental group. It was used the nonparametric Wilcoxon t-test for paired samples (p=0.012; the significance level 95%). We calculated effect size by Cohen´s d. In the experimental group d is 1.96 which indicates a large effect. In the control group d is 0.04 which confirms no significant improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20board" title="balance board">balance board</a>, <a href="https://publications.waset.org/abstracts/search?q=balance%20training" title=" balance training"> balance training</a>, <a href="https://publications.waset.org/abstracts/search?q=coordination" title=" coordination"> coordination</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/7880/changes-in-postural-stability-after-coordination-exercise" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11114</span> Effects of Wearable Garments on Postural Regulation in Community-Dwelling Elderly Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mei%20Teng%20Woo">Mei Teng Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Keith%20Davids"> Keith Davids</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarmo%20Liukkonen"> Jarmo Liukkonen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jia%20Yi%20Chow"> Jia Yi Chow</a>, <a href="https://publications.waset.org/abstracts/search?q=Timo%20Jaakkola"> Timo Jaakkola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wearable garments such as tapes, compression garments, and braces could improve proprioception and reduced postural sway. The aim of this study was to examine the effects of wearable garments on postural regulation in a sample of community-dwelling elderly individuals, aged 65 years. It was hypothesized that wearable garments such as socks would provide stimulation to lower leg mechanoreceptors, and help participants achieve better postural regulation. Participants (N=63) performed a 30-s Romberg balance test protocol under four conditions (barefoot; wearing commercial socks; wearing clinical compression socks; wearing non-clinical compression socks), in a counterbalanced order, with four levels of performance difficulty: (1) standing on a stable surface with open eyes (SO); (2) a stable surface with closed eyes (SC); (3) a foam surface with open eyes (FO); and (4) a foam surface with closed eyes (FC). Centre of pressure (CoP) measurements included postural sway area (C90 area), trace length (TL) and sway velocity. Thirty-five participants (55.6%) showed positive effects of wearing the socks (responded group). In the responded group, it was revealed that socks showed significant differences in SO, SC and FO conditions for the two CoP measurements - TL and sway velocity (p < 0.05). In contrast, in the non-responded group, barefoot condition significantly decreased the TL and velocity in the SO condition. From the positive effects observed in the responded group, it is possible that wearable garments provide sensory cues that could interact with a biological cueing system to enhance performance in the postural regulation system. This study suggests that individuals respond to the socks treatments differently and future research should be undertaken to examine the factors that benefited the responded group of participants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community-dwelling" title="community-dwelling">community-dwelling</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20adults" title=" elderly adults"> elderly adults</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20regulation" title=" postural regulation"> postural regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=wearable%20garments" title=" wearable garments"> wearable garments</a> </p> <a href="https://publications.waset.org/abstracts/49132/effects-of-wearable-garments-on-postural-regulation-in-community-dwelling-elderly-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11113</span> Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwa%20Elshorbagy">Radwa Elshorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Elden%20Balbaa"> Alaa Elden Balbaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayad"> Khaled Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Reda"> Waleed Reda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System. Results: Repeated measures MANOVA was used to compare between and within group differences, in group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p=0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to rely more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hip%20strategy" title="hip strategy">hip strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=ankle%20strategy" title=" ankle strategy"> ankle strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a> </p> <a href="https://publications.waset.org/abstracts/49734/hip-strategy-in-dynamic-postural-control-in-recurrent-ankle-sprain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11112</span> Effects of Kinesio Taping on Postural Stability in Young Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Gulsen">Mustafa Gulsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nihan%20Pekyavas"> Nihan Pekyavas</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20At%C4%B1c%C4%B1"> Emine Atıcı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The aim of this study is to investigate the effects of Kinesio taping on postural stability and in young soccer players. Subjects and Methods: 62 volunteered soccer players from Cayyolu Sports Club were included in our study. Permissions were also taken from the club directors about the inclusion of their players to our study. Soccer players between the age of 12 and 16 were included in our study. Players that had previous injury on lower extremities were excluded from the study. Players were randomly divided into two groups: Kinesio taping (KT) (n=31), and control group (n = 31). KT application including gastrocnemius and quadriceps femoris muscle facilitation techniques were applied to the first group. A rest time for 45 minutes was given in order to see the best effectiveness of the tape. The second group was set as the control group and no application was made. All participants were assessed before the application and 45 minutes later. In order to provide the double-blind design of the study, an experienced physiotherapist has done the assessments and another experienced physiotherapist has done the taping. The patients were randomly assigned to one of the two groups using an online random allocation software program. Postural stability was assessed by using Tetrax Interactive Balance System. Thermographic assessment was done by using FLIR E5 (FLIR Systems AB, Sweden) thermal camera in order to see which muscles have the most thermal activity while maintaining postural stability. Results: Statistically significant differences were found in all assessment parameters in both Kinesio Taping and control groups (all p<0.05) except thermal imaging of dominant gastrocnemius muscle results (p=0.668) (Table 1). In comparison of the two groups, statistically significant differences were found in all parameters (all p<0.05). Conclusion: In this study, we investigated the effects of Kinesio taping on postural stability in young soccer players and found that KT application on Quadriceps and Gastrocnemius muscles may have decreased the risk of falling more than the control group. According to thermal imaging assessments, both Quadriceps and Gastrocnemius muscles may be active in maintaining postural stability but in KT group, the temperature of these muscles are higher which leads us to think that they are more activated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kinesio%20taping" title="Kinesio taping">Kinesio taping</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20risk" title=" fall risk"> fall risk</a>, <a href="https://publications.waset.org/abstracts/search?q=muscle%20temperature" title=" muscle temperature"> muscle temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20stability" title=" postural stability"> postural stability</a> </p> <a href="https://publications.waset.org/abstracts/67552/effects-of-kinesio-taping-on-postural-stability-in-young-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11111</span> The Contribution of Hip Strategy in Dynamic Postural Control in Recurrent Ankle Sprain</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radwa%20El%20Shorbagy">Radwa El Shorbagy</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20El%20Din%20Balbaa"> Alaa El Din Balbaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Ayad"> Khaled Ayad</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Reda"> Waleed Reda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Ankle sprain is a common lower limb injury that is complicated by high recurrence rate. The cause of recurrence is not clear; however, changes in motor control have been postulated. Objective: to determine the contribution of proximal hip strategy to dynamic postural control in patients with recurrent ankle sprain. Methods: Fifteen subjects with recurrent ankle sprain (group A) and fifteen healthy control subjects (group B) participated in this study. Abductor-adductors as well as flexor-extensor hip musculatures control was abolished by fatigue using the Biodex Isokinetic System. Dynamic postural control was measured before and after fatigue by the Biodex Balance System Results: Repeated measures MANOVA was used to compare between and within group differences, In group A fatiguing of hip muscles (flexors-extensors and abductors-adductors) increased overall stability index (OASI), anteroposterior stability index (APSI) and mediolateral stability index (MLSI) significantly (p= 0.00) whereas; in group B fatiguing of hip flexors-extensors increased significantly OASI and APSI only (p= 0.017, 0.010; respectively) while fatiguing of hip abductors-adductors has no significant effect on these variables. Moreover, patients with ankle sprain had significantly lower dynamic balance after hip muscles fatigue compared to the control group. Specifically, after hip flexor-extensor fatigue, the OASI, APSI and MLSI were increased significantly than those of the control values (p= 0.002, 0.011, and 0.003, respectively) whereas fatiguing of hip abductors-adductors increased significantly in OASI and APSI only (p=0.012, 0.026, respectively). Conclusion: To maintain dynamic balance, patients with recurrent ankle sprain seem to relay more on the hip strategy. This means that those patients depend on a top to down instead of down to top strategy clinical relevance: patients with recurrent ankle sprain less efficient in maintaining the dynamic postural control due to the change in motor strategies. Indicating that health care providers and rehabilitation specialists should treat CAI as a global/central and not just as a simple local or peripheral injury. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ankle%20sprain" title="ankle sprain">ankle sprain</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20hip%20muscles" title=" fatigue hip muscles"> fatigue hip muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title=" dynamic balance"> dynamic balance</a> </p> <a href="https://publications.waset.org/abstracts/22951/the-contribution-of-hip-strategy-in-dynamic-postural-control-in-recurrent-ankle-sprain" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11110</span> The Effect and Durability of Functional Exercises on Balance Evaluation Systems Test (Bestest) in Intellectual Disabilities: A Preliminary Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeid%20Bahiraei">Saeid Bahiraei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Daneshmandi"> Hassan Daneshmandi </a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Asghar%20%20Norasteh"> Ali Asghar Norasteh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study aims at the effects of 8 weeks of selected corrective exercise training in stable and unstable levels on the postural control people with ID. Problems and limitations of movement in individuals with intellectual disability (ID) are highly common, which particularly may cause the loss of basic performance and limitation of the person's independence in doing their daily activities. In the present study, thirty-four young adult intellectual disabilities were selected randomly and divided into three groups. In order to measure the balance variable indicators, BESTest was used. The intervention group did the selected performance exercise in 8 weeks (3 times of 45 to 50 minutes a week). Meanwhile, the control group did not experience any kind of exercise. Statistical analysis was performed in SPSS on a significant level (p<0/05). The results showed the compromise between time and the group in all the BESTest tests is significant (P=0/001). The results of the research test compared to the studied groups with time measurements showed that there is a significant difference in the unstable group in Biomechanical constraints (P<0/05). And also, a significant difference exists in the stable and unstable level instability limits/Vertically, Postural responses, and Anticipatory postural adjustment variables (except for the follow-up and pre-test levels), Stability in Gait and Sensory Orientation in the pre-test, post-test, and follow up- pre-test stage of the test (P<0/05). In the comparison between the times of measurement with the groups under study, the results showed that Biomechanical Constraints, Anticipatory Postural adjustment and Postural responses at the pre-test-follow upstage, there was a significant difference between unstable-stable and unstable-control groups (P<0/05), it was also significant between all groups in Stability Limits/Vertically, Sensory Orientation, Stability in Gait and Overall stability index variables (P<0/05). The findings showed that the practice group at an unstable level has move improvement compared to the practice group at a stable level. In conclusion, this study presents evidence that shows selected performative practices can be recognized as a comprehensive and effective mediator in the betterment and improvement of the balance in intellectually disabled people and also affect the performative and moving activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intellectual%20disability" title="intellectual disability">intellectual disability</a>, <a href="https://publications.waset.org/abstracts/search?q=BSETest" title=" BSETest"> BSETest</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a> </p> <a href="https://publications.waset.org/abstracts/135299/the-effect-and-durability-of-functional-exercises-on-balance-evaluation-systems-test-bestest-in-intellectual-disabilities-a-preliminary-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11109</span> The Effect of Postural Sway and Technical Parameters of 8 Weeks Technical Training Performed with Restrict of Visual Input on the 10-12 Ages Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurtekin%20Erkmen">Nurtekin Erkmen</a>, <a href="https://publications.waset.org/abstracts/search?q=Turgut%20Kaplan"> Turgut Kaplan</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Taskin"> Halil Taskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Sanioglu"> Ahmet Sanioglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokhan%20Ipekoglu"> Gokhan Ipekoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the effects of an 8 week soccerspecific technical training with limited vision perception on postural control and technical parameters in 10-12 aged soccer players. Subjects in this study were 24 male young soccer players (age: 11.00 ± 0.56 years, height: 150.5 ± 4.23 cm, body weight: 41.49 ± 7.56 kg). Subjects were randomly divided as two groups: Training and control. Balance performance was measured by Biodex Balance System (BBS). Short pass, speed dribbling, 20 m speed with ball, ball control, juggling tests were used to measure soccer players’ technical performances with a ball. Subjects performed soccer training 3 times per week for 8 weeks. In each session, training group with limited vision perception and control group with normal vision perception committed soccer-specific technical drills for 20 min. Data analyzed with t-test for independent samples and Mann-Whitney U between groups and paired t-test and Wilcoxon test between pre-posttests. No significant difference was found balance scores and with eyes open and eyes closed and LOS test between training and control groups after training (p>0.05). After eight week of training there are no significant difference in balance score with eyes open for both training and control groups (p>0.05). Balance scores decreased in training and control groups after the training (p<0.05). The completion time of LOS test shortened in both training and control groups after training (p<0.05). The training developed speed dribbling performance of training group (p<0.05). On the other hand, soccer players’ performance in training and control groups increased in 20 m speed with a ball after eight week training (p<0.05). In conclusion; the results of this study indicate that soccer-specific training with limited vision perception may not improves balance performance in 10-12 aged soccer players, but it develops speed dribbling performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20soccer%20players" title="Young soccer players">Young soccer players</a>, <a href="https://publications.waset.org/abstracts/search?q=vision%20perception" title=" vision perception"> vision perception</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a>, <a href="https://publications.waset.org/abstracts/search?q=technical" title=" technical"> technical</a> </p> <a href="https://publications.waset.org/abstracts/17464/the-effect-of-postural-sway-and-technical-parameters-of-8-weeks-technical-training-performed-with-restrict-of-visual-input-on-the-10-12-ages-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11108</span> The Effect of Isokinetic Fatigue of Ankle, Knee, and Hip Muscles on the Dynamic Postural Stability Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoumeh%20Shojaei">Masoumeh Shojaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalie%20Gedayloo"> Natalie Gedayloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Sarshin"> Amir Sarshin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present study was to investigate the effect of Isokinetic fatigue of muscles around the ankle, knee, and hip on the indicators of dynamic postural stability. Therefore, 15 female university students (age 19.7± 0.6 years old, weight 54.6± 9.4 kg, and height 163.9± 5.6 cm) participated in within-subjects design for 5 different days. In the first session, the postural stability indices (time to stabilization after jump-landing) without fatigue were assessed by force plate and in each next sessions, one of muscle groups of the lower limb including the muscles around ankles, knees, and hip was randomly exhausted by Biodex Isokinetic dynamometer and the indices were assessed immediately after the fatigue of each muscle group. The method involved landing on a force plate from a dynamic state, and transitioning balance into a static state. Results of ANOVA with repeated measures indicated that there was no significant difference between the time to stabilization (TTS) before and after Isokinetic fatigue of the muscles around the ankle, knee and hip in medial – lateral direction (p > 0.05), but in the anterior – posterior (AP) direction, the difference was statistically significant (p < 0.05). Least Significant Difference (LSD) post hoc test results also showed that there was significant difference between TTS in knee and hip muscles before and after isokinetic fatigue in AP direction. In the other hand knee and hip muscles group were affected by isokinetic fatigue only in AP surface (p < 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20balance" title="dynamic balance">dynamic balance</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20limb%20muscles" title=" lower limb muscles"> lower limb muscles</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a> </p> <a href="https://publications.waset.org/abstracts/72339/the-effect-of-isokinetic-fatigue-of-ankle-knee-and-hip-muscles-on-the-dynamic-postural-stability-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11107</span> A Versatile Standing Cum Sitting Device for Rehabilitation and Standing Aid for Paraplegic Patients </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sasibhushan%20Yengala">Sasibhushan Yengala</a>, <a href="https://publications.waset.org/abstracts/search?q=Nelson%20Muthu"> Nelson Muthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Subramani%20Kanagaraj"> Subramani Kanagaraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The abstract reports on the design related to a modular and affordable standing cum sitting device to meet the requirements of paraplegic patients of the different physiques. Paraplegic patients need the assistance of an external arrangement to the lower limbs and trunk to help patients adopt the correct posture while standing abreast gravity. This support can be from a tilt table or a standing frame which the patient can use to stay in a vertical posture. Standing frames are devices fitting to support a person in a weight-bearing posture. Commonly, these devices support and lift the end-user in shifting from a sitting position to a standing position. The merits of standing for a paraplegic patient with a spinal injury are numerous. Even when there is limited control on muscles that ordinarily support the user using the standing frame in a vertical position, the standing stance improves the blood pressure, increases bone density, improves resilience and scope of motion, and improves the user's feelings of well-being by letting the patient stand. One limitation with standing frames is that these devices are typically function definitely; cannot be used for different purposes. Therefore, users are often compelled to purchase more than one of these devices, each being purposefully built for definite activities. Another concern frequent in standing frames is manoeuvrability; it is crucial to provide a convenient adjustment scope for all users. Thus, there is a need to provide a standing frame with multiple uses that can be economical for a larger population. There is also a need to equip added readjustment means in a standing frame to lessen the shear and to accommodate a broad range of users. The proposed Versatile Standing cum Sitting Device (VSD) is designed to change from standing to a comfortable sitting position using a series of mechanisms. First, a locking mechanism is provided to lock the VSD in a standing stance. Second, a dampening mechanism is provided to make sure that the VSD shifts from a standing to a sitting position gradually when the lock mechanism gets disengaged. An adjustment option is offered for the height of the headrest via the use of lock knobs. This device can be used in clinics for rehabilitation purposes irrespective of patient's anthropometric data due to its modular adjustments. It can facilitate the patient's daily life routine while in therapy and giving the patient the comfort to sit when tired. The device also provides the availability of rehabilitation to a common person. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraplegic" title="paraplegic">paraplegic</a>, <a href="https://publications.waset.org/abstracts/search?q=rehabilitation" title=" rehabilitation"> rehabilitation</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injury" title=" spinal cord injury"> spinal cord injury</a>, <a href="https://publications.waset.org/abstracts/search?q=standing%20frame" title=" standing frame"> standing frame</a> </p> <a href="https://publications.waset.org/abstracts/138017/a-versatile-standing-cum-sitting-device-for-rehabilitation-and-standing-aid-for-paraplegic-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11106</span> Effect of Whole Body Vibration on Posture Stability and Planter Pressure in Patients with Diabetic Neuropathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Atya">Azza M. Atya</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20M.%20Nasser"> Mahmoud M. Nasser </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background/ /Significance: Peripheral neuropathy is one of the long term serious complications of diabetes, which may attribute to postural instability and alteration of planter pressure. Whole body vibration (WBV) is a somatosensory stimulation type of exercise that has been emerged in sport training and rehabilitation of neuromuscular disorders. Purpose: The aim of this study was to investigate the effect of whole Body Vibration on antroposterior (AP), mediolateral (ML) posture stability and planter foot pressure in patients with diabetic neuropathy. Subjects: forty diabetic patients with moderate peripheral neuropathy aged from 35 to 50 years, were randomly assigned to WBV group (n=20) and control group (n=20). Methods and Materials: the WBV intervention consisted of three session weekly for 8 weeks (frequency 20 Hz, peak-to peak displacement 4mm, acceleration 3.5 g). Biodex balance system was used for postural stability assessment and the foot scan plate was used to measure the mean peak pressure under the first and lesser metatarsals. The main Outcome measures were antroposterior stability index (APSI), mediolateral stability index (MLSI), overall stability index (OSI),and mean peak foot pressure. Analyses: Statistical analysis was performed using the SPSS software package (SPSS for Windows Release 18.0). T-test was used to compare between the pre- and post-treatment values between and within groups. Results: For the 40 study participants (18male and 22 females) there were no between-group differences at baseline. At the end of 8 weeks, Subjects in WBV group experienced significant increase in postural stability with a reduction of mean peak of planter foot pressure (P<0.05) compared with the control group. Conclusion: The result suggests that WBV is an effective therapeutic modality for increasing postural stability and reducing planter pressure in patients with diabetic neuropathy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whole%20body%20vibration" title="whole body vibration">whole body vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetic%20neuropathy" title=" diabetic neuropathy"> diabetic neuropathy</a>, <a href="https://publications.waset.org/abstracts/search?q=posture%20stability" title=" posture stability"> posture stability</a>, <a href="https://publications.waset.org/abstracts/search?q=foot%20pressure" title=" foot pressure"> foot pressure</a> </p> <a href="https://publications.waset.org/abstracts/17399/effect-of-whole-body-vibration-on-posture-stability-and-planter-pressure-in-patients-with-diabetic-neuropathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11105</span> Fiber Braggs Grating Sensor Based Instrumentation to Evaluate Postural Balance and Stability on an Unstable Platform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Chethana">K. Chethana</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Guru%20Prasad"> A. S. Guru Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Vikranth"> H. N. Vikranth</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Varun"> H. Varun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Omkar"> S. N. Omkar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Asokan"> S. Asokan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a novel application of Fiber Braggs Grating (FBG) sensors on an unstable platform to assess human postural stability and balance. The FBG sensor based Stability Analyzing Device (FBGSAD) developed demonstrates the applicability of FBG sensors in the measurement of plantar strain to assess the postural stability of subjects on unstable platforms during different stances in eyes open and eyes closed conditions on a rocker board. Comparing the Centre of Gravity (CG) variations measured on the lumbar vertebra of subjects using a commercial accelerometer along with FBGSAD validates the study. The results obtained depict qualitative similarities between the data recorded by both FBGSAD and accelerometer, illustrating the reliability and consistency of FBG sensors in biomechanical applications for both young and geriatric population. The developed FBGSAD simultaneously measures plantar strain distribution and postural stability and can serve as a tool/yardstick to mitigate space motion sickness, identify individuals who are susceptible to falls and to qualify subjects for balance and stability, which are important factors in the selection of certain unique professionals such as aircraft pilots, astronauts, cosmonauts etc. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomechanics" title="biomechanics">biomechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20bragg%20gratings" title=" fiber bragg gratings"> fiber bragg gratings</a>, <a href="https://publications.waset.org/abstracts/search?q=plantar%20strain%20measurement" title=" plantar strain measurement"> plantar strain measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20stability%20analysis" title=" postural stability analysis"> postural stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/20841/fiber-braggs-grating-sensor-based-instrumentation-to-evaluate-postural-balance-and-stability-on-an-unstable-platform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">572</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11104</span> The Impact of Internal Dynamics of Standing Committees on Legislative Productivity in the Korean National Assembly </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lee%20Da%20Hyun">Lee Da Hyun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to explore the relation between the internal dynamics of standing committees and legislative productivity of the Korean National Assembly using statistical methods. Studies on legislation in South Korea have been largely revolved around political parties due to the uniqueness of its political context including strong party cohesion and party’s nomination right. However, as standing committees have been at the center of legislatures since the 6th National Assembly, there is a growing need for studying the operation and effectiveness of standing committees in legislation process. Thus, through panel data analysis for the sixteen standing committees across the four terms of the Korean National Assembly-from the 16th to the 19th-this article attempts to reveal that legislators’ bill passing rate is not a sole function of factors pertaining to political party as the existing studies have believed. By measuring the ideological distribution within a committee and the bill passing rate, this article provides differentiated interpretation from established theories of standing committees and presents compelling evidence describing complex interactions and independent operation of the standing committees with the subsequent legislative results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collective%20decision-making" title="collective decision-making">collective decision-making</a>, <a href="https://publications.waset.org/abstracts/search?q=lawmaking" title=" lawmaking"> lawmaking</a>, <a href="https://publications.waset.org/abstracts/search?q=legislation" title=" legislation"> legislation</a>, <a href="https://publications.waset.org/abstracts/search?q=political%20polarization" title=" political polarization"> political polarization</a>, <a href="https://publications.waset.org/abstracts/search?q=standing%20committees" title=" standing committees"> standing committees</a> </p> <a href="https://publications.waset.org/abstracts/91523/the-impact-of-internal-dynamics-of-standing-committees-on-legislative-productivity-in-the-korean-national-assembly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11103</span> Evaluation of Postural Stability in Female Patients with Structural Scoliosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20M.%20R.%20Koura">Ghada M. R. Koura</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20M.%20F.%20El%20Shiwi"> Ahmed M. F. El Shiwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: structural scoliosis is a twisting deformity in the curve of vertebral column to the lateral side with simultaneous rotation of the vertebrae, which occurs during the growing years from 10 years to the puberty. Purpose: Studies investigating balance problems specific to scoliotic patients showed that those patients reveal variable balance abnormalities. In this study we evaluated the difference in postural stability responses between female patients (students, office worker and shish weapon players) with structural scoliosis and normal subjects. Methods: sixty subjects participated in this study. Thirty female patients with structural scoliosis with a mean age of (19.5 ± 3.26) years, with Cobb's angle ranged from 20º to 40° in the major curves, and thirty healthy female subjects with a mean age of (19.36 ± 2.41) years. Postural stability of both groups were evaluated by the Biodex Stability System. Results: There was no significant difference between both groups in dynamic balance test. Interpretation/Conclusion: As there was no significant difference between both groups in balance response, it is not recommended to add balance training as an extra physical therapy program for AIS female patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20scoliosis" title="structural scoliosis">structural scoliosis</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20stability" title=" postural stability"> postural stability</a>, <a href="https://publications.waset.org/abstracts/search?q=female%20patients" title=" female patients"> female patients</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a> </p> <a href="https://publications.waset.org/abstracts/23327/evaluation-of-postural-stability-in-female-patients-with-structural-scoliosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23327.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11102</span> Nonlinear Analysis of Postural Sway in Multiple Sclerosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hua%20Cao">Hua Cao</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Peyrodie"> Laurent Peyrodie</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Agnani"> Olivier Agnani</a>, <a href="https://publications.waset.org/abstracts/search?q=Cecile%20Donze"> Cecile Donze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple sclerosis (MS) is a disease, which affects the central nervous system, and causes balance problem. In clinical, this disorder is usually evaluated using static posturography. Some linear or nonlinear measures, extracted from the posturographic data (i.e. center of pressure, COP) recorded during a balance test, has been used to analyze postural control of MS patients. In this study, the trend (TREND) and the sample entropy (SampEn), two nonlinear parameters were chosen to investigate their relationships with the expanded disability status scale (EDSS) score. Forty volunteers with different EDSS scores participated in our experiments with eyes open (EO) and closed (EC). TREND and two types of SampEn (SampEn1 and SampEn2) were calculated for each combined COP’s position signal. The results have shown that TREND had a weak negative correlation to EDSS while SampEn2 had a strong positive correlation to EDSS. Compared to TREND and SampEn1, SampEn2 showed a better significant correlation to EDSS and an ability to discriminate the MS patients in the EC case. In addition, the outcome of the study suggests that the multi-dimensional nonlinear analysis could provide some information about the impact of disability progression in MS on dynamics of the COP data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title=" multiple sclerosis"> multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20sway" title=" postural sway"> postural sway</a> </p> <a href="https://publications.waset.org/abstracts/40541/nonlinear-analysis-of-postural-sway-in-multiple-sclerosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11101</span> Postural Balance And Falls Risk In Persons With Multiple Sclerosis: Effect Of Gender Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonda%20Jallouli">Sonda Jallouli</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20Ghroubi"> Sameh Ghroubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Sakka"> Salma Sakka</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmoneem%20Yahia"> Abdelmoneem Yahia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Habib%20Elleuch"> Mohamed Habib Elleuch</a>, <a href="https://publications.waset.org/abstracts/search?q=Imen%20Ben%20Dhia"> Imen Ben Dhia</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Mhiri"> Chokri Mhiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20Hammouda"> Omar Hammouda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The pathophysiology, prevalence, and progression of MS are gender dependent. Indeed, the inflammation is more pronounced in women, but the neurodegeneration is more important in men. In addition, women have more sleep disorders while men suffer more from cognitive decline. These non-physical disorders can negatively affect postural balance and fall risk. However, no study has examined the difference between men and women in those physical parameters in MS. Our objective was to determine the effect gender difference on postural balance and fall risk in MS persons. Methods: Eight men and twelve women with relapsing remitting-MS participated in this study. The assessment includes a posturographic examination to assess static (with eyes opened (EO) and eyes closed (EC)) and dynamic (with EO) postural balance. Unipedal balance and fall risk were assessed by a clinical unipedal balance test and the Four Square Step Test, respectively. Sleep quality was assessed using Spiegel's questionnaire, and cognitive assessment was performed using the Montreal Cognitive Assessment (MoCA) and the Simple Reaction Time Test. Results: Compared to men, women showed an increase in CdPVm in static bipedal condition with EC (p=0.037; d=0.71) and a decrease in MoCA scores (p=0.028; d=1.06). No gender differences were found in the other tests. Discussion: Static postural balance was more impaired in women compared to men. This result could be explained by the more pronounced cognitive decline observed in women compared to men. Indeed, cognitive disorders have been shown to be predictive factors of postural balance impairment. Conclusion: women were less stable than men in the static condition, possibly due to their lower cognitive performance. This gender difference could be taken into account by therapists in training programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20sclerosis" title="multiple sclerosis">multiple sclerosis</a>, <a href="https://publications.waset.org/abstracts/search?q=bipedal%20postural%20balance" title=" bipedal postural balance"> bipedal postural balance</a>, <a href="https://publications.waset.org/abstracts/search?q=fall%20risk" title=" fall risk"> fall risk</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep%20disturbance" title=" sleep disturbance"> sleep disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20deficiency" title=" cognitive deficiency"> cognitive deficiency</a> </p> <a href="https://publications.waset.org/abstracts/148745/postural-balance-and-falls-risk-in-persons-with-multiple-sclerosis-effect-of-gender-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11100</span> Gastrointestinal Disturbances in Postural Orthostatic Tachycardia Syndrome (POTS)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chandralekha%20Ashangari">Chandralekha Ashangari</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Suleman"> Amer Suleman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Purpose: The Postural Orthostatic Tachycardia Syndrome (POTS) affects primarily young women. POTS is a form of dysautonomia that is estimated to impact between 1,000,000 and 3,000,000 Americans, and millions more around the world. POTS is a form of orthostatic intolerance that is associated with many Gastrointestinal disturbances. The aim of this study is to determine the Gastrointestinal disturbances in Postural Orthostatic Tachycardia Syndrome (POTS) patients.2. Methods: 249 patients referred to our clinic from January to November with POTS. Reviewed the medical records of 249 POTS patients and gastrointestinal symptoms. Results: however out of 249 patients, 226 patients are female (90.76%; average age 32.69), 23 patients are male (9.24%; average age 27.91) Data analysis: Out of 249 patients 189 patients (76%) had vomiting or nausea, 150 patients (60%) had irritable bowel syndrome, 128 patients (51%) had bloating, 125 patients (50%) had constipation , 80 patients (32%) had abdominal pain, 56 patients (22%) had delayed gastric emptying, 24 patients (10%) had lactose intolerance, 8 patients (3%) had Gastroesophageal reflux disease, 5 patients (2%) had Iron deficiency anemia, 6 patients (2%) had Peptic ulcer disease, 4 patients (2%) had Celiac Disease. Conclusion: Patients with POTS have a very high prevalence of gastrointestinal symptoms however the majority of abnormalities appear to be motility related. Motility testing should be performed be performed in POTS patients. The diagnostic yield of endoscopic procedures appears to be low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gastrointestinal%20disturbances" title="gastrointestinal disturbances">gastrointestinal disturbances</a>, <a href="https://publications.waset.org/abstracts/search?q=Postural%20Orthostatic%20Tachycardia%20Syndrome%20%28POTS%29" title=" Postural Orthostatic Tachycardia Syndrome (POTS)"> Postural Orthostatic Tachycardia Syndrome (POTS)</a>, <a href="https://publications.waset.org/abstracts/search?q=celiac%20disease" title=" celiac disease"> celiac disease</a>, <a href="https://publications.waset.org/abstracts/search?q=POTS%20patients" title=" POTS patients"> POTS patients</a> </p> <a href="https://publications.waset.org/abstracts/25781/gastrointestinal-disturbances-in-postural-orthostatic-tachycardia-syndrome-pots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11099</span> The Effect of Balance Training on Stable and Unstable Surfaces under Cognitive Dual-Task Condition on the Two Directions of Body Sway, Functional Balance and Fear of Fall in Non-Fallers Older Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Azimzadeh">Elham Azimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahimeh%20Khorshidi"> Fahimeh Khorshidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Farsi"> Alireza Farsi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Balance impairment and fear of falling in older adults may reduce their quality of life. Reactive balance training could improve rapid postural responses and fall prevention in the elderly during daily tasks. Performing postural training and simultaneously cognitive dual tasks could be similar to the daily circumstances. Purpose: This study aimed to determine the effect of balance training on stable and unstable surfaces under dual cognitive task conditions on postural control and fear of falling in the elderly. Methods: Thirty non-fallers of older adults (65-75 years) were randomly assigned to two training groups: stable-surface (n=10), unstable-surface (n=10), or a control group (n=10). The intervention groups underwent six weeks of balance training either on a stable (balance board) or an unstable (wobble board) surface while performing a cognitive dual task. The control group received no balance intervention. COP displacements in the anterioposterior (AP) and mediolateral (ML) directions using a computerized balance board, functional balance using TUG, and fear of falling using FES-I were measured in all participants before and after the interventions. Summary of Results: Mixed ANOVA (3 groups * 2 times) with repeated measures and post hoc test showed a significant improvement in both intervention groups in AP index (F= 11/652, P= 0/0002) and functional balance (F= 9/961, P= 0/0001). However, the unstable surface training group had more improvement. However, the fear of falling significantly improved after training on an unstable surface (p= 0/035). All groups had no significant improvement in the ML index (p= 0/817). In the present study, there was an improvement in the AP index after balance training. Conclusion: Unstable surface training may reduce reaction time in posterior ankle muscle activity. Furthermore, focusing attention on cognitive tasks can lead to maintaining balance unconsciously. Most of the daily activities need attention distribution among several activities. So, balance training concurrent to a dual cognitive task is challenging and more similar to the real world. According to the specificity of the training principle, it may improve functional independence and fall prevention in the elderly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20dual%20task" title="cognitive dual task">cognitive dual task</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=fear%20of%20falling" title=" fear of falling"> fear of falling</a>, <a href="https://publications.waset.org/abstracts/search?q=postural%20control" title=" postural control"> postural control</a>, <a href="https://publications.waset.org/abstracts/search?q=unstable%20surface" title=" unstable surface"> unstable surface</a> </p> <a href="https://publications.waset.org/abstracts/180597/the-effect-of-balance-training-on-stable-and-unstable-surfaces-under-cognitive-dual-task-condition-on-the-two-directions-of-body-sway-functional-balance-and-fear-of-fall-in-non-fallers-older-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/180597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">63</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11098</span> Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanpei%20Zhen">Yanpei Zhen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darboux%20transformation" title="Darboux transformation">Darboux transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20wave" title=" periodic wave"> periodic wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Rogue%20wave" title=" Rogue wave"> Rogue wave</a>, <a href="https://publications.waset.org/abstracts/search?q=separating%20the%20variables" title=" separating the variables"> separating the variables</a> </p> <a href="https://publications.waset.org/abstracts/174512/rogue-waves-arising-on-the-standing-periodic-wave-in-the-high-order-ablowitz-ladik-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11097</span> The Associations of Pes Planus Plantaris (Flat Foot) to the Postural Stability of Basketball Student-Athletes Through the Ground Reaction Force Vector (vGRF)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Def%20Primal">Def Primal</a>, <a href="https://publications.waset.org/abstracts/search?q=Sasanty%20Kusumaningtyas"> Sasanty Kusumaningtyas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ermita%20I.%20Ibrahim"> Ermita I. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The main objective of this study is to determine the pes planus plantaris (flat foot) condition can contribute to the disturbance of postural stability in basketball athletes in static and dynamic activities. Methods: This cross-sectional quantitative analytical retrospective study on 47 subjects of basketball student-athletes identified the foot arch index by extensive footprint area and AMTI (Advanced Mechanical Technology Inc.) Force flat-form (force plate) determined their postural stability. Subjects were conducted in three activities (static, dynamic vertical jump, and dynamic loading response) for ground reaction force (GRF) resultant vectors towards the vertical plane of body mass (W). Results Analytical results obtained that 80.9% of subjects had pes planus plantaris. It shows no significant differences in pes planus plantaris incidence in both sexes subject (p>0.005); however, there are differences in athlete’s exercise period aspect. Athlete students who have practiced strictly for more than four years’ experience over 50% of pes planus plantaris; furthermore, a long period of exercise was believed to stimulate pes planus. The average value of GRF vectors of pes planus plantaris subjects on three different basketball movements shows a significant correlation to postural stability. Conclusions Pes planus plantaris affected almost basketball athletes regarding the length and intensity of exercise performed. The condition significantly contributes to postural stability disturbance on a static condition, dynamic vertical jump, and dynamic vertical jump loading response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pes%20planus%20plantaris" title="pes planus plantaris">pes planus plantaris</a>, <a href="https://publications.waset.org/abstracts/search?q=flatfoot" title=" flatfoot"> flatfoot</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20reaction%20force" title=" ground reaction force"> ground reaction force</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic%20stability" title=" static and dynamic stability"> static and dynamic stability</a> </p> <a href="https://publications.waset.org/abstracts/153583/the-associations-of-pes-planus-plantaris-flat-foot-to-the-postural-stability-of-basketball-student-athletes-through-the-ground-reaction-force-vector-vgrf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=370">370</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=371">371</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=standing%20postural%20control&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10