CINXE.COM

Search results for: body composition

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: body composition</title> <meta name="description" content="Search results for: body composition"> <meta name="keywords" content="body composition"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="body composition" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="body composition"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6359</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: body composition</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6359</span> The Investigation of Correlation between Body Composition and Physical Activity in University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferruh%20Taspinar">Ferruh Taspinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulce%20K.%20Seyyar"> Gulce K. Seyyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Kurt"> Gamze Kurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Eda%20O.%20Okur"> Eda O. Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Afsar"> Emrah Afsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Saracoglu"> Ismail Saracoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Taspinar"> Betul Taspinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alterations of physical activity can effect body composition (especially body fat ratio); however body mass index may not sufficient to indicate these minimal differences. The aim of this study was to evaluate the relationship between body composition and physical activity in university students. In this study, 132 university students (mean age; 21.21±1.51) were included. Tanita BC-418 and International Physical Activity Questionnaire (IPAQ) were used to evaluate participants. The correlation between the parameters was analysed via Spearman correlation analysis. Significance level in statistical analyses was accepted is 0.05. The results showed that there was no correlation between body mass index and physical activity (p>0.05). There was a positive correlation between body muscle ratio and physical activity, whereas a negative correlation between body fat ratio and physical activity (p<0.05). This study showed that body fat and muscle ratio affects the level of physical activity in healthy university students. Therefore, we thought that physical activity might reduce effects of the diseases caused by disturbed body composition. Further studies are required to support this idea. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20student" title=" university student"> university student</a> </p> <a href="https://publications.waset.org/abstracts/60659/the-investigation-of-correlation-between-body-composition-and-physical-activity-in-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60659.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6358</span> Relationship between Body Mass Composition and Primary Dysmenorrhoea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Snehalata%20Tembhurne">Snehalata Tembhurne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: A healthy menstrual cycle is a sign of women’s sound health.Various variables may influence the length and regularity of menstrual cycle.Studies have revealed that menstrual cycle abnormalities may be associated with psychological stress,lack of physical exercise, alteration in body composition,endocrine disturbances,higher estrogen levels as seen in obese females.Hence there is an urgent need to find out the relationship between variations in body mass composition(BMI & body fat%) with menstrual abnormalities like primary dysmenorrhoea. Aim: To find out the relationship between body mass composition and primary dysmenorrhea. Objectives: 1.To check whether there is any association between body mass index and primary dysmenorrhoea.2.To check whether there is any association between body fat percentage and primary dysmenorrhoea. NULL HYPOTHESES-There is no relationship between body mass composition and primary dysmenorrhea. Hypothesis: There exists a relationship between body mass composition and primary dysmenorrhea. Materials and Methods: The study was conducted over a period of 6 months with 90 samples selected on random basis. The procedure was explained to the participant and a written consent was taken thereafter. The participant was made to stand on the BODY COMPOSITION SCANNING MONITOR, which scanned the physical profile of the participant (height, weight, BMI, body fat percentage and visceral fat).Thereafter, the candidate was asked about her menstrual irregularities and was asked to grade her level of dysmenorrhoea (if present) using the Verbal Dimensional Dysmenorrhea Scale. Results: Chi square test of association was used to find out the association between body mass composition(body mass index,body fat percentage) and primary dysmenorrhea.The chi-square value for association between body mass index and primary dysmenorrhea was 38.63 p<0.001 which was statistically significant.The chi-square value for the association of body fat % & primary dysmenorrhea was 30.09,p<0.001which was statistically significant. Conclusion: Study shows that there exists a significant relationship between body mass composition and primary dysmenorrhea and as the value of Body mass index and body fat percentages goes on increasing in females, the severity of primary dysmenorrhea also increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title="body mass index">body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition%20screening%20monitor" title=" body composition screening monitor"> body composition screening monitor</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20dysmenorrhea" title=" primary dysmenorrhea"> primary dysmenorrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=verbal%20dimensional%20dysmenorrhea%20scale" title=" verbal dimensional dysmenorrhea scale"> verbal dimensional dysmenorrhea scale</a> </p> <a href="https://publications.waset.org/abstracts/59337/relationship-between-body-mass-composition-and-primary-dysmenorrhoea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59337.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6357</span> Body Composition Analysis of Wild Labeo Bata in Relation to Body Size and Condition Factor from Chenab, Multan, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naeem">Muhammad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Zubari"> Amina Zubari</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdus%20Salam"> Abdus Salam</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ali%20Ayub%20Bukhari"> Syed Ali Ayub Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Naveed%20Ahmad%20Khan">Naveed Ahmad Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seventy three wild Labeo bata of different body sizes, ranging from 8.20-16.00 cm total length and 7.4-86.19 g body weight, were studied for the analysis of body composition parameters (Water content, ash content, fat content, protein content) in relation to body size and condition factor. Mean percentage is found as for water 77.71 %, ash 3.42 %, fat 2.20 % and protein content 16.65 % in whole wet body weight. Highly significant positive correlations were observed between condition factor and body weight (r = 0.243). Protein contents, organic content and ash (% wet body weight) increase with increasing percent water contents for Labeo bata while these constituents (% dry body weight) and fat contents (% wet and dry body weight) have no influence on percent water. It was observed that variations in the body constituents have no association to body weight or length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Labeo%20bata" title="Labeo bata">Labeo bata</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20size" title=" body size"> body size</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=condition%20factor" title=" condition factor"> condition factor</a> </p> <a href="https://publications.waset.org/abstracts/20571/body-composition-analysis-of-wild-labeo-bata-in-relation-to-body-size-and-condition-factor-from-chenab-multan-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6356</span> Relationship between Body Composition and Balance in Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferruh%20Taspinar">Ferruh Taspinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulce%20K.%20Seyyar"> Gulce K. Seyyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Kurt"> Gamze Kurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Eda%20O.%20Okur"> Eda O. Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Afsar"> Emrah Afsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Saracoglu"> Ismail Saracoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Taspinar"> Betul Taspinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Overweight and obesity has been associated with postural balance. The aim of this study was to investigate the relationship between body composition and balance. One hundred and thirty two young adults (58 male, 74 female) were included in the study. Mean age of participants were found as 21.21±1.51 years. Body composition (body mass index, total body fat ratio, total body muscle ratio) and balance (right anterior, right postero-medial, right postero-lateral, left anterior, left postero-medial, left postero-lateral) were evaluated by Tanita BC-418 and Y balance test, respectively. Pearson correlation analysis was used to evaluate the correlation between the parameters. Significance level in statistical analysis was accepted as 0.05. According to results, no correlation was found between body mass index and balance parameters. There was negative correlation between total body fat ratio and balance parameters (r=0.419-0.509, p˂0.05). On the other hand, positive correlation was found between total body muscle ratio and balance parameters (r=0.390-0.494, p˂0.05). This study demonstrated that body fat and muscle ratio affects the balance. Body composition should be considered in rehabilitation programs including postural balance training. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance" title="balance">balance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass" title=" body mass"> body mass</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20adults" title=" young adults"> young adults</a> </p> <a href="https://publications.waset.org/abstracts/60501/relationship-between-body-composition-and-balance-in-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60501.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6355</span> The Impact of Exercise on Osteoporosis and Body Composition in Individuals with Mild Intellectual Disabilities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hisham%20Mughrabi">Hisham Mughrabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Osteoporosis is one of the most common diseases in the world and, its seriousness lies in the lack of clear symptoms. The researcher aims to identify the impact of sports activities on osteoporosis and the body component of those with mild intellectual disabilities of students in the schools in Saudi Arabia -Medina. The research sample was selected in an intentional manner and consisted of 45 students and they were divided into two groups. The first group consisted of 23 individuals participate in sports and the second group consisted of 22 individuals does not participate in sports. The researcher used the descriptive method and collected the data by measuring osteoporosis using and ultrasound osteoporosis screening device (OSTEO PRO B.M. Tech) and measured the body composition by using a Tanita devise (Body Composition Analyzer TBF- 300 Tanita). The results indicated that there was a statistical significant difference between the two comparing groups in osteoporosis measurement and body composition for the benefit of the group of sport participants. The researcher recommended the need to involve individuals with mild intellectual disabilities in physical activities to improve their rate of osteoporosis and body composition as well as to develop sports programs for individuals with mild intellectual disabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20intellectual%20disabilities" title=" mild intellectual disabilities"> mild intellectual disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoporosis" title=" osteoporosis"> osteoporosis</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activities" title=" physical activities"> physical activities</a> </p> <a href="https://publications.waset.org/abstracts/114435/the-impact-of-exercise-on-osteoporosis-and-body-composition-in-individuals-with-mild-intellectual-disabilities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6354</span> The Relationship between Body Composition and Physical Fitness of Primary School Learners from a Pre-Dominantly Rural Province in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Howard%20Gomwe">Howard Gomwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunice%20Seekoe"> Eunice Seekoe</a>, <a href="https://publications.waset.org/abstracts/search?q=Philemon%20Lyoka"> Philemon Lyoka</a>, <a href="https://publications.waset.org/abstracts/search?q=Chioneso%20Show%20Marange"> Chioneso Show Marange</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennyford%20Mafa"> Dennyford Mafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is arguably a lack of literature regarding body physical fitness and body composition amongst primary school learners in South Africa. For this reason, the study is aimed at investigating and accessing how body composition relates to physical fitness amongst primary school learners in the Eastern Cape Province of South Africa. In order to achieve this, a school-based cross-sectional survey was carried out among 876 primary school learners aged 9 to 14 years. Body composition indicators were measured and/or calculated, whilst physical fitness was evaluated according to the EUROFIT fitness standards by a 20 m shuttle run, push-ups, sit and reach as well as sit-ups. Out of 876 participants, a total of 870 were retained. Of these, 351 (40.34%) were boys, and 519 (59.66%) were girls. The average age of learners was 11.04 ± 1.50 years, with boys having a significantly (p = 0.002) higher mean age (M = 11.24; SD = 1.51 years) as compared to that of girls (M = 10.91; SD = 1.48 years). The non-parametric Spearman Rho correlation coefficients revealed several significant and negative relationships between body composition measurements with physical fitness characteristics, which were stronger in girls than in boys. The findings advocate for policymakers and responsible authorities to initiate the development of policies and interventions targeted at encouraging physical activity and health promotion among primary school learners in South Africa, especially in girls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BMI" title="BMI">BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat" title=" body fat"> body fat</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title=" physical fitness"> physical fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=primary%20school" title=" primary school"> primary school</a> </p> <a href="https://publications.waset.org/abstracts/141578/the-relationship-between-body-composition-and-physical-fitness-of-primary-school-learners-from-a-pre-dominantly-rural-province-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6353</span> Relationship Between Body Composition and Physical Fitness of Primary School Learners From a Pre-Dominantly Rural Province in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Howard%20Gomwe">Howard Gomwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Eunice%20Seekoe"> Eunice Seekoe</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is arguably dearth of literature regarding body physical fitness and body composition amongst primary schools in South Africa. For this reason, the study is aimed at investigating and accessing how body composition relates to physical fitness amongst learners between 9 – 14 years of age in the Eastern Cape Province of South Africa. In order to achieve this, a school-based cross-sectional survey was carried out among 876 primary school learners aged 9 to14 years. Body composition indicators were measured and/or calculated, whilst physical fitness was evaluated by a 20 m shuttle run, push-ups, sit and reach as well as sit-ups, according to the EUROFIT fitness standards. Out of 876 participants, a total of 870 were retained. Of these, 351 (40.34%) were boys and 519 (59.66%) were girls. The average age of learners was 11.04 ± 1.50 years, with boys having a importantly (p = 0.002) higher average age (M = 11.24; SD = 1.51 years) as compared to that of girls (M = 10.91; SD = 1.48 years). The non-parametric Spearman Rho correlation coefficients revealed several significant and negative relationships between body composition measurements with physical fitness characteristics, which were stronger in girls than in boys. The findings advocate for policy makers and responsible authorities to initiate the development of policies and interventions targeted at encouraging physical activity and healthy promotion among primary school learners in South Africa, especially in girls. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BMI" title="BMI">BMI</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20fitness" title=" physical fitness"> physical fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/154611/relationship-between-body-composition-and-physical-fitness-of-primary-school-learners-from-a-pre-dominantly-rural-province-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154611.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6352</span> The Impact of Community Settlement on Leisure Time Use and Body Composition in Determining Physical Lifestyles among Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mawarni%20Mohamed">Mawarni Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sharifah%20Shahira%20A.%20Hamid"> Sharifah Shahira A. Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leisure time is an important component to offset the sedentary lifestyle of the people. Women tend to benefit from leisure activities not only to reduce stress but also to provide opportunities for well-being and self-satisfaction. This study was conducted to investigate body composition and leisure time use among women in Selangor from the influences of community settlement. A total of 419 women aged 18-65 years were selected to participate in this study. Descriptive statistics, t-test and ANOVA were used to analyze the level of physical activity and the relationship between leisure-time use and body composition were made to analyze the physical lifestyles. The results showed that women with normal body composition seem to be involved in more passive activities than women with less weight gain and obesity. Thus, the study recommended that the government and other health and recreational agencies should develop more places and activities suitable for leisure preference for women in their community settlement so they become more interested to engage in more active recreational and physical activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=community%20settlement" title=" community settlement"> community settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=leisure%20time" title=" leisure time"> leisure time</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20lifestyles" title=" physical lifestyles"> physical lifestyles</a> </p> <a href="https://publications.waset.org/abstracts/56196/the-impact-of-community-settlement-on-leisure-time-use-and-body-composition-in-determining-physical-lifestyles-among-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56196.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6351</span> The Impact of Coffee Consumption to Body Mass Index and Body Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.L.%20Tamm">A.L. Tamm</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C5%A0ott"> N. Šott</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J%C3%BCrim%C3%A4e"> J. Jürimäe</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20L%C3%A4tt"> E. Lätt</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Orav"> A. Orav</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9C.%20Parm"> Ü. Parm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Coffee is one of the most frequently consumed beverages in the world but still its effects on human organism are not completely understood. Coffee has also been used as a method for weight loss, but its effectiveness has not been proved. There is also not similar comprehension in classifying overweight in choosing between body mass index (BMI) and fat percentage (fat%). The aim of the study was to determine associations between coffee consumption and body composition. Secondly, to detect which measure (BMI or fat%) is more accurate to use describing overweight. Altogether 103 persons enrolled the study and divided into three groups: coffee non-consumers (n=39), average coffee drinkers, who consumed 1 to 4 cups (1 cup = ca 200ml) of coffee per day (n=40) and excessive coffee consumers, who drank at least five cups of coffee per day (n=24). Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). Participants´ body composition was detected with dual energy X-ray absorptiometry (DXA, Hologic) and general data (history of chronic diseases included) and information about coffee consumption, and physical activity level was collected with questionnaires. Results of the study showed that excessive coffee consumption was associated with increased fat-free mass. It could be foremost due to greater physical activity level in school time or greater (not significant) male proportion in excessive coffee consumers group. For estimating the overweight the fat% in comparison to BMI recommended, as it gives more accurate results evaluating chronical disease risks. In conclusion coffee consumption probably does not affect body composition and for estimating the body composition fat% seems to be more accurate compared with BMI. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20percentage" title=" body fat percentage"> body fat percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=coffee%20consumption" title=" coffee consumption"> coffee consumption</a> </p> <a href="https://publications.waset.org/abstracts/28785/the-impact-of-coffee-consumption-to-body-mass-index-and-body-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6350</span> Body Composition Evaluation among High Intensity and Long Term Walking Distance Participants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priscila%20Vitorino">Priscila Vitorino</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeeziane%20Rezende"> Jeeziane Rezende</a>, <a href="https://publications.waset.org/abstracts/search?q=Edison%20Pereira"> Edison Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Adrielly%20Silva"> Adrielly Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Weimar%20Barroso"> Weimar Barroso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body composition insight during physical activity is relevant to follow up sports income since it can be important and actuate in velocity, resistance, potency, and has an effect on force and agility. The purpose of this study was to identify anthropometric profile, evaluate and correlate body mass index and bioimpedance behavior during the days of Caminhada Ecológica de Goiás - Brasil. A longitudinal study was performed with 25 male participants, with an average age of 45.6±9.1 years. All patients were actives. Body composition was evaluated by body mass index (BMI) measurement and bioimpedance procedures. Both were collected 20 days before walking beginning (A0) and in the four days along the same (A1, A2, A3 e A4). Data were collected in the end of each walking day at athletes accommodations. Final distance during walking route was 308 km in five days, with an average of 62km/day and 7,6 km/hour, and an average temperature of 30°C. Data are represented with mean and standard deviation. ANOVA (Bonferroni pos test) was used to compare frequent measurements between the days. Pearson's correlation test was used to correlate BMI with lean mass, fat mass, and water. BMI decreased from A0 to A1, A2 and A3 (p < 0,01) and increased on A4 (p < 0,01). No changes were observed concerning fat percentage (p=0,60), lean mass (p=0,10) and body water composition (p=0,09). A positive and moderate correlation between BMI and fat percentage was observed; an inverse and moderate correlation between BMI, lean mass and body water composition occurred. Total body mass increased during high intensity and long term walking distance. However, the values of body fat, lean mass and water were maintained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerobic%20exercise" title="aerobic exercise">aerobic exercise</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolism" title=" metabolism"> metabolism</a>, <a href="https://publications.waset.org/abstracts/search?q=sports" title=" sports"> sports</a> </p> <a href="https://publications.waset.org/abstracts/69262/body-composition-evaluation-among-high-intensity-and-long-term-walking-distance-participants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6349</span> Body Mass Components in Young Soccer Players</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elizabeta%20Sivevska">Elizabeta Sivevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunchica%20Petrovska"> Sunchica Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaska%20Antevska"> Vaska Antevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Todorovska"> Lidija Todorovska</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Manchevska"> Sanja Manchevska</a>, <a href="https://publications.waset.org/abstracts/search?q=Beti%20Dejanova"> Beti Dejanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivanka%20Karagjozova"> Ivanka Karagjozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmina%20Pluncevic%20Gligoroska"> Jasmina Pluncevic Gligoroska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Body composition plays an important role in the selection of young soccer players and it is associated with their successful performance. The most commonly used model of body composition divides the body into two compartments: fat components and fat-free mass (muscular and bone components). The aims of the study were to determine the body composition parameters of young male soccer players and to show the differences in age groups. Material and methods: A sample of 52 young male soccer players, with an age span from 9 to 14 years were divided into two groups according to the age (group 1 aged 9 to 12 years and group 2 aged 12 to 14 years). Anthropometric measurements were taken according to the method of Mateigka. The following measurements were made: body weight, body height, circumferences (arm, forearm, thigh and calf), diameters (elbow, knee, wrist, ankle) and skinfold thickness (biceps, triceps, thigh, leg, chest, abdomen). The measurements were used in Mateigka’s equations. Results: Body mass components were analyzed as absolute values (in kilograms) and as percentage values: the muscular component (MC kg and MC%), the bone component (BCkg and BC%) and the body fat (BFkg and BF%). The group up to 12 years showed the following mean values of the analyzed parameters: MM=21.5kg; MM%=46.3%; BC=8.1kg; BC%=19.1%; BF= 6.3kg; BF%= 15.7%. The second group aged 12-14 year had mean values of body composition parameters as follows: MM=25.6 kg; MM%=48.2%; BC = 11.4 kg; BC%=21.6%; BF= 8.5 kg; BF%= 14. 7%. Conclusions: The young soccer players aged 12 up to 14 years who are in the pre-pubertal phase of growth and development had higher bone component (p<0.05) compared to younger players. There is no significant difference in muscular and fat body component between the two groups of young soccer players. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=young%20soccer%20players" title=" young soccer players"> young soccer players</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat" title=" body fat"> body fat</a>, <a href="https://publications.waset.org/abstracts/search?q=fat-free%20mass" title=" fat-free mass"> fat-free mass</a> </p> <a href="https://publications.waset.org/abstracts/10742/body-mass-components-in-young-soccer-players" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6348</span> The Correlation between Body Composition and Spinal Alignment in Healthy Young Adults</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferruh%20%20Taspinar">Ferruh Taspinar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Saracoglu"> Ismail Saracoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Afsar"> Emrah Afsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Eda%20O.%20%20Okur"> Eda O. Okur</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulce%20K.%20%20Seyyar"> Gulce K. Seyyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamze%20Kurt"> Gamze Kurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Taspinar"> Betul Taspinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although it is thought that abdominal adiposity is one of the risk factor for postural deviation, such as increased lumbar lordosis, the body mass index is not sufficient to indicate effects of abdominal adiposity on spinal alignment and postural changes. The aim of this study was to investigate the correlation with detailed body composition and spine alignment in healthy young adults. This cross-sectional study was conducted with sixty seven healthy volunteers (37 men and 30 women) whose ages ranged between 19 and 27 years. All participants’ sagittal spinal curvatures of lumbar and thoracic region were measured via Spinal mouse® (Idiag, Fehraltorf, Switzerland). Also, body composition analysis (whole body fat ratio, whole body muscle ratio, abdominal fat ratio, and trunk muscle ratio) estimation by means of bioelectrical impedance was evaluated via Tanita Bc 418 Ma Segmental Body Composition Analyser (Tanita, Japan). Pearson’s correlation was used to analysis among the variables. The mean lumbar lordosis and thoracic kyphosis angles were 21.02°±9.39, 41.50°±7.97, respectively. Statistically analysis showed a significant positive correlation between whole body fat ratio and lumbar lordosis angle (r=0.28, p=0.02). Similarly, there was a positive correlation between abdominal fat ratio and lumbar lordosis angle (r=0.27, p=0.03). The thoracic kyphosis angle showed also positive correlation with whole body fat ratio (r=0.33, p=0.00) and abdominal fat ratio (r=0.40, p=0.01). The whole body muscle ratio showed negative correlation between lumbar lordosis (r=-0.28, p=0.02) and thoracic kyphosis angles (r=-0.33, p=0.00), although there was no statistically correlation between trunk muscle ratio, lumbar and thoracic curvatures (p>0.05). The study demonstrated that an increase of fat ratio and decrease of muscle ratio in abdominal region or whole body shifts the spinal alignment which may adversely affect the spinal loading. Therefore, whole body composition should be taken into account in spine rehabilitation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=lumbar%20lordosis" title=" lumbar lordosis"> lumbar lordosis</a>, <a href="https://publications.waset.org/abstracts/search?q=spinal%20alignment" title=" spinal alignment"> spinal alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=thoracic%20kyphosis" title=" thoracic kyphosis"> thoracic kyphosis</a> </p> <a href="https://publications.waset.org/abstracts/60279/the-correlation-between-body-composition-and-spinal-alignment-in-healthy-young-adults" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6347</span> Evaluation of Nutrition Supplement on Body Composition during Catch-Up Growth, in a Pre-Clinical Model of Growth Restriction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bindya%20Jacob">Bindya Jacob</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present study was to assess the quality of catchup growth induced by Oral Nutrition Supplement (ONS), in animal model of growth restriction due to under nutrition. Quality of catch-up growth was assessed by proportion of lean body mass (LBM) and fat mass (FM). Young SD rats were food restricted at 70% of normal caloric intake for 4 weeks; and re-fed at 120% of normal caloric intake for 4 weeks. Refeeding diet had 50% calories from animal diet and 50% from ONS formulated for optimal growth. After refeeding, the quantity and quality of catch-up growth were measured including weight, length, LBM and FM. During nutrient restriction, body weight and length of animals was reduced compared to healthy controls. Both LBM and FM were significantly lower than healthy controls (p < 0.001). Refeeding with ONS resulted in increase of weight and length, with significant catch-up growth compared to baseline (p < 0.001). Detailed examination of body composition showed that the catch-up in body weight was due to proportionate increase of LBM and FM, resulting in a final body composition similar to healthy controls. This data supports the use of well-designed ONS for recovery from growth restriction due to under nutrition, and return to normal growth trajectory characterized by normal ratio of lean and fat mass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catch%20up%20growth" title="catch up growth">catch up growth</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient%20restriction" title=" nutrient restriction"> nutrient restriction</a>, <a href="https://publications.waset.org/abstracts/search?q=healthy%20growth" title=" healthy growth"> healthy growth</a> </p> <a href="https://publications.waset.org/abstracts/69956/evaluation-of-nutrition-supplement-on-body-composition-during-catch-up-growth-in-a-pre-clinical-model-of-growth-restriction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6346</span> Variations in % Body Fat, the Amount of Skeletal Muscle and the Index of Physical Fitness in Relation to Sports Activity/Inactivity in Different Age Groups of the Adult Population in the Czech Republic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H%C5%99eb%C3%AD%C4%8Dkov%C3%A1%20Sylva">Hřebíčková Sylva</a>, <a href="https://publications.waset.org/abstracts/search?q=Grasgruber%20Pavel"> Grasgruber Pavel</a>, <a href="https://publications.waset.org/abstracts/search?q=Ondr%C3%A1%C4%8Dek%20Jan"> Ondráček Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cacek%20Jan"> Cacek Jan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalina%20Tom%C3%A1%C5%A1"> Kalina Tomáš</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to describe typical changes in several parameters of body composition – the amount of skeletal muscle mass (SMM), % body fat (BF) and body mass index (BMI) - in selected age categories (30+ years) of men and women in the Czech Republic, depending on the degree of sports activity. Study (n = 823, M = 343, F = 480) monitored differences in BF, SM and BMI in five age groups (from 30-39 years to 70+ years). Physically inactive individuals have (p < 0.05) higher % BF in comparison with physically active individuals (29.5 ± 0.59 vs. 27 ± 0.38%), higher BMI (27.3 ± 0.32 vs. 26.1 ± 0.20 kg/m2), but lower SM (39.0 ± 0.33 vs. 40.4 ± 0.21%). The results indicate that with an increasing age, there is a trend towards increasing values of BMI and % BF, and decreasing values of SMM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat" title=" body fat"> body fat</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle" title=" skeletal muscle"> skeletal muscle</a> </p> <a href="https://publications.waset.org/abstracts/3125/variations-in-body-fat-the-amount-of-skeletal-muscle-and-the-index-of-physical-fitness-in-relation-to-sports-activityinactivity-in-different-age-groups-of-the-adult-population-in-the-czech-republic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6345</span> Body Composition Response to Lower Body Positive Pressure Training in Obese Children </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basant%20H.%20El-Refay">Basant H. El-Refay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabeel%20T.%20Faiad"> Nabeel T. Faiad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The high prevalence of obesity in Egypt has a great impact on the health care system, economic and social situation. Evidence suggests that even a moderate amount of weight loss can be useful. Aim of the study: To analyze the effects of lower body positive pressure supported treadmill training, conducted with hypocaloric diet, on body composition of obese children. Methods: Thirty children aged between 8 and 14 years, were randomly assigned into two groups: intervention group (15 children) and control group (15 children). All of them were evaluated using body composition analysis through bioelectric impedance. The following parameters were measured before and after the intervention: body mass, body fat mass, muscle mass, body mass index (BMI), percentage of body fat and basal metabolic rate (BMR). The study group exercised with antigravity treadmill three times a week during 2 months, and participated in a hypocaloric diet program. The control group participated in a hypocaloric diet program only. Results: Both groups showed significant reduction in body mass, body fat mass and BMI. Only study group showed significant reduction in percentage of body fat (p = 0.0.043). Changes in muscle mass and BMR didn't reach statistical significance in both groups. No significant differences were observed between groups except for muscle mass (p = 0.049) and BMR (p = 0.042) favoring study group. Conclusion: Both programs proved effective in the reduction of obesity indicators, but lower body positive pressure supported treadmill training was more effective in improving muscle mass and BMR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=children" title="children">children</a>, <a href="https://publications.waset.org/abstracts/search?q=hypocaloric%20diet" title=" hypocaloric diet"> hypocaloric diet</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20body%20positive%20pressure%20supported%20treadmill" title=" lower body positive pressure supported treadmill"> lower body positive pressure supported treadmill</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a> </p> <a href="https://publications.waset.org/abstracts/12287/body-composition-response-to-lower-body-positive-pressure-training-in-obese-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6344</span> Synergetic Effect of Dietary Essential Amino Acids (Lysine and Methionine) on the Growth, Body Composition and Enzymes Activities of Genetically Male Tilapia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Khan">Noor Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hira%20Waris"> Hira Waris</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted on genetically male tilapia (GMT) fry reared in glass aquarium for three months to examine the synergetic effect of essential amino acids (EAA) supplementation on growth, body composition, and enzyme activities. Fish having average body weight of 16.56 ± 0.42g were fed twice a day on artificial feed (20% crude protein) procured from Oryza Organics (commercial feed) supplemented with EAA; methionine (M) and lysine (L) designated as T1 (0.3%M and 2%L), T2 (0.6%M and 4%L), T3 (0.9%M and 6%L) and control without EAA. Significantly higher growth performance was observed in T1, followed by T2, T3, and control. The results revealed that whole-body dry matter and crude protein were significantly higher (p ≤ 0.05) in T3 (0.9% and 6%) feeding fish, while the crude fat was lower (p ≤ 0.05) in a similar group of fish. Additionally, protease, amylase, and lipase activities were also observed maximum (p ≤ 0.05) in response to T3 than other treatments and control. However, the EAA, especially lysine and methionine, were found significantly higher (p ≤ 0.05) in T1 compared to other treatments. Conclusively, the addition of EAA, methionine, and lysine in the feed not only enhanced the growth performance of GMT fry but also improved body proximate composition and essential amino acid profile. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetically%20male%20tilapia" title="genetically male tilapia">genetically male tilapia</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=digestive%20enzyme%20activities" title=" digestive enzyme activities"> digestive enzyme activities</a>, <a href="https://publications.waset.org/abstracts/search?q=amino%20acid%20profile" title=" amino acid profile"> amino acid profile</a> </p> <a href="https://publications.waset.org/abstracts/114306/synergetic-effect-of-dietary-essential-amino-acids-lysine-and-methionine-on-the-growth-body-composition-and-enzymes-activities-of-genetically-male-tilapia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6343</span> Effect of Ginger, Red Pepper, and Their Mixture in Diet on Growth Performance and Body Composition of Oscar, Astronotus ocellatus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarah%20Jorjani">Sarah Jorjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Afshin%20Ghelichi"> Afshin Ghelichi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazyar%20Kamali"> Mazyar Kamali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to estimate the effect of addition of ginger and red pepper and their mixture in diet on growth performance, survival rate and body composition of Astronotus ocellatus (Oscar fish). This study had been carried out for 8 weeks. For this reason 132 oscar fishes with intial weight of 2.44±0.26 (gr) were divided into 4 treatments with three replicate as compeletly randomize design test and fed by 100% Biomar diet (T1), Biomar + red pepper (55 mg/kg) (T2), Biomar + ginger (1%) (T3) and Biomar + mixture of red pepper and ginger (T4).The fish were fed in 5% of their body weight. The results showed T2 have significant differences in most of growth parameters in compare with other treatments, such as PBWI, SGR, PER and SR (P < 0.05), but there were no significant differences between treatments in FCR and FE (P > 0.05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=red%20pepper" title="red pepper">red pepper</a>, <a href="https://publications.waset.org/abstracts/search?q=ginger" title=" ginger"> ginger</a>, <a href="https://publications.waset.org/abstracts/search?q=oscar%20fish" title=" oscar fish"> oscar fish</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a> </p> <a href="https://publications.waset.org/abstracts/37622/effect-of-ginger-red-pepper-and-their-mixture-in-diet-on-growth-performance-and-body-composition-of-oscar-astronotus-ocellatus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6342</span> Reliability and Validity for Measurement of Body Composition: A Field Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Hashim">Ahmad Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarizi%20Ab%20Rahman"> Zarizi Ab Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measurement of body composition via a field method has the most popular instruments which are used to estimate the percentage of body fat. Among the instruments used are the Body Mass Index, Bio Impedance Analysis and Skinfold Test. All three of these instruments do not involve high costs, do not require high technical skills, are mobile, save time, and are suitable for use in large populations. Because all three instruments can estimate the percentage of body fat, but it is important to identify the most appropriate instruments and have high reliability. Hence, this study was conducted to determine the reliability and convergent validity of the instruments. A total of 40 students, males and females aged between 13 and 14 years participated in this study. The study found that the test retest and Pearson correlation coefficient of reliability for the three instruments is very high, r = .99. While the inter class reliability also are at high level with r = .99 for Body Mass Index and Bio Impedance Analysis, r = .96 for Skin fold test. Intra class reliability coefficient for these three instruments is too high for Body Mass Index r = .99, Bio Impedance Analysis r = .97, and Skin fold Test r = .90. However, Standard Error of Measurement value for all three instruments indicates the Body Mass Index is the most appropriate instrument with a mean value of .000672 compared with other instruments. The findings show that the Body Mass Index is an instrument which is the most accurate and reliable in estimating body fat percentage for the population studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reliability" title="reliability">reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=validity" title=" validity"> validity</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20impedance%20analysis%20and%20skinfold%20test" title=" bio impedance analysis and skinfold test"> bio impedance analysis and skinfold test</a> </p> <a href="https://publications.waset.org/abstracts/81917/reliability-and-validity-for-measurement-of-body-composition-a-field-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6341</span> A Comparison of Three Protocols Weight-Loss Interventions for Obese Females </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nayera%20E.%20Hassan">Nayera E. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20A.%20El-Masry"> Sahar A. El-Masry</a>, <a href="https://publications.waset.org/abstracts/search?q=Rokia%20El-Banna"> Rokia El-Banna</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20S.%20El%20Hussieny"> Mohamed S. El Hussieny </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several different modalities for treatment of obesity. Common intervention methods for obesity include low-calorie diet, exercise. Also acupuncture has shown good therapeutic results in the treatment of obesity. A recent clinical observation showed that laser acupuncture could reduce body weight and body mass index in obese persons. So, the aim of this research is focused on body composition changes as related to type of intervention, before and after intentional weight loss in overweight and obesity. 76 subjects were included in the study analysis. The present study recommended that every obese female must do lipid profile and fasting blood sugar analysis before weight-loss intervention to take the decision of which method should be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obesity" title="obesity">obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=weight-loss" title=" weight-loss"> weight-loss</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=modalities" title=" modalities "> modalities </a> </p> <a href="https://publications.waset.org/abstracts/20193/a-comparison-of-three-protocols-weight-loss-interventions-for-obese-females" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6340</span> Body Composition Analyser Parameters and Their Comparison with Manual Measurements </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Karagjozova">I. Karagjozova</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Dejanova"> B. Dejanova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pluncevic"> J. Pluncevic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Petrovska"> S. Petrovska</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Antevska"> V. Antevska</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Todorovska"> L. Todorovska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Medical checking assessment is important in sports medicine. To follow the health condition in subjects who perform sports, body composition parameters, such as intracellular water, extracellular water, protein and mineral content, muscle and fat mass might be useful. The aim of the study was to show available parameters and to compare them to manual assessment. Material and methods: A number of 20 subjects (14 male and 6 female) at age of 20±2 years were determined in the study, 5 performed recreational sports, while others were professional ones. The mean height was 175±7 cm, the mean weight was 72±9 cm, and the body mass index (BMI) was 23±2 kg/m2. The measured compartments were as following: intracellular water (IW), extracellular water (EW), protein component (PC), mineral component (MC), skeletal muscle mass (SMM) and body fat mass (BFM). Lean balance were examined for right and left arm (LA), trunk (T), right leg (RL) and left leg (LL). The comparison was made between the calculation derived by manual made measurements, using Matejka formula and parameters obtained by body composition analyzer (BCA) - Inbody 720 BCA Biospace. Used parameters for the comparison were muscle mass (SMM), body fat mass (BFM). Results: BCA obtained values were for: IW - 22.6±5L, EW - 13.5±2 L, PC - 9.8±0.9 kg, MC - 3.5±0.3, SMM - 27±3 kg, BFM - 13.8±4 kg. Lean balance showed following values for: RA - 2.45±0.2 kg, LA - 2.37±0.4, T - 20.9±5 kg, RL - 7.43±1 kg, and LL - 7.49 ±1.5 kg. SMM showed statistical difference between manual obtained value, 51±01% to BCA parameter 45.5±3% (p<0.001). Manual obtained values for BFM was lower (17±2%) than BCA obtained one, 19.5±5.9% (p<0.02). Discussion: The obtained results showed appropriate values for the examined age, regarding to all examined parameters which contribute to overview the body compartments, important for sport performing. Due to comparison between the manual and BCA assessment, we may conclude that manual measurements may differ from the certain ones, which is confirmed by statistical significance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=athletes" title="athletes">athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=bio%20electrical%20impedance" title=" bio electrical impedance"> bio electrical impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20medicine" title=" sports medicine"> sports medicine</a> </p> <a href="https://publications.waset.org/abstracts/10926/body-composition-analyser-parameters-and-their-comparison-with-manual-measurements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6339</span> Longitudinal Changes in Body Composition in Subjects with Diabetes Who Received Low-Carbohydrate Diet Education: The Effect of Age and Sex</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hsueh-Ching%20Wu">Hsueh-Ching Wu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aims: This study investigated the longitudinal changes in BC were evaluated in patients with T2D who received carbohydrate-restricted diet education (CRDE), and the effects of age and sex on BC were analyzed. Design: This retrospective observational study was conducted between 2018 and 2021. A total of 6164 T2D patients were analyzed. Subjects with T2D who received CRDE (daily carbohydrate intake: 26-45%). A hierarchical linear model (HLM) was used to estimate the change amount and rate of change for the following variables in each group: body weight (BW), body mass index (BMI), body fat mass (BFM), percent body fat (PBF), appendicular skeletal muscle mass (ASM), and skeletal muscle index (SMI). Results: The BW, BMI, ASM, SMI and BFM of T2D patients who received CRDE for 3 years decreased with increasing age; PBF showed the opposite trend. The changes in BW, BMI, ASM, and SMI of patients older than 65 years were higher than those of patients younger than 65 years, and the annual rate of decline for males was higher than that for females. The annual change in BFM and PBF for both sexes changed from a downward trend before the age of 65 to a slow increase after the age of 65, and the slow increase rate for women was higher than that for men. Conclusion: Changes in body composition are associated with age and sex. BW and muscle tissue decrease with age, and attention must be paid to the rebound of adipose tissue after middle age. Patient or Public Contribution: The patient agreed to participate in a retrospective chart review during in the study period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20weight" title="body weight">body weight</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate-restricted%20diet" title=" carbohydrate-restricted diet"> carbohydrate-restricted diet</a>, <a href="https://publications.waset.org/abstracts/search?q=nursing" title=" nursing"> nursing</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes" title=" type 2 diabetes"> type 2 diabetes</a> </p> <a href="https://publications.waset.org/abstracts/183455/longitudinal-changes-in-body-composition-in-subjects-with-diabetes-who-received-low-carbohydrate-diet-education-the-effect-of-age-and-sex" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6338</span> Association between Physical Composition, Swimming Performance and Somatotype of Male Competitive Swimmers of Age Group 10-13 Years</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Singh">Ranjit Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Body fat % lean body mass and body type play vital role in sports performance. A sports person who is having optional body composition can show its performance flawlessly whereas other who is not physical fit may be more prone to injury. Competitive swimming is an association of plethora of aspects like morphological, physiological, biochemical, biomechanical and psychological. The primary key of the present research is to examine the correlation among selected morphological dimensions such as height, weight, body fat%, lean body mass, somatotype and swimming performance. The present study also focused to investigate by potential deficiencies if any and to find out remedial measures to curb the training stresses. Thirty (age group 10-14 years) swimmers undergoing training under skilled and professional coaches were selected in the present study. The morphological variables and performance criterion like 50 meter swimming time and speed were calculated by using standard training methodology. Correlation coefficient among body composition, somatotype and performance variables were assessed by using standard statistical package SPSS. Mean height, weight, fat% and lean body mass of the present group is 150.97±8.68 cm, 44.0±9.34 kg., 15.97±4.42 % and 37.10±8.77 kg respectively. Somatotype of the young swimmers of this research is revealed ectomorphic mesomorph. The analysis of the results Illustrated that swimming performance is significantly correlated (p<0.05) with height, body weight, mesomorphoic component and lean body mass. Body fat is significantly and negatively correlated (p<0.05) with mesomorphic component, lean body mass and swimming speed. From this present study, it can be concluded that along with techniques and tactics other the physical attributes also play significant role in swimming performance which can help the swimmers to excel in higher level of competition and swimmers having improved morphological qualities can ultimately perform well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20fat" title="body fat">body fat</a>, <a href="https://publications.waset.org/abstracts/search?q=mass" title=" mass"> mass</a>, <a href="https://publications.waset.org/abstracts/search?q=mesomorphic%20component" title=" mesomorphic component"> mesomorphic component</a>, <a href="https://publications.waset.org/abstracts/search?q=somatotype" title=" somatotype"> somatotype</a> </p> <a href="https://publications.waset.org/abstracts/56057/association-between-physical-composition-swimming-performance-and-somatotype-of-male-competitive-swimmers-of-age-group-10-13-years" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6337</span> Interactions of Socioeconomic Status, Age at Menarche, Body Composition and Bone Mineral Density in Healthy Turkish Female University Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20Ersoy">Betül Ersoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20%C3%96zalp%20Kizilay"> Deniz Özalp Kizilay</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCl%20G%C3%BCm%C3%BC%C5%9Fer"> Gül Gümüşer</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Taneli"> Fatma Taneli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Peak bone mass is reached in late adolescence in females. Age at menarche influences estrogen exposure, which plays a vital role in bone metabolism. The relationship between age at menarche and bone mineral density (BMD) is still controversial. In this study, we investigated the relationship between age at menarche, BMD, socioeconomic status (SES) and body composition in female university student. Participant and methods: A total of 138 healthy girls at late adolescence period (mean age 20.13±0.93 years, range 18-22) were included in this university school-based cross-sectional study in the urban area western region of Turkey. Participants have been randomly selected to reflect the university students studying in all faculties. We asked relevant questions about socioeconomic status and age at menarche to female university students. Students were grouped into three SES as lower, middle and higher according to the educational and occupational levels of their parents using Hollingshead index. Height and weight were measured. Body Mass Index (BMI) (kg/m2 ) was calculated. Dual energy X-ray absorptiometry (DXA) was performed using the Lunar DPX series, and BMD and body composition were evaluated. Results: The mean age of menarche of female university student included in the study was 13.09.±1.3 years. There was no significant difference between the three socioeconomic groups in terms of height, body weight, age at menarche, BMD [BMD (gr/cm2 ) (L2-L4) and BMD (gr/cm2 ) (total body)], and body composition (lean tissue, fat tissue, total fat, and body fat) (p>0.05). While no correlation was found between the age at menarche and any parameter (p>0.05), a positive significant correlation was found between lean tissue and BMD L2-L4 (r=0.286, p=0.01). When the relationships were evaluated separately according to socioeconomic status, there was a significant correlation between BMDL2-L4 (r: 0.431, p=0.005) and lean tissue in females with low SES, while this relationship disappeared in females with middle and high SES. Conclusion: Age at menarche did not change according to socioeconomic status, nor did BMD and body composition in female at late adolescents. No relationship was found between age at menarche and BMD and body composition determined by DEXA in female university student who were close to reaching peak bone mass. The results suggested that especially BMDL2-L4 might increase as lean tissue increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone" title="bone">bone</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoposis" title=" osteoposis"> osteoposis</a>, <a href="https://publications.waset.org/abstracts/search?q=menarche" title=" menarche"> menarche</a>, <a href="https://publications.waset.org/abstracts/search?q=dexa" title=" dexa"> dexa</a> </p> <a href="https://publications.waset.org/abstracts/164076/interactions-of-socioeconomic-status-age-at-menarche-body-composition-and-bone-mineral-density-in-healthy-turkish-female-university-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6336</span> The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Faridz%20Ahmad">Mohd Faridz Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirul%20Hakim%20Hasbullah"> Amirul Hakim Hasbullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical Muscle Stimulation (EMS) has been introduced to the world in the 19th and 20th centuries and has globally gained increasing attention on its usefulness. EMS is known as the application of electrical current transcutaneous to muscles through electrodes to induce involuntary contractions that can lead to the increment of muscle mass and strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training in 5 weeks interventions towards male body composition. It was a quasi-experimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=EMS" title=" EMS"> EMS</a>, <a href="https://publications.waset.org/abstracts/search?q=skeletal%20muscle%20mass" title=" skeletal muscle mass"> skeletal muscle mass</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/36103/the-effects-of-electrical-muscle-stimulation-ems-towards-male-skeletal-muscle-mass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36103.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6335</span> The Reasons for Vegetarianism in Estonia and its Effects to Body Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%9Clle%20Parm">Ülle Parm</a>, <a href="https://publications.waset.org/abstracts/search?q=Kata%20Pedam%C3%A4e"> Kata Pedamäe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaak%20J%C3%BCrim%C3%A4e"> Jaak Jürimäe</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelin%20L%C3%A4tt"> Evelin Lätt</a>, <a href="https://publications.waset.org/abstracts/search?q=Aivar%20Orav"> Aivar Orav</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna-Liisa%20Tamm"> Anna-Liisa Tamm</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vegetarianism has gained popularity across the world. It`s being chosen for multiple reasons, but among Estonians, these have remained unknown. Previously, attention to bone health and probable nutrient deficiency of vegetarians has been paid and in vegetarians lower body mass index (BMI) and blood cholesterol level has been found but the results are inconclusive. The goal was to explain reasons for choosing vegetarian diet in Estonia and impact of vegetarianism to body composition – BMI, fat percentage (fat%), fat mass (FM), and fat free mass (FFM). The study group comprised of 68 vegetarians and 103 omnivorous. The determining body composition with DXA (Hologic) was concluded in 2013. Body mass (medical electronic scale, A&D Instruments, Abingdon, UK) and height (Martin metal anthropometer to the nearest 0.1 cm) were measured and BMI calculated (kg/m2). General data (physical activity level included) was collected with questionnaires. The main reasons why vegetarianism was chosen were the healthiness of the vegetarian diet (59%) and the wish to fight for animal rights (72%) Food additives were consumed by less than half of vegetarians, more often by men. Vegetarians had lower BMI than omnivores, especially amongst men. Based on BMI classification, vegetarians were less obese than omnivores. However, there were no differences in the FM, FFM and fat percentage figures of the two groups. Higher BMI might be the cause of higher physical activity level among omnivores compared with vegetarians. For classifying people as underweight, normal weight, overweight and obese both BMI and fat% criteria were used. By BMI classification in comparison with fat%, more people in the normal weight group were considered; by using fat% in comparison with BMI classification, however, more people categorized as overweight. It can be concluded that the main reasons for vegetarianism chosen in Estonia are healthiness of the vegetarian diet and the wish to fight for animal rights and vegetarian diet has no effect on body fat percentage, FM and FFM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20fat%20percentage" title=" body fat percentage"> body fat percentage</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20mass%20index" title=" body mass index"> body mass index</a>, <a href="https://publications.waset.org/abstracts/search?q=vegetarianism" title=" vegetarianism"> vegetarianism</a> </p> <a href="https://publications.waset.org/abstracts/28787/the-reasons-for-vegetarianism-in-estonia-and-its-effects-to-body-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6334</span> Effectiveness of a Sports Nutrition Intervention for High-School Athletes: A Feasibility Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Ryan">Michael Ryan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosemary%20E.%20Borgerding"> Rosemary E. Borgerding</a>, <a href="https://publications.waset.org/abstracts/search?q=Kimberly%20L.%20Oliver"> Kimberly L. Oliver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to assess the effectiveness of a sports nutrition intervention on body composition in high-school athletes. The study aimed to improve the food and water intake of high-school athletes, evaluate the cost-effectiveness of the intervention, and assess changes in body fat. Data were collected through observations, questionnaires, and interviews. Additionally, bioelectrical impedance analysis was performed to assess the body composition of athletes both before and after the intervention. Athletes (n=25) participated in researcher-monitored training sessions three times a week over the course of 12 weeks. During these sessions, in addition to completing their auxiliary sports training, participants were exposed to educational interventions aimed at improving their nutrition. These included discussions regarding current eating habits, nutritional guidelines for athletes, and individualized recommendations. Food was also made available to athletes for consumption before and after practice. Meals of balanced macronutrient composition were prepared and provided to athletes on four separate occasions throughout the intervention, either prior to or following a competitive event such as a tournament or game. A paired t-test was used to determine the statistical significance of the changes in body fat percentage. The results showed that there was a statistically significant difference between pre and post-intervention body fat percentage (p= .006). Cohen's d of 0.603 was calculated, indicating a moderate effect size. In conclusion, this study provides evidence that a sports nutrition intervention that combines food availability, explicit prescription, and education can be effective in improving the body composition of high-school athletes. However, it's worth noting that this study had a small sample size, and the conclusions cannot be generalized to a larger population. Further research is needed to assess the scalability of this study. This preliminary study demonstrated the feasibility of this type of nutritional intervention and laid the groundwork for a larger, more extensive study to be conducted in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioelectrical%20impedance" title="bioelectrical impedance">bioelectrical impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=high-school%20athletes" title=" high-school athletes"> high-school athletes</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20nutrition" title=" sports nutrition"> sports nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20pedagogy" title=" sports pedagogy"> sports pedagogy</a> </p> <a href="https://publications.waset.org/abstracts/161868/effectiveness-of-a-sports-nutrition-intervention-for-high-school-athletes-a-feasibility-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6333</span> Effect of Exercise Training and Dietary Silymarin on Levels of Leptin, Adiponectin, Paraoxonase and Body Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Barari">Alireza Barari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Shirali"> Saeed Shirali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The etiology of obesity is heterogeneous with several factors, and the pathophysiology of obesity has recently related to leptin, oxidative damage, and inflammation. Silybum marianum have a health-promoting perspective and has shown that bioactive molecules of silymarin have the antioxidant and antitumor properties and can affect secretion of hormones and enzyme activity in animal. This study aimed to evaluate the antioxidant effects and changes in hormonal levels and body composition after silymarin consumption. Forty-five healthy untrained colleges male take part in the 4-week investigation. The subjects were assigned to 5 groups: endurance training, Silymarin with endurance training, strength training with placebo, Silymarin with strength training or placebo. Body fat percentage and Blood sample analysis were measured before and after the intervention to assay leptin, adiponectin and paraoxonase in the sample of subject's serum. There was a considerable decrease in body fat percent and a significant increase in VO2 max in 'Strength training' and 'Strength training with Silymarin' groups. But, no significant changes in levels of leptin, adiponectinin, and paraoxanase (PON) that were observed between exercise and exercise with Silymarin in these groups. We observed reduction in body fat% and increase in adiponectin induced by exercise for 4 weeks in untrained healthy men. Silybin, could not effectively improve all parameters and don’t prevent the progression of cell damage by antioxidant activity of PON. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-inflammatory%20activity" title="anti-inflammatory activity">anti-inflammatory activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=silymarin" title=" silymarin"> silymarin</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title=" body composition"> body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=paraoxonase%20%28PON%29" title=" paraoxonase (PON)"> paraoxonase (PON)</a> </p> <a href="https://publications.waset.org/abstracts/61282/effect-of-exercise-training-and-dietary-silymarin-on-levels-of-leptin-adiponectin-paraoxonase-and-body-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6332</span> Impact of Hormone Replacement Therapy on Body Composition Analysis of Women during Perimenopause: A Framework for Action</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Chorsiya">Varsha Chorsiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Aneja"> Pooja Aneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhananjay%20Kaushik"> Dhananjay Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Yadav"> Abhinav Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intoduction: Women’s Health Initiatives (WHI) focuses on defining the risks and benefits of strategies that could potentially reduce the incidence of obesity, heart disease, breast cancer and colorectal cancer, and fractures in menopause women. The utility of the present research work determines to find the role of Hormone Replacement Therapy (HRT) in changing the different component of body composition during perimenopause period. Methods: A comparative cross-sectional study included 30 subjects, aged between 40 and 50 years which were assigned into 2 groups i.e. 15 subjects in HRT (Group A) and 15 subjects in non-HRT (Group B). The subjects were taken from the hospitals and clinics of Faridabad undergoing HRT in supervision of the consultant gynecologist. The informed consents were signed before including the participants in the study. The body composition and lipid profile were evaluated for all the subjects. Result and Discussion: The BMI, body density, percent body fats and fat mass in both groups showed statistically significant differences i.e. p < 0.05. Our study did not reveal any statistically significant difference between non-HRT and HRT for lipid profile composition of HDL, LDL, VLDL, ratio, triglycerides and total cholesterol although these indicators (LDL, VLDL, ratio, triglycerides and total cholesterol) showed difference clinically with a higher mean values for non-HRT as compared to HRT group. The mean value for HDL was higher for HRT group in contrast to non-HRT group. The result clearly showed that HRT group has a good lipid profile composition. Conclusion: In conclusion, our data show that HRT has statistically significant role in determining BMI, fat percent mass and fat mass. The lipid profile including LDL, HDL, VLDL, ratio, triglycerides and total cholesterol found to be clinically better in HRT group as compared to the non-HRT group. The rationale for non-significant lipid profile probably lie in the fact that hormonal changes need a particular time period and might become significant in post-menopausal period. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body%20composition" title="body composition">body composition</a>, <a href="https://publications.waset.org/abstracts/search?q=hormone%20replacement%20therapy" title=" hormone replacement therapy"> hormone replacement therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=perimenopause" title=" perimenopause"> perimenopause</a>, <a href="https://publications.waset.org/abstracts/search?q=women%20health" title=" women health"> women health</a> </p> <a href="https://publications.waset.org/abstracts/54731/impact-of-hormone-replacement-therapy-on-body-composition-analysis-of-women-during-perimenopause-a-framework-for-action" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6331</span> Effect of Exercise Training on Body Composition and Metabolic Profile in Older Adults during Cancer Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adeline%20Fontvieille">Adeline Fontvieille</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugo%20Parent-Roberge"> Hugo Parent-Roberge</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie-France%20Langlois"> Marie-France Langlois</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamas%20Fulop"> Tamas Fulop</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Pavic"> Michel Pavic</a>, <a href="https://publications.waset.org/abstracts/search?q=Eleonor%20Riesco"> Eleonor Riesco</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Total lean body mass is reduced during cancer treatment. This loss is called cancer cachexia and is accompanied by a progressive loss of fat mass. In older adults, these body composition changes can have a larger impact on metabolic health, physical autonomy, and cancer survival. Although currently untreatable, exercise training could reduce these effects. Hence, the objective of this pilot study is to investigate if 12 weeks of exercise training during cancer treatment can mitigate the loss of muscle mass and fat mass in older adults. Methods: A total of 40 older adults (65-80 years) with an ongoing treatment for a curable cancer are currently recruited and randomised in two groups: 1) Combined training (EX, n=20) and 2) Control group (CON, n=20). All variables are measured before and after 12 weeks of intervention: Anthropometry (weight, height, body mass index), body composition (total fat mass, visceral adipose tissue, total and appendicular muscle mass; DXA), metabolic profile (HDL-C and LDL-C, triglycerides, glucose and insulin levels). Results: Preliminary analyses revealed no impact of exercise training on appendicular muscle mass (p=0,31) and fat mass (p=0,31). Furthermore, total body weight, waist circumference, HDL-cholesterol, LDL-cholesterol, glucose and insulin levels remained unchanged (all p ≥ 0.79) after 12 weeks of training. However, statistical analyses revealed that triglyceride levels slightly increased (p=0.03), irrespective of the group. Conclusion: Preliminary analyses did not reveal any impact of aerobic and resistance exercise training on body composition in oncogeriatric patients. Furthermore, exercise training seems not efficient to prevent the cancer treatment-related triglyceride levels increase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscle%20mass" title="muscle mass">muscle mass</a>, <a href="https://publications.waset.org/abstracts/search?q=fat%20mass" title=" fat mass"> fat mass</a>, <a href="https://publications.waset.org/abstracts/search?q=metabolic%20profile" title=" metabolic profile"> metabolic profile</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20training" title=" combined training"> combined training</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a> </p> <a href="https://publications.waset.org/abstracts/65462/effect-of-exercise-training-on-body-composition-and-metabolic-profile-in-older-adults-during-cancer-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6330</span> Effect of Dietary Waste Date Meal (Phoneix dactylifera) on Chemical Body Composition, Nutrition Value and Fatty Acids Profile of Fingerling Common Carp (Cyprinus carpio)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Kamali-Sanzighi">Mehrdad Kamali-Sanzighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Kamali-sanzighi"> Maziar Kamali-sanzighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of waste date meal (WDM) addition to the diet on body chemical composition and fatty acids profile of fingerling cyprinus carpio were evaluated. Four treatments with 3 replication such as control treatment (no additional WDM; T1), 5% WDM (50 gr/kg; T2), 10% WDM (100 gr/kg; T3) and 15% WDM (150 gr/kg; T4) were done. 168 fish with initial weight of 2.48±0.06 gr were fed 3 times per day according to 5 % of fish body weight for 12 weeks. The body composition results showed that there is no significant differences between treatments (P>0.05). All of Fatty acids profile parameters show significant differences between different treatments (P<0.05). Although, the highest value of MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, EPA+DHA parameters belong to control treatment (T1) and 5% WDM treatment (T2) had lowest value of MUFA, PUFA, MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, W3/W6, DHA/EPA and EPA+DHA parameters except of SFA and W6/W3 that show highest value than other treatments. Atherogenic index (AI) had no significant differences between different treatments (P>0.05) but Thrombogenic index (TI) had significant differences between different experimental treatments (P<0.05). The 5% WDM and control treatment show highest and lowest values. Generally, treatments of 10 and 15% WDM (T3-T4) had moderate performance than the other experimental treatments. Finally, addition of WDM to common carp fingerlings diets help to insignificant improvement of chemical body composition and the saturated and unsaturated fatty acids profile of them were significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste" title="waste">waste</a>, <a href="https://publications.waset.org/abstracts/search?q=date" title=" date"> date</a>, <a href="https://publications.waset.org/abstracts/search?q=common%20carp" title=" common carp"> common carp</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition%20value" title=" nutrition value"> nutrition value</a> </p> <a href="https://publications.waset.org/abstracts/153796/effect-of-dietary-waste-date-meal-phoneix-dactylifera-on-chemical-body-composition-nutrition-value-and-fatty-acids-profile-of-fingerling-common-carp-cyprinus-carpio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=211">211</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=212">212</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=body%20composition&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10