CINXE.COM
Search results for: Prasanta K. Panigrahi
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Prasanta K. Panigrahi</title> <meta name="description" content="Search results for: Prasanta K. Panigrahi"> <meta name="keywords" content="Prasanta K. Panigrahi"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Prasanta K. Panigrahi" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Prasanta K. Panigrahi"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Prasanta K. Panigrahi</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Quantifying Parallelism of Vectors Is the Quantification of Distributed N-Party Entanglement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shreya%20Banerjee">Shreya Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20K.%20Panigrahi"> Prasanta K. Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The three-way distributive entanglement is shown to be related to the parallelism of vectors. Using a measurement-based approach a set of 2−dimensional vectors is formed, representing the post-measurement states of one of the parties. These vectors originate at the same point and have an angular distance between them. The area spanned by a pair of such vectors is a measure of the entanglement of formation. This leads to a geometrical manifestation of the 3−tangle in 2−dimensions, from inequality in the area which generalizes for n− qubits to reveal that the n− tangle also has a planar structure. Quantifying the genuine n−party entanglement in every 1|(n − 1) bi-partition it is shown that the genuine n−way entanglement does not manifest in n− tangle. A new quantity geometrically similar to 3−tangle is then introduced that represents the genuine n− way entanglement. Extending the formalism to 3− qutrits, the nonlocality without entanglement can be seen to arise from a condition under which the post-measurement state vectors of a separable state show parallelism. A connection to nontrivial sum uncertainty relation analogous to Maccone and Pati uncertainty relation is then presented using decomposition of post-measurement state vectors along parallel and perpendicular direction of the pre-measurement state vectors. This study opens a novel way to understand multiparty entanglement in qubit and qudit systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geometry%20of%20quantum%20entanglement" title="Geometry of quantum entanglement">Geometry of quantum entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=Multipartite%20and%20distributive%20entanglement" title=" Multipartite and distributive entanglement"> Multipartite and distributive entanglement</a>, <a href="https://publications.waset.org/abstracts/search?q=Parallelism%20of%20vectors" title=" Parallelism of vectors "> Parallelism of vectors </a>, <a href="https://publications.waset.org/abstracts/search?q=Tangle" title=" Tangle"> Tangle</a> </p> <a href="https://publications.waset.org/abstracts/121889/quantifying-parallelism-of-vectors-is-the-quantification-of-distributed-n-party-entanglement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Domestic Led Lighting Designs Using Internet of Things</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gouresh%20Singhal">Gouresh Singhal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Kumar%20Panigrahi"> Rajib Kumar Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we try to examine historical and technological changes in lighting industry. We propose a (proto) technical solution at block diagram and circuit level. Untapped and upcoming technologies such as Cloud and 6LoWPAN are further explored. The paper presents a robust hardware realistic design. A mobile application is also provided to provide last mile user interface. The paper highlights the current challenges to be faced and concludes with a pragmatic view of lighting industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=6lowpan" title="6lowpan">6lowpan</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=led" title=" led"> led</a> </p> <a href="https://publications.waset.org/abstracts/31125/domestic-led-lighting-designs-using-internet-of-things" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">571</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> An Unusual Fracture Pattern: Fracture of the Distal Radius (Colles') along with Fracture of the Ipsilateral Scaphoid & Capitate Bones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srikanta%20Tagore%20Sarkar">Srikanta Tagore Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Kumar%20Mandal"> Prasanta Kumar Mandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Dibakar%20Roy"> Dibakar Roy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The association of a capitate fracture with a scaphoid fracture has been termed as the naviculocapitate syndrome. The existence of some nondisplaced fractures of scaphoid and capitate with or without the fracture of lunate or radius suggests that there is a spectrum of these injuries, and this confuses the terminology. With our case; we report an unusual variety of this naviculocapitate syndrome with distal radial Colles fracture in addition to the nondisplaced fractures of the scaphoid, capitate and the dorsal lip of radial fracture. When we looked at the literature there is no another Colles fracture reported together with undisplaced scapho-capitate syndrome. The coronal and sagittal images that obtained from the MDCT (Multidetector computed tomography) is useful and effective imaging modality to diagnose complex wrist fractures with more details that are not detected in X-rays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaphoid" title="scaphoid">scaphoid</a>, <a href="https://publications.waset.org/abstracts/search?q=capitate" title=" capitate"> capitate</a>, <a href="https://publications.waset.org/abstracts/search?q=Colles%E2%80%99%20fracture" title=" Colles’ fracture"> Colles’ fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=syndrome" title=" syndrome"> syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=MDCT" title=" MDCT"> MDCT</a>, <a href="https://publications.waset.org/abstracts/search?q=unusual" title=" unusual"> unusual</a> </p> <a href="https://publications.waset.org/abstracts/13989/an-unusual-fracture-pattern-fracture-of-the-distal-radius-colles-along-with-fracture-of-the-ipsilateral-scaphoid-capitate-bones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13989.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Microstructural Investigations of Metal Oxides Encapsulated Thermochromic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Emirov">Yusuf Emirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullatif%20Hakami"> Abdullatif Hakami</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20K%20Biswas"> Prasanta K Biswas</a>, <a href="https://publications.waset.org/abstracts/search?q=Elias%20K%20Stefanakos"> Elias K Stefanakos</a>, <a href="https://publications.waset.org/abstracts/search?q=Sesha%20S%20Srinivasan"> Sesha S Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aimed to develop microencapsulated thermochromic materials and the analysis of core-shell formation using high resolution electron microscopy. The candidate metal oxides (e.g., titanium oxide and silicon oxide) used for the microencapsulation of thermochromic materials are based on the microemulsion route that involves the micelle formation using different surfactants. The effectiveness of the core-shell microstructure formationrevealed the influence of surfactants and the metal oxide precursor concentrations. Additionally, a detailed thermal and color chromic behavior of these core-shell microcapsules are evaluated with the pristine thermochromic dye particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=core-shell%20thermochromic%20materials" title="core-shell thermochromic materials">core-shell thermochromic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=core-shell%20microstructure%20formation" title=" core-shell microstructure formation"> core-shell microstructure formation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20color%20chromic%20behavior%20of%20core-shell%20microcapsules" title=" thermal and color chromic behavior of core-shell microcapsules"> thermal and color chromic behavior of core-shell microcapsules</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20micro-capsulated%20thermochromic%20materials" title=" development micro-capsulated thermochromic materials"> development micro-capsulated thermochromic materials</a> </p> <a href="https://publications.waset.org/abstracts/147686/microstructural-investigations-of-metal-oxides-encapsulated-thermochromic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Ag (I) Catalyzed Domino Carbonyl and Alkyne Activation: A Smooth Entry to 2, 2′-Di-Substituted 3, 3′-Bisindolylarylmethanes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swastik%20Karmakar">Swastik Karmakar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Das"> Prasanta Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Shital%20K.%20Chattopadhyay"> Shital K. Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An efficient synthesis of symmetrical 2, 2′-Di-substituted 3, 3′-bisindolylarylmethanes (BIAMs) having different aryl and hetero-aryl moieties has been developed by Ag(I)-catalyzed indolyzation and a sequential deoxygenative addition involving o-alkynylanilines and aryl/hetero-aryl aldehydes as substrates. Alkyne and carbonyl units could be activated by Ag (I) simultaneously which results in a domino 5-endo-dig indole annulation, addition of C3 of this indole nucleus to the carbonyl carbon in addition to second indole annulation, and its dehydroxylative addition to the same carbonyl carbon to furnish BIAMs in excellent yield. As 3, 3′-bisindolylmethanes (BIMs) are biologically significant scaffolds, this moiety with further substitutions at the indole core could find some important use in medicinal chemistry. The methodology developed is atom-economic and involves more accessible silver salts, which could be useful for large-scale synthesis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkyne" title="alkyne">alkyne</a>, <a href="https://publications.waset.org/abstracts/search?q=3" title=" 3"> 3</a>, <a href="https://publications.waset.org/abstracts/search?q=3%E2%80%B2-Bisindolylarylmethanes" title=" 3′-Bisindolylarylmethanes"> 3′-Bisindolylarylmethanes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonyl" title=" carbonyl"> carbonyl</a>, <a href="https://publications.waset.org/abstracts/search?q=domino" title=" domino"> domino</a>, <a href="https://publications.waset.org/abstracts/search?q=5-endo-dig%20indole%20annulation" title=" 5-endo-dig indole annulation"> 5-endo-dig indole annulation</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20catalyst" title=" silver catalyst"> silver catalyst</a> </p> <a href="https://publications.waset.org/abstracts/63170/ag-i-catalyzed-domino-carbonyl-and-alkyne-activation-a-smooth-entry-to-2-2-di-substituted-3-3-bisindolylarylmethanes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Sutradhar">Prasanta Sutradhar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitali%20Saha"> Mitali Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave" title=" microwave"> microwave</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=I-V%20characteristics" title=" I-V characteristics"> I-V characteristics</a> </p> <a href="https://publications.waset.org/abstracts/16661/green-synthesis-of-zinc-oxide-nano-particles-using-tomato-lycopersicon-esculentum-extract-and-its-application-for-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Piyush%20Swami">Piyush Swami</a>, <a href="https://publications.waset.org/abstracts/search?q=Bijaya%20Ketan%20Panigrahi"> Bijaya Ketan Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneh%20Anand"> Sneh Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=Manvir%20Bhatia"> Manvir Bhatia</a>, <a href="https://publications.waset.org/abstracts/search?q=Tapan%20Gandhi"> Tapan Gandhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroencephalogram%20%28EEG%29" title="electroencephalogram (EEG)">electroencephalogram (EEG)</a>, <a href="https://publications.waset.org/abstracts/search?q=epilepsy" title=" epilepsy"> epilepsy</a>, <a href="https://publications.waset.org/abstracts/search?q=ictal%20patterns" title=" ictal patterns"> ictal patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=empirical%20mode%20decomposition" title=" empirical mode decomposition"> empirical mode decomposition</a> </p> <a href="https://publications.waset.org/abstracts/64484/fast-and-accurate-model-to-detect-ictal-waveforms-in-electroencephalogram-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Material Properties Evolution Affecting Demisability for Space Debris Mitigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetan%20Mahawar">Chetan Mahawar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarath%20Chandran"> Sarath Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20Panigrahi"> Sridhar Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Shaji"> V. P. Shaji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=demisability" title="demisability">demisability</a>, <a href="https://publications.waset.org/abstracts/search?q=emissivity" title=" emissivity"> emissivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=re-entry" title=" re-entry"> re-entry</a>, <a href="https://publications.waset.org/abstracts/search?q=survivability" title=" survivability"> survivability</a> </p> <a href="https://publications.waset.org/abstracts/155073/material-properties-evolution-affecting-demisability-for-space-debris-mitigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Shivaram">M. J. Shivaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Bhushan%20Arya"> Shashi Bhushan Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagannath%20Nayak"> Jagannath Nayak</a>, <a href="https://publications.waset.org/abstracts/search?q=Bharat%20Bhooshan%20Panigrahi"> Bharat Bhooshan Panigrahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method. In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH<sub>4</sub>HCO<sub>3</sub>). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ball%20milling" title="ball milling">ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strengths" title=" compressive strengths"> compressive strengths</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20titanium%20alloy" title=" porous titanium alloy"> porous titanium alloy</a> </p> <a href="https://publications.waset.org/abstracts/71227/influence-of-ball-milling-time-on-mechanical-properties-of-porous-ti-20nb-5ag-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71227.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Differential Infection of Primary Human B-Cells and EBV Positive B-Lymphoma Cell Lines by Recombinant AAV Serotypes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Ahmadi">Elham Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrdad%20Ravanshad"> Mehrdad Ravanshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Joyce%20Fingeroth"> Joyce Fingeroth</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazyar%20Ziyaeyan"> Mazyar Ziyaeyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Panigrahi"> Rajesh Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Xie"> Jun Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Guangping"> Gao Guangping</a> </p> <p class="card-text"><strong>Abstract:</strong></p> B-cell proliferative disorders often occur among persons that are T-cell compromised. These disorders are primarily EBV+ and can first present with a focal lesion. Direct introduction of oncolytic viruses into localized tumors provides theoretical advantages over chemotherapy and immunotherapy by reducing systemic toxicity, to which the immunocompromised host is most vulnerable. Widely studied as a vehicle for gene therapy, AAV has only rarely been applied to treat cancer. As a prelude to development of a therapeutic vehicle, we assessed the ability of 15 distinct recombinant AAV serotypes (rAAV1, rAAV2, rAAV3b, rAAV4, rAAV5, rAAV6, rAAV6.2, rAAV6TM, rAAV7, rAAV8, rAAVrh8, rAAV9, rAAVrh10, rAAV39, rAAV43) bearing eGFP to infect human B-cell tumor lines compared with primary B-cells in vitro. Enhanced infection of tumor lines by AAV 6.2 was demonstrated by flow cytometry. EBV superinfection of EBV negative B-cell tumor lines increased susceptibility to AAV6.2 infection. As proof of concept, AAV6.2 bearing HSV-1 thymidine kinase in place of eGFP eliminated tumor cells upon exposure to ganciclovir. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AAV" title="AAV">AAV</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20therapy" title=" gene therapy"> gene therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphoma" title=" lymphoma"> lymphoma</a>, <a href="https://publications.waset.org/abstracts/search?q=malignancy" title=" malignancy"> malignancy</a>, <a href="https://publications.waset.org/abstracts/search?q=tropism" title=" tropism"> tropism</a> </p> <a href="https://publications.waset.org/abstracts/112865/differential-infection-of-primary-human-b-cells-and-ebv-positive-b-lymphoma-cell-lines-by-recombinant-aav-serotypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Visualization Tool for EEG Signal Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sweeti">Sweeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Anoop%20Kant%20Godiyal"> Anoop Kant Godiyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Singh"> Neha Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sneh%20Anand"> Sneh Anand</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20K.%20Panigrahi"> B. K. Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jayasree%20Santhosh"> Jayasree Santhosh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is about developing a tool for visualization and segmentation of Electroencephalograph (EEG) signals based on frequency domain features. Change in the frequency domain characteristics are correlated with change in mental state of the subject under study. Proposed algorithm provides a way to represent the change in the mental states using the different frequency band powers in form of segmented EEG signal. Many segmentation algorithms have been suggested in literature having application in brain computer interface, epilepsy and cognition studies that have been used for data classification. But the proposed method focusses mainly on the better presentation of signal and that’s why it could be a good utilization tool for clinician. Algorithm performs the basic filtering using band pass and notch filters in the range of 0.1-45 Hz. Advanced filtering is then performed by principal component analysis and wavelet transform based de-noising method. Frequency domain features are used for segmentation; considering the fact that the spectrum power of different frequency bands describes the mental state of the subject. Two sliding windows are further used for segmentation; one provides the time scale and other assigns the segmentation rule. The segmented data is displayed second by second successively with different color codes. Segment’s length can be selected as per need of the objective. Proposed algorithm has been tested on the EEG data set obtained from University of California in San Diego’s online data repository. Proposed tool gives a better visualization of the signal in form of segmented epochs of desired length representing the power spectrum variation in data. The algorithm is designed in such a way that it takes the data points with respect to the sampling frequency for each time frame and so it can be improved to use in real time visualization with desired epoch length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=de-noising" title="de-noising">de-noising</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-channel%20data" title=" multi-channel data"> multi-channel data</a>, <a href="https://publications.waset.org/abstracts/search?q=PCA" title=" PCA"> PCA</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20spectra" title=" power spectra"> power spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/37186/visualization-tool-for-eeg-signal-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Exploring the Role of Immune-Modulators in Pathogen Recognition Receptor NOD2 Mediated Protection against Visceral Leishmaniasis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Jibran%20Jawed">Junaid Jibran Jawed</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Saini"> Prasanta Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Majumdar"> Subrata Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Leishmania donovani infection causes severe host immune-suppression through the modulation of pathogen recognition receptors. Apart from TLRs (Toll Like Receptor), recent studies focus on the important contribution of NLR (NOD-Like Receptor) family member NOD1 and NOD2 as these receptors are capable of triggering host innate immunity. The aim of this study was to decipher the role of NOD1/NOD2 receptors during experimental visceral leishmaniasis (VL) and the important link between host failure and parasite evasion strategy. Method: The status of NOD1 and NOD2 receptors were analysed in uninfected and infected cells through western blotting and RT-PCR. The active contributions of these receptors in reducing parasite burden were confirmed by siRNA mediated silencing, and over-expression studies and the parasite numbers were calculated through microscopic examination of the Giemsa-stained slides. In-vivo studies were done by using non-toxic dose of Mw (Mycobacterium indicus pranii), Ara-LAM(Arabinoasylated lipoarabinomannan) along with MDP (Muramyl dipeptide) administration. Result: Leishmania donovani infection of the macrophages reduced the expression of NOD2 receptors whereas NOD1 remain unaffected. MDP, a NOD2-ligand, treatment during over-expression of NOD2, reduced the parasite burden effectively which was associated with increased pro-inflammatory cytokine generation and NO production. In experimental mouse model, Ara-LAM treatment increased the expression of NOD2 and in combination with MDP it showed active therapeutic potential against VL and found to be more effective than Mw which was already reported to be involved in NOD2 modulation. Conclusion: This work explores the essential contribution of NOD2 during experimental VL and mechanistic understanding of Ara-LAM + MDP combination therapy to work against this disease and highlighted NOD2 as an essential therapeutic target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ara-LAM%20%28Arabinoacylated%20Lipoarabinomannan%29" title="Ara-LAM (Arabinoacylated Lipoarabinomannan)">Ara-LAM (Arabinoacylated Lipoarabinomannan)</a>, <a href="https://publications.waset.org/abstracts/search?q=NOD2%20%28nucleotide%20binding%20oligomerization%20receptor%202%29" title=" NOD2 (nucleotide binding oligomerization receptor 2)"> NOD2 (nucleotide binding oligomerization receptor 2)</a>, <a href="https://publications.waset.org/abstracts/search?q=MDP%20%28muramyl%20di%20peptide%29" title=" MDP (muramyl di peptide)"> MDP (muramyl di peptide)</a>, <a href="https://publications.waset.org/abstracts/search?q=visceral%20Leishmaniasis" title=" visceral Leishmaniasis"> visceral Leishmaniasis</a> </p> <a href="https://publications.waset.org/abstracts/80536/exploring-the-role-of-immune-modulators-in-pathogen-recognition-receptor-nod2-mediated-protection-against-visceral-leishmaniasis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Prevalence and Intensity of Soil Transmitted Helminth Infections among the School Children in the State of Uttar Pradesh, India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanta%20Saini">Prasanta Saini</a>, <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Jibran%20Jawed"> Junaid Jibran Jawed</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Majumdar"> Subrata Majumdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Infections caused by soil-transmitted helminths (STH) are the major problem in all the nations of the world. The major focus of STH research is to study the prevalence of three major helminths, such as Ascaris, Trituris and hookworm. Here we are reporting the prevalence and intensity of the STH in the school children of the state of Uttar Pradesh, India. The aim of the study is to assess the prevalence and risk factors of STH infection among the school children, aged between 5-10 years in 27 districts randomly selected districts with covering nine agro-climatic zones of Uttar Pradesh, India. For this cross-sectional survey, we have selected the populations of government primary school going children in Uttar Pradesh. The sampling was performed in the nine different agro-climatic zones. Every individual of the study populations filled their daily information in the questioner's form and then the sample was collected and processed by kato-katz methods by following the guidelines of WHO. In this method, the sampling was performed in total of 6421 populations. A total of 6,421 children from 130 schools were surveyed. Infection with any soil-transmitted helminths was detected among 4,578 children with an overall prevalence of 75.6% (95% CI: 65.3-83.6). Among the 6421 population, the prevalence of Ascaris is 69.6% (95% CL 57.97-79.11), hookworm is 22.7% (95%CL 19.3-26.3) and Trichuris sp is 4.6% (95% CL 0.8-21.6), so the predicted prevalence map indicates that the STH infection was hyperendemic in this state. The findings of our survey in 130 schools covering 9 agro-climatic with one or more soil transmitted helminths. Majority of STH infections were of light intensity. STH infection was hyper-endemic in entire state, except three zones in western Uttar Pradesh. High prevalence ( > 75%) in all age groups also indicate little impact of existing deworming initiatives, including those among pre-school aged children. WHO recommends annual treatment in areas where STH prevalence is between 20% and 50%, and, a bi-annual treatment in areas with prevalence rates of over 50%. In view of high prevalence of STH infection in Uttar Pradesh, it is strongly recommended to initiate a deworming programme for school children in the state. Although our survey was among primary school children, high prevalence among children aged 4-6 years also indicates the need to strengthen the existing deworming programs for pre-school children. Extending the benefits of deworming to pre-school children through deworming in Anganwadi schools would further reduce to decrease the load of infection in community. As a long-term solution for control STH infection, it is also necessary to improve the sanitation levels in the area, as majority of the houses did not have latrines and most of the children were defecating in open fields, a factor that was found to be significantly associated with STH infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prevalence" title="prevalence">prevalence</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20going%20children" title=" school going children"> school going children</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20transmitted%20helminthes" title=" soil transmitted helminthes"> soil transmitted helminthes</a>, <a href="https://publications.waset.org/abstracts/search?q=Uttar%20Pradesh-India" title=" Uttar Pradesh-India"> Uttar Pradesh-India</a> </p> <a href="https://publications.waset.org/abstracts/80538/prevalence-and-intensity-of-soil-transmitted-helminth-infections-among-the-school-children-in-the-state-of-uttar-pradesh-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Implementation of a Web-Based Clinical Outcomes Monitoring and Reporting Platform across the Fortis Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narottam%20Puri">Narottam Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Bishnu%20Panigrahi"> Bishnu Panigrahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Pendse"> Narayan Pendse</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Clinical Outcomes are the globally agreed upon, evidence-based measurable changes in health or quality of life resulting from the patient care. Reporting of outcomes and its continuous monitoring provides an opportunity for both assessing and improving the quality of patient care. In 2012, International Consortium Of HealthCare Outcome Measurement (ICHOM) was founded which has defined global Standard Sets for measuring the outcome of various treatments. Method: Monitoring of Clinical Outcomes was identified as a pillar of Fortis’ core value of Patient Centricity. The project was started as an in-house developed Clinical Outcomes Reporting Portal by the Fortis Medical IT team. Standard sets of Outcome measurement developed by ICHOM were used. A pilot was run at Fortis Escorts Heart Institute from Aug’13 – Dec’13.Starting Jan’14, it was implemented across 11 hospitals of the group. The scope was hospital-wide and major clinical specialties: Cardiac Sciences, Orthopedics & Joint Replacement were covered. The internally developed portal had its limitations of report generation and also capturing of Patient related outcomes was restricted. A year later, the company provisioned for an ICHOM Certified Software product which could provide a platform for data capturing and reporting to ensure compliance with all ICHOM requirements. Post a year of the launch of the software; Fortis Healthcare has become the 1st Healthcare Provider in Asia to publish Clinical Outcomes data for the Coronary Artery Disease Standard Set comprising of Coronary Artery Bypass Graft and Percutaneous Coronary Interventions) in the public domain. (Jan 2016). Results: This project has helped in firmly establishing a culture of monitoring and reporting Clinical Outcomes across Fortis Hospitals. Given the diverse nature of the healthcare delivery model at Fortis Network, which comprises of hospitals of varying size and specialty-mix and practically covering the entire span of the country, standardization of data collection and reporting methodology is a huge achievement in itself. 95% case reporting was achieved with more than 90% data completion at the end of Phase 1 (March 2016). Post implementation the group now has one year of data from its own hospitals. This has helped identify the gaps and plan towards ways to bridge them and also establish internal benchmarks for continual improvement. Besides the value created for the group includes: 1. Entire Fortis community has been sensitized on the importance of Clinical Outcomes monitoring for patient centric care. Initial skepticism and cynicism has been countered by effective stakeholder engagement and automation of processes. 2. Measuring quality is the first step in improving quality. Data analysis has helped compare clinical results with best-in-class hospitals and identify improvement opportunities. 3. Clinical fraternity is extremely pleased to be part of this initiative and has taken ownership of the project. Conclusion: Fortis Healthcare is the pioneer in the monitoring of Clinical Outcomes. Implementation of ICHOM standards has helped Fortis Clinical Excellence Program in improving patient engagement and strengthening its commitment to its core value of Patient Centricity. Validation and certification of the Clinical Outcomes data by an ICHOM Certified Supplier adds confidence to its claim of being leaders in this space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clinical%20outcomes" title="clinical outcomes">clinical outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20delivery" title=" healthcare delivery"> healthcare delivery</a>, <a href="https://publications.waset.org/abstracts/search?q=patient%20centricity" title=" patient centricity"> patient centricity</a>, <a href="https://publications.waset.org/abstracts/search?q=ICHOM" title=" ICHOM"> ICHOM</a> </p> <a href="https://publications.waset.org/abstracts/54833/implementation-of-a-web-based-clinical-outcomes-monitoring-and-reporting-platform-across-the-fortis-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>