CINXE.COM

Search results for: lignin

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lignin</title> <meta name="description" content="Search results for: lignin"> <meta name="keywords" content="lignin"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lignin" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lignin"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 43</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lignin</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Juan%20C.%20Dom%C3%ADnguez">Juan C. Domínguez</a>, <a href="https://publications.waset.org/search?q=Bel%C3%A9n%20Del%20Saz-Orozco"> Belén Del Saz-Orozco</a>, <a href="https://publications.waset.org/search?q=Mar%C3%ADa%20V.%20Alonso"> María V. Alonso</a>, <a href="https://publications.waset.org/search?q=Mercedes%20Oliet"> Mercedes Oliet</a>, <a href="https://publications.waset.org/search?q=Francisco%20Rodr%C3%ADguez"> Francisco Rodríguez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam; 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement; and 82.1, 106.9, and 124.4 kJ.mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (<1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Kinetics" title="Kinetics">Kinetics</a>, <a href="https://publications.waset.org/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/search?q=phenolic%20foam" title=" phenolic foam"> phenolic foam</a>, <a href="https://publications.waset.org/search?q=thermal%20degradation." title=" thermal degradation. "> thermal degradation. </a> </p> <a href="https://publications.waset.org/10001447/kinetic-study-of-thermal-degradation-of-a-lignin-nanoparticle-reinforced-phenolic-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10001447/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10001447/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10001447/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10001447/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10001447/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10001447/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10001447/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10001447/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10001447/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10001447/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10001447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1922</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Phenolic-Based Chemical Production from Catalytic Depolymerization of Alkaline Lignin over Fumed Silica Catalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.%20Totong">S. Totong</a>, <a href="https://publications.waset.org/search?q=P.%20Daorattanachai"> P. Daorattanachai</a>, <a href="https://publications.waset.org/search?q=N.%20Laosiripojana"> N. Laosiripojana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Lignin depolymerization into phenolic-based chemicals is an interesting process for utilizing and upgrading a benefit and value of lignin. In this study, the depolymerization reaction was performed to convert alkaline lignin into smaller molecule compounds. Fumed SiO₂ was used as a catalyst to improve catalytic activity in lignin decomposition. The important parameters in depolymerization process (i.e., reaction temperature, reaction time, etc.) were also investigated. In addition, gas chromatography with mass spectrometry (GC-MS), flame-ironized detector (GC-FID), and Fourier transform infrared spectroscopy (FT-IR) were used to analyze and characterize the lignin products. It was found that fumed SiO₂ catalyst led the good catalytic activity in lignin depolymerization. The main products from catalytic depolymerization were guaiacol, syringol, vanillin, and phenols. Additionally, metal supported on fumed SiO₂ such as Cu/SiO₂ and Ni/SiO₂ increased the catalyst activity in terms of phenolic products yield.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alkaline%20lignin" title="Alkaline lignin">Alkaline lignin</a>, <a href="https://publications.waset.org/search?q=catalytic" title=" catalytic"> catalytic</a>, <a href="https://publications.waset.org/search?q=depolymerization" title=" depolymerization"> depolymerization</a>, <a href="https://publications.waset.org/search?q=fumed%20SiO2" title=" fumed SiO2"> fumed SiO2</a>, <a href="https://publications.waset.org/search?q=phenolic-based%20chemicals." title=" phenolic-based chemicals. "> phenolic-based chemicals. </a> </p> <a href="https://publications.waset.org/10009956/phenolic-based-chemical-production-from-catalytic-depolymerization-of-alkaline-lignin-over-fumed-silica-catalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009956/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009956/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009956/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009956/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009956/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009956/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009956/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009956/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009956/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009956/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">863</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> The Kinetic of Biodegradation Lignin in Water Hyacinth (Eichhornia Crassipes) by Phanerochaete Chrysosporium using Solid State Fermentation (SSF) Method for Bioethanol Production, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Eka%20Sari">Eka Sari</a>, <a href="https://publications.waset.org/search?q=Siti%20Syamsiah"> Siti Syamsiah</a>, <a href="https://publications.waset.org/search?q=Hary%20Sulistyo"> Hary Sulistyo</a>, <a href="https://publications.waset.org/search?q=Muslikhin"> Muslikhin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulosic materials are considered the most abundant renewable resource available for the Bioethanol Production. Water Hyacinth is one of potential raw material of the world-s worst aquatic plant as a feedstock to produce Bioethanol. The purposed this research is obtain reduced of matter for biodegradation lignin in Biological pretreatment with White Rot Fungi eg. Phanerochaete Chrysosporium using Solid state Fermentation methods. Phanerochaete Chrysosporium is known to have the best ability to degraded lignin, but simultaneously it can also degraded cellulose and hemicelulose. During 8 weeks incubation, water hyacinth occurred loss of weight reached 34,67%, while loss of lignin reached 67,21%, loss of cellulose reached 11,01% and loss of hemicellulose reached 36,56%. The kinetic of losses lignin using regression linear plot, the results is obtained constant rate (k) of reduction lignin is -0.1053 and the equation of reduction of lignin is y = wo - 0, 1.53 x <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biodegradation" title="Biodegradation">Biodegradation</a>, <a href="https://publications.waset.org/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/search?q=PhanerochaeteChrysosporium" title=" PhanerochaeteChrysosporium"> PhanerochaeteChrysosporium</a>, <a href="https://publications.waset.org/search?q=SSF" title=" SSF"> SSF</a>, <a href="https://publications.waset.org/search?q=Water%20Hyacinth" title=" Water Hyacinth"> Water Hyacinth</a>, <a href="https://publications.waset.org/search?q=Bioethanol" title=" Bioethanol"> Bioethanol</a> </p> <a href="https://publications.waset.org/3167/the-kinetic-of-biodegradation-lignin-in-water-hyacinth-eichhornia-crassipes-by-phanerochaete-chrysosporium-using-solid-state-fermentation-ssf-method-for-bioethanol-production-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3167/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3167/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3167/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3167/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3167/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3167/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3167/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3167/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3167/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3167/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2580</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Structural Analysis of Lignins from Different Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20F.%20Fi%C5%A3ig%C4%83u">I. F. Fiţigău</a>, <a href="https://publications.waset.org/search?q=F.%20Peter"> F. Peter</a>, <a href="https://publications.waset.org/search?q=C.%20G.%20Boeriu"> C. G. Boeriu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Five lignin samples were fractionated with Acetone/Water mixtures and the obtained fractions were subjected to extensive structural characterization, including Fourier Transform Infrared (FT-IR), Gel permeation Chromatography (GPC) and Phosphorus-31 NMR spectroscopy (31P-NMR). The results showed that for all studied lignins the solubility increases with the increment of the acetone concentration. Wheat straw lignin has the highest solubility in 90/10 (v/v) Acetone/Water mixture, 400 mg lignin being dissolved in 1 mL mixture. The weight average molecular weight of the obtained fractions increased with the increment of acetone concentration and thus with solubility. 31P-NMR analysis based on lignin modification by reactive phospholane into phosphitylated compounds was used to differentiate and quantify the different types of OH groups (aromatic, aliphatic, and carboxylic) found in the fractions obtained with 70/30 (v/v) Acetone/Water mixture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lignin" title="Lignin">Lignin</a>, <a href="https://publications.waset.org/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/search?q=FT-IR" title=" FT-IR"> FT-IR</a>, <a href="https://publications.waset.org/search?q=GPC" title=" GPC"> GPC</a>, <a href="https://publications.waset.org/search?q=31P-NMR." title=" 31P-NMR."> 31P-NMR.</a> </p> <a href="https://publications.waset.org/4184/structural-analysis-of-lignins-from-different-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4184/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4184/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4184/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4184/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4184/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4184/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4184/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4184/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4184/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4184/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4945</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Shyh-Ming%20Chern">Shyh-Ming Chern</a>, <a href="https://publications.waset.org/search?q=Wei-Ling%20Lin"> Wei-Ling Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ethanol" title="Ethanol">Ethanol</a>, <a href="https://publications.waset.org/search?q=gasification" title=" gasification"> gasification</a>, <a href="https://publications.waset.org/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/search?q=supercritical." title=" supercritical. "> supercritical. </a> </p> <a href="https://publications.waset.org/10007748/gasification-of-trans-4-hydroxycinnamic-acid-with-ethanol-at-elevated-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10007748/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10007748/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10007748/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10007748/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10007748/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10007748/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10007748/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10007748/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10007748/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10007748/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10007748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1081</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Isolation and Screening of Fungi for Aerobic Delignification and Reduction of AOX of Pulp and Paper Mill Effluent </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Lokeshwari">N. Lokeshwari</a>, <a href="https://publications.waset.org/search?q=G%20Srinikethan"> G Srinikethan</a>, <a href="https://publications.waset.org/search?q=S.%20G.%20Joshi"> S. G. Joshi</a>, <a href="https://publications.waset.org/search?q=I.%20Shasikala"> I. Shasikala</a>, <a href="https://publications.waset.org/search?q=B.%20Srikanth"> B. Srikanth</a>, <a href="https://publications.waset.org/search?q=Bashirahmed"> Bashirahmed</a>, <a href="https://publications.waset.org/search?q=L.%20Sushma"> L. Sushma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Water pollution is a major concern for the pulp and paper industry due to the large quantities of effluents generated. Biodegradation of industrial Lignin and AOX by a fungal isolate identified as Aspergillus flavus, white rot fungi which was isolated from Pulp and Paper effluent was studied in batch flask system with industrial effluent and synthetic solution. The flasks were operated at temperature 32&deg;C at 200rpm for eight days in continuous mode. The average overall pH, Temperature, DO, C.O.D, T.D.S, T.S.S, Lignin, AOX were up to 4.56, 32oC, 4.2mg/l, 104mg/l, 6000 mg/l, 4000mg/l, 575.5mg/l, 2195 mg/l respectively after treatment. The Aspergillus flavus sp was the most effective in the biodegradation of Lignin of pulp industry for 94% at 480nm, AOX for 62% at 510nm and of chemical oxygen demand levels for 45% after 8 days of incubation. The optimal conditions found were 4 pH and 32oC temperature for lignin and AOX degradation.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aspergillus%20flavus" title="Aspergillus flavus">Aspergillus flavus</a>, <a href="https://publications.waset.org/search?q=Lignin" title=" Lignin"> Lignin</a>, <a href="https://publications.waset.org/search?q=Optimal%20conditions" title=" Optimal conditions"> Optimal conditions</a>, <a href="https://publications.waset.org/search?q=Quantification%20studies." title=" Quantification studies. "> Quantification studies. </a> </p> <a href="https://publications.waset.org/9996862/isolation-and-screening-of-fungi-for-aerobic-delignification-and-reduction-of-aox-of-pulp-and-paper-mill-effluent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9996862/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9996862/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9996862/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9996862/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9996862/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9996862/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9996862/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9996862/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9996862/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9996862/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9996862.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2289</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Characterisation of Fractions Extracted from Sorghum Byproducts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Prima%20Luna">Prima Luna</a>, <a href="https://publications.waset.org/search?q=Afroditi%20Chatzifragkou"> Afroditi Chatzifragkou</a>, <a href="https://publications.waset.org/search?q=Dimitris%20Charalampopoulos"> Dimitris Charalampopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Sorghum byproducts, namely bran, stalk, and panicle are examples of lignocellulosic biomass. These raw materials contain large amounts of polysaccharides, in particular hemicelluloses, celluloses, and lignins, which if efficiently extracted, can be utilised for the development of a range of added value products with potential applications in agriculture and food packaging sectors. The aim of this study was to characterise fractions extracted from sorghum bran and stalk with regards to their physicochemical properties that could determine their applicability as food-packaging materials. A sequential alkaline extraction was applied for the isolation of cellulosic, hemicellulosic and lignin fractions from sorghum stalk and bran. Lignin content, phenolic content and antioxidant capacity were also investigated in the case of the lignin fraction. Thermal analysis using differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) revealed that the glass transition temperature (T<sub>g</sub>) of cellulose fraction of the stalk was ~78.33 <sup>o</sup>C at amorphous state (~65%) and water content of ~5%. In terms of hemicellulose, the T<sub>g</sub> value of stalk was slightly lower compared to bran at amorphous state (~54%) and had less water content (~2%). It is evident that hemicelluloses generally showed a lower thermal stability compared to cellulose, probably due to their lack of crystallinity. Additionally, bran had higher arabinose-to-xylose ratio (0.82) than the stalk, a fact that indicated its low crystallinity. Furthermore, lignin fraction had T<sub>g </sub>value of ~93 <sup>o</sup>C at amorphous state (~11%). Stalk-derived lignin fraction contained more phenolic compounds (mainly consisting of <em>p</em>-coumaric and ferulic acid) and had higher lignin content and antioxidant capacity compared to bran-derived lignin fraction.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alkaline%20extraction" title="Alkaline extraction">Alkaline extraction</a>, <a href="https://publications.waset.org/search?q=bran" title=" bran"> bran</a>, <a href="https://publications.waset.org/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/search?q=hemicellulose" title=" hemicellulose"> hemicellulose</a>, <a href="https://publications.waset.org/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/search?q=sorghum" title=" sorghum"> sorghum</a>, <a href="https://publications.waset.org/search?q=stalk." title=" stalk."> stalk.</a> </p> <a href="https://publications.waset.org/10005953/characterisation-of-fractions-extracted-from-sorghum-byproducts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005953/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005953/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005953/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005953/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005953/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005953/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005953/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005953/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005953/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005953/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1388</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Effect of Oyster Mushroom on Biodegradation of Oil Palm Mesocarp Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohammed%20Saidu">Mohammed Saidu</a>, <a href="https://publications.waset.org/search?q=Afiz%20Busari"> Afiz Busari</a>, <a href="https://publications.waset.org/search?q=Ali%20Yuzir"> Ali Yuzir</a>, <a href="https://publications.waset.org/search?q=Mohd%20Razman%20Salim"> Mohd Razman Salim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The problem of degradation of agricultural residues from palm oil industry is increasing due to its expansion. Lignocelloulosic waste from these industry represent large amount of unutilized resources, this is due to their high lignin content. Since white rot fungi are capable of degrading lignin, its potential for the degradation of lignocelloulosic waste from palm oil industry was accessed. The lignocellluloses content was measured before and after biodegradation and the rate of reduction was determined. From the results of the biodegradation, it was observed that hemicellulose reduces by 22.62%, cellulose by 20.97% and lignin by 10.65% from the initials lignocelluloses contents. Thus, to improve the digestibility of palm oil mesocarp fibre, treatment by white rot-fungi is recommended.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biological" title="Biological">Biological</a>, <a href="https://publications.waset.org/search?q=lignocelluses" title=" lignocelluses"> lignocelluses</a>, <a href="https://publications.waset.org/search?q=oil%20palm" title=" oil palm"> oil palm</a>, <a href="https://publications.waset.org/search?q=white%20rot%20fungi." title=" white rot fungi."> white rot fungi.</a> </p> <a href="https://publications.waset.org/10002614/effect-of-oyster-mushroom-on-biodegradation-of-oil-palm-mesocarp-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002614/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002614/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002614/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002614/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002614/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002614/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002614/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002614/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002614/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002614/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2988</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Elaboration and Characterization of Self-Compacting Mortar Based Biopolymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=I.%20Djefour">I. Djefour</a>, <a href="https://publications.waset.org/search?q=M.%20Saidi"> M. Saidi</a>, <a href="https://publications.waset.org/search?q=I.%20Tlemsani"> I. Tlemsani</a>, <a href="https://publications.waset.org/search?q=S.%20Toubal"> S. Toubal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignin is a molecule derived from wood and also generated as waste from the paper industry. With a view to its valorization and protection of the environment, we are interested in its use as a superplasticizer-type adjuvant in mortars and concretes to improve their mechanical strengths. The additives of the concrete have a very strong influence on the properties of the fresh and / or hardened concrete. This study examines the development and use of industrial waste and lignin extracted from a renewable natural source (wood) in cementitious materials. The use of these resources is known at present as a definite resurgence of interest in the development of building materials. Physicomechanical characteristics of mortars are determined by optimization quantity of the natural superplasticizer. The results show that the mechanical strengths of mortars based on natural adjuvant have improved by 20% (64 MPa) for a W/C ratio = 0.4, and the amount of natural adjuvant of dry extract needed is 40 times smaller than commercial adjuvant. This study has a scientific impact (improving the performance of the mortar with an increase in compactness and reduction of the quantity of water), ecological use of the lignin waste generated by the paper industry) and economic reduction of the cost price necessary to elaboration of self-compacting mortars and concretes). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biopolymer" title="Biopolymer">Biopolymer</a>, <a href="https://publications.waset.org/search?q=lignin" title=" lignin"> lignin</a>, <a href="https://publications.waset.org/search?q=industrial%20waste" title=" industrial waste"> industrial waste</a>, <a href="https://publications.waset.org/search?q=mechanical%20resistances" title=" mechanical resistances"> mechanical resistances</a>, <a href="https://publications.waset.org/search?q=self-compacting%20mortars." title=" self-compacting mortars."> self-compacting mortars.</a> </p> <a href="https://publications.waset.org/10006281/elaboration-and-characterization-of-self-compacting-mortar-based-biopolymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006281/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006281/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006281/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006281/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006281/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006281/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006281/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006281/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006281/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006281/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1000</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Evaluation of Guaiacol and Syringol Emission upon Wood Pyrolysis for some Fast Growing Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sherif%20S.%20Z.%20Hindi">Sherif S. Z. Hindi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Wood pyrolysis for Casuarina glauca, Casuarina cunninghamiana, Eucalyptus camaldulensis, Eucalyptus microtheca was made at 450&deg;C with 2.5&deg;C/min. in a flowing N2-atmosphere. The Eucalyptus genus wood gave higher values of specific gravity, ash , total extractives, lignin, N2-liquid trap distillate (NLTD) and water trap distillate (WSP) than those for Casuarina genus. The GHC of NLTD was higher for Casuarina genus than that for Eucalyptus genus with the highest value for Casuarina cunninghamiana. Guiacol, 4-ethyl-2-methoxyphenol and syringol were observed in the NLTD of all the four wood species reflecting their parent hardwood lignin origin. Eucalyptus camaldulensis wood had the highest lignin content (28.89%) and was pyrolyzed to the highest values of phenolics (73.01%), guaiacol (11.2%) and syringol (32.28%) contents in methylene chloride fraction (MCF) of NLTD. Accordingly, recoveries of syringol and guaiacol may become economically attractive from Eucalyptus camaldulensis.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Wood" title="Wood">Wood</a>, <a href="https://publications.waset.org/search?q=Pyrolysis" title=" Pyrolysis"> Pyrolysis</a>, <a href="https://publications.waset.org/search?q=Guaiacol" title=" Guaiacol"> Guaiacol</a>, <a href="https://publications.waset.org/search?q=Syringol" title=" Syringol"> Syringol</a> </p> <a href="https://publications.waset.org/7020/evaluation-of-guaiacol-and-syringol-emission-upon-wood-pyrolysis-for-some-fast-growing-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7020/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7020/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7020/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7020/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7020/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7020/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7020/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7020/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7020/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7020/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2364</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kessara%20Seneesrisakul">Kessara Seneesrisakul</a>, <a href="https://publications.waset.org/search?q=Erdogan%20Gulari"> Erdogan Gulari</a>, <a href="https://publications.waset.org/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U&middot;g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Corncob" title="Corncob">Corncob</a>, <a href="https://publications.waset.org/search?q=Enzymatic%20hydrolysis" title=" Enzymatic hydrolysis"> Enzymatic hydrolysis</a>, <a href="https://publications.waset.org/search?q=Microorganisms" title=" Microorganisms"> Microorganisms</a>, <a href="https://publications.waset.org/search?q=Pretreatment." title=" Pretreatment."> Pretreatment.</a> </p> <a href="https://publications.waset.org/9999351/study-on-microbial-pretreatment-for-enhancing-enzymatic-hydrolysis-of-corncob" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999351/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999351/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999351/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999351/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999351/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999351/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999351/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999351/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999351/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999351/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999351.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2431</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Study of Sugarcane Bagasse Pretreatment with Sulfuric Acid as a Step of Cellulose Obtaining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Candido.%20R.G.">Candido. R.G.</a>, <a href="https://publications.waset.org/search?q=Godoy"> Godoy</a>, <a href="https://publications.waset.org/search?q=G.G."> G.G.</a>, <a href="https://publications.waset.org/search?q=Gon%C3%A7alves"> Gonçalves</a>, <a href="https://publications.waset.org/search?q=A.R"> A.R</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To produce sugar and ethanol, sugarcane processing generates several agricultural residues, being straw and bagasse is considered as the main among them. And what to do with this residues has been subject of many studies and experiences in an industry that, in recent years, highlighted by the ability to transform waste into valuable products such as electric power. Cellulose is the main component of these materials. It is the most common organic polymer and represents about 1.5 x 1012 tons of total production of biomass per year and is considered an almost inexhaustible source of raw material. Pretreatment with mineral acids is one of the most widely used as stage of cellulose extraction from lignocellulosic materials for solubilizing most of the hemicellulose content. This study had as goal to find the best reaction time of sugarcane bagasse pretreatment with sulfuric acid in order to minimize the losses of cellulose concomitantly with the highest possible removal of hemicellulose and lignin. It was found that the best time for this reaction was 40 minutes, in which it was reached a loss of hemicelluloses around 70% and lignin and cellulose, around 15%. Over this time, it was verified that the cellulose loss increased and there was no loss of lignin and hemicellulose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=cellulose" title="cellulose">cellulose</a>, <a href="https://publications.waset.org/search?q=acid%20pretreatment" title=" acid pretreatment"> acid pretreatment</a>, <a href="https://publications.waset.org/search?q=hemicellulose%20removal" title=" hemicellulose removal"> hemicellulose removal</a>, <a href="https://publications.waset.org/search?q=sugarcane%20bagasse" title=" sugarcane bagasse"> sugarcane bagasse</a> </p> <a href="https://publications.waset.org/13936/study-of-sugarcane-bagasse-pretreatment-with-sulfuric-acid-as-a-step-of-cellulose-obtaining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13936/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13936/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13936/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13936/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13936/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13936/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13936/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13936/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13936/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13936/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4926</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Thermogravimetry Study on Pyrolysis of Various Lignocellulosic Biomass for Potential Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=S.S.%20Abdullah">S.S. Abdullah</a>, <a href="https://publications.waset.org/search?q=S.%20Yusup"> S. Yusup</a>, <a href="https://publications.waset.org/search?q=M.M.%20Ahmad"> M.M. Ahmad</a>, <a href="https://publications.waset.org/search?q=A.%20Ramli"> A. Ramli</a>, <a href="https://publications.waset.org/search?q=L.%20Ismail"> L. Ismail</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study decomposition behavior in pyrolytic environment of four lignocellulosic biomass (oil palm shell, oil palm frond, rice husk and paddy straw), and two commercial components of biomass (pure cellulose and lignin), performed in a thermogravimetry analyzer (TGA). The unit which consists of a microbalance and a furnace flowed with 100 cc (STP) min-1 Nitrogen, N2 as inert. Heating rate was set at 20⁰C min-1 and temperature started from 50 to 900⁰C. Hydrogen gas production during the pyrolysis was observed using Agilent Gas Chromatography Analyzer 7890A. Oil palm shell, oil palm frond, paddy straw and rice husk were found to be reactive enough in a pyrolytic environment of up to 900°C since pyrolysis of these biomass starts at temperature as low as 200°C and maximum value of weight loss is achieved at about 500°C. Since there was not much different in the cellulose, hemicelluloses and lignin fractions between oil palm shell, oil palm frond, paddy straw and rice husk, the T-50 and R-50 values obtained are almost similar. H2 productions started rapidly at this temperature as well due to the decompositions of biomass inside the TGA. Biomass with more lignin content such as oil palm shell was found to have longer duration of H2 production compared to materials of high cellulose and hemicelluloses contents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=biomass" title="biomass">biomass</a>, <a href="https://publications.waset.org/search?q=decomposition" title=" decomposition"> decomposition</a>, <a href="https://publications.waset.org/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/search?q=lignocellulosic" title=" lignocellulosic"> lignocellulosic</a>, <a href="https://publications.waset.org/search?q=thermogravimetry" title="thermogravimetry">thermogravimetry</a> </p> <a href="https://publications.waset.org/12172/thermogravimetry-study-on-pyrolysis-of-various-lignocellulosic-biomass-for-potential-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12172/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12172/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12172/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12172/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12172/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12172/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12172/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12172/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12172/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12172/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2268</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Feasibility Study on Vanillin Production from Jatropha curcas Stem Using Steam Explosion as a Pretreatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pilanee%20Vaithanomsat">Pilanee Vaithanomsat</a>, <a href="https://publications.waset.org/search?q=Waraporn%20Apiwatanapiwat"> Waraporn Apiwatanapiwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Jatropha curcas stem was analyzed for chemical compositions: 19.11% pentosan, 42.99% alphacellulose and 24.11% lignin based on dry weight of 100-g raw material. The condition to fractionate cellulose, hemicellulose and lignin in J. curcas stem using steam explosion was optimized. The procedure started from cutting J. curcas stem into small pieces and soaked in water for overnight. After that, they were steam exploded at 214 °C and 21 kg/cm2 for 5 min. The obtained hydrolysate contained 1.55 g/L ferulic acid which after that was used as substrate for vanillin production by Aspergillus niger and Pycnoporus cinnabarinus in one-step process. The maximum 0.65 g/L of vanillin were obtained with the conversion rate of 45.2% based on the initial ferulic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Vanillin" title="Vanillin">Vanillin</a>, <a href="https://publications.waset.org/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/search?q=Jatropha%20curcas%20stem" title=" Jatropha curcas stem"> Jatropha curcas stem</a>, <a href="https://publications.waset.org/search?q=steam%0Aexplosion." title=" steam explosion."> steam explosion.</a> </p> <a href="https://publications.waset.org/15930/feasibility-study-on-vanillin-production-from-jatropha-curcas-stem-using-steam-explosion-as-a-pretreatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15930/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15930/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15930/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15930/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15930/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15930/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15930/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15930/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15930/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15930/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2381</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Decolorization and Phenol Removal of Palm Oil Mill Effluent by Termite-Associated Yeast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=P.%20Chaijak">P. Chaijak</a>, <a href="https://publications.waset.org/search?q=M.%20Lertworapreecha"> M. Lertworapreecha</a>, <a href="https://publications.waset.org/search?q=C.%20Sukkasem"> C. Sukkasem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A huge of dark color palm oil mill effluent (POME) cannot pass the discharge standard. It has been identified as the major contributor to the pollution load into ground water. Here, lignin-degrading yeast isolated from a termite nest was tested to treat the POME. Its lignin-degrading and decolorizing ability was determined. The result illustrated that <em>Galactomyces </em>sp. was successfully grown in POME. The decolorizing test demonstrated that 40% of <em>Galactomyces </em>sp. could reduce the color of POME (50% v/v) about 74-75% in 5 days without nutrient supplement. The result suggested that <em>G. reessii </em>has a potential to apply for decolorizing the dark wastewater like POME and other industrial wastewaters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Decolorization" title="Decolorization">Decolorization</a>, <a href="https://publications.waset.org/search?q=palm%20oil%20mill%20effluent" title=" palm oil mill effluent"> palm oil mill effluent</a>, <a href="https://publications.waset.org/search?q=ligninolytic%20enzyme" title=" ligninolytic enzyme"> ligninolytic enzyme</a>, <a href="https://publications.waset.org/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/search?q=termite." title=" termite."> termite.</a> </p> <a href="https://publications.waset.org/10006368/decolorization-and-phenol-removal-of-palm-oil-mill-effluent-by-termite-associated-yeast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10006368/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10006368/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10006368/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10006368/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10006368/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10006368/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10006368/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10006368/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10006368/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10006368/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10006368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1323</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Utilization of Sugarcane Bagasses for Lactic Acid Production by acid Hydrolysis and Fermentation using Lactobacillus sp</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Woranart%20Jonglertjunya">Woranart Jonglertjunya</a>, <a href="https://publications.waset.org/search?q=Nattawadee%20Pranrawang"> Nattawadee Pranrawang</a>, <a href="https://publications.waset.org/search?q=Nuanyai%20Phookongka"> Nuanyai Phookongka</a>, <a href="https://publications.waset.org/search?q=Thanasak%20Sridangtip"> Thanasak Sridangtip</a>, <a href="https://publications.waset.org/search?q=Watthana%20Sawedrungreang">Watthana Sawedrungreang</a>, <a href="https://publications.waset.org/search?q=Chularat%20Krongtaew"> Chularat Krongtaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Sugarcane bagasses are one of the most extensively used agricultural residues. Using acid hydrolysis and fermentation, conversion of sugarcane bagasses to lactic acid was technically and economically feasible. This research was concerned with the solubility of lignin in ammonium hydroxide, acid hydrolysis and lactic acid fermentation by Lactococcus lactis, Lactobacillus delbrueckii, Lactobacillus plantarum, and Lactobacillus casei. The lignin extraction results for different ammonium hydroxide concentrations showed that 10 % (v/v) NH4OH was favorable to lignin dissolution. Acid hydrolysis can be enhanced with increasing acid concentration and reaction temperature. The optimum glucose and xylose concentrations occurred at 121 ○C for 1 hour hydrolysis time in 10% sulphuric acid solution were 32 and 11 g/l, respectively. In order to investigate the significance of medium composition on lactic acid production, experiments were undertaken whereby a culture of Lactococcus lactis was grown under various glucose, peptone, yeast extract and xylose concentrations. The optimum medium was composed of 5 g/l glucose, 2.5 g/l xylose, 10 g/l peptone and 5 g/l yeast extract. Lactococcus lactis represents the most efficient for lactic acid production amongst those considered. The lactic acid fermentation by Lactococcus lactis after 72 hours gave the highest yield of 1.4 (g lactic acid per g reducing sugar).</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=sugarcane%20bagasses" title="sugarcane bagasses">sugarcane bagasses</a>, <a href="https://publications.waset.org/search?q=acid%20hydrolysis" title=" acid hydrolysis"> acid hydrolysis</a>, <a href="https://publications.waset.org/search?q=lactic%20acid" title=" lactic acid"> lactic acid</a>, <a href="https://publications.waset.org/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/11149/utilization-of-sugarcane-bagasses-for-lactic-acid-production-by-acid-hydrolysis-and-fermentation-using-lactobacillus-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11149/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11149/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11149/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11149/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11149/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11149/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11149/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11149/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11149/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11149/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3517</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sirikarn%20Satimanont">Sirikarn Satimanont</a>, <a href="https://publications.waset.org/search?q=Apanee%20Luengnaruemitchai"> Apanee Luengnaruemitchai</a>, <a href="https://publications.waset.org/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lignocellulosic materials are new targeted source to produce second generation biofuels like biobutanol. However, this process is significantly resisted by the native structure of biomass. Therefore, pretreatment process is always essential to remove hemicelluloses and lignin prior to the enzymatic hydrolysis. The goals of pretreatment are removing hemicelluloses and lignin, increasing biomass porosity, and increasing the enzyme accessibility. The main goal of this research is to study the important variables such as pretreatment temperature and time, which can give the highest total sugar yield in pretreatment step by using dilute phosphoric acid. After pretreatment, the highest total sugar yield of 13.61 g/L was obtained under an optimal condition at 140°C for 10 min of pretreatment time by using 1.75% (w/w) H3PO4 and at 15:1 liquid to solid ratio. The total sugar yield of two-stage process (pretreatment+enzymatic hydrolysis) of 27.38 g/L was obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Butanol%20production" title="Butanol production">Butanol production</a>, <a href="https://publications.waset.org/search?q=Corn%20cobs" title=" Corn cobs"> Corn cobs</a>, <a href="https://publications.waset.org/search?q=Phosphoric%20acid" title=" Phosphoric acid"> Phosphoric acid</a>, <a href="https://publications.waset.org/search?q=Pretreatment" title=" Pretreatment"> Pretreatment</a> </p> <a href="https://publications.waset.org/7851/effect-of-temperature-and-time-on-dilute-acid-pretreatment-of-corn-cobs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7851/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7851/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7851/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7851/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7851/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7851/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7851/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7851/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7851/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7851/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7851.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2734</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Thermal and Morphological Evaluation of Chemically Pretreated Sugarcane Bagasse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Glauber%20Cruz">Glauber Cruz</a>, <a href="https://publications.waset.org/search?q=Patr%C3%ADcia%20A.%20S.%20Monteiro"> Patrícia A. S. Monteiro</a>, <a href="https://publications.waset.org/search?q=Carlos%20E.%20M.%20Braz"> Carlos E. M. Braz</a>, <a href="https://publications.waset.org/search?q=Paulo%20Seleghin%20Jr."> Paulo Seleghin Jr.</a>, <a href="https://publications.waset.org/search?q=Igor%20Polikarpov"> Igor Polikarpov</a>, <a href="https://publications.waset.org/search?q=Paula%20M.Crnkovic"> Paula M.Crnkovic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Enzymatic hydrolysis is one of the major steps involved in the conversion from sugarcane bagasse to yield ethanol. This process offers potential for yields and selectivity higher, lower energy costs and milder operating conditions than chemical processes. However, the presence of some factors such as lignin content, crystallinity degree of the cellulose, and particle sizes, limits the digestibility of the cellulose present in the lignocellulosic biomasses. Pretreatment aims to improve the access of the enzyme to the substrate. In this study sugarcane bagasse was submitted chemical pretreatment that consisted of two consecutive steps, the first with dilute sulfuric acid (1 % (v/v) H2SO4), and the second with alkaline solutions with different concentrations of NaOH (1, 2, 3 and 4 % (w/v)). Thermal Analysis (TG/ DTG and DTA) was used to evaluate hemicellulose, cellulose and lignin contents in the samples. Scanning Electron Microscopy (SEM) was used to evaluate the morphological structures of the in natura and chemically treated samples. Results showed that pretreatments were effective in chemical degradation of lignocellulosic materials of the samples, and also was possible to observe the morphological changes occurring in the biomasses after pretreatments.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Alkaline%20solutions" title="Alkaline solutions">Alkaline solutions</a>, <a href="https://publications.waset.org/search?q=bioethanol%20production" title=" bioethanol production"> bioethanol production</a>, <a href="https://publications.waset.org/search?q=dilute%20acid" title=" dilute acid"> dilute acid</a>, <a href="https://publications.waset.org/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/search?q=lignocellulosic%20biomass." title=" lignocellulosic biomass."> lignocellulosic biomass.</a> </p> <a href="https://publications.waset.org/15832/thermal-and-morphological-evaluation-of-chemically-pretreated-sugarcane-bagasse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15832/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15832/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15832/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15832/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15832/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15832/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15832/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15832/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15832/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15832/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2551</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Conditions of the Anaerobic Digestion of Biomass</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=N.%20Boontian">N. Boontian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Biological conversion of biomass to methane has received increasing attention in recent years. Grasses have been explored for their potential anaerobic digestion to methane. In this review, extensive literature data have been tabulated and classified. The influences of several parameters on the potential of these feedstocks to produce methane are presented. Lignocellulosic biomass represents a mostly unused source for biogas and ethanol production. Many factors, including lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have used to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effects on cellulose, hemicellulose and lignin, the three main components of lignocellulosic biomass. Solidstate anaerobic digestion (SS-AD) generally occurs at solid concentrations higher than 15%. In contrast, liquid anaerobic digestion (AD) handles feedstocks with solid concentrations between 0.5% and 15%. Animal manure, sewage sludge, and food waste are generally treated by liquid AD, while organic fractions of municipal solid waste (OFMSW) and lignocellulosic biomass such as crop residues and energy crops can be processed through SS-AD. An increase in operating temperature can improve both the biogas yield and the production efficiency, other practices such as using AD digestate or leachate as an inoculant or decreasing the solid content may increase biogas yield but have negative impact on production efficiency. Focus is placed on substrate pretreatment in anaerobic digestion (AD) as a means of increasing biogas yields using today&rsquo;s diversified substrate sources.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Anaerobic%20digestion" title="Anaerobic digestion">Anaerobic digestion</a>, <a href="https://publications.waset.org/search?q=Lignocellulosic%20biomass" title=" Lignocellulosic biomass"> Lignocellulosic biomass</a>, <a href="https://publications.waset.org/search?q=Methane%20production" title=" Methane production"> Methane production</a>, <a href="https://publications.waset.org/search?q=Optimization" title=" Optimization"> Optimization</a>, <a href="https://publications.waset.org/search?q=Pretreatment." title=" Pretreatment."> Pretreatment.</a> </p> <a href="https://publications.waset.org/9999472/conditions-of-the-anaerobic-digestion-of-biomass" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999472/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999472/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999472/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999472/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999472/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999472/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999472/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999472/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999472/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999472/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">4246</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Adilah%20Shariff">Adilah Shariff</a>, <a href="https://publications.waset.org/search?q=Nur%20Syairah%20Mohamad%20Aziz"> Nur Syairah Mohamad Aziz</a>, <a href="https://publications.waset.org/search?q=Norsyahidah%20Md%20Saleh"> Norsyahidah Md Saleh</a>, <a href="https://publications.waset.org/search?q=Nur%20Syuhada%20Izzati%20Ruzali"> Nur Syuhada Izzati Ruzali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 &deg;C for 2 hours at 10 &deg;C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 &deg;C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 &deg;C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 &deg;C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 &deg;C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Biochar" title="Biochar">Biochar</a>, <a href="https://publications.waset.org/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/search?q=coconut%20wastes" title=" coconut wastes"> coconut wastes</a>, <a href="https://publications.waset.org/search?q=slow%20pyrolysis." title=" slow pyrolysis."> slow pyrolysis.</a> </p> <a href="https://publications.waset.org/10005789/the-effect-of-feedstock-type-and-slow-pyrolysis-temperature-on-biochar-yield-from-coconut-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005789/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005789/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005789/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005789/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005789/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005789/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005789/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005789/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005789/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005789/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1578</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Production of Glucose from the Hydrolysis of Cassava Residue using Bacteria Isolates from Thai Higher Termites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pitcha%20Wongskeo">Pitcha Wongskeo</a>, <a href="https://publications.waset.org/search?q=Pramoch%20Rangsunvigit"> Pramoch Rangsunvigit</a>, <a href="https://publications.waset.org/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The possibility of using cassava residue containing 49.66% starch, 21.47% cellulose, 12.97% hemicellulose, and 21.86% lignin as a raw material to produce glucose using enzymatic hydrolysis was investigated. In the experiment, each reactor contained the cassava residue, bacteria cells, and production medium. The effects of particles size (40 mesh and 60 mesh) and strains of bacteria (A002 and M015) isolated from Thai higher termites, Microcerotermes sp., on the glucose concentration at 37°C were focused. High performance liquid chromatography (HPLC) with a refractive index detector was used to determine the quantity of glucose. The maximum glucose concentration obtained at 37°C using strain A002 and 60 mesh of the cassava residue was 1.51 g/L at 10 h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Hydrolysis" title="Hydrolysis">Hydrolysis</a>, <a href="https://publications.waset.org/search?q=termites" title=" termites"> termites</a>, <a href="https://publications.waset.org/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/search?q=cassava" title=" cassava"> cassava</a> </p> <a href="https://publications.waset.org/752/production-of-glucose-from-the-hydrolysis-of-cassava-residue-using-bacteria-isolates-from-thai-higher-termites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/752/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/752/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/752/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/752/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/752/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/752/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/752/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/752/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/752/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/752/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2456</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Microcrystalline Cellulose (MCC) From Oil Palm Empty Fruit Bunch (EFB) Fiber via Simultaneous Ultrasonic and Alkali Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ridzuan%20Ramli">Ridzuan Ramli</a>, <a href="https://publications.waset.org/search?q=Norhafzan%20Junadi"> Norhafzan Junadi</a>, <a href="https://publications.waset.org/search?q=Mohammad%20D.H.%20Beg"> Mohammad D.H. Beg</a>, <a href="https://publications.waset.org/search?q=Rosli%20M.%20Yunus"> Rosli M. Yunus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, microcrystalline cellulose (MCC) was extracted from oil palm empty fruit bunch (EFB) cellulose which was earlier isolated from oil palm EFB fibre. In order to isolate the cellulose, the chlorination method was carried out. Then, the MCC was prepared by simultaneous ultrasonic and alkali treatment from the isolated &alpha;-cellulose. Based on mass balance calculation, the yields for MCC obtained from EFB was 44%. For fiber characterization, it is observed that the chemical composition of the hemicellulose and lignin for all samples decreased while composition for cellulose increased. The structural property of the MCC was studied by X-ray diffraction (XRD) method and the result shows that the MCC produced is a cellulose-I polymorph, with 73% crystallinity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Oil%20palm%20empty%20fruit%20bunch" title="Oil palm empty fruit bunch">Oil palm empty fruit bunch</a>, <a href="https://publications.waset.org/search?q=microcrystalline%0D%0Acellulose" title=" microcrystalline cellulose"> microcrystalline cellulose</a>, <a href="https://publications.waset.org/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a>, <a href="https://publications.waset.org/search?q=alkali%20treatment" title=" alkali treatment"> alkali treatment</a>, <a href="https://publications.waset.org/search?q=X-ray%20diffraction." title=" X-ray diffraction."> X-ray diffraction.</a> </p> <a href="https://publications.waset.org/10000152/microcrystalline-cellulose-mcc-from-oil-palm-empty-fruit-bunch-efb-fiber-via-simultaneous-ultrasonic-and-alkali-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3969</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Utilization and Characterizations of Olive Oil Industry By-Products </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, &alpha;-cellulose, hydrogel and CMC of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp and using them in medical application. Carboxymethyl cellulose (CMC) is produced and applied in the preparation of antimicrobial hydrogel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Carboxymethyl%20cellulose" title="Carboxymethyl cellulose">Carboxymethyl cellulose</a>, <a href="https://publications.waset.org/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/search?q=hydrogel%20olive%20pulp." title=" hydrogel olive pulp."> hydrogel olive pulp.</a> </p> <a href="https://publications.waset.org/10004122/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10004122/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10004122/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10004122/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10004122/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10004122/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10004122/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10004122/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10004122/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10004122/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10004122/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10004122.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1491</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Bioethanol Production from Enzymatically Saccharified Sunflower Stalks Using Steam Explosion as Pretreatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Pilanee%20Vaithanomsat">Pilanee Vaithanomsat</a>, <a href="https://publications.waset.org/search?q=Sinsupha%20Chuichulcherm"> Sinsupha Chuichulcherm</a>, <a href="https://publications.waset.org/search?q=Waraporn%20Apiwatanapiwat"> Waraporn Apiwatanapiwat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sunflower stalks were analysed for chemical compositions: pentosan 15.84%, holocellulose 70.69%, alphacellulose 45.74%, glucose 27.10% and xylose 7.69% based on dry weight of 100-g raw material. The most optimum condition for steam explosion pretreatment was as follows. Sunflower stalks were cut into small pieces and soaked in 0.02 M H2SO4 for overnight. After that, they were steam exploded at 207 C and 21 kg/cm2 for 3 minutes to fractionate cellulose, hemicellulose and lignin. The resulting hydrolysate, containing hemicellulose, and cellulose pulp contained xylose sugar at 2.53% and 7.00%, respectively.The pulp was further subjected to enzymatic saccharification at 50 C, pH 4.8 citrate buffer) with pulp/buffer 6% (w/w)and Celluclast 1.5L/pulp 2.67% (w/w) to obtain single glucose with maximum yield 11.97%. After fixed-bed fermentation under optimum condition using conventional yeast mixtures to produce bioethanol, it indicated maximum ethanol yield of 0.028 g/100 g sunflower stalk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Enzymatic" title="Enzymatic">Enzymatic</a>, <a href="https://publications.waset.org/search?q=steam%20explosion" title=" steam explosion"> steam explosion</a>, <a href="https://publications.waset.org/search?q=sunflower%20stalk" title=" sunflower stalk"> sunflower stalk</a>, <a href="https://publications.waset.org/search?q=ethanol%20production." title=" ethanol production."> ethanol production.</a> </p> <a href="https://publications.waset.org/1318/bioethanol-production-from-enzymatically-saccharified-sunflower-stalks-using-steam-explosion-as-pretreatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1318/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1318/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1318/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1318/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1318/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1318/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1318/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1318/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1318/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1318/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2408</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Properties of Bio-Phenol Formaldehyde Composites Filled with Empty Fruit Bunch Fiber</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sharifah%20Nabihah%20Syed%20Jaafar">Sharifah Nabihah Syed Jaafar</a>, <a href="https://publications.waset.org/search?q=Umar%20Adli%20Amran"> Umar Adli Amran</a>, <a href="https://publications.waset.org/search?q=Rasidi%20Roslan"> Rasidi Roslan</a>, <a href="https://publications.waset.org/search?q=Chia%20Chin%20Hua"> Chia Chin Hua</a>, <a href="https://publications.waset.org/search?q=Sarani%20Zakaria"> Sarani Zakaria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Bio-composites derived from plant fiber and/or bioderived polymer, are likely more ecofriendly and demonstrate competitive performance with petroleum based composites. In this research, the bio phenol-formaldehyde (bio-PF) was used as a matrix and oil palm empty fruit bunch fiber (EFB) as reinforcement. The matrix was synthesized via liquefaction and condensation to enhance the combination of phenol and formaldehyde, during the process. Then, the bio-PF was mixed with different percentage of EFB (5%, 10%, 15% and 20%) and molded at 180oC. The samples that viewed under scanning electron microscopy (SEM) showed an excellent wettability and interaction between EFB and matrix. Samples of 10% EFB gave the optimum properties of impact and hardness meanwhile sample 15% of EFB gave the highest reading of flexural modulus (MOE) and flexural strength (MOR). For thermal stability analysis, it was found that the weight loss and the activation energy (Ea) of the bio-composites samples were decreased as the filler content increased.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=EFB" title="EFB">EFB</a>, <a href="https://publications.waset.org/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/search?q=phenol%20formaldehyde" title=" phenol formaldehyde"> phenol formaldehyde</a>, <a href="https://publications.waset.org/search?q=lignin." title=" lignin."> lignin.</a> </p> <a href="https://publications.waset.org/10000547/properties-of-bio-phenol-formaldehyde-composites-filled-with-empty-fruit-bunch-fiber" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000547/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000547/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000547/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000547/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000547/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000547/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000547/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000547/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000547/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000547/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2117</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Utilization and Characterizations of Olive Oil Industry By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sawsan%20Dacrory">Sawsan Dacrory</a>, <a href="https://publications.waset.org/search?q=Hussein%20Abou-Yousef"> Hussein Abou-Yousef</a>, <a href="https://publications.waset.org/search?q=Samir%20Kamel"> Samir Kamel</a>, <a href="https://publications.waset.org/search?q=Ragab%20E.%20Abou-Zeid"> Ragab E. Abou-Zeid</a>, <a href="https://publications.waset.org/search?q=Mohamed%20S.%20Abdel-Aziz"> Mohamed S. Abdel-Aziz</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Elbadry"> Mohamed Elbadry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, &alpha;-cellulose, hydrogel and CMC which prepared from cellulose of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp. Biofunctionlization of hydrogel was achieved through loading of silver nanoparticles AgNPs in to the prepared hydrogel. The antimicrobial activity of the loaded silver hydrogel against G-ve, and G+ve, and candida was demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Antimicrobial%20hydrogel" title="Antimicrobial hydrogel">Antimicrobial hydrogel</a>, <a href="https://publications.waset.org/search?q=carboxymethyl%20cellulose" title=" carboxymethyl cellulose"> carboxymethyl cellulose</a>, <a href="https://publications.waset.org/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/search?q=grafting" title=" grafting"> grafting</a>, <a href="https://publications.waset.org/search?q=olive%20pulp." title=" olive pulp."> olive pulp.</a> </p> <a href="https://publications.waset.org/10005297/utilization-and-characterizations-of-olive-oil-industry-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005297/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005297/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005297/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005297/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005297/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005297/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005297/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005297/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005297/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005297/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2248</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jirakarn%20Nantapipat">Jirakarn Nantapipat</a>, <a href="https://publications.waset.org/search?q=Apanee%20Luengnaruemitchai"> Apanee Luengnaruemitchai</a>, <a href="https://publications.waset.org/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Corncobs" title="Corncobs">Corncobs</a>, <a href="https://publications.waset.org/search?q=Pretreatment" title=" Pretreatment"> Pretreatment</a>, <a href="https://publications.waset.org/search?q=Sulfuric%20acid" title=" Sulfuric acid"> Sulfuric acid</a>, <a href="https://publications.waset.org/search?q=Phosphoric%0Aacid." title=" Phosphoric acid."> Phosphoric acid.</a> </p> <a href="https://publications.waset.org/3588/a-comparison-of-dilute-sulfuric-and-phosphoric-acid-pretreatments-in-biofuel-production-from-corncobs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3588/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3588/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3588/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3588/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3588/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3588/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3588/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3588/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3588/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3588/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3588.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3433</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Structural Characteristics of Batch Processed Agro-Waste Fibres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=E.%20I.%20Akpan">E. I. Akpan</a>, <a href="https://publications.waset.org/search?q=S.%20O.%20Adeosun"> S. O. Adeosun</a>, <a href="https://publications.waset.org/search?q=G.%20I.%20Lawal"> G. I. Lawal</a>, <a href="https://publications.waset.org/search?q=S.%20A.%20Balogun"> S. A. Balogun</a>, <a href="https://publications.waset.org/search?q=X.%20D.%20Chen"> X. D. Chen </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The characterisation of agro-wastes fibres for composite applications from Nigeria using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) has been done. Fibres extracted from groundnut shell, coconut husk, rice husk, palm fruit bunch and palm fruit stalk are processed using two novel cellulose fibre production methods developed by the authors. Cellulose apparent crystallinity calculated using the deconvolution of the diffractometer trace shows that the amorphous portion of cellulose was permeable to hydrolysis yielding high crystallinity after treatment. All diffratograms show typical cellulose structure with well-defined 110, 200 and 040 peaks. Palm fruit fibres had the highest 200 crystalline cellulose peaks compared to others and it is an indication of rich cellulose content. Surface examination of the resulting fibres using SEM indicates the presence of regular cellulose network structure with some agglomerated laminated layer of thin leaves of cellulose microfibrils. The surfaces were relatively smooth indicating the removal of hemicellulose, lignin and pectin.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=X-ray%20diffraction" title="X-ray diffraction">X-ray diffraction</a>, <a href="https://publications.waset.org/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/search?q=cellulose" title=" cellulose"> cellulose</a>, <a href="https://publications.waset.org/search?q=deconvolution" title=" deconvolution"> deconvolution</a>, <a href="https://publications.waset.org/search?q=crystallinity." title=" crystallinity."> crystallinity.</a> </p> <a href="https://publications.waset.org/9998670/structural-characteristics-of-batch-processed-agro-waste-fibres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998670/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998670/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998670/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998670/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998670/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998670/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998670/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998670/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998670/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998670/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2731</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nurhayati%20Abdullah">Nurhayati Abdullah</a>, <a href="https://publications.waset.org/search?q=Fauziah%20Sulaiman"> Fauziah Sulaiman</a>, <a href="https://publications.waset.org/search?q=Muhamad%20Azman%20Miskam"> Muhamad Azman Miskam</a>, <a href="https://publications.waset.org/search?q=Rahmad%20Mohd%20Taib"> Rahmad Mohd Taib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, biooil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudostem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Banana%20Waste" title="Banana Waste">Banana Waste</a>, <a href="https://publications.waset.org/search?q=Biomass" title=" Biomass"> Biomass</a>, <a href="https://publications.waset.org/search?q=Renewable%20Energy" title=" Renewable Energy"> Renewable Energy</a>, <a href="https://publications.waset.org/search?q=Thermo-chemical%20Characteristics." title=" Thermo-chemical Characteristics."> Thermo-chemical Characteristics.</a> </p> <a href="https://publications.waset.org/9998963/characterization-of-banana-musa-spp-pseudo-stem-and-fruit-bunch-stem-as-a-potential-renewable-energy-resource" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998963/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998963/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998963/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998963/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998963/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998963/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998963/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998963/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998963/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998963/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8753</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Characterization of Corn Cobs from Microwave and Potassium Hydroxide Pretreatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Boonyisa%20Wanitwattanarumlug">Boonyisa Wanitwattanarumlug</a>, <a href="https://publications.waset.org/search?q=Apanee%20Luengnaruemitchai"> Apanee Luengnaruemitchai</a>, <a href="https://publications.waset.org/search?q=Sujitra%20Wongkasemjit"> Sujitra Wongkasemjit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complexity of lignocellulosic biomass requires a pretreatment step to improve the yield of fermentable sugars. The efficient pretreatment of corn cobs using microwave and potassium hydroxide and enzymatic hydrolysis was investigated. The objective of this work was to characterize the optimal condition of pretreatment of corn cobs using microwave and potassium hydroxide enhance enzymatic hydrolysis. Corn cobs were submerged in different potassium hydroxide concentration at varies temperature and resident time. The pretreated corn cobs were hydrolyzed to produce the reducing sugar for analysis. The morphology and microstructure of samples were investigated by Thermal gravimetric analysis (TGA, scanning electron microscope (SEM), X-ray diffraction (XRD). The results showed that lignin and hemicellulose were removed by microwave/potassium hydroxide pretreatment. The crystallinity of the pretreated corn cobs was higher than the untreated. This method was compared with autoclave and conventional heating method. The results indicated that microwave-alkali treatment was an efficient way to improve the enzymatic hydrolysis rate by increasing its accessibility hydrolysis enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Corn%20cobs" title="Corn cobs">Corn cobs</a>, <a href="https://publications.waset.org/search?q=Enzymatic%20hydrolysis" title=" Enzymatic hydrolysis"> Enzymatic hydrolysis</a>, <a href="https://publications.waset.org/search?q=Microwave" title=" Microwave"> Microwave</a>, <a href="https://publications.waset.org/search?q=Potassium%20hydroxide" title=" Potassium hydroxide"> Potassium hydroxide</a>, <a href="https://publications.waset.org/search?q=Pretreatment." title=" Pretreatment."> Pretreatment.</a> </p> <a href="https://publications.waset.org/6352/characterization-of-corn-cobs-from-microwave-and-potassium-hydroxide-pretreatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6352/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6352/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6352/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6352/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6352/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6352/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6352/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6352/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6352/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6352/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2283</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=lignin&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=lignin&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10