CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 221 results for author: <span class="mathjax">Carusotto, I</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cond-mat" aria-role="search"> Searching in archive <strong>cond-mat</strong>. <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Carusotto, I"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Carusotto%2C+I&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Carusotto, I"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00760">arXiv:2409.00760</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.00760">pdf</a>, <a href="https://arxiv.org/format/2409.00760">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Synthetic-lattice Bloch wave dynamics in a single-mode microwave resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Ahrens%2C+F">F. Ahrens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Crescini%2C+N">N. Crescini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Irace%2C+A">A. Irace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rastelli%2C+G">G. Rastelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mezzena%2C+R">R. Mezzena</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Vinante%2C+A">A. Vinante</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mantegazzini%2C+F">F. Mantegazzini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00760v2-abstract-short" style="display: inline;"> Frequency-based synthetic dimensions are a promising avenue to extend the dimensionality of photonic systems. In this work, we show how a tilted synthetic lattice is naturally realised by periodically modulating a single-mode resonator under a coherent monochromatic drive. We theoretically study the Bloch wave dynamics in the tilted synthetic lattice, which gives rise to peculiar features in the s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00760v2-abstract-full').style.display = 'inline'; document.getElementById('2409.00760v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00760v2-abstract-full" style="display: none;"> Frequency-based synthetic dimensions are a promising avenue to extend the dimensionality of photonic systems. In this work, we show how a tilted synthetic lattice is naturally realised by periodically modulating a single-mode resonator under a coherent monochromatic drive. We theoretically study the Bloch wave dynamics in the tilted synthetic lattice, which gives rise to peculiar features in the spectral distribution of the cavity field. Our predictions are experimentally confirmed using a planar tunable superconducting microwave resonator. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00760v2-abstract-full').style.display = 'none'; document.getElementById('2409.00760v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.17292">arXiv:2408.17292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.17292">pdf</a>, <a href="https://arxiv.org/format/2408.17292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Analog Hawking radiation from a spin-sonic horizon in a two-component Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fernandes%2C+L">Lennart Fernandes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Butera%2C+S+G">Salvatore Giulio Butera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Recati%2C+A">Alessio Recati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wouters%2C+M">Michiel Wouters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.17292v1-abstract-short" style="display: inline;"> We theoretically study stimulated and spontaneous Hawking emission from an analog horizon for spin modes in a two-component Bose-Einstein condensate, both with and without a coherent coupling between the two components. We highlight the conceptual and practical advantages that these systems offer to the experimental observation of the phenomenon, namely the massive nature of elementary excitations&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17292v1-abstract-full').style.display = 'inline'; document.getElementById('2408.17292v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.17292v1-abstract-full" style="display: none;"> We theoretically study stimulated and spontaneous Hawking emission from an analog horizon for spin modes in a two-component Bose-Einstein condensate, both with and without a coherent coupling between the two components. We highlight the conceptual and practical advantages that these systems offer to the experimental observation of the phenomenon, namely the massive nature of elementary excitations and the experimental accessibility of the different quadratures of the spin excitations. In particular, we go beyond the relativistic regimes previously addressed in the literature, and identify various observables that show a signature of the Hawking process, as well as additional features associated with the massive nature of the modes, such as undulations. Semi-analytical calculations of the scattering properties of the horizon and of two-point correlation functions of the emitted radiation in an ideal stationary setup are supported by time-dependent numerical simulations based on Gross-Pitaevskii and Bogoliubov theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.17292v1-abstract-full').style.display = 'none'; document.getElementById('2408.17292v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.06671">arXiv:2407.06671</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.06671">pdf</a>, <a href="https://arxiv.org/format/2407.06671">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Supersolidity of polariton condensates in photonic crystal waveguides </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nigro%2C+D">Davide Nigro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Trypogeorgos%2C+D">Dimitrios Trypogeorgos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gianfrate%2C+A">Antonio Gianfrate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanvitto%2C+D">Daniele Sanvitto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerace%2C+D">Dario Gerace</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.06671v1-abstract-short" style="display: inline;"> Condensation of exciton-polaritons has been recently observed in one-dimensional photonic crystal waveguides, exploiting the interplay of long-lived gap confined eigenmodes and negative mass polariton branches. Here we focus on the theoretical emergence of a second emission threshold, in addition to the one associated with condensation at zero-momentum, due to the nonlinear polariton scattering fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06671v1-abstract-full').style.display = 'inline'; document.getElementById('2407.06671v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.06671v1-abstract-full" style="display: none;"> Condensation of exciton-polaritons has been recently observed in one-dimensional photonic crystal waveguides, exploiting the interplay of long-lived gap confined eigenmodes and negative mass polariton branches. Here we focus on the theoretical emergence of a second emission threshold, in addition to the one associated with condensation at zero-momentum, due to the nonlinear polariton scattering from the condensate into finite momentum eigenmodes. The physics of this spatially modulated condensate is related to a spontaneous breaking of both phase and translational symmetries simultaneously, bearing strong similarities with the highly sought supersolid phase in Helium and ultracold atomic gases but with a novel mechanism typical of the driven-dissipative scenario. We then propose clear-cut and unequivocal experimental signatures that would allow to identify supersolidity phenomena in polariton condensates <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.06671v1-abstract-full').style.display = 'none'; document.getElementById('2407.06671v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.02373">arXiv:2407.02373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.02373">pdf</a>, <a href="https://arxiv.org/format/2407.02373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Emerging supersolidity from a polariton condensate in a photonic crystal waveguide </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Trypogeorgos%2C+D">Dimitrios Trypogeorgos</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gianfrate%2C+A">Antonio Gianfrate</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Landini%2C+M">Manuele Landini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nigro%2C+D">Davide Nigro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gerace%2C+D">Dario Gerace</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Riminucci%2C+F">Fabrizio Riminucci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baldwin%2C+K+W">Kirk W. Baldwin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Pfeiffer%2C+L+N">Loren N. Pfeiffer</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Martone%2C+G+I">Giovanni I. Martone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Giorgi%2C+M">Milena De Giorgi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ballarini%2C+D">Dario Ballarini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sanvitto%2C+D">Daniele Sanvitto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.02373v1-abstract-short" style="display: inline;"> A supersolid is a counter-intuitive phase of matter where its constituent particles are arranged into a crystalline structure, yet they are free to flow without friction. This requires the particles to share a global macroscopic phase while being able to reduce their total energy by spontaneous, spatial self-organisation. This exotic state of matter has been achieved in different systems using Bos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02373v1-abstract-full').style.display = 'inline'; document.getElementById('2407.02373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.02373v1-abstract-full" style="display: none;"> A supersolid is a counter-intuitive phase of matter where its constituent particles are arranged into a crystalline structure, yet they are free to flow without friction. This requires the particles to share a global macroscopic phase while being able to reduce their total energy by spontaneous, spatial self-organisation. This exotic state of matter has been achieved in different systems using Bose-Einstein condensates coupled to cavities, possessing spin-orbit coupling, or dipolar interactions. Here we provide experimental evidence of a new implementation of the supersolid phase in a novel non-equilibrium context based on exciton-polaritons condensed in a topologically non-trivial, bound-in-the-continuum state with exceptionally low losses. We measure the density modulation of the polaritonic state indicating the breaking of translational symmetry with a remarkable precision of a few parts in a thousand. Direct access to the phase of the wavefunction allows us to additionally measure the local coherence of the superfluid component. We demonstrate the potential of our synthetic photonic material to host phonon dynamics and a multimode excitation spectrum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.02373v1-abstract-full').style.display = 'none'; document.getElementById('2407.02373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12292">arXiv:2405.12292</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.12292">pdf</a>, <a href="https://arxiv.org/format/2405.12292">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Theory of fractional quantum Hall liquids coupled to quantum light and emergent graviton-polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bacciconi%2C+Z">Zeno Bacciconi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Xavier%2C+H">Hernan Xavier</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chanda%2C+T">Titas Chanda</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dalmonte%2C+M">Marcello Dalmonte</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12292v2-abstract-short" style="display: inline;"> Recent breakthrough experiments have demonstrated how it is now possible to explore the dynamics of quantum Hall states interacting with quantum electromagnetic cavity fields. While the impact of strongly coupled non-local cavity modes on integer quantum Hall physics has been recently addressed, its effects on fractional quantum Hall (FQH) liquids -- and, more generally, fractionalized states of m&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12292v2-abstract-full').style.display = 'inline'; document.getElementById('2405.12292v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12292v2-abstract-full" style="display: none;"> Recent breakthrough experiments have demonstrated how it is now possible to explore the dynamics of quantum Hall states interacting with quantum electromagnetic cavity fields. While the impact of strongly coupled non-local cavity modes on integer quantum Hall physics has been recently addressed, its effects on fractional quantum Hall (FQH) liquids -- and, more generally, fractionalized states of matter -- remain largely unexplored. In this work, we develop a theoretical framework for the understanding of FQH states coupled to quantum light. In particular, combining analytical arguments with tensor network simulations, we study the dynamics of a $谓=1/3$ Laughlin state in a single-mode cavity with finite electric field gradients. We find that the topological signatures of the FQH state remain robust against the non-local cavity vacuum fluctuations, as indicated by the endurance of the quantized Hall resistivity. The entanglement spectra, however, carry direct fingerprints of light-matter entanglement and topology, revealing peculiar polaritonic replicas of the $U(1)$ counting. As a further response to cavity fluctuations, we also find a squeezed FQH geometry, encoded in long-wavelength correlations. By exploring the low-energy excited spectrum inside the FQH phase, we identify a new neutral quasiparticle, the graviton-polariton, arising from the hybridization between quadrupolar FQH collective excitations (known as gravitons) and light. Pushing the light-matter interaction to ultra-strong coupling regimes we find other two important effects, a cavity vacuum-induced Stark shift for charged quasi-particles and a potential instability towards a density modulated stripe phase, competing against the phase separation driven by the Stark shift. Finally, we discuss the experimental implications of our findings and possible extension of our results to more complex scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12292v2-abstract-full').style.display = 'none'; document.getElementById('2405.12292v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 16 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01377">arXiv:2405.01377</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.01377">pdf</a>, <a href="https://arxiv.org/format/2405.01377">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/ad8478">10.1088/1367-2630/ad8478 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinearity-induced symmetry breaking in a system of two parametrically driven Kerr-Duffing oscillators </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hellbach%2C+F">F. Hellbach</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Bernardis%2C+D">D. De Bernardis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Saur%2C+M">M. Saur</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Belzig%2C+W">W. Belzig</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rastelli%2C+G">G. Rastelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01377v3-abstract-short" style="display: inline;"> We study the classical dynamics of a system comprising a pair of Kerr-Duffing nonlinear oscillators, which are coupled through a nonlinear interaction and subjected to a parametric drive. Using the rotating wave approximation (RWA), we analyze the steady-state solutions for the amplitudes of the two oscillators. For the case of almost identical oscillators, we investigate separately the cases in w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01377v3-abstract-full').style.display = 'inline'; document.getElementById('2405.01377v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01377v3-abstract-full" style="display: none;"> We study the classical dynamics of a system comprising a pair of Kerr-Duffing nonlinear oscillators, which are coupled through a nonlinear interaction and subjected to a parametric drive. Using the rotating wave approximation (RWA), we analyze the steady-state solutions for the amplitudes of the two oscillators. For the case of almost identical oscillators, we investigate separately the cases in which only one oscillator is parametrically driven and in which both oscillators are simultaneously driven. In the latter regime, we demonstrate that even when the parametric drives acting on the two oscillators are identical, the system can transition from a stable Nesymmetric solution to a broken-symmetry solution as the detuning is varied. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01377v3-abstract-full').style.display = 'none'; document.getElementById('2405.01377v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New Journal of Physics, 26, 103020 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10598">arXiv:2403.10598</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.10598">pdf</a>, <a href="https://arxiv.org/format/2403.10598">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum nonlinear optics on the edge of small lattice fractional quantum Hall fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nardin%2C+A">Alberto Nardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=De+Bernardis%2C+D">Daniele De Bernardis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Umucalilar%2C+R+O">Rifat Onur Umucalilar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazza%2C+L">Leonardo Mazza</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rizzi%2C+M">Matteo Rizzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10598v2-abstract-short" style="display: inline;"> We study the quantum dynamics of the edge modes of lattice fractional quantum Hall liquids in response to time-dependent external potentials. We show that the nonlinear chiral Luttinger liquid theory provides a quantitatively accurate description even for the small lattice geometries away from the continuum limit that are available in state-of-the-art experiments. Experimentally accessible signatu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10598v2-abstract-full').style.display = 'inline'; document.getElementById('2403.10598v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10598v2-abstract-full" style="display: none;"> We study the quantum dynamics of the edge modes of lattice fractional quantum Hall liquids in response to time-dependent external potentials. We show that the nonlinear chiral Luttinger liquid theory provides a quantitatively accurate description even for the small lattice geometries away from the continuum limit that are available in state-of-the-art experiments. Experimentally accessible signatures of the quantized value of the bulk transverse Hall conductivity are identified both in the linear and the non-linear response to an external excitation. The strong nonlinearity induced by the open boundaries is responsible for sizable quantum blockade effects, leading to the generation of nonclassical states of the edge modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10598v2-abstract-full').style.display = 'none'; document.getElementById('2403.10598v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4+15 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01597">arXiv:2403.01597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01597">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2024.3367615">10.1109/TASC.2024.3367615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Nonlinear Behavior of Josephson Traveling Wave Parametric Amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">Claudio Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ahrens%2C+F">Felix Ahrens</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Avallone%2C+G">Guerino Avallone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">Carlo Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">Matteo Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Callegaro%2C+L">Luca Callegaro</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">Giovanni Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">Anna Paola Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">Alessandro Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=D%27Elia%2C+A">Alessandro D&#39;Elia</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">Daniele Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">Emanuele Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">Paolo Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">Luca Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">Marco Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">Elena Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">Giovanni Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">Claudio Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">Andrea Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">Damiano Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">Veronica Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">Angelo Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Labranca%2C+D">Danilo Labranca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">Carlo Ligi</a> , et al. (18 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01597v1-abstract-short" style="display: inline;"> Recent advancements in quantum technologies and advanced detection experiments have underscored the pressing need for the detection of exceedingly weak signals within the microwave frequency spectrum. Addressing this challenge, the Josephson Traveling Wave Parametric Amplifier (JTWPA) has been proposed as a cryogenic front-end amplifier capable of approaching the quantum noise limit while providin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01597v1-abstract-full').style.display = 'inline'; document.getElementById('2403.01597v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01597v1-abstract-full" style="display: none;"> Recent advancements in quantum technologies and advanced detection experiments have underscored the pressing need for the detection of exceedingly weak signals within the microwave frequency spectrum. Addressing this challenge, the Josephson Traveling Wave Parametric Amplifier (JTWPA) has been proposed as a cryogenic front-end amplifier capable of approaching the quantum noise limit while providing a relevant bandwidth. This research is centered on a comprehensive numerical investigation of the JTWPA, without resorting to simplifications regarding the nonlinearity of the essential components. Specifically, this study focuses on a thorough examination of the system, characterized by coupled nonlinear differential equations representing all components of the device. Proper input and output signals at the device&#39;s boundaries are considered. The analysis of the output signals undergoing the parametric amplification process involves a detailed exploration of phase-space dynamics and Fourier spectral analysis of the output voltage. This study is conducted while considering the parameters ruling the response of the device under pump and signal excitations. In addition to the expected signal amplification, the findings reveal that the nonlinear nature of the system can give rise to unforeseen phenomena, depending on the system&#39;s operational conditions, which include: the generation of pump tone harmonics, modulation of the signal gain, and incommensurate frequency generation-effects that are not easily accommodated by simplistic linearized approaches <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01597v1-abstract-full').style.display = 'none'; document.getElementById('2403.01597v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 4 figures, DARTWARS project - INFN (Italy)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE TAS, 34 (3), 1, 1701105 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16287">arXiv:2312.16287</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16287">pdf</a>, <a href="https://arxiv.org/format/2312.16287">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Light-matter interactions in the vacuum of ultra-strongly coupled systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Bernardis%2C+D">Daniele De Bernardis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Andolina%2C+G+M">Gian Marcello Andolina</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16287v2-abstract-short" style="display: inline;"> We theoretically study how the peculiar properties of the vacuum state of an ultra-strongly coupled system can affect basic light-matter interaction processes. In this unconventional electromagnetic environment, an additional emitter no longer couples to the bare cavity photons, but rather to the polariton modes emerging from the ultra-strong coupling. As such, the effective light-matter interacti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16287v2-abstract-full').style.display = 'inline'; document.getElementById('2312.16287v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16287v2-abstract-full" style="display: none;"> We theoretically study how the peculiar properties of the vacuum state of an ultra-strongly coupled system can affect basic light-matter interaction processes. In this unconventional electromagnetic environment, an additional emitter no longer couples to the bare cavity photons, but rather to the polariton modes emerging from the ultra-strong coupling. As such, the effective light-matter interaction strength is sensitive to the properties of the distorted vacuum state. Different interpretations of our predictions in terms of modified quantum fluctuations in the vacuum state and of radiative reaction in classical electromagnetism are critically discussed. Whereas our discussion is focused on the experimentally most relevant case of intersubband polaritons in semiconductor devices, our framework is fully general and applies to generic material systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16287v2-abstract-full').style.display = 'none'; document.getElementById('2312.16287v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version in extensive regular article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.18325">arXiv:2310.18325</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.18325">pdf</a>, <a href="https://arxiv.org/format/2310.18325">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Photonic lattices of coaxial cables: flat bands and artificial magnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oliver%2C+C">Christopher Oliver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nabari%2C+D">Denis Nabari</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Price%2C+H+M">Hannah M. Price</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ricci%2C+L">Leonardo Ricci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.18325v1-abstract-short" style="display: inline;"> We propose the use of networks of standard, commercially-available coaxial cables as a platform to realize photonic lattice models. As a specific example, we consider a brick wall lattice formed from coaxial cables and T-shaped connectors. We calculate the dispersion of photonic Bloch waves in the lattice: we find a repeated family of three bands, which include a flat band and two Dirac points. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18325v1-abstract-full').style.display = 'inline'; document.getElementById('2310.18325v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.18325v1-abstract-full" style="display: none;"> We propose the use of networks of standard, commercially-available coaxial cables as a platform to realize photonic lattice models. As a specific example, we consider a brick wall lattice formed from coaxial cables and T-shaped connectors. We calculate the dispersion of photonic Bloch waves in the lattice: we find a repeated family of three bands, which include a flat band and two Dirac points. We then demonstrate a method to displace the Dirac points, leading to an induced artificial gauge field, and a method to energetically isolate the flat band. Our results readily suggest that the interplay of nonlinearities and non-trivial topology are a natural avenue to explore in order to unlock the full power of this proposed platform. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.18325v1-abstract-full').style.display = 'none'; document.getElementById('2310.18325v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11903">arXiv:2310.11903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11903">pdf</a>, <a href="https://arxiv.org/format/2310.11903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Observation of the diffusive Nambu-Goldstone mode of a non-equilibrium phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Claude%2C+F">Ferdinand Claude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacquet%2C+M+J">Maxime J. Jacquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wouters%2C+M">Michiel Wouters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacobino%2C+E">Elisabeth Giacobino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glorieux%2C+Q">Quentin Glorieux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramati%2C+A">Alberto Bramati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11903v1-abstract-short" style="display: inline;"> Second-order phase transitions are governed by spontaneous symmetry breaking, which yield collective excitations with a gapless spectrum called Nambu-Goldstone (NG) modes. While NG modes in conservative systems are propagating excitations, non-equilibrium phase transitions have been predicted to feature a diffusive NG mode. We present the first experimental evidence of a diffusive NG mode in a non&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11903v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11903v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11903v1-abstract-full" style="display: none;"> Second-order phase transitions are governed by spontaneous symmetry breaking, which yield collective excitations with a gapless spectrum called Nambu-Goldstone (NG) modes. While NG modes in conservative systems are propagating excitations, non-equilibrium phase transitions have been predicted to feature a diffusive NG mode. We present the first experimental evidence of a diffusive NG mode in a non-equilibrium Bose-Einstein condensate of microcavity polaritons. The NG mode is observed as a spectral narrowing in the spectroscopic response of the condensate. Additionally, explicitly breaking the symmetry causes the opening of a gap in the spectrum and the disappearance of the NG mode. Our observations confirm the diffusive dynamics of the NG mode of non-equilibrium phase transitions and establish a promising framework to investigate fundamental questions in statistical mechanics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11903v1-abstract-full').style.display = 'none'; document.getElementById('2310.11903v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages + refs + appendix, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.16101">arXiv:2309.16101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.16101">pdf</a>, <a href="https://arxiv.org/format/2309.16101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-024-01727-1">10.1038/s42005-024-01727-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mean-chiral displacement in coherently driven photonic lattices and its application to synthetic frequency dimensions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Villa%2C+G">Greta Villa</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ozawa%2C+T">Tomoki Ozawa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.16101v2-abstract-short" style="display: inline;"> Characterizing topologically nontrivial photonic lattices by measuring their topological invariants is crucial in topological photonics. In conservative one-dimensional systems, a widely used observable to extract the winding number is the mean-chiral displacement. In many realistic photonic systems, however, losses can hardly be avoided, and little is known on how one can extend the mean-chiral d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16101v2-abstract-full').style.display = 'inline'; document.getElementById('2309.16101v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.16101v2-abstract-full" style="display: none;"> Characterizing topologically nontrivial photonic lattices by measuring their topological invariants is crucial in topological photonics. In conservative one-dimensional systems, a widely used observable to extract the winding number is the mean-chiral displacement. In many realistic photonic systems, however, losses can hardly be avoided, and little is known on how one can extend the mean-chiral displacement to a driven-dissipative context. Here we theoretically propose an experimentally viable method to directly detect the topological winding number of one-dimensional chiral photonic lattices. The method we propose is a generalization of the mean-chiral displacement to a driven-dissipative context with coherent illumination. By integrating the mean-chiral displacement of the steady state over the pump light frequency, one can obtain the winding number with a correction of the order of the loss rate squared. We demonstrate that this method can be successfully applied to lattices along synthetic frequency dimensions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.16101v2-abstract-full').style.display = 'none'; document.getElementById('2309.16101v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Communications Physics 7, 246 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.01283">arXiv:2307.01283</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.01283">pdf</a>, <a href="https://arxiv.org/format/2307.01283">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Wavefunction tomography of topological dimer chains with long-range couplings </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Pellerin%2C+F">F. Pellerin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Houvenaghel%2C+R">R. Houvenaghel</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Coish%2C+W+A">W. A. Coish</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=St-Jean%2C+P">P. St-Jean</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.01283v1-abstract-short" style="display: inline;"> The ability to tailor with a high accuracy the inter-site connectivity in a lattice is a crucial tool for realizing novel topological phases of matter. Here, we report the experimental realization of photonic dimer chains with long-range hopping terms of arbitrary strength and phase, providing a rich generalization of the celebrated Su-Schrieffer-Heeger model. Our experiment is based on a syntheti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01283v1-abstract-full').style.display = 'inline'; document.getElementById('2307.01283v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.01283v1-abstract-full" style="display: none;"> The ability to tailor with a high accuracy the inter-site connectivity in a lattice is a crucial tool for realizing novel topological phases of matter. Here, we report the experimental realization of photonic dimer chains with long-range hopping terms of arbitrary strength and phase, providing a rich generalization of the celebrated Su-Schrieffer-Heeger model. Our experiment is based on a synthetic dimension scheme involving the frequency modes of an optical fiber loop platform. This setup provides direct access to both the band dispersion and the geometry of the Bloch wavefunctions throughout the entire Brillouin zone allowing us to extract the winding number for any possible configuration. Finally, we highlight a topological phase transition solely driven by a time-reversal-breaking synthetic gauge field associated with the phase of the long-range hopping, providing a route for engineering topological bands in photonic lattices belonging to the AIII symmetry class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.01283v1-abstract-full').style.display = 'none'; document.getElementById('2307.01283v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.01067">arXiv:2306.01067</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.01067">pdf</a>, <a href="https://arxiv.org/format/2306.01067">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.15.4.152">10.21468/SciPostPhys.15.4.152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monte Carlo matrix-product-state approach to the false vacuum decay in the monitored quantum Ising chain </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Maki%2C+J">Jeff Maki</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biella%2C+A">Alberto Biella</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.01067v3-abstract-short" style="display: inline;"> In this work we characterize the false vacuum decay in the ferromagnetic quantum Ising chain with a weak longitudinal field subject to continuous monitoring of the local magnetization. Initializing the system in a metastable state, the false vacuum, we study the competition between coherent dynamics, which tends to create resonant bubbles of the true vacuum, and measurements which induce heating a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01067v3-abstract-full').style.display = 'inline'; document.getElementById('2306.01067v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.01067v3-abstract-full" style="display: none;"> In this work we characterize the false vacuum decay in the ferromagnetic quantum Ising chain with a weak longitudinal field subject to continuous monitoring of the local magnetization. Initializing the system in a metastable state, the false vacuum, we study the competition between coherent dynamics, which tends to create resonant bubbles of the true vacuum, and measurements which induce heating and reduce the amount of quantum correlations. To this end we exploit a numerical approach based on the combination of matrix product states with stochastic quantum trajectories which allows for the simulation of the trajectory-resolved non-equilibrium dynamics of interacting many-body systems in the presence of continuous measurements. We show how the presence of measurements affects the false vacuum decay: at short times the departure from the local minimum is accelerated while at long times the system thermalizes to an infinite-temperature incoherent mixture. For large measurement rates the system enters a quantum Zeno regime. The false vacuum decay and the thermalization physics are characterized in terms of the magnetization, connected correlation function, and the trajectory-resolved entanglement entropy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.01067v3-abstract-full').style.display = 'none'; document.getElementById('2306.01067v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 15, 152 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.11820">arXiv:2305.11820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.11820">pdf</a>, <a href="https://arxiv.org/format/2305.11820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.adj0360">10.1126/sciadv.adj0360 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Artificial gauge fields in the t-z mapping for optical pulses: spatio-temporal wavepacket control and quantum Hall physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Oliver%2C+C">Christopher Oliver</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mukherjee%2C+S">Sebabrata Mukherjee</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rechtsman%2C+M+C">Mikael C. Rechtsman</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Price%2C+H+M">Hannah M. Price</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.11820v1-abstract-short" style="display: inline;"> We extend the $t-z$ mapping formalism of time-dependent paraxial optics by identifying configurations displaying a synthetic magnetic vector potential, leading to a non-trivial band topology in propagating geometries. We consider an inhomogeneous 1D array of coupled optical waveguides beyond the standard monochromatic approximation, and show that the wave equation describing paraxial propagation o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11820v1-abstract-full').style.display = 'inline'; document.getElementById('2305.11820v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.11820v1-abstract-full" style="display: none;"> We extend the $t-z$ mapping formalism of time-dependent paraxial optics by identifying configurations displaying a synthetic magnetic vector potential, leading to a non-trivial band topology in propagating geometries. We consider an inhomogeneous 1D array of coupled optical waveguides beyond the standard monochromatic approximation, and show that the wave equation describing paraxial propagation of optical pulses can be recast in the form of a Schr枚dinger equation, including a synthetic magnetic field whose strength can be controlled via the transverse spatial gradient of the waveguide properties across the array. We use an experimentally-motivated model of a laser-written waveguide array to demonstrate that this synthetic magnetic field can be engineered in realistic setups and can produce interesting observable effects such as cyclotron motion, a controllable Hall drift of the wavepacket displacement in space or time, and unidirectional propagation in chiral edge states. These results significantly extend the variety of physics that can be explored within propagating geometries and pave the way for exploiting this platform for higher-dimensional topological physics and strongly correlated fluids of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.11820v1-abstract-full').style.display = 'none'; document.getElementById('2305.11820v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances 9, eadj0360 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.05225">arXiv:2305.05225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.05225">pdf</a>, <a href="https://arxiv.org/format/2305.05225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02345-4">10.1038/s41567-023-02345-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of false vacuum decay via bubble formation in ferromagnetic superfluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Zenesini%2C+A">Alessandro Zenesini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cominotti%2C+R">Riccardo Cominotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogora%2C+C">Chiara Rogora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Moss%2C+I+G">Ian G. Moss</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Billam%2C+T+P">Thomas P. Billam</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamporesi%2C+G">Giacomo Lamporesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Recati%2C+A">Alessio Recati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+G">Gabriele Ferrari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.05225v1-abstract-short" style="display: inline;"> In quantum field theory, the decay of an extended metastable state into the real ground state is known as ``false vacuum decay&#39;&#39; and it takes place via the nucleation of spatially localized bubbles. Despite the large theoretical effort to estimate the nucleation rate, experimental observations were still missing. Here, we observe bubble nucleation in isolated and highly controllable superfluid ato&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05225v1-abstract-full').style.display = 'inline'; document.getElementById('2305.05225v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.05225v1-abstract-full" style="display: none;"> In quantum field theory, the decay of an extended metastable state into the real ground state is known as ``false vacuum decay&#39;&#39; and it takes place via the nucleation of spatially localized bubbles. Despite the large theoretical effort to estimate the nucleation rate, experimental observations were still missing. Here, we observe bubble nucleation in isolated and highly controllable superfluid atomic systems, and we find good agreement between our results, numerical simulations and instanton theory opening the way to the emulation of out-of-equilibrium quantum field phenomena in atomic systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.05225v1-abstract-full').style.display = 'none'; document.getElementById('2305.05225v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nat. Phys. 20, 558 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.00291">arXiv:2305.00291</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.00291">pdf</a>, <a href="https://arxiv.org/format/2305.00291">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Refermionized theory of the edge modes of a fractional quantum Hall cloud </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nardin%2C+A">Alberto Nardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.00291v1-abstract-short" style="display: inline;"> Making use of refermionization techniques, we map the nonlinear chiral Luttinger liquid model of the edge modes of a spatially confined fractional quantum Hall cloud developed in our recent work [Phys. Rev. A {\bf 107}, 033320 (2023)] onto a one-dimensional system of massive and interacting chiral fermions, whose mass and interactions are set by the filling factor of the quantum Hall fluid and the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00291v1-abstract-full').style.display = 'inline'; document.getElementById('2305.00291v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.00291v1-abstract-full" style="display: none;"> Making use of refermionization techniques, we map the nonlinear chiral Luttinger liquid model of the edge modes of a spatially confined fractional quantum Hall cloud developed in our recent work [Phys. Rev. A {\bf 107}, 033320 (2023)] onto a one-dimensional system of massive and interacting chiral fermions, whose mass and interactions are set by the filling factor of the quantum Hall fluid and the shape of the external anharmonic confining potential at the position of the edge. As an example of the predictive power of the refermionized theory, we report a detailed study of the dynamic structure factor and of the spectral function of a fractional quantum Hall cloud. Among other features, our refermionized theory provides a physical understanding of the effective decay of the edge excitations and of the universal power-law exponents at the thresholds of the dynamic structure factor. The quantitative accuracy of the refermionized theory is validated against full two-dimensional calculation based on a combination of exact diagonalization and Monte-Carlo sampling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.00291v1-abstract-full').style.display = 'none'; document.getElementById('2305.00291v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.03275">arXiv:2303.03275</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.03275">pdf</a>, <a href="https://arxiv.org/format/2303.03275">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Kardar-Parisi-Zhang universality in the linewidth of non-equilibrium 1D quasi-condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Amelio%2C+I">Ivan Amelio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chiocchetta%2C+A">Alessio Chiocchetta</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.03275v1-abstract-short" style="display: inline;"> We investigate the finite-size origin of the emission linewidth of a spatially-extended, one-dimensional non-equilibrium condensate. We show that the well-known Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang physics. This is s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03275v1-abstract-full').style.display = 'inline'; document.getElementById('2303.03275v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.03275v1-abstract-full" style="display: none;"> We investigate the finite-size origin of the emission linewidth of a spatially-extended, one-dimensional non-equilibrium condensate. We show that the well-known Schawlow-Townes scaling of laser theory, possibly including the Henry broadening factor, only holds for small system sizes, while in larger systems the linewidth displays a novel scaling determined by Kardar-Parisi-Zhang physics. This is shown to lead to an opposite dependence of the linewidth on the optical nonlinearity in the two cases. We then study how sub-universal properties of the phase dynamics such as the higher moments of the phase-phase correlator are affected by the finite size and discuss the relation between the field coherence and the exponential of the phase-phase correlator. We finally identify a configuration with enhanced open boundary conditions, which supports a spatially uniform steady-state and facilitates experimental studies of the linewidth scaling. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.03275v1-abstract-full').style.display = 'none'; document.getElementById('2303.03275v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14863">arXiv:2302.14863</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14863">pdf</a>, <a href="https://arxiv.org/format/2302.14863">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PRXQuantum.4.030306">10.1103/PRXQuantum.4.030306 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral quantum optics in the bulk of photonic quantum Hall systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Bernardis%2C+D">Daniele De Bernardis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Piccioli%2C+F">Francesco Piccioli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rabl%2C+P">Peter Rabl</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14863v2-abstract-short" style="display: inline;"> We study light-matter interactions in the bulk of a two-dimensional photonic lattice system, where photons are subject to the combined effect of a synthetic magnetic field and an orthogonal synthetic electric field. In this configuration, chiral waveguide modes appear in the bulk region of the lattice, in direct analogy to transverse Hall currents in electronic systems. By evaluating the non-Marko&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14863v2-abstract-full').style.display = 'inline'; document.getElementById('2302.14863v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14863v2-abstract-full" style="display: none;"> We study light-matter interactions in the bulk of a two-dimensional photonic lattice system, where photons are subject to the combined effect of a synthetic magnetic field and an orthogonal synthetic electric field. In this configuration, chiral waveguide modes appear in the bulk region of the lattice, in direct analogy to transverse Hall currents in electronic systems. By evaluating the non-Markovian dynamics of emitters that are coupled to those modes, we identify critical coupling conditions, under which the shape of the spontaneously emitted photons becomes almost fully symmetric. Combined with a directional, dispersionless propagation, this property enables a complete reabsorption of the photon by another distant emitter, without relying on any time-dependent control. We show that this mechanism can be generalized to arbitrary in-plane synthetic potentials, thereby enabling flexible realizations of re-configurable networks of quantum emitters with arbitrary chiral connectivity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14863v2-abstract-full').style.display = 'none'; document.getElementById('2302.14863v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRX Quantum 4, 030306, (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09047">arXiv:2212.09047</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09047">pdf</a>, <a href="https://arxiv.org/format/2212.09047">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41567-023-02322-x">10.1038/s41567-023-02322-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing many-body correlations using quantum-cascade correlation spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Scarpelli%2C+L">Lorenzo Scarpelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Elouard%2C+C">Cyril Elouard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Johnsson%2C+M">Mattias Johnsson</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morassi%2C+M">Martina Morassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lemaitre%2C+A">Aristide Lemaitre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bloch%2C+J">Jacqueline Bloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravets%2C+S">Sylvain Ravets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+M">Maxime Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Volz%2C+T">Thomas Volz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09047v1-abstract-short" style="display: inline;"> The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics. For example, the two-photon cascaded emission from calcium atoms was used in pioneering experiments to test Bell inequalities. In solid-state quantum optics, the radiative biexciton-exciton cascade has proven useful to generate entangled-photon pai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09047v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09047v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09047v1-abstract-full" style="display: none;"> The radiative quantum cascade, i.e. the consecutive emission of photons from a ladder of energy levels, is of fundamental importance in quantum optics. For example, the two-photon cascaded emission from calcium atoms was used in pioneering experiments to test Bell inequalities. In solid-state quantum optics, the radiative biexciton-exciton cascade has proven useful to generate entangled-photon pairs. More recently, correlations and entanglement of microwave photons emitted from a two-photon cascaded process were measured using superconducting circuits. All these experiments rely on the highly non-linear nature of the underlying energy ladder, enabling direct excitation and probing of specific single-photon transitions. Here, we use exciton polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved, a regime that has not been addressed so far. We excite a polariton quantum cascade by off-resonant laser excitation and probe the emitted luminescence using a combination of spectral filtering and correlation spectroscopy. Remarkably, the measured photon-photon correlations exhibit a strong dependence on the polariton energy, and therefore on the underlying polaritonic interaction strength, with clear signatures from two- and three-body Feshbach resonances. Our experiment establishes photon-cascade correlation spectroscopy as a highly sensitive tool to provide valuable information about the underlying quantum properties of novel semiconductor materials and we predict its usefulness in view of studying many-body quantum phenomena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09047v1-abstract-full').style.display = 'none'; document.getElementById('2212.09047v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07337">arXiv:2212.07337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07337">pdf</a>, <a href="https://arxiv.org/format/2212.07337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Superradiant phononic emission from the analog spin ergoregion in a two-component Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacomelli%2C+L">Luca Giacomelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07337v1-abstract-short" style="display: inline;"> We make use of an analog gravity perspective to obtain a physical understanding of hydrodynamic instabilities stemming from the presence of quantized vortices in two-component atomic condensates and of their relation to ergoregion instabilities of rotating massive objects in gravitation. In addition to the localized instabilities related to vortex splitting, configurations displaying dynamically u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07337v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07337v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07337v1-abstract-full" style="display: none;"> We make use of an analog gravity perspective to obtain a physical understanding of hydrodynamic instabilities stemming from the presence of quantized vortices in two-component atomic condensates and of their relation to ergoregion instabilities of rotating massive objects in gravitation. In addition to the localized instabilities related to vortex splitting, configurations displaying dynamically unstable modes that extend well outside the vortex core are found. In this case, the superradiant scattering process involves phonon emission into the much wider ergoregion of spin modes, so the physics most closely resembles the one of rotating massive objects. Our results confirm the potential of two-component condensates as analog models of rotating space-times in different regimes of gravitational interest. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07337v1-abstract-full').style.display = 'none'; document.getElementById('2212.07337v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02597">arXiv:2212.02597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02597">pdf</a>, <a href="https://arxiv.org/format/2212.02597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.110.195435">10.1103/PhysRevB.110.195435 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Microscopic theory of polariton-polariton interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Christensen%2C+E+R">Esben R. Christensen</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Camacho-Guardian%2C+A">Arturo Camacho-Guardian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cotlet%2C+O">Ovidiu Cotlet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Imamoglu%2C+A">Atac Imamoglu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wouters%2C+M">Michiel Wouters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bruun%2C+G+M">Georg M. Bruun</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02597v2-abstract-short" style="display: inline;"> We develop a comprehensive theoretical model for the interaction strength between a pair of exciton-polaritons in microcavity devices. Ab initio numerical calculations for dipolar polaritons in one dimension are used as a starting point to build a Born-Oppenheimer theory that generally applies to generic -- dipolar or non-dipolar polaritons -- in both one and two dimensions. This theory anticipate&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02597v2-abstract-full').style.display = 'inline'; document.getElementById('2212.02597v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02597v2-abstract-full" style="display: none;"> We develop a comprehensive theoretical model for the interaction strength between a pair of exciton-polaritons in microcavity devices. Ab initio numerical calculations for dipolar polaritons in one dimension are used as a starting point to build a Born-Oppenheimer theory that generally applies to generic -- dipolar or non-dipolar polaritons -- in both one and two dimensions. This theory anticipates that the strong coupling to the cavity mode leads to a drastic enhancement of the polariton interactions as compared to bare excitons, and predicts unexpected scaling laws in the interaction strength as a function of system parameters. Comparisons with available experimental data are drawn, and specific suggestions to validate it with new experiments are made. Promising strategies towards the observation of a strong polariton blockade regime are finally sketched. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02597v2-abstract-full').style.display = 'none'; document.getElementById('2212.02597v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main manuscript: 18 pages, 6 figures. Appendix: 2 pages, 2 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.12373">arXiv:2211.12373</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.12373">pdf</a>, <a href="https://arxiv.org/format/2211.12373">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.174507">10.1103/PhysRevB.107.174507 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spectrum of collective excitations of a quantum fluid of polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Claude%2C+F">Ferdinand Claude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacquet%2C+M+J">Maxime J. Jacquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glorieux%2C+Q">Quentin Glorieux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacobino%2C+E">Elisabeth Giacobino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramati%2C+A">Alberto Bramati</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.12373v1-abstract-short" style="display: inline;"> We use a recently developed high-resolution coherent probe spectroscopy method to investigate the dispersion of collective excitations of a polaritonic quantum fluid. We measure the dispersion relation with high energy and wavenumber resolution, which allows us to determine the speed of sound in the fluid and to evidence the contribution of an excitonic reservoir. We report on the generation of co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12373v1-abstract-full').style.display = 'inline'; document.getElementById('2211.12373v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.12373v1-abstract-full" style="display: none;"> We use a recently developed high-resolution coherent probe spectroscopy method to investigate the dispersion of collective excitations of a polaritonic quantum fluid. We measure the dispersion relation with high energy and wavenumber resolution, which allows us to determine the speed of sound in the fluid and to evidence the contribution of an excitonic reservoir. We report on the generation of collective excitations at negative energies, on the ghost branch of the dispersion curve. Precursors of dynamical instabilities are also identified. Our methods open the way to the precise study of quantum hydrodynamics of quantum fluids of light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.12373v1-abstract-full').style.display = 'none'; document.getElementById('2211.12373v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10980">arXiv:2211.10980</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10980">pdf</a>, <a href="https://arxiv.org/format/2211.10980">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Quantum Fluids of Light </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10980v1-abstract-short" style="display: inline;"> In this Chapter, we give a brief review of the state of the art of theoretical and experimental studies of quantum fluids of light. Such systems consist of ensembles of photons that acquire a finite mass from spatial confinement or diffraction and finite binary interactions from the optical nonlinearity of the optical medium. The peculiar properties of these fluids are highlighted in comparison wi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10980v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10980v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10980v1-abstract-full" style="display: none;"> In this Chapter, we give a brief review of the state of the art of theoretical and experimental studies of quantum fluids of light. Such systems consist of ensembles of photons that acquire a finite mass from spatial confinement or diffraction and finite binary interactions from the optical nonlinearity of the optical medium. The peculiar properties of these fluids are highlighted in comparison with standard condensed matter systems, with a special emphasis on the novel possibilities that they offer for the generation, the manipulation and the diagnostics of the fluid, as well as on their intrinsically non-equilibrium and/or dynamical nature. Perspectives towards a new generation of experiments on strongly correlated fluids of light and towards opto-electronic applications are finally sketched. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10980v1-abstract-full').style.display = 'none'; document.getElementById('2211.10980v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited Contribution to Encyclopedia of Condensed Matter Physics, 2nd edition</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.07246">arXiv:2211.07246</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.07246">pdf</a>, <a href="https://arxiv.org/format/2211.07246">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Collective excitations of a strongly-correlated non-equilibrium photon fluid across the Mott/superfluid phase transition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Caleffi%2C+F">Fabio Caleffi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capone%2C+M">Massimo Capone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.07246v1-abstract-short" style="display: inline;"> We develop a Gutzwiller theory for the non-equilibrium steady states of a strongly-interacting photon fluid driven by a non-Markovian incoherent pump. In particular, we explore the collective excitation modes across the out-of-equilibrium Mott/superfluid transition, characterizing the diffusive Goldstone mode in the superfluid phase and the particle/hole excitations in the insulating one. Observab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07246v1-abstract-full').style.display = 'inline'; document.getElementById('2211.07246v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.07246v1-abstract-full" style="display: none;"> We develop a Gutzwiller theory for the non-equilibrium steady states of a strongly-interacting photon fluid driven by a non-Markovian incoherent pump. In particular, we explore the collective excitation modes across the out-of-equilibrium Mott/superfluid transition, characterizing the diffusive Goldstone mode in the superfluid phase and the particle/hole excitations in the insulating one. Observable features in the pump-and-probe optical response of the system are highlighted. Our results appear as experimentally accessible to state-of-the-art circuit-QED devices and open the way for driven-dissipative fluids of light as quantum simulators of novel many-body scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.07246v1-abstract-full').style.display = 'none'; document.getElementById('2211.07246v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Main text: 6 pages, 3 figures. Supplementary material: 18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.08026">arXiv:2210.08026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.08026">pdf</a>, <a href="https://arxiv.org/format/2210.08026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.106.224206">10.1103/PhysRevB.106.224206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Magnetic-field-induced cavity protection for intersubband polaritons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Bernardis%2C+D">Daniele De Bernardis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeannin%2C+M">Mathieu Jeannin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manceau%2C+J">Jean-Michel Manceau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colombelli%2C+R">Raffaele Colombelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tredicucci%2C+A">Alessandro Tredicucci</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.08026v2-abstract-short" style="display: inline;"> We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity. The magnetic field changes the lineshape of the intersubband optical transition due to the interface roughness of the quantum well from a Lorentzian to a Gaussian one. In this regime, a novel form of magnetic-field-induced cavity pro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08026v2-abstract-full').style.display = 'inline'; document.getElementById('2210.08026v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.08026v2-abstract-full" style="display: none;"> We analyse the effect of a strong perpendicular magnetic field on an intersubband transition in a disordered doped quantum well strongly coupled to an optical cavity. The magnetic field changes the lineshape of the intersubband optical transition due to the interface roughness of the quantum well from a Lorentzian to a Gaussian one. In this regime, a novel form of magnetic-field-induced cavity protection sets in, which strongly reduces the polariton linewidth to the cavity contribution only. Implications of our results for fundamental studies of nonlinear polariton dynamics and for technological applications to polariton lasers are finally highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.08026v2-abstract-full').style.display = 'none'; document.getElementById('2210.08026v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Volume 106, Issue 22, 1 December 2022 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13235">arXiv:2209.13235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13235">pdf</a>, <a href="https://arxiv.org/format/2209.13235">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.13.021037">10.1103/PhysRevX.13.021037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ferromagnetism in an extended coherently-coupled atomic superfluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cominotti%2C+R">Riccardo Cominotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Dulin%2C+C">Clement Dulin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rogora%2C+C">Chiara Rogora</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamporesi%2C+G">Giacomo Lamporesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Recati%2C+A">Alessio Recati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zenesini%2C+A">Alessandro Zenesini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+G">Gabriele Ferrari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13235v3-abstract-short" style="display: inline;"> Ferromagnetism is an iconic example of a first-order phase transition taking place in spatially extended systems and is characterized by hysteresis and the formation of domain walls. In this paper we demonstrate that an extended atomic superfluid in the presence of a coherent coupling between two internal states exhibits a quantum phase transition from a para- to a ferromagnetic state. The nature&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13235v3-abstract-full').style.display = 'inline'; document.getElementById('2209.13235v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13235v3-abstract-full" style="display: none;"> Ferromagnetism is an iconic example of a first-order phase transition taking place in spatially extended systems and is characterized by hysteresis and the formation of domain walls. In this paper we demonstrate that an extended atomic superfluid in the presence of a coherent coupling between two internal states exhibits a quantum phase transition from a para- to a ferromagnetic state. The nature of the transition is experimentally assessed by looking at the phase diagram as a function of the control parameters, at hysteresis phenomena, at the magnetic susceptibility and the magnetization fluctuations around the critical point. We show that the observed features are in good agreement with mean-field calculations. Additionally, we develop experimental protocols to deterministically generate domain walls that separate spatial regions of opposite magnetization in the ferromagnetic state. Thanks to the enhanced coherence properties of our atomic superfluid system compared to standard condensed matter systems, our results open the way towards the study of different aspects of the relaxation dynamics in isolated coherent many-body quantum systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13235v3-abstract-full').style.display = 'none'; document.getElementById('2209.13235v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. X 13, 021037 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10101">arXiv:2208.10101</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.10101">pdf</a>, <a href="https://arxiv.org/format/2208.10101">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167745">10.1016/j.nima.2022.167745 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress in the development of a KITWPA for the DARTWARS project </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Capelli%2C+S">S. Capelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Granata%2C+V">V. Granata</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Guarcello%2C+C">C. Guarcello</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Labranca%2C+D">D. Labranca</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mantegazzini%2C+F">F. Mantegazzini</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10101v2-abstract-short" style="display: inline;"> DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic induc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10101v2-abstract-full').style.display = 'inline'; document.getElementById('2208.10101v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10101v2-abstract-full" style="display: none;"> DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) is a three years project that aims to develop high-performing innovative Traveling Wave Parametric Amplifiers (TWPAs) for low temperature detectors and qubit readout (C-band). The practical development follows two different promising approaches, one based on the Josephson junctions (TWJPA) and the other one based on the kinetic inductance of a high-resistivity superconductor (KITWPA). This paper presents the advancements made by the DARTWARS collaboration to produce a first working prototype of a KITWPA. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10101v2-abstract-full').style.display = 'none'; document.getElementById('2208.10101v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 4 figures. Proceeding of Pisa15th Meeting conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.00311">arXiv:2207.00311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.00311">pdf</a>, <a href="https://arxiv.org/format/2207.00311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.241501">10.1103/PhysRevLett.130.241501 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Numerical studies of back-reaction effects in an analog model of cosmological pre-heating </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butera%2C+S">Salvatore Butera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.00311v1-abstract-short" style="display: inline;"> We theoretically propose an atomic Bose-Einstein condensate as an analog model of back-reaction effects during the pre-heating stage of early Universe. In particular, we address the out-of-equilibrium dynamics where the initially excited inflaton field decays by parametrically exciting the matter fields. We consider a two-dimensional, ring-shaped BEC under a tight transverse confinement whose tran&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00311v1-abstract-full').style.display = 'inline'; document.getElementById('2207.00311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.00311v1-abstract-full" style="display: none;"> We theoretically propose an atomic Bose-Einstein condensate as an analog model of back-reaction effects during the pre-heating stage of early Universe. In particular, we address the out-of-equilibrium dynamics where the initially excited inflaton field decays by parametrically exciting the matter fields. We consider a two-dimensional, ring-shaped BEC under a tight transverse confinement whose transverse breathing mode and the Goldstone and dipole excitation branches simulate the inflaton and quantum matter fields, respectively. A strong excitation of the breathing mode leads to an exponentially-growing emission of dipole and Goldstone excitations via parametric pair creation: our numerical simulations of the BEC dynamics show how the associated back-reaction effect not only results in an effective friction of the breathing mode but also in a quick loss of longitudinal spatial coherence of the initially in-phase excitations. Implications of this result on the validity of the usual semiclassical description of back-reaction are finally discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.00311v1-abstract-full').style.display = 'none'; document.getElementById('2207.00311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures; comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.07727">arXiv:2206.07727</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.07727">pdf</a>, <a href="https://arxiv.org/format/2206.07727">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Hall and Synthetic Magnetic-Field Effects in Ultra-Cold Atomic Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Hauke%2C+P">Philipp Hauke</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.07727v2-abstract-short" style="display: inline;"> In this Chapter, we give a brief review of the state of the art of theoretical and experimental studies of synthetic magnetic fields and quantum Hall effects in ultracold atomic gases. We focus on integer, spin, and fractional Hall effects, indicate connections to topological matter, and discuss prospects for the realization of full-fledged gauge field theories where the synthetic magnetic field h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07727v2-abstract-full').style.display = 'inline'; document.getElementById('2206.07727v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.07727v2-abstract-full" style="display: none;"> In this Chapter, we give a brief review of the state of the art of theoretical and experimental studies of synthetic magnetic fields and quantum Hall effects in ultracold atomic gases. We focus on integer, spin, and fractional Hall effects, indicate connections to topological matter, and discuss prospects for the realization of full-fledged gauge field theories where the synthetic magnetic field has its own dynamics. The advantages of these systems over traditional electronic systems are highlighted. Finally, interdisciplinary comparisons with other synthetic matter platforms based on photonic and trapped-ion systems are drawn. We hope this chapter to illustrate the exciting progress that the field has experienced in recent years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.07727v2-abstract-full').style.display = 'none'; document.getElementById('2206.07727v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures; Invited Contribution to Encyclopedia of Condensed Matter Physics, 2nd edition; v2: added references</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10126">arXiv:2203.10126</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Optical-force-mediated coupling between levitated nanospheres can go ultrastrong </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=De+Bernardis%2C+D">Daniele De Bernardis</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Rastelli%2C+G">Gianluca Rastelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Scarani%2C+V">Valerio Scarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10126v2-abstract-short" style="display: inline;"> We theoretically investigate the effect of optical-force-mediated interactions onto the quantum dynamics of a pair of dielectric nanospheres optically trapped in two neighboring optical tweezers. Thanks to the interference between the tweezer beams and the elastically scattered light by the other nanosphere, the effective inter nanosphere coupling can reach the ultrastrong coupling regime. Experim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10126v2-abstract-full').style.display = 'inline'; document.getElementById('2203.10126v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10126v2-abstract-full" style="display: none;"> We theoretically investigate the effect of optical-force-mediated interactions onto the quantum dynamics of a pair of dielectric nanospheres optically trapped in two neighboring optical tweezers. Thanks to the interference between the tweezer beams and the elastically scattered light by the other nanosphere, the effective inter nanosphere coupling can reach the ultrastrong coupling regime. Experimentally accessible signatures of the entangled nature of the quantum ground state are highlighted, including entanglement witnesses based on position/momentum correlation functions and a sizable dynamical Casimir excitation upon a fast modulation of the tweezer&#39;s properties. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10126v2-abstract-full').style.display = 'none'; document.getElementById('2203.10126v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">We found a flaw in the main physical assumptions. Despite the math is correct, the article arrives to false predictions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02539">arXiv:2203.02539</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02539">pdf</a>, <a href="https://arxiv.org/format/2203.02539">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.107.033320">10.1103/PhysRevA.107.033320 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear and nonlinear edge dynamics of trapped fractional quantum Hall droplets beyond the chiral Luttinger liquid paradigm </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Nardin%2C+A">Alberto Nardin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02539v2-abstract-short" style="display: inline;"> We report numerical studies of the linear and nonlinear edge dynamics of a non-harmonically confined macroscopic fractional quantum Hall fluid. In the long-wavelength and weak excitation limit, observable consequences of the fractional transverse conductivity are recovered. The first non-universal corrections to the chiral Luttinger liquid theory are then characterized: for a weak excitation in th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02539v2-abstract-full').style.display = 'inline'; document.getElementById('2203.02539v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02539v2-abstract-full" style="display: none;"> We report numerical studies of the linear and nonlinear edge dynamics of a non-harmonically confined macroscopic fractional quantum Hall fluid. In the long-wavelength and weak excitation limit, observable consequences of the fractional transverse conductivity are recovered. The first non-universal corrections to the chiral Luttinger liquid theory are then characterized: for a weak excitation in the linear response regime, cubic corrections to the linear wave dispersion and a broadening of the dynamical structure factor of the edge excitations are identified; for stronger excitations, sizable nonlinear effects are found in the dynamics. The numerically observed features are quantitatively captured by a nonlinear chiral Luttinger liquid quantum Hamiltonian that reduces to a driven Korteweg-de Vries equation in the semiclassical limit. Experimental observability of our predictions is finally discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02539v2-abstract-full').style.display = 'none'; document.getElementById('2203.02539v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 107, 3, 033320 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.05056">arXiv:2201.05056</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.05056">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.247401">10.1103/PhysRevLett.128.247401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intersubband polariton-polariton scattering in a dispersive microcavity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Knorr%2C+M">M. Knorr</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manceau%2C+J+M">J. M. Manceau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mornhinweg%2C+J">J. Mornhinweg</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nespolo%2C+J">J. Nespolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Biasiol%2C+G">G. Biasiol</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tran%2C+N+L">N. L. Tran</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Malerba%2C+M">M. Malerba</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Goulain%2C+P">P. Goulain</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lafosse%2C+X">X. Lafosse</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeannin%2C+M">M. Jeannin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Stefinger%2C+M">M. Stefinger</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lange%2C+C">C. Lange</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colombelli%2C+R">R. Colombelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Huber%2C+R">R. Huber</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.05056v2-abstract-short" style="display: inline;"> The ultrafast scattering dynamics of intersubband polaritons in dispersive cavities embedding GaAs/AlGaAs quantum wells are studied directly within their band structure using a non-collinear pump-probe geometry with phase-stable mid-infrared pulses. Selective excitation of the lower polariton at a frequency of ~25 THz and at a finite in-plane momentum, $k_{||}$, leads to the emergence of a narrowb&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05056v2-abstract-full').style.display = 'inline'; document.getElementById('2201.05056v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.05056v2-abstract-full" style="display: none;"> The ultrafast scattering dynamics of intersubband polaritons in dispersive cavities embedding GaAs/AlGaAs quantum wells are studied directly within their band structure using a non-collinear pump-probe geometry with phase-stable mid-infrared pulses. Selective excitation of the lower polariton at a frequency of ~25 THz and at a finite in-plane momentum, $k_{||}$, leads to the emergence of a narrowband maximum in the probe reflectivity at $k_{||}=0$. A quantum mechanical model identifies the underlying microscopic process as stimulated coherent polariton-polariton scattering. These results mark an important milestone towards quantum control and bosonic lasing in custom-tailored polaritonic systems in the mid and far-infrared. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.05056v2-abstract-full').style.display = 'none'; document.getElementById('2201.05056v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.02038">arXiv:2201.02038</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.02038">pdf</a>, <a href="https://arxiv.org/format/2201.02038">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjd/s10053-022-00477-5">10.1140/epjd/s10053-022-00477-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analogue quantum simulation of the Hawking effect in a polariton superfluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Jacquet%2C+M+J">Maxime J. Jacquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Joly%2C+M">Malo Joly</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacomelli%2C+L">Luca Giacomelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Claude%2C+F">Ferdinand Claude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glorieux%2C+Q">Quentin Glorieux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramati%2C+A">Alberto Bramati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacobino%2C+E">Elisabeth Giacobino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.02038v2-abstract-short" style="display: inline;"> Quantum effects of fields on curved spacetimes may be studied in the laboratory thanks to quantum fluids. Here we use a polariton fluid to study the Hawking effect, the correlated emission from the quantum vacuum at the acoustic horizon. We show how out-of-equilibrium physics affects the dispersion relation, and hence the emission and propagation of correlated waves: the fluid properties on either&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02038v2-abstract-full').style.display = 'inline'; document.getElementById('2201.02038v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.02038v2-abstract-full" style="display: none;"> Quantum effects of fields on curved spacetimes may be studied in the laboratory thanks to quantum fluids. Here we use a polariton fluid to study the Hawking effect, the correlated emission from the quantum vacuum at the acoustic horizon. We show how out-of-equilibrium physics affects the dispersion relation, and hence the emission and propagation of correlated waves: the fluid properties on either side of the horizon are critical to observing the Hawking effect. We find that emission may be optimised by supporting the phase and density of the fluid upstream of the horizon in a regime of optical bistability. This opens new avenues for the observation of the Hawking effect in out-of-equilibrium systems as well as for the study of new phenomenology of fields on curved spacetimes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.02038v2-abstract-full').style.display = 'none'; document.getElementById('2201.02038v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages + appendix, 6 figures, comments are welcome. arXiv admin note: substantial text overlap with arXiv:2110.14452</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09903">arXiv:2112.09903</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09903">pdf</a>, <a href="https://arxiv.org/format/2112.09903">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.129.103601">10.1103/PhysRevLett.129.103601 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High-resolution coherent probe spectroscopy of a polariton quantum fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Claude%2C+F">Ferdinand Claude</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jacquet%2C+M+J">Maxime J Jacquet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Usciati%2C+R">Romain Usciati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giacobino%2C+E">Elisabeth Giacobino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bramati%2C+A">Alberto Bramati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Glorieux%2C+Q">Quentin Glorieux</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09903v1-abstract-short" style="display: inline;"> Characterising elementary excitations in quantum fluids is essential to study collective effects within. We present an original angle-resolved coherent probe spectroscopy technique to study the dispersion of these excitation modes in a fluid of polaritons under resonant pumping. Thanks to the unprecedented spectral and spatial resolution, we observe directly the low-energy phononic behaviour and d&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09903v1-abstract-full').style.display = 'inline'; document.getElementById('2112.09903v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09903v1-abstract-full" style="display: none;"> Characterising elementary excitations in quantum fluids is essential to study collective effects within. We present an original angle-resolved coherent probe spectroscopy technique to study the dispersion of these excitation modes in a fluid of polaritons under resonant pumping. Thanks to the unprecedented spectral and spatial resolution, we observe directly the low-energy phononic behaviour and detect the negative-energy modes, i.e. the \textit{ghost branch}, of the dispersion relation. In addition, we reveal narrow spectral features precursory of dynamical instabilities due to the intrinsic out-of-equilibrium nature of the system. This technique provides the missing tool for the quantitative study of quantum hydrodynamics in polariton fluids. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09903v1-abstract-full').style.display = 'none'; document.getElementById('2112.09903v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09880">arXiv:2112.09880</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09880">pdf</a>, <a href="https://arxiv.org/format/2112.09880">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.128.210401">10.1103/PhysRevLett.128.210401 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of Massless and Massive Collective Excitations with Faraday Patterns in a Two-Component Superfluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cominotti%2C+R">Riccardo Cominotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Farolfi%2C+A">Arturo Farolfi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zenesini%2C+A">Alessandro Zenesini</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lamporesi%2C+G">Giacomo Lamporesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Recati%2C+A">Alessio Recati</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferrari%2C+G">G. Ferrari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09880v2-abstract-short" style="display: inline;"> We report on the experimental measurement of the dispersion relation of the density and spin collective excitation modes in an elongated two-component superfluid of ultracold bosonic atoms. Our parametric spectroscopic technique is based on the external modulation of the transverse confinement frequency, leading to the formation of density and spin Faraday waves. We show that the application of a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09880v2-abstract-full').style.display = 'inline'; document.getElementById('2112.09880v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09880v2-abstract-full" style="display: none;"> We report on the experimental measurement of the dispersion relation of the density and spin collective excitation modes in an elongated two-component superfluid of ultracold bosonic atoms. Our parametric spectroscopic technique is based on the external modulation of the transverse confinement frequency, leading to the formation of density and spin Faraday waves. We show that the application of a coherent coupling between the two components reduces the phase symmetry and gives a finite mass to the spin modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09880v2-abstract-full').style.display = 'none'; document.getElementById('2112.09880v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 128, 210401 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.09550">arXiv:2112.09550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.09550">pdf</a>, <a href="https://arxiv.org/format/2112.09550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-022-05001-8">10.1038/s41586-022-05001-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Observation of KPZ universal scaling in a one-dimensional polariton condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fontaine%2C+Q">Quentin Fontaine</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Squizzato%2C+D">Davide Squizzato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Baboux%2C+F">Florent Baboux</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amelio%2C+I">Ivan Amelio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lema%C3%AEtre%2C+A">Aristide Lema卯tre</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Morassi%2C+M">Marina Morassi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Sagnes%2C+I">Isabelle Sagnes</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gratiet%2C+L+L">Luc Le Gratiet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Harouri%2C+A">Abdelmounaim Harouri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wouters%2C+M">Michiel Wouters</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Amo%2C+A">Alberto Amo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Richard%2C+M">Maxime Richard</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Minguzzi%2C+A">Anna Minguzzi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Canet%2C+L">L茅onie Canet</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ravets%2C+S">Sylvain Ravets</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Bloch%2C+J">Jacqueline Bloch</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.09550v2-abstract-short" style="display: inline;"> Revealing universal behaviors is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces, of interfaces in bacterial colonies, and spin transport in quantum magnets all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. This universality stems from a common underlying effective&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09550v2-abstract-full').style.display = 'inline'; document.getElementById('2112.09550v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.09550v2-abstract-full" style="display: none;"> Revealing universal behaviors is a hallmark of statistical physics. Phenomena such as the stochastic growth of crystalline surfaces, of interfaces in bacterial colonies, and spin transport in quantum magnets all belong to the same universality class, despite the great plurality of physical mechanisms they involve at the microscopic level. This universality stems from a common underlying effective dynamics governed by the non-linear stochastic Kardar-Parisi-Zhang (KPZ) equation. Recent theoretical works suggest that this dynamics also emerges in the phase of out-of-equilibrium systems displaying macroscopic spontaneous coherence. Here, we experimentally demonstrate that the evolution of the phase in a driven-dissipative one-dimensional polariton condensate falls in the KPZ universality class. Our demonstration relies on a direct measurement of KPZ space-time scaling laws, combined with a theoretical microscopic analysis that consistently reveals the other key signatures of this universality class, together with the possible resilience of KPZ dynamics to the presence of space-time vortices. Our results highlight fundamental physical differences between out-of-equilibrium condensates and their equilibrium counterparts, and open a new paradigm for exploring universal behaviors in open systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.09550v2-abstract-full').style.display = 'none'; document.getElementById('2112.09550v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.04509">arXiv:2112.04509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.04509">pdf</a>, <a href="https://arxiv.org/format/2112.04509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.108.104302">10.1103/PhysRevB.108.104302 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Intertwining of lasing and superradiance under spintronic pumping </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Chelpanova%2C+O">Oksana Chelpanova</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Lerose%2C+A">Alessio Lerose</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Zhang%2C+S">Shu Zhang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Tserkovnyak%2C+Y">Yaroslav Tserkovnyak</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Marino%2C+J">Jamir Marino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.04509v2-abstract-short" style="display: inline;"> We introduce a quantum optics platform featuring the minimal ingredients for the description of a spintronically pumped magnon condensate, which we use to promote driven-dissipative phase transitions in the context of spintronics. We consider a Dicke model weakly coupled to an out-of-equilibrium bath with a tunable spin accumulation. The latter is pumped incoherently in a fashion reminiscent of ex&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04509v2-abstract-full').style.display = 'inline'; document.getElementById('2112.04509v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.04509v2-abstract-full" style="display: none;"> We introduce a quantum optics platform featuring the minimal ingredients for the description of a spintronically pumped magnon condensate, which we use to promote driven-dissipative phase transitions in the context of spintronics. We consider a Dicke model weakly coupled to an out-of-equilibrium bath with a tunable spin accumulation. The latter is pumped incoherently in a fashion reminiscent of experiments with magnet-metal heterostructures. The core of our analysis is the emergence of a hybrid lasing-superradiant regime that does not take place in an ordinary pumped Dicke spin ensemble, and which can be traced back to the spintronics pumping scheme. We interpret the resultant non-equilibrium phase diagram from both a quantum optics and a spintronics standpoint, supplying a conceptual bridge between the two fields. The outreach of our results concern dynamical control in magnon condensates and frequency-dependent gain media in quantum optics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.04509v2-abstract-full').style.display = 'none'; document.getElementById('2112.04509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review B 108 (10), 104302 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01512">arXiv:2111.01512</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01512">pdf</a>, <a href="https://arxiv.org/format/2111.01512">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-022-02809-6">10.1007/s10909-022-02809-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector Array Readout with Traveling Wave Amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chang%2C+W">W. Chang</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kutlu%2C+C">C. Kutlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruccio%2C+G">G. Maruccio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Matlashov%2C+A">A. Matlashov</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01512v1-abstract-short" style="display: inline;"> Noise at the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation x-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter dete&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01512v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01512v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01512v1-abstract-full" style="display: none;"> Noise at the quantum limit over a large bandwidth is a fundamental requirement for future applications operating at millikelvin temperatures, such as the neutrino mass measurement, the next-generation x-ray observatory, the CMB measurement, the dark matter and axion detection, and the rapid high-fidelity readout of superconducting qubits. The read out sensitivity of arrays of microcalorimeter detectors, resonant axion-detectors, and qubits, is currently limited by the noise temperature and bandwidth of the cryogenic amplifiers. The DARTWARS (Detector Array Readout with Traveling Wave AmplifieRS) project has the goal of developing high-performing innovative traveling wave parametric amplifiers (TWPAs) with a high gain, a high saturation power, and a quantum-limited or nearly quantum-limited noise. The practical development follows two different promising approaches, one based on the Josephson junctions and the other one based on the kinetic inductance of a high-resistivity superconductor. In this contribution we present the aims of the project, the adopted design solutions and preliminary results from simulations and measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01512v1-abstract-full').style.display = 'none'; document.getElementById('2111.01512v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.10588">arXiv:2110.10588</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.10588">pdf</a>, <a href="https://arxiv.org/format/2110.10588">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.14.2.025">10.21468/SciPostPhys.14.2.025 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interplay of Kelvin-Helmholtz and superradiant instabilities of an array of quantized vortices in a two-dimensional Bose--Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giacomelli%2C+L">Luca Giacomelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.10588v5-abstract-short" style="display: inline;"> We investigate the various physical mechanisms that underlie the dynamical instability of a quantized vortex array at the interface between two counter-propagating superflows in a two-dimensional Bose--Einstein condensate. Instabilities of markedly different nature are found to dominate in different flow velocity regimes. For moderate velocities where the two flows are subsonic, the vortex lattice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10588v5-abstract-full').style.display = 'inline'; document.getElementById('2110.10588v5-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.10588v5-abstract-full" style="display: none;"> We investigate the various physical mechanisms that underlie the dynamical instability of a quantized vortex array at the interface between two counter-propagating superflows in a two-dimensional Bose--Einstein condensate. Instabilities of markedly different nature are found to dominate in different flow velocity regimes. For moderate velocities where the two flows are subsonic, the vortex lattice displays a quantized version of the hydrodynamic Kelvin--Helmholtz instability (KHI), with the vortices rolling up and co-rotating. For supersonic flow velocities, the oscillation involved in the KHI can resonantly couple to acoustic excitations propagating away in the bulk fluid on both sides. This makes the KHI rate to be effectively suppressed and other mechanisms to dominate: For finite and relatively small systems along the transverse direction, the instability involves a repeated superradiant scattering of sound waves off the vortex lattice; for transversally unbound systems, a radiative instability dominates, leading to the simultaneous growth of a localized wave along the vortex lattice and of acoustic excitations propagating away in the bulk. Finally, for slow velocities, where the KHI rate is intrinsically slow, another instability associated to the rigid lateral displacement of the vortex lattice due to the vicinity of the system&#39;s boundary is found to dominate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.10588v5-abstract-full').style.display = 'none'; document.getElementById('2110.10588v5-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 14, 025 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2110.04611">arXiv:2110.04611</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2110.04611">pdf</a>, <a href="https://arxiv.org/format/2110.04611">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.023527">10.1103/PhysRevA.105.023527 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bogoliubov theory of the laser linewidth and application to polariton condensates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Amelio%2C+I">Ivan Amelio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2110.04611v2-abstract-short" style="display: inline;"> For a generic semi-classical laser dynamics in the complex Ginzburg-Landau form, we develop a Bogoliubov approach for the computation of the laser emission linewidth. Our method provides a unifying perspective of the treatments by Henry and Petermann: both broadening mechanisms are ascribed to the non-orthogonality of the Bogoliubov modes, which live in a space with doubled degrees of freedom. As&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04611v2-abstract-full').style.display = 'inline'; document.getElementById('2110.04611v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2110.04611v2-abstract-full" style="display: none;"> For a generic semi-classical laser dynamics in the complex Ginzburg-Landau form, we develop a Bogoliubov approach for the computation of the laser emission linewidth. Our method provides a unifying perspective of the treatments by Henry and Petermann: both broadening mechanisms are ascribed to the non-orthogonality of the Bogoliubov modes, which live in a space with doubled degrees of freedom. As an example of application, the method allows to study the interplay of driven-dissipation, interactions and spatial inhomogeneity typical of polariton condensates. The traditional theory of the Henry and Petermann factors is found to fail dramatically in the presence of sizable polariton-polariton interactions. In particular, also in a strong confining potential, the intrinsically multi-mode nature of the density fluctuations has to be considered in order to describe quantitatively phase diffusion {\em 脿 la} Henry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2110.04611v2-abstract-full').style.display = 'none'; document.getElementById('2110.04611v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14924">arXiv:2109.14924</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.14924">pdf</a>, <a href="https://arxiv.org/format/2109.14924">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TASC.2022.3148692">10.1109/TASC.2022.3148692 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Fasolo%2C+L">L. Fasolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Barone%2C+C">C. Barone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Borghesi%2C+M">M. Borghesi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carapella%2C+G">G. Carapella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Caricato%2C+A+P">A. P. Caricato</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Chung%2C+W">W. Chung</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Cian%2C+A">A. Cian</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Di+Gioacchino%2C+D">D. Di Gioacchino</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Enrico%2C+E">E. Enrico</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Falferi%2C+P">P. Falferi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Faverzani%2C+M">M. Faverzani</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ferri%2C+E">E. Ferri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Filatrella%2C+G">G. Filatrella</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Gatti%2C+C">C. Gatti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giachero%2C+A">A. Giachero</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Giubertoni%2C+D">D. Giubertoni</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Greco%2C+A">A. Greco</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Kutlu%2C+C">C. Kutlu</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leo%2C+A">A. Leo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Ligi%2C+C">C. Ligi</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Livreri%2C+P">P. Livreri</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maccarrone%2C+G">G. Maccarrone</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Margesin%2C+B">B. Margesin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Maruccio%2C+G">G. Maruccio</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14924v2-abstract-short" style="display: inline;"> The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplificatio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14924v2-abstract-full').style.display = 'inline'; document.getElementById('2109.14924v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14924v2-abstract-full" style="display: none;"> The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14924v2-abstract-full').style.display = 'none'; document.getElementById('2109.14924v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.05220">arXiv:2109.05220</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.05220">pdf</a>, <a href="https://arxiv.org/format/2109.05220">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.023329">10.1103/PhysRevA.105.023329 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Topological two-particle dynamics in a periodically driven lattice model with on-site interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Berti%2C+A">Anna Berti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.05220v2-abstract-short" style="display: inline;"> We develop a realistic protocol to observe a robust topological dynamics of two-particle bound states in a lattice model with on-site interactions and suitably designed time-dependent hoppings. This Floquet scheme can be realistically implemented on existing digital quantum computer platforms. Marked differences from the topological single-particle dynamics of two independent particles and clear s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05220v2-abstract-full').style.display = 'inline'; document.getElementById('2109.05220v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.05220v2-abstract-full" style="display: none;"> We develop a realistic protocol to observe a robust topological dynamics of two-particle bound states in a lattice model with on-site interactions and suitably designed time-dependent hoppings. This Floquet scheme can be realistically implemented on existing digital quantum computer platforms. Marked differences from the topological single-particle dynamics of two independent particles and clear signatures of the entanglement between the two constituent particles are highlighted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.05220v2-abstract-full').style.display = 'none'; document.getElementById('2109.05220v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.00285">arXiv:2109.00285</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.00285">pdf</a>, <a href="https://arxiv.org/format/2109.00285">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.115431">10.1103/PhysRevB.107.115431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Cominotti%2C+R">R. Cominotti</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Leymann%2C+H+A+M">H. A. M. Leymann</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Nespolo%2C+J">J. Nespolo</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Manceau%2C+J+-">J. -M. Manceau</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Jeannin%2C+M">M. Jeannin</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Colombelli%2C+R">R. Colombelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">I. Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.00285v3-abstract-short" style="display: inline;"> We theoretically study the coherent nonlinear response of electrons confined in semiconductor quantum wells under the effect of an electromagnetic radiation close to resonance with an intersubband transition. Our approach is based on the time-dependent Schr枚dinger-Poisson equation stemming from a Hartree description of Coulomb-interacting electrons. This equation is solved by standard numerical to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00285v3-abstract-full').style.display = 'inline'; document.getElementById('2109.00285v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.00285v3-abstract-full" style="display: none;"> We theoretically study the coherent nonlinear response of electrons confined in semiconductor quantum wells under the effect of an electromagnetic radiation close to resonance with an intersubband transition. Our approach is based on the time-dependent Schr枚dinger-Poisson equation stemming from a Hartree description of Coulomb-interacting electrons. This equation is solved by standard numerical tools and the results are interpreted in terms of approximated analytical formulas. For growing intensity, we observe a redshift of the effective resonance frequency due to the reduction of the electric dipole moment and the corresponding suppression of the depolarization shift. The competition between coherent nonlinearities and incoherent saturation effects is discussed. The strength of the resulting optical nonlinearity is estimated across different frequency ranges from mid-IR to THz with an eye to ongoing experiments on Bose-Einstein condensation of intersubband polaritons and to the speculative exploration of quantum optical phenomena such as single-photon emission in the mid-IR and THz windows. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.00285v3-abstract-full').style.display = 'none'; document.getElementById('2109.00285v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 107, 115431 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.11137">arXiv:2106.11137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.11137">pdf</a>, <a href="https://arxiv.org/format/2106.11137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42254-022-00464-0">10.1038/s42254-022-00464-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous coherence in spatially extended photonic systems: Non-Equilibrium Bose-Einstein condensation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Bloch%2C+J">Jacqueline Bloch</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Wouters%2C+M">Michiel Wouters</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.11137v1-abstract-short" style="display: inline;"> In this review, we give an interdisciplinary overview of Bose-Einstein condensation phenomena in photonic systems. We cover a wide range of systems, from lasers to photon condensates in dye-filled cavities, to excitons in semiconductor heterostructures, to microcavity polaritons, as well as emerging systems such as mode-locked lasers and classical light waves. Rather than diving into the specific&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11137v1-abstract-full').style.display = 'inline'; document.getElementById('2106.11137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.11137v1-abstract-full" style="display: none;"> In this review, we give an interdisciplinary overview of Bose-Einstein condensation phenomena in photonic systems. We cover a wide range of systems, from lasers to photon condensates in dye-filled cavities, to excitons in semiconductor heterostructures, to microcavity polaritons, as well as emerging systems such as mode-locked lasers and classical light waves. Rather than diving into the specific properties of each system, our main focus will be to highlight those novel universal phenomena that stem from the driven-dissipative, non-equilibrium nature of these systems and affect the static, dynamic and coherence properties of the condensate. We conclude with our view on the future perspectives of this field for both fundamental science and technological applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.11137v1-abstract-full').style.display = 'none'; document.getElementById('2106.11137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nature Reviews Physics volume 4, pages 470-488 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06370">arXiv:2106.06370</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.06370">pdf</a>, <a href="https://arxiv.org/format/2106.06370">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.104.235120">10.1103/PhysRevB.104.235120 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical dressing of the electronic response of two-dimensional semiconductors in quantum and classical descriptions of cavity electrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Amelio%2C+I">Ivan Amelio</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Korosec%2C+L">Lukas Korosec</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Mazza%2C+G">Giacomo Mazza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06370v2-abstract-short" style="display: inline;"> We study quantum effects of the vacuum light-matter interaction in materials embedded in optical cavities. We focus on the electronic response of a two-dimensional semiconductor placed inside a planar cavity. By using a diagrammatic expansion of the electron-photon interaction, we describe signatures of light-matter hybridization characterized by large asymmetric shifts of the spectral weight at r&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06370v2-abstract-full').style.display = 'inline'; document.getElementById('2106.06370v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06370v2-abstract-full" style="display: none;"> We study quantum effects of the vacuum light-matter interaction in materials embedded in optical cavities. We focus on the electronic response of a two-dimensional semiconductor placed inside a planar cavity. By using a diagrammatic expansion of the electron-photon interaction, we describe signatures of light-matter hybridization characterized by large asymmetric shifts of the spectral weight at resonant frequencies. We follow the evolution of the light-dressing from the cavity to the free-space limit. In the cavity limit, light-matter hybridization results in a modification of the optical gap with sizeable spectral weight appearing below the bare gap edge. In the limit of large cavities, we find a residual redistribution of spectral weight which becomes independent of the distance between the two mirrors. We show that the photon dressing of the electronic response can be fully explained by using a classical description of light. The classical description is found to hold up to a strong coupling regime of the light-matter interaction highlighted by the large modification of the photon spectra with respect to the empty cavity. We show that, despite the strong coupling, quantum corrections are negligibly small and weakly dependent on the cavity confinement. As a consequence, in contrast to the optical gap, the single particle electronic band gap is not sensibly modified by the strong-coupling. Our results show that quantum corrections are dominated by off-resonant photon modes at high energy. As such, cavity confinement can hardly be seen as a knob to control the quantum effects of the light-matter interaction in vacuum. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06370v2-abstract-full').style.display = 'none'; document.getElementById('2106.06370v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 104, 235120 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.09349">arXiv:2105.09349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.09349">pdf</a>, <a href="https://arxiv.org/format/2105.09349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.104.083503">10.1103/PhysRevD.104.083503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Particle creation in the spin modes of a dynamically oscillating two-component Bose-Einstein condensate </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Butera%2C+S">Salvatore Butera</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.09349v2-abstract-short" style="display: inline;"> We investigate the parametric amplification of the zero-point fluctuations in the spin modes of a two-component Bose-Einstein condensate, triggered by the dynamical evolution of the condensate density. We first make use of a Thomas-Fermi approximation to develop a tractable theoretical model of the quantum dynamics of the Bogoliubov excitations in a harmonically trapped condensate with a time-depe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09349v2-abstract-full').style.display = 'inline'; document.getElementById('2105.09349v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.09349v2-abstract-full" style="display: none;"> We investigate the parametric amplification of the zero-point fluctuations in the spin modes of a two-component Bose-Einstein condensate, triggered by the dynamical evolution of the condensate density. We first make use of a Thomas-Fermi approximation to develop a tractable theoretical model of the quantum dynamics of the Bogoliubov excitations in a harmonically trapped condensate with a time-dependent trapping frequency. The predictions of this model are then compared to an ab-initio numerical study of the correlation functions of density and spin fluctuations for general spatially inhomogeneous configurations. Results are shown for the two cases of expanding and oscillating condensates: while the quantum excitation of spin modes remains weak and relatively featureless in the case of an expanding condensate, clear and experimentally promising signatures of particle creation are anticipated for the oscillating case under suitable resonance conditions between the density and the spin modes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.09349v2-abstract-full').style.display = 'none'; document.getElementById('2105.09349v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 5 figures. Comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 104, 083503 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.06751">arXiv:2105.06751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.06751">pdf</a>, <a href="https://arxiv.org/format/2105.06751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.023704">10.1103/PhysRevA.104.023704 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Autonomous stabilization of photonic Laughlin states through angular momentum potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Umucalilar%2C+R+O">Rifat Onur Umucalilar</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Simon%2C+J">Jonathan Simon</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.06751v1-abstract-short" style="display: inline;"> We propose a method to stabilize Laughlin states of a large number of strongly interacting photons by combining a frequency-selective incoherent pump with a step-like potential in the angular momentum basis. Analytical expressions for the preparation efficiency and for the principal error sources are obtained. Direct extension of the preparation scheme to states containing single or multiple quasi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06751v1-abstract-full').style.display = 'inline'; document.getElementById('2105.06751v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.06751v1-abstract-full" style="display: none;"> We propose a method to stabilize Laughlin states of a large number of strongly interacting photons by combining a frequency-selective incoherent pump with a step-like potential in the angular momentum basis. Analytical expressions for the preparation efficiency and for the principal error sources are obtained. Direct extension of the preparation scheme to states containing single or multiple quasiholes is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.06751v1-abstract-full').style.display = 'none'; document.getElementById('2105.06751v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5+3 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 023704 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.03964">arXiv:2105.03964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.03964">pdf</a>, <a href="https://arxiv.org/format/2105.03964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.013313">10.1103/PhysRevA.104.013313 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spontaneous quantum superradiant emission in atomic Bose-Einstein condensates subject to a synthetic vector potential </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Giacomelli%2C+L">Luca Giacomelli</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.03964v1-abstract-short" style="display: inline;"> We theoretically investigate the spontaneous quantum emission of phonon pairs by superradiant processes in an atomic Bose-Einstein condensate subject to a synthetic vector potential. Within the analog gravity perspective, this effect corresponds to the spontaneous emission of radiation from the ergosurface of rotating black holes. A general input-output formalism is built and used to characterize&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03964v1-abstract-full').style.display = 'inline'; document.getElementById('2105.03964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.03964v1-abstract-full" style="display: none;"> We theoretically investigate the spontaneous quantum emission of phonon pairs by superradiant processes in an atomic Bose-Einstein condensate subject to a synthetic vector potential. Within the analog gravity perspective, this effect corresponds to the spontaneous emission of radiation from the ergosurface of rotating black holes. A general input-output formalism is built and used to characterize the spectral and correlation properties of the emission. Experimentally accessible signatures of the emission are pointed out in the correlation functions of the atomic gas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.03964v1-abstract-full').style.display = 'none'; document.getElementById('2105.03964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 8 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 013313 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.07509">arXiv:2103.07509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.07509">pdf</a>, <a href="https://arxiv.org/format/2103.07509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> </div> <p class="title is-5 mathjax"> Polariton condensation into vortex states in the synthetic magnetic field of a strained honeycomb lattice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cond-mat?searchtype=author&amp;query=Lled%C3%B3%2C+C">Crist贸bal Lled贸</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Carusotto%2C+I">Iacopo Carusotto</a>, <a href="/search/cond-mat?searchtype=author&amp;query=Szyma%C5%84ska%2C+M+H">Marzena H. Szyma艅ska</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.07509v2-abstract-short" style="display: inline;"> Photonic materials are a rapidly growing platform for studying condensed matter physics with light, where the exquisite control capability is allowing us to learn about the relation between microscopic dynamics and macroscopic properties. One of the most interesting aspects of condensed matter is the interplay between interactions and the effect of an external magnetic field or rotation, responsib&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07509v2-abstract-full').style.display = 'inline'; document.getElementById('2103.07509v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.07509v2-abstract-full" style="display: none;"> Photonic materials are a rapidly growing platform for studying condensed matter physics with light, where the exquisite control capability is allowing us to learn about the relation between microscopic dynamics and macroscopic properties. One of the most interesting aspects of condensed matter is the interplay between interactions and the effect of an external magnetic field or rotation, responsible for a plethora of rich phenomena -- Hall physics and quantized vortex arrays. At first sight, however, these effects for photons seem vetoed: they do not interact with each other and they are immune to magnetic fields and rotations. Yet in specially devised structures these effects can be engineered. Here, we propose the use of a synthetic magnetic field induced by strain in a honeycomb lattice of resonators to create a non-equilibrium Bose-Einstein condensate of light-matter particles (polaritons) in a rotating state, without the actual need for external rotation nor reciprocity-breaking elements. We show that thanks to the competition between interactions, dissipation and a suitably designed incoherent pump, the condensate spontaneously becomes chiral by selecting a single Dirac valley of the honeycomb lattice, occupying the lowest Landau level and forming a vortex array. Our results offer a new platform where to study the exciting physics of arrays of quantized vortices with light and pave the way to explore the transition from a vortex-dominated phase to the photonic analogue of the fractional quantum Hall regime. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.07509v2-abstract-full').style.display = 'none'; document.getElementById('2103.07509v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Final version submitted to SciPost</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Carusotto%2C+I&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10