CINXE.COM
Search results for: Ilkay Ozsev Yuksek
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ilkay Ozsev Yuksek</title> <meta name="description" content="Search results for: Ilkay Ozsev Yuksek"> <meta name="keywords" content="Ilkay Ozsev Yuksek"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ilkay Ozsev Yuksek" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ilkay Ozsev Yuksek"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ilkay Ozsev Yuksek</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> The Effect of Nanofiber Web on Thermal Conductivity, Air and Water Vapor Permeability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ozsev%20Yuksek">Ilkay Ozsev Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar"> Nuray Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Zeynep%20Esma%20Soygur"> Zeynep Esma Soygur</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kucuk"> Yasemin Kucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, composite fabrics with polyacrylonitrile electrospun nanofiber deposited onto quilted polyester fabric have been produced in order to control the isolation properties such as water vapor permeability, air permeability and thermal conductivity. Different nanofiber webs were manufactured by changing polymer concentration from 10% to 16% and by changing the deposition time from 1 to 3 hours. Presence of nanofiber layer on the quilted fabric results to an increase of an isolation, i.e., a decrease of the moisture vapor transport rates at 20%, decrease of thermal conductivity at 15% and a decrease of air permeability values at 50%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofiber%2Ffabric%20composites" title="nanofiber/fabric composites">nanofiber/fabric composites</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation" title=" isolation"> isolation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20vapor%20transport" title=" moisture vapor transport"> moisture vapor transport</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20permeability" title=" air permeability"> air permeability</a> </p> <a href="https://publications.waset.org/abstracts/56070/the-effect-of-nanofiber-web-on-thermal-conductivity-air-and-water-vapor-permeability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuray%20Ucar">Nuray Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pelin%20Altay"> Pelin Altay</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ozsev%20Yuksek"> Ilkay Ozsev Yuksek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20graphene%20oxide%20fiber" title="continuous graphene oxide fiber">continuous graphene oxide fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=Hummers%27%20method" title=" Hummers' method"> Hummers' method</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT" title=" CNT"> CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=MnCl%E2%82%82" title=" MnCl₂"> MnCl₂</a> </p> <a href="https://publications.waset.org/abstracts/99784/keynote-talk-morphological-analysis-of-continuous-graphene-oxide-fibers-incorporated-with-carbon-nanotube-and-mncl2" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gorkem%20Algan">Gorkem Algan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Ulusoy"> Ilkay Ulusoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saban%20Gonul"> Saban Gonul</a>, <a href="https://publications.waset.org/abstracts/search?q=Banu%20Turgut"> Banu Turgut</a>, <a href="https://publications.waset.org/abstracts/search?q=Berker%20Bakbak"> Berker Bakbak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, a label-noise-robust learning algorithm that makes use of the meta-learning paradigm is proposed in this article. The proposed solution is tested on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=label%20noise" title=" label noise"> label noise</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20learning" title=" robust learning"> robust learning</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-learning" title=" meta-learning"> meta-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=retinopathy%20of%20prematurity" title=" retinopathy of prematurity"> retinopathy of prematurity</a> </p> <a href="https://publications.waset.org/abstracts/134242/learning-from-small-amount-of-medical-data-with-noisy-labels-a-meta-learning-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilkay%20Turk%20Cakir">Ilkay Turk Cakir</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Altinli"> Murat Altinli</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekeriya%20Uysal"> Zekeriya Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulkadir%20Senol"> Abdulkadir Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=Olcay%20Bolukbasi%20Yalcinkaya"> Olcay Bolukbasi Yalcinkaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Yilmaz"> Ali Yilmaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalos%20couplings" title="anomalos couplings">anomalos couplings</a>, <a href="https://publications.waset.org/abstracts/search?q=FCC-eh" title=" FCC-eh"> FCC-eh</a>, <a href="https://publications.waset.org/abstracts/search?q=Higgs" title=" Higgs"> Higgs</a>, <a href="https://publications.waset.org/abstracts/search?q=Z%20boson" title=" Z boson"> Z boson</a> </p> <a href="https://publications.waset.org/abstracts/82433/the-search-of-anomalous-higgs-boson-couplings-at-the-large-hadron-electron-collider-and-future-circular-electron-hadron-collider" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82433.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Adaptive Envelope Protection Control for the below and above Rated Regions of Wind Turbines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Sahin">Mustafa Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lkay%20Yavrucuk"> İlkay Yavrucuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a wind turbine envelope protection control algorithm that protects Variable Speed Variable Pitch (VSVP) wind turbines from damage during operation throughout their below and above rated regions, i.e. from cut-in to cut-out wind speed. The proposed approach uses a neural network that can adapt to turbines and their operating points. An algorithm monitors instantaneous wind and turbine states, predicts a wind speed that would push the turbine to a pre-defined envelope limit and, when necessary, realizes an avoidance action. Simulations are realized using the MS Bladed Wind Turbine Simulation Model for the NREL 5 MW wind turbine equipped with baseline controllers. In all simulations, through the proposed algorithm, it is observed that the turbine operates safely within the allowable limit throughout the below and above rated regions. Two example cases, adaptations to turbine operating points for the below and above rated regions and protections are investigated in simulations to show the capability of the proposed envelope protection system (EPS) algorithm, which reduces excessive wind turbine loads and expectedly increases the turbine service life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20envelope%20protection%20control" title="adaptive envelope protection control">adaptive envelope protection control</a>, <a href="https://publications.waset.org/abstracts/search?q=limit%20detection%20and%20avoidance" title=" limit detection and avoidance"> limit detection and avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load%20reduction" title=" ultimate load reduction"> ultimate load reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine%20power%20control" title=" wind turbine power control"> wind turbine power control</a> </p> <a href="https://publications.waset.org/abstracts/121488/adaptive-envelope-protection-control-for-the-below-and-above-rated-regions-of-wind-turbines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121488.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Synthesis and Biological Evaluation of Some Benzoxazole Derivatives as Inhibitors of Acetylcholinesterase / Butyrylcholinesterase and Tyrosinase</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozlem%20Temiz-Arpaci">Ozlem Temiz-Arpaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Meryem%20Tasci"> Meryem Tasci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Sezer%20Senol"> Fatma Sezer Senol</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lkay%20Erdogan%20Orhan"> İlkay Erdogan Orhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alzheimer’s disease (AD), a neurodegenerative disorder characterized by a progressive deterioration of memory and cognition, occurs more frequently in elderly people. Current treatment approaches in this disease with the major therapeutic strategy are based on the AChE and BChE inhibition. On the other hand, tyrosinase inhibition has become a target for the treatment of Parkinson’s disease (PD) since this enzyme may play a role in neuromelanin formation in the human brain and could be critical in the formation of dopamine neurotoxicity associated with neurodegeneration linked to PD. Also benzoxazoles are structural isosteres of natural nucleotides that can interact with biopolymers so that benzoxazoles showed a lot of different biological activities. In this study, a series of 2,5-disubstituted-benzoxazole derivatives were synthesized and were evaluated as possible inhibitors of acetylcholinesterase (AChE) / butyrylcholinesterase (BChE) and tyrosinase. The results demonstrated that the compounds exhibited a weak spectrum of AChE / BChE inhibitory activity ranging between 3.92% - 54.32% except compound 8 which showed no activity against AChE and compound 4 which showed no activity against BChE at the specified molar concentrations. Also, the compounds indicated lower than tyrosinase inhibitory activity of ranging between 8.14% - 22.90% to that of reference (kojic acid). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AChE%20and%20BChE%20inhibition" title="AChE and BChE inhibition">AChE and BChE inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=Alzheimer%E2%80%99s%20disease" title=" Alzheimer’s disease"> Alzheimer’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=benzoxazoles" title=" benzoxazoles"> benzoxazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=tyrosinase%20inhibition" title=" tyrosinase inhibition"> tyrosinase inhibition</a> </p> <a href="https://publications.waset.org/abstracts/66790/synthesis-and-biological-evaluation-of-some-benzoxazole-derivatives-as-inhibitors-of-acetylcholinesterase-butyrylcholinesterase-and-tyrosinase" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Assessment of Wastewater Reuse Potential for an Enamel Coating Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guclu%20Insel">Guclu Insel</a>, <a href="https://publications.waset.org/abstracts/search?q=Efe%20Gumuslu"> Efe Gumuslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulten%20Yuksek"> Gulten Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Sayi%20Ucar"> Nilay Sayi Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20Cokgor"> Emine Ubay Cokgor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tugba%20Olmez%20Hanci"> Tugba Olmez Hanci</a>, <a href="https://publications.waset.org/abstracts/search?q=Didem%20Okutman%20Tas"> Didem Okutman Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatos%20Germirli%20Babuna"> Fatos Germirli Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Firat%20Ertem"> Derya Firat Ertem</a>, <a href="https://publications.waset.org/abstracts/search?q=Okmen%20Yildirim"> Okmen Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozge%20Erturan"> Ozge Erturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Betul%20Kirci"> Betul Kirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m<sup>3</sup> of process water is required and 160 m<sup>3</sup> of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m<sup>3</sup>/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel%20coating" title="enamel coating">enamel coating</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane" title=" membrane"> membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20reclamation" title=" wastewater reclamation"> wastewater reclamation</a> </p> <a href="https://publications.waset.org/abstracts/44839/assessment-of-wastewater-reuse-potential-for-an-enamel-coating-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44839.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lkay%20%C3%96zer%20Erselcan">İlkay Özer Erselcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20K%C3%BCkner"> Abdi Kükner</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Ceylan"> Gökhan Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Black%20Sea" title="Black Sea">Black Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=buoys" title=" buoys"> buoys</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20power%20take-off%20system" title=" hydraulic power take-off system"> hydraulic power take-off system</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy%20converters" title=" wave energy converters"> wave energy converters</a> </p> <a href="https://publications.waset.org/abstracts/40470/an-analysis-of-the-performances-of-various-buoys-as-the-floats-of-wave-energy-converters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Assessment of Water Reuse Potential in a Metal Finishing Factory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efe%20Gumuslu">Efe Gumuslu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guclu%20Insel"> Guclu Insel</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BClten%20Yuksek"> Gülten Yuksek</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilay%20Sayi%20Ucar"> Nilay Sayi Ucar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Ubay%20Cokgor"> Emine Ubay Cokgor</a>, <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Fba%20Olmez%20Hanci"> Tuğba Olmez Hanci</a>, <a href="https://publications.waset.org/abstracts/search?q=Didem%20Okutman%20Tas"> Didem Okutman Tas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fato%C5%9F%20Germirli%20Babuna"> Fatoş Germirli Babuna</a>, <a href="https://publications.waset.org/abstracts/search?q=Derya%20Firat%20Ertem"> Derya Firat Ertem</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96kmen%20Yildirim"> Ökmen Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20Erturan"> Özge Erturan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bet%C3%BCl%20Kirci"> Betül Kirci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although water reclamation and reuse are inseparable parts of sustainable production concept all around the world, current levels of reuse constitute only a small fraction of the total volume of industrial effluents. Nowadays, within the perspective of serious climate change, wastewater reclamation and reuse practices should be considered as a requirement. Industrial sector is one of the largest users of water sources. The OECD Environmental Outlook to 2050 predicts that global water demand for manufacturing will increase by 400% from 2000 to 2050 which is much larger than any other sector. Metal finishing industry is one of the industries that requires high amount of water during the manufacturing. Therefore, actions regarding the improvement of wastewater treatment and reuse should be undertaken on both economic and environmental sustainability grounds. Process wastewater can be reused for more purposes if the appropriate treatment systems are installed to treat the wastewater to the required quality level. Recent studies showed that membrane separation techniques may help in solving the problem of attaining a suitable quality of water that allows being recycled back to the process. The metal finishing factory where this study is conducted is one of the biggest white-goods manufacturers in Turkey. The sheet metal parts used in the cookers production have to be exposed to surface pre-treatment processes composed of degreasing, rinsing, nanoceramics coating and deionization rinsing processes, consecutively. The wastewater generating processes in the factory are enamel coating, painting and styrofoam processes. In the factory, the main source of water is the well water. While some part of the well water is directly used in the processes after passing through resin treatment, some portion of it is directed to the reverse osmosis treatment to obtain required water quality for enamel coating and painting processes. In addition to these processes another important source of water that can be considered as a potential water source is rainwater (3660 tons/year). In this study, process profiles as well as pollution profiles were assessed by a detailed quantitative and qualitative characterization of the wastewater sources generated in the factory. Based on the preliminary results the main water sources that can be considered for reuse in the processes were determined as painting and styrofoam processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enamel%20coating" title="enamel coating">enamel coating</a>, <a href="https://publications.waset.org/abstracts/search?q=painting" title=" painting"> painting</a>, <a href="https://publications.waset.org/abstracts/search?q=reuse" title=" reuse"> reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a> </p> <a href="https://publications.waset.org/abstracts/44838/assessment-of-water-reuse-potential-in-a-metal-finishing-factory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Psychogeographic Analysis of Campus Design: Spatial Appropriation via Walking Practice in the Cases of Van Yüzüncü Yıl University and Ankara Middle East Technical University in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20%C4%B0lkay">Yasemin İlkay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Street is not only a crucial spatial unit in urban design and planning discipline but also the context of walking practice in urban space. Moreover, psychogeography concentrates on both ‘walking’ and, therefore, the differentiated forms of (urban) streets to examine the influence of the built environment on the feelings and attitudes of human beings. This paper focuses on ‘walking practice’ in university campuses with reference to spatial appropriation forms via a psychogeographic lens on the phenomenon of alle in two different cities of Turkey, Ankara, the capital city, and Van, in the eastern part of the country. Alle, as an extension of ‘street’ in university campuses, is the constructive spatial structure in university campuses, and as a result, it should be the (both physical and mental) spine of design policy while conceiving and constructing a university campus. The main question of the paper is: How does the interrelation of ‘campus design’ and ‘walking practice’ on alle penetrate reciprocally on the spatial representations of citizens within their urban daily lives. The body contacts with and at urban space (with other objects and subjects) via its movements and stops; this interaction occurs through the spatial pattern of occupancy and vacancy. Walking practice leads to a set of cognitive mental representations in relation to the repertoire of place attachment and spatial appropriation. University campuses are autonomous and fruitful urban spaces to investigate such an interaction. There are both physical/real and psychogeographic representations of the same urban spaces and urban spatial practices. This separation would indicate the invisible dimensions of the difference between ‘what is conceived’ and ‘what is perceived.’ This study aims to compare and contrast the role of alle in both campus design and spatial appropriation via walking at two differentiated university campuses by collecting the mental representations, doing in-depth interviews, and attending walks with the interviewees by psychogeographic techniques. Campus design and spatial appropriation will be compared [with reference to the conception and perception of alle] in three scales: (1) the historical spatial development stories and design approaches of university campuses, (2) the spatial pattern of campuses on the basis of alle, and (3) sub-behavioral regions of the alle in campuses in relation with mental representations and psychogeographic attentive walks. The sub-questions of the research are: [1] How and why do the design approaches differentiate in two university campuses in Turkey, [2] How the interrelation among alle design and spatial appropriation differs in these two cases, and [3] What do the differentiated gaps among real and psychographic maps indicate about the design and spatial appropriation interrelation. METU, as a well-designed, readable campus with its alle, promise a rich walking practice with in-depth and fruitful spatial appropriation regions; however, Van YYÜ limits both the practice and place attachment with its partial design with an alle which is later added to the campus. This research both displays the role of alle in the campus design, walking practice and spatial appropriation and opens a new methodological path to discover hidden knowledge within urban spaces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alle" title="alle">alle</a>, <a href="https://publications.waset.org/abstracts/search?q=campus%20design" title=" campus design"> campus design</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20geography" title=" cognitive geography"> cognitive geography</a>, <a href="https://publications.waset.org/abstracts/search?q=psychogeography" title=" psychogeography"> psychogeography</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20appropriation" title=" spatial appropriation"> spatial appropriation</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/161171/psychogeographic-analysis-of-campus-design-spatial-appropriation-via-walking-practice-in-the-cases-of-van-yuzuncu-yil-university-and-ankara-middle-east-technical-university-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161171.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gizem%20Kayar">Gizem Kayar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramazan%20Bakir"> Ramazan Bakir</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ilkay%20Ko%C5%9Far"> M. Ilkay Koşar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ceren%20U.%20Gencer"> Ceren U. Gencer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alperen%20Ayyildiz"> Alperen Ayyildiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anatomy" title="anatomy">anatomy</a>, <a href="https://publications.waset.org/abstracts/search?q=e-learning" title=" e-learning"> e-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20reality" title=" virtual reality"> virtual reality</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20model%20marking" title=" 3D model marking"> 3D model marking</a> </p> <a href="https://publications.waset.org/abstracts/144051/vision-and-challenges-of-developing-vr-based-digital-anatomy-learning-platforms-and-a-solution-set-for-3d-model-marking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Psychogeographic Analysis of Spatial Appropriation within Walking Practice: The City Centre versus University Campus in the Case of Van, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Ilkay">Yasemin Ilkay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Urban spatial pattern interacts with the minds and bodies of citizens and influences their perception and attitudes, which leads to a two-folded map of the same space: physical and Psychogeographic maps. Psychogeography is a field of inquiry (rooted in literature and fiction) investigating how the environment affects the feelings and behaviors of individuals. This term was posed by Situationist International Movement in the 1950s by Guy Debord; in the course of time, the artistic framework evolved into a political issue, especially with the term Dérive, which indicates ‘deviation’ and ‘resistance’ to the existing spatial reality. The term Dérive appeared on the track of Flânéur after one hundred years; and turned out to be a political tool to transform everyday urban life. The three main concepts of psychogeography [walking, dérive, and palimpsest] construct the epistemological framework for a psychogeographic spatial analysis. Mental representations investigating this framework would provide a designer to capture the invisible layers of the gap between ‘how a space is conceived’ and ‘how the same space is perceived and experienced.’ This gap is a neglected but critical issue to discuss in the planning discipline, and psychogeography provides methodological inputs to cover the interrelation among top-down designs of urban patterning and bottom-up reproductions of ‘the soul’ of urban space at the intersection of geography and psychology. City centers and university campuses exemplify opposite poles of spatial organization and walking practice, which may result in differentiated spatial appropriation forms. There is a traditional city center in Van, located at the core of the city with a dense population and several activities, but not connected to Van Lake, which is the largest lake in the country. On the other hand, the university campus is located at the periphery, and although it has a promenade along the lake’s coast and a regional hospital, it presents a limited walking experience with ambiguous forms of spatial appropriation. The city center draws a vivid urban everyday life; however, the campus presents a relatively natural life far away from the center. This paper aims to reveal the differentiated psychogeographic maps of spatial appropriation at the city center vs. the university campus, which is located at the periphery of the city and along the coast of the largest lake in Turkey. The main question of the paper is, “how do the psychogeographic maps of spatial appropriation differentiate at the city center and university campus in Van within the walking experience with reference to the two-folded map assumption.” The experiential maps of a core group of 15 planning students will be created with the techniques of mental mapping, photographing, and narratives through attentive walks conducted together on selected routes; in addition to these attentive walks, 30 more in-depth interviews will be conducted by the core group. The narrative of psychogeographic mapping of spatial appropriation at the two spatial poles would display the conflicting soul of the city with reference to sub-behavioural regions of walking, differentiated forms of derive and layers of palimpsest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attentive%20walk" title="attentive walk">attentive walk</a>, <a href="https://publications.waset.org/abstracts/search?q=body" title=" body"> body</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20geography" title=" cognitive geography"> cognitive geography</a>, <a href="https://publications.waset.org/abstracts/search?q=derive" title=" derive"> derive</a>, <a href="https://publications.waset.org/abstracts/search?q=experiential%20maps" title=" experiential maps"> experiential maps</a>, <a href="https://publications.waset.org/abstracts/search?q=psychogeography" title=" psychogeography"> psychogeography</a>, <a href="https://publications.waset.org/abstracts/search?q=Van" title=" Van"> Van</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/161213/psychogeographic-analysis-of-spatial-appropriation-within-walking-practice-the-city-centre-versus-university-campus-in-the-case-of-van-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Estimating the Effect of a Newly Developed Portable Innovative Balance Room System with a Digital Game Program on Falls and Incontinence Symptoms in the Elderly</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C3%96zge%20%20%C3%87eliker%20Tosun">Özge Çeliker Tosun</a>, <a href="https://publications.waset.org/abstracts/search?q=Melda%20Ba%C5%9Fer%20Secer"> Melda Başer Secer</a>, <a href="https://publications.waset.org/abstracts/search?q=I%CC%87smail%20D%C3%BC%C5%9Fmez"> İsmail Düşmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Sedat%20%C3%87apar"> Sedat Çapar</a>, <a href="https://publications.waset.org/abstracts/search?q=I%CC%87lkay%20Kozak"> İlkay Kozak</a>, <a href="https://publications.waset.org/abstracts/search?q=Melahat%20Akta%C5%9F"> Melahat Aktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Can%20%C5%9Eim%C5%9Fek"> Furkan Can Şimşek</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Tosun"> Gökhan Tosun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: Portable innovative balance room system with digital game program; It was created to be able to be divided into small areas, such as inside the house, garden, balcony, to enable the person to enter and perform both evaluation and exercise safely, and to ensure that these results can be stored and sent to the therapist live or later when desired. The aim is to compare the effectiveness of the exercise program applied by the elderly within this system and the exercise program implemented under the supervision of a physiotherapist on balance and urinary incontinence symptoms. Materials and Methods: The study was conducted in a randomized controlled manner on 63 people with urinary incontinence (mean age: 75.5 years) at Narlıdere Nursing Home Elderly Care and Rehabilitation Center. Elderly people participating in the study were divided into 3 groups: 1. Group, an exercise program consisting of pelvic floor muscle training and OTOGA exercises, 2. Group, only pelvic floor muscle training, and 3. Group, pelvic floor muscle training and Otoga exercises in the form of a digital game program in a portable balance room system. (self-administered) for 12 weeks. Pelvic floor distress inventory (PTDE-20) and bladder diary were used to evaluate the incontinance symptoms of the cases. Pelvic floor muscle function was evaluated with superficial EMG. Berg, Fall Effectiveness Scale (FES) and Functional Status Evaluations (Chair Stand Test, Eight (8) Food Up and Go Test, Chair Sit and Reach Test, Two Minutes Step Test) were used to evaluate balance. The existence of differences between groups was analyzed using Krusskal Wallis analysis of variance, and the difference between before and after exercise was analyzed with Wilcoxon tests. Results: After treatment, PTDE-20, daily urinary incontinence and toilet visits values decreased significantly in all three groups (p < 0.001). While there was a statistically significant increase in pelvic floor muscle EMG values in the 2nd and third groups after treatment, there was no change in the other group (2nd Group PFM average EMG before-after: 5.5 (4.15-10.95) - 10.95 (8.68-13.68), P=0.05, 3 Group PFM average EMG before-after: 6.5 (4.28-11.55) - 11.75 (8.67-14.26), p=0.04). While BERG score, Chair Stand Test, Eight (8) Food Up and Go Test, and Two Minutes Step Test values increased in all groups (p<0.05), Fall Effectiveness Scale (FES) values did not change after treatment. Conclusion: Although pelvic floor muscle training combined with balance exercises reduces symptoms, it may not lead to a positive improvement in the functions of the pelvic floor muscles. For this reason, recovery lasts for a short time, and then symptoms may reoccur in the future. However, thanks to the new system, when balance exercises are combined with a game program for the pelvic floor muscles, a double effect can be achieved with a single application and both incontinence and balance problems can be treated in a safe environment where the person can do it himself. But more work needs to be done on this subject. However, thanks to the new system, a double effect can be achieved with a single application, and both incontinence and balance problems can be treated in a safe environment where the person can do it himself. But more work needs to be done on new system <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fall" title="fall">fall</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20incontinance" title=" urinary incontinance"> urinary incontinance</a>, <a href="https://publications.waset.org/abstracts/search?q=balance" title=" balance"> balance</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a> </p> <a href="https://publications.waset.org/abstracts/172813/estimating-the-effect-of-a-newly-developed-portable-innovative-balance-room-system-with-a-digital-game-program-on-falls-and-incontinence-symptoms-in-the-elderly" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>