CINXE.COM
Optics fabrication errors
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40"> <head><meta name="viewport" content="width=device-width, initial-scale=1"> <meta http-equiv="Content-Type" content="text/html; charset=windows-1252"> <meta http-equiv="Content-Language" content="en-us"> <title>Optics fabrication errors</title> <meta name="keywords" content="optical fabrication errors, optics fabrication errors, optics fabrication tolerances, power spectral density, optical aberrations"> <meta name="description" content="Optical elements fabrication errors as the source of telescope aberrations; fabrication tolerances."> <style fprolloverstyle>A:hover {color: #FF8204} </style> </head> <body link="#0000FF" vlink="#993399" alink="#FF0000" style="font-family: Verdana; font-size: 10px" bgcolor="#F4F4DF"> <div align="center"> <table border="0" cellpadding="0" cellspacing="0" width="800" height="770" bgcolor="#FFE066"> <!-- MSTableType="layout" --> <tr> <td valign="top" height="704" style="text-indent: 21; padding-left:21px; padding-right:21px; padding-top:21px; padding-bottom:3px; border-left-style:solid; border-left-width:0px; border-right-style:solid; border-right-width:0px; border-top-style:solid; border-top-width:0px"> <!-- MSCellType="ContentBody" --> <p align="center" style="text-indent: 0"> <b><font size="3" color="#518FBD" face="Verdana">telescope</font></b><font face="Microsoft Sans Serif" size="5" color="#518FBD">Ѳ</font><b><font size="3" face="Verdana" color="#518FBD">ptics.net</font><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font color="#95AAA6"><b> </b> </font><b><font face="Verdana" color="#95AAA6" size="3"> </font></b> <font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font> <font size="1" color="#95AAA6">▪</font><font face="Verdana" color="#95AAA6"><b><font size="2"> </font></b><font size="1"> </font></font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪▪▪▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font size="1" color="#95AAA6">▪</font><font size="1" face="Verdana" color="#95AAA6"> </font><font face="Verdana" color="#518FBD"><b><font size="2"> </font></b></font><font face="Verdana"><span style="font-weight: 400"><font size="2"><a href="index.htm#TABLE_OF_CONTENTS">CONTENTS</a></font></span></font><font size="2"><span style="font-weight: 400"><font size="2" face="Arial"><br> </font></span></p> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> </font><span style="font-weight: 400"> <font size="2" face="Verdana"> <a href="polychromatic_psf.htm">4.7.3. Measuring chromatic error</a></font></span><font size="2" face="Verdana"> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="testing_optical_quality.htm">4.8.1. Testing optical quality</a> </font> <font face="Arial" size="2" color="#336699">►</font><br> <h1 align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font face="Trebuchet MS" color="#336699" size="3"><b> 4.8. <span style="text-transform: uppercase">Optics fabrication errors</span></b></font></span></h1> <div style="background-color: #FFFFCC"> <p align="center" style="text-indent: 0"> PAGE HIGHLIGHTS<br> • <a href="#curvature">General tolerances</a> • <a href="#given">Lens tolerances</a> • <a href="#level">Surface roughness: Power Density Spectrum</a><br> • <a href="#degradation">Roughness degradation function</a> </div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Fabrication errors are deviations of the actual optical surface from perfect due fabrication process. As such, they come in various forms. Wavefronts produced by imperfect optical surfaces are also imperfect, suffering from aberrations. For reflecting optics, primary concern is the accuracy of the overall figure, followed by smoothness of the figure and surface smoothness. For refracting optics, in addition to these, errors in the wavefront can be caused by wedge, decenter, deviations in glass thickness and homogeneity.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Let's start with some general remarks with respect to the relation between surface and wavefront errors. The common notion among amateurs is that the reflecting surface error doubles in the wavefront, while the refracting surface error halves in the wavefront error. While it may be so, neither is generally correct. For light of near-normal incidence reflected back (that is, for a surface nearly orthogonal to the optical axis), reflecting surface error doubles in the wavefront centered at the Gaussian (paraxial) focus, regardless of the nature of surface error. </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> However, errors smoothly distributed over the surface will result in a smoothly distributed wavefront deviation as well. The result is that the actual wavefront, while with doubled maximum deviation with respect to the perfect reference sphere centered at the paraxial focus may, and usually does have smaller deviation in respect to a reference sphere focusing at some other point in the proximity of paraxial focus. This point becomes the point of most efficient energy concentration, so-called <i>best</i>, or <i>diffraction focus</i>. This is the case with spherical aberration, where the wavefront error at the location of best focus is smaller that that at the paraxial focus by a factor of four (<a href="spherical1.htm#strongly_curved">FIG. 33</a>). In effect, with spherical aberration, the surface error halves in the wavefront, measured vs. reference sphere centered at paraxial focus. With astigmatism, the best focus wavefront P-V error has double the surface error, but the corresponding best focus RMS error is smaller by a factor of 2/</font><b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline"><font face="Verdana" size="2">6</font></span><font face="Verdana" size="2"> than the doubled surface RMS error, making it effectively 1.63 times - not twice - the surface RMS error.</font><p align="justify" style="line-height: 150%"><font face="Verdana" size="2"> The "double error rule" also doesn't apply to full-figure surface errors of reflecting surfaces in multi-surface systems, such as diagonal flat or curved secondary mirrors. With a <a href="newtonian.htm">diagonal flat</a>, the wavefront error is determined not only by the surface error, but also by the shape of surface deformation. While certain toroidal form of the diagonal flat will not induce significant aberration at the best focus even with the surface error exceeding 1 wave P-V, or more, diagonal's local errors and surface roughness will be ~1.4 times greater in the wavefront. Curved secondary mirrors in two-mirror telescopes can have their surface error very much diminished in the "best-fit" wavefront, especially for deviations resulting from errors in their radius of <a name="curvature">curvature</a>. </font> <p align="justify" style="line-height: 150%"><font face="Verdana" size="2"> For surface errors affecting relatively small area, however, the wavefront deformation is also local, and no better reference sphere is available. Thus, this kind of surface errors effectively does double in the wavefront, but only when the reflected light moves in nearly opposite direction to that of the incident <a name="light">light</a>. Hence, instead of the commonly cited </font><font face="Georgia" size="2">λ</font><font face="Verdana" size="2">/8 maximum tolerable error for a single reflecting surface, the tolerable error vary widely with the type of reflecting surface and error type. Since the tolerable nominal surface P-V error generally increases as the areal extent of deviation diminishes, it is more appropriate to express the tolerance in terms of the maximum tolerable RMS wavefront error, as outlined in table below.<br> </font><div align="center"> <table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#FFFFFF"> <tr> <td colspan="3"><b>APPROXIMATE FABRICATION TOLERANCES <br> FOR A SINGLE REFLECTING SURFACE AND 0.8 STREHL</b></td> <td>ABERRATION INDUCED</td> <td>P-V</td> <td>RMS</td> </tr> <tr> <td rowspan="4">FULL FIGURE<br> ERRORS</td> <td rowspan="2">CONIC</td> <td>AT PARAXIAL FOCUS</td> <td rowspan="2">Spherical</td> <td><font face="Georgia" size="2">λ</font>/2</td> <td>0.149<font face="Georgia" size="2">λ</font></td> </tr> <tr> <td>AT BEST FOCUS</td> <td><font face="Georgia" size="2">λ</font>/8</td> <td>0.037<font face="Georgia" size="2">λ</font></td> </tr> <tr> <td rowspan="2">RADIUS</td> <td>SINGLE MIRROR</td> <td>None</td> <td><font size="2">None</font></td> <td><font size="2">None</font></td> </tr> <tr> <td>MULTI-MIRROR<font size="1"><span style="vertical-align: super">1</span></font></td> <td>Spherical</td> <td><font face="Lucida Sans Unicode" size="2">≫</font><font face="Georgia" size="2">λ</font></td> <td>><font face="Georgia" size="2">λ</font></td> </tr> <tr> <td colspan="3">ZONAL ERRORS</td> <td>Zonal WF deformations</td> <td><font size="2"><font face="Georgia" size="2">λ</font>/8</font></td> <td><font size="2">0.037<font face="Georgia" size="2">λ</font></font></td> </tr> <tr> <td colspan="3">LOCAL ERRORS<font size="1"><span style="vertical-align: super">2</span></font></td> <td>Local WF deformations</td> <td><font size="2">><font face="Georgia" size="2">λ</font></font></td> <td><font size="2">></font><font face="Georgia" size="2">λ</font><font size="2">/4</font></td> </tr> <tr> <td colspan="3">SURFACE ROUGHNESS<font size="1"><span style="vertical-align: super">3</span></font></td> <td>Wavefront roughness</td> <td><<font face="Georgia" size="2">λ</font>/10</td> <td><font size="2"><0.03<font face="Georgia" size="2">λ</font></font></td> </tr> <tr> <td colspan="6"><font size="1"> <span style="vertical-align: super">1</span></font><font size="2"> </font> <font size="1"><font face="Verdana"><b>Varies with the system's specs</b></font><span style="vertical-align: super"> 2</span></font><font size="2"> </font><b> <font face="Verdana" size="1">Varies with the relative areal extent of the error</font></b><font size="1"><span style="vertical-align: super"><br> 3 </span><b><font face="Verdana">Varies with roughness scale, areal extent and characteristic spatial period</font></b></font></td> </tr> </table> </div> <p align="justify" style="line-height: 150%"><font face="Verdana" size="2"> Similarly to reflecting elements, <i>refracting </i>surface error will follow its "rule" (i.e. surface error halving in the wavefront) rather exceptionally. With full-figure errors, like conic error or, especially, radius of curvature error, deviations from perfect result in a significantly smaller effective (best focus) wavefront error than with reflecting surface. Local surface errors do approximately halve in the wavefront, although it directly applies to a lens, not the lens surface. Refractive surface error multiplies in the wavefront only by a factor of (n-1)/n with air-to-glass surface - <b>n</b> being the glass index of refraction - and by (n-1) factor with glass-to-air surface. However, the former is enlarged at the rear (glass-to-air) surface by a factor of <b> n</b>, so that the local error on lens surface multiplies in the wavefront by a factor of (n-1), regardless of its location (i.e. front or rear surface,<b> FIG. 49</b>).</font><p> <font face="Arial"> <img border="0" src="images/51a.PNG" width="411" height="203" align="left" vspace="3"></font><div style="background-color: #FFFFFF; padding-left:3px; padding-right:3px"> <p align="center" style="text-indent: 0"> <font face="Arial" size="2"><b>FIGURE 49</b>: Wavefront delay caused by a local error on air-to-glass (<b>a</b>) and glass-to-air (<b>b</b>) lens surface. As a consequence of glass media of the refractive index <b>n</b> lowering the speed of light by a factor of 1/n, surface deviation <b> t</b> on the front (air-to-glass) surface generates local wavefront P-V error of </font> <b><font size="2" face="Georgia">δ</font><font size="2" face="Arial">'= (n-1)t/n</font></b><font face="Arial" size="2">. At the rear (glass-to-air) surface, the advance further increases by a factor of <b>n</b>, resulting in the final P-V error on the wavefront exiting the lens given by </font><b><font face="Georgia" size="2">δ</font><font face="Arial" size="2">=(n-1)t</font></b><font face="Arial" size="2">. Identical surface error </font><font face="Georgia" size="2"> <b>δ</b></font><font face="Arial" size="2"> on the rear lens surface would also result in the local wavefront advance </font><b> <font size="2" face="Georgia">δ</font><font size="2" face="Arial">=(n-1)t</font></b><font face="Arial" size="2">. If combined, the two surface errors on each, front and rear surface, would produce wave retardation (P-V wavefront error) <a name="given">given</a> by </font><b><font size="2" face="Georgia"> δ</font></b><font face="Arial" size="2">=2(n-1)t. </font></div> <p><p><p><p><p><p align="justify" style="line-height: 150%"> Unlike mirror surface, lens needs to satisfy a number of requirements related to the <a name="accuracy">accuracy</a> of lens form (e.g. wedge, thickness, centering) and glass homogeneity. While the actual tolerances can vary widely with the lens specs and its function, some general criteria do exist. These are cited in a University of Arizona article (J.H. Burge):<br> <div align="center"> <table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#FFFFFF"> <tr> <td colspan="6"><font size="2"><b>GENERAL LENS FABRICATION TOLERANCES</b></font></td> </tr> <tr> <td rowspan="8">LENS <br> FORM</td> <td>PARAMETER</td> <td>COMMERCIAL</td> <td>PRECISION</td> <td>HIGH PRECISION</td> <td>ABERRATION INDUCED</td> </tr> <tr> <td><b>Figure errors</b></td> <td><font face="Georgia" size="2">λ</font></td> <td><font face="Georgia" size="2">λ</font>/4</td> <td><font face="Georgia" size="2">λ</font>/20</td> <td>spherical, zonal WF, local WF</td> </tr> <tr> <td><b>Wedge</b></td> <td>5 arc min</td> <td>1<font size="2"> arc min</font></td> <td>15 arc sec</td> <td>coma, WF tilt, lateral color</td> </tr> <tr> <td><b>Radius</b></td> <td>0.5%</td> <td>0.1%</td> <td>0.01%</td> <td><font size="2">spherical, chromatic</font></td> </tr> <tr> <td><b>Sag</b></td> <td>20<font size="2">μm</font></td> <td>1.3<font size="2">μm</font></td> <td>0.5<font size="2">μm</font></td> <td>spherical, chromatic</td> </tr> <tr> <td><b>Thickness</b></td> <td>200μm</td> <td>50<font size="2">μm</font></td> <td>10<font size="2">μm</font></td> <td>spherical, chromatic</td> </tr> <tr> <td><b>Micro roughness</b></td> <td>5nm RMS</td> <td>2nm RMS</td> <td>0.5nm RMS</td> <td>WF roughness (light scatter)</td> </tr> <tr> <td><b>Scratch/dig</b><font size="1"><span style="vertical-align: super">1</span></font></td> <td>80/50</td> <td>60/40</td> <td>20/10</td> <td>light scatter</td> </tr> <tr> <td rowspan="6">GLASS</td> <td><b>Refractive index</b></td> <td>± 0.001</td> <td><font size="2">±</font>0.0005</td> <td><font size="2">±</font>0.0002</td> <td>chromatic</td> </tr> <tr> <td><b>Ref. index homogeneity</b></td> <td><font size="2">± 0.0001</font></td> <td><font size="2">± 0.000005</font></td> <td><font size="2">± 0.000001</font></td> <td>WF figure deformation, roughness</td> </tr> <tr> <td><b>Dispersion</b></td> <td><font size="2">±</font>0.8%</td> <td><font size="2">±</font>0.5%</td> <td><font size="2">±</font>0.2%</td> <td>chromatic</td> </tr> <tr> <td><b>Stress birefringence</b><font size="1"><span style="vertical-align: super">2</span></font></td> <td>20 nm/cm</td> <td>10 nm/cm</td> <td>4 nm/cm</td> <td>WF deformation</td> </tr> <tr> <td><b>Bubbles/inclusions</b><font size="1"><span style="vertical-align: super">3</span></font></td> <td>0.5 mm<font size="1"><span style="vertical-align: super">2</span></font></td> <td>0.1 mm<font size="1"><span style="vertical-align: super">2</span></font></td> <td>0.029 mm<font size="1"><span style="vertical-align: super">2</span></font></td> <td><font size="2">light scatter</font></td> </tr> <tr> <td><b>Striae</b></td> <td>fine random</td> <td>small one-directional</td> <td>none visible<font size="1"><span style="vertical-align: super">4</span></font></td> <td><font size="2">WF micro roughness</font></td> </tr> <tr> <td colspan="6"><font size="1"><span style="vertical-align: super">1</span></font><font size="2"><b><font face="Verdana" size="1"> (max. scratch width μm)/(max. dig diameter x0.01mm) </font></b></font> <font size="1"><span style="vertical-align: super">2 </span></font><b> <font face="Verdana" size="1">Varies with glass </font></b><font size="2"> </font> <font size="1"><span style="vertical-align: super">3</span></font><font size="2"> </font> <b><font face="Verdana" size="1">>50μm, area of bubbles per 100 cm</font></b><font size="2"><font size="1"><span style="vertical-align: super">3</span></font> <br> <font size="1"><span style="vertical-align: super">4</span></font> </font> <font size="1" face="Verdana"><b>in the inspection direction</b></font></td> </tr> </table> </div> <p align="justify" style="line-height: 150%"> In conclusion<font face="Verdana" size="2">, general <b> <font color="#000080">tolerances</font></b> for random local surface errors for given P-V wavefront error <b>W</b> limit are </font> <font face="Lucida Sans Unicode" size="2">δ</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=W/2 for mirror surface and </font> <font face="Lucida Sans Unicode" size="2">δ</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=</font>W/<b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline"><font face="Verdana" size="2">2</font></span>(n-1) for lens surface (for statistically unrelated errors on both lens surfaces). For figure errors, <font face="Lucida Sans Unicode" size="2">δ</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=</font>2W for the conic error (rotationally symmetrical surface with the error resulting from incorrect conic value) for a single mirror; single spherical lens cannot be free from spherical aberration, thus the tolerance is determined by the specific surface radii and spacing of a lens pair or a multi-lens assembly (which may make possible looser practical standards, due to the opportunity to vary the two factors for post-fabrication corrections).<p align="justify" style="line-height: 150%"> For a pair of mirror surfaces, the random local error tolerance is smaller than for a single surface, <font face="Lucida Sans Unicode" size="2">δ</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=</font>W/<b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline"><font face="Verdana" size="2">2</font></span><font face="Verdana" size="2">, </font> as given by the square root of the errors squared, and <font face="Lucida Sans Unicode" size="2">δ</font><font size="1" face="Terminal"><span style="vertical-align: sub">S</span></font><font face="Verdana" size="2">=</font>W/2(n-1) for a lens doublet. Similarly to a lens pair, the tolerance for figure error for a pair of mirror surfaces can be determined after tolerances for the radii and spacing errors are set, according to <a href="two_mirror_telescope_aberrations.htm#General_aberration">Eq. 80</a>. <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Most often, optical surface imperfections are of random nature, which makes them largely unrelated from one surface to another with respect to their effect on the wavefront. Hence, if the surface RMS error is known, it is possible to calculate - from the square root of the sum of their individual RMS errors squared - what would be the probable cumulative error for two or more such surfaces. Or, the other way around, a limit to the individual surface error can be set so that the cumulative system error for all surfaces combined doesn't exceed the desired maximum error <a name="level">level</a>. </font></font> <p align="center" style="line-height: 150%; text-indent:0"> <font face="Trebuchet MS" color="#397199"><b>Surface roughness</b></font><font size="2"><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Surface errors about ~D/10 (linearly, D=aperture diameter) in extent and larger are usually called <b><font color="#000080"> figure</font></b><i> </i> <b><font color="#000080">errors</font></b>. They include zonal errors, turned edge, and asymmetric local surface deviations. Full-figure<font color="#000080"><b> </b> </font>surface<font color="#000080"><b> </b></font>errors - with the error smoothly distributed over the entire surface area - will result in a form of primary wavefront aberration, such as spherical or astigmatism (the latter may be either polished into a surface - common with thin mirrors and lenses - or resulting from inner glass tensions, frequent when glass is not annealed). </font> <p align="justify" style="line-height: 150%"> Pattern of s<font face="Verdana" size="2">urface deviations smaller than ~D/10 is termed <font color="#000080"><b>roughness</b></font>. It us usually randomly scattered over larger of smaller portion of the surface. Depending on their size, they are classified as large-, medium- and micro-ripple (also low-, medium- and high-frequency ripple, respectively). </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><i>Large-scale roughness</i> is not a usual term, and here will partly overlap with figure error. We'll define it as a pattern of random surface deviations with the dominant structure averaging, approximately, D/10 to D/5 in diameter. It is not a frequent form of optical surface roughness - although isolated local surface errors of that size are rather common - but it is certainly possible with poor fabrication methods.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"><i>Medium-scale roughness</i> (also <i>dog biscuit</i>, or <i>primary ripple</i>) is usually a random pattern resulting from the existence of empty interspaces on the polishing tool. Its dominant structure average is between D/10 and D/20 in diameter. </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">And <i>small-scale roughness</i>, or <i> microripple</i> (also, <i>secondary ripple</i>), is caused by the abrasive action of polishing material.</font> Average size of surface irregularity here is approximately 1mm in diameter. For special applications, such as laser optics, significantly smaller structures can be important, but for general amateur astronomy their effect is entirely negligible.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">As the linear diameter of ripple diminishes, so does its maximum P-V/RMS error, as well as its adverse effect on wavefront quality. The size-magnitude dependence of surface deviations is usually expressed through <i>power density spectrum</i> (PDS; also, <i>power spectral density, PSD</i>), which is the mean surface deviation squared as a function of spatial frequency (the inverse of spatial period, i.e. trace length on the surface). In other words, it shows how the amount of error varies with the size of surface trace length, which is the length, or area on the surface for which the measurements are taken. For the PDS to be meaningful, measurements must be taken for a sufficiently large number of such surface units, for every frequency, with sufficient number of sampling points. </font>The measured surface errors are averaged over frequency; actually, over its inverse, the trace length. <p align="justify" style="line-height: 150%"> I<font face="Verdana" size="2">n the context of optics, the term <i> power density</i> is not really appropriate for the roughness of an optical surface, where it should signify (surface) error magnitude spectrum (<i>spectrum</i> is generally the change of a given parameter as a function of frequency).</font> <p align="justify" style="line-height: 150%"> Once measurements are taken, the distribution of error over the frequency range becomes known. A specific "synthetic" PDS function then can be fit into the data for analytical purposes. Unlike synthetic PDS, which on a log-log plot declines from low to high frequencies in a straight line - slope of which is given by the function's exponent - error measurement of an actual surface will plot unsteady declining line, often spiking or curving away from an interpolated straight line. While some of it can be "noise" due to finite sampling, a significant spike up at any given frequency <b><font face="Georgia">ν</font></b>, or frequency interval, indicates the presence of periodic roughness structure over the surface, with the corresponding spatial period given by 1/<font face="Georgia">ν</font>. The range of frequencies is conventionally divided into low, mid and high order frequencies, with the low order generally covering figure errors (here from 1/D to ~1/0.1D), described by Siedel and Zernike aberrations, high-order frequencies causing wide scatter of light, and mid-order frequencies in between the two.<p align="justify" style="line-height: 150%"> For an actual surface, PDS can be derived by way of <a href="mtf2.htm#overview">Fourier transform</a>, i.e. constructed as a cumulative averaged Fourier amplitude generated from surface phase map, or direct measurement, for every frequency in the range. In general, PDS has an exponential downward trend toward higher frequencies, i.e. smaller trace lengths. <p align="justify" style="line-height: 150%"> Main focus of the PDS are not figure errors; a general-type PDS, whose purpose is illustrating a typical error distribution for certain type of purposes, assumes some (average) level of figure error, as well as some average level of smaller-scale periodic surface roughness that steadily diminishes in error magnitude as its characteristic (average) length becomes smaller. One such PDS for meter-class optics, published (probably) by J. H. Burge (University of Arizona) puts the surface error level (RMS surface, doubles in the wavefront for reflecting, and about halves in refracting surface), at ~40nm over low-frequency range (~1.7 to 0.17m spatial frequency), ~10nm over mid-frequency range (~0.17m to 1mm), and ~1nm for roughness structures smaller than ~1mm (high-frequency range). <p align="justify" style="line-height: 150%"> But the main purpose of having PDS of an actual surface is quantifying small- and micro-scale structures; any periodic error of this type significantly exceeding error magnitude at neighboring frequencies will generate greater total amplitude and will show as spike up in the PDS plot at that frequency. It is also possible that the rate of change in error magnitude within a relatively wider sub-range of frequencies increases or decreases with respect to the rest of frequency range, in which case such subrange forms a weaker or stronger PDS slope, respectively, i.e. cumulates larger or smaller error within the sub-range. <p align="justify" style="line-height: 150%"> PDS allows extracting the RMS surface error for the entire range of frequencies, as well as for any frequency sub-range. And while the conventional RMS error for the entire surface allows us to calculate the amount of energy lost from the Airy disc, having the surface error structural profile defined by PDS makes possible to determine where that energy goes, i.e. surface scatter properties. As such, it is the main factor in scatter analysis with bidrectional scattering distribution function (BSDF). While various aspects of scatter off small and micro roughness structures can be significant for special instruments (e.g. coronograph) and for laser optics, it is much less important for general-purpose amateur instruments. All that may be important here is the size (length) and magnitude of a periodic roughness structure showing in the PDS, which can be easily converted into both, the corresponding loss of energy from the diffraction maxima and the approximate scatter <a name="radius">radius</a>.<p align="justify" style="line-height: 150%"> The simplest power density spectrum function - and the one that fits well mirror surface in general - is PDS=C/<font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">s</span></font>, where <b>C</b> is the numerical constant, <b><font face="Georgia">ν</font></b> the spatial frequency (1/p, <b>p</b> being the spatial period, i.e. trace length) and <b>s</b> the exponent determining PDS slope on a log-log plot. This function produces a straight line plot over the entire range of frequencies. Somewhat more complex form, called ABC model, often used for fitting PSD into measurement data, is PDS=A/[1+(B<font face="Georgia">ν</font>)<font size="1"><span style="vertical-align: super">2</span></font>)<font size="1"><span style="vertical-align: super">C</span></font>, with <b>A</b>, <b>B</b> and <b>C</b> being the adjustable parameters (in the notation used here, A=C=numerical constant, C=s=power exponent determining the log-log plot slope toward higher frequencies, and <b>B</b> determines at which low frequency - unlike the previous PDS form - the plot changes its slope toward horizontal and flattens out).<p align="justify" style="line-height: 150%"> A variant of the ABC model, PDS=C<font face="Georgia">ν</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="1"><span style="vertical-align: super">s</span></font>/(<font face="Georgia">ν</font>+<font face="Georgia">ν</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font>)<font size="1"><span style="vertical-align: super">s</span></font>, using the minimum spatial frequency <b><font face="Georgia">ν</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font>=1/D parameter (corresponding to the maximum <i>spatial period </i>equal to aperture diameter <b>D</b>), along with the simplest PDS form, is used to illustrate their description of surface roughness on the graph below. The more complex form can be used to limit error in the low frequency range (figure errors) for given required roughness standard in the higher range.<p align="justify" style="line-height: 150%"> PDS can be either one-dimensional (1-D), describing surface roughness spectrum along any single line across <img border="0" src="images/PDS12.PNG" width="333" height="288" align="left">the surface phase map (i.e. based on the corresponding single surface cross section), or two-dimensional (2-D), extending to the area (volume) of the surface around straight line, i.e. providing areal (vs. linear with 1-D PDS) coverage of every spatial period <b> p<font face="Arial" size="2"> </font></b>in the frequency range. One-dimensional PDS is sufficient to describe radially symmetrical surface, but non-symmetrical surfaces require obtaining either multiple 1-D, or a 2-D PDS. <p align="justify" style="line-height: 150%"> PDS not only indicates the presence of periodic roughness structures on an optical surface, but also allows for a direct assessment of its RMS value. Since 1-D PDS is the cumulative squared mean error for a frequency (i.e. for the corresponding spatial period), or frequency interval (when generated by Fourier transform, it is the squared discrete Fourier amplitude of surface errors at a given frequency, or frequency interval), multiplying it with the frequency interval (i.e. dividing it with the corresponding spatial period) produces the squared mean error - or RMS - for that interval. Hence the RMS surface error corresponding to such interval is the square root of the area under the curve <b>A</b><font size="1" face="Terminal"><span style="vertical-align: sub">PDS</span></font>, or RMS=<font face="Verdana" size="2">A</font><font size="1" face="Terminal"><span style="vertical-align: sub">PDS</span></font><font size="1"><span style="vertical-align: super">0.5</span></font>,<font face="Verdana" size="2"> with </font></font> <p align="center" style="text-indent:0"> <font face="Comic Sans MS">A<font size="1"><span style="vertical-align: sub">PDS</span></font>=<font size="2"> Δ</font></font><b><font face="Georgia">ν</font></b><font face="Comic Sans MS">Σ[PDS(</font><b><font face="Georgia">ν</font></b><font size="1" face="Terminal"><span style="vertical-align: sub; font-weight:700">i</span></font><font face="Comic Sans MS">)] = ∫<font size="2">(</font></font><b><font size="2" face="Georgia">ν</font></b><font size="1" face="Comic Sans MS"><span style="vertical-align: sub; font-weight:700">min-max</span></font><font face="Comic Sans MS"><font size="2">)</font>[PDS(</font><b><font face="Georgia">ν</font></b><font face="Comic Sans MS">)d</font><b><font face="Georgia">ν</font></b><font face="Comic Sans MS">] = f'(</font><b><font face="Georgia">ν</font></b><font size="1" face="Comic Sans MS"><span style="vertical-align: sub; font-weight:700">max</span></font><font face="Comic Sans MS">)-f'(</font><b><font face="Georgia">ν</font></b><font size="1" face="Comic Sans MS"><span style="vertical-align: sub; font-weight:700">min</span></font><font face="Comic Sans MS">)<font size="2">,</font></font><font size="2"><font face="Verdana" size="2"> </font> <p align="justify" style="text-indent:0; style=line-height:150%"> <font face="Verdana" size="2" style="line-height:150%">with </font><font size="2" face="Georgia"> Δ</font><b><font face="Georgia">ν</font></b><font face="Verdana" size="2" style="line-height:150%"> being the frequency interval, </font><b><font face="Georgia">ν</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">max</span></font><font face="Verdana" size="2" style="line-height:150%">, </font> <b><font face="Georgia">ν</font></b><font size="1" face="Terminal"><span style="vertical-align: sub">min</span></font><font face="Verdana" size="2"> the maximum and minimum frequency value for the interval, and <b>f'</b> the antiderivative of the PDS function. Antiderivative for </font>PDS=C/<font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">s</span></font><font face="Verdana" size="2" style="line-height:150%"> is</font> f'=C<font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">(1-s)</span></font>/(1-s), and for C<font face="Georgia">ν</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="1"><span style="vertical-align: super">s</span></font>/(<font face="Georgia">ν</font>+<font face="Georgia">ν</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font>)<font size="1"><span style="vertical-align: super">s</span></font><font face="Verdana" size="2"> <a name="it_is">it is</a></font> f'=C<font face="Georgia">ν</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font><font size="1"><span style="vertical-align: super">s</span></font>(<font face="Georgia">ν</font>+<font face="Georgia">ν</font><font size="1" face="Terminal"><span style="vertical-align: sub">D</span></font>)<font size="1"><span style="vertical-align: super">(1-s)</span></font>/(1-s). Two-dimensional PDS is not directly related to the RMS error.<p align="justify" style="line-height: 150%; "> <font face="Verdana" size="2"> Taking the simpler PDS function, </font>PDS=C/<font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">s</span></font><font face="Verdana" size="2">, and approximating the RMS function as RMS</font><font face="Arial" size="2">~</font><font face="Verdana" size="2">[C</font><font face="Georgia">ν</font><font face="Verdana" size="2">/</font><font face="Georgia">(</font>1.5<font face="Georgia">ν</font>)<span style="vertical-align: super"><font size="1">s</font></span>]<font size="1"><span style="vertical-align: super">0.5</span></font><font face="Verdana" size="2"> with the frequency </font><b><font face="Georgia">ν</font></b><font face="Verdana" size="2"> effectively becoming frequency interval Δ</font><font face="Georgia">ν</font> <font face="Verdana" size="2">which, multiplied with the PDS for 50% higher frequency (i.e. with approximately mean PDS for the interval) gives the approximate area under PDS plot for this interval, the RMS changes in proportion to 1/(1.5</font><font size="1"><span style="vertical-align: super">s</span></font><font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">s-1</span></font>)<font size="1"><span style="vertical-align: super">0.5</span></font>=<font face="Verdana" size="2">1/1.5</font><font size="1"><span style="vertical-align: super">s/2</span></font><font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">0.5(s-1)</span></font>. Taking s~2 as typical for polished optical glass gives that the surface roughness RMS changes as 1/<b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline"><font face="Georgia">ν</font></span><font face="Verdana" size="2"> which, with 1/</font><b><font face="Georgia">ν</font></b><font face="Verdana" size="2"> equaling spatial period <b>p</b>, implies that the RMS roughness error changes approximately with </font><b><font face="Verdana" size="2">√</font></b><font face="Verdana" size="2"><span style="text-decoration: overline">p</span>, i.e. with the square root of the size of roughness structure.</font><p align="justify" style="line-height: 150%; "> As illustrated below, there is no significant difference in this rate of change with either different exponent value, or the other PDS function form, except for the very low end of the frequency range.<div style="padding-left: 3px; padding-top: 3px; background-color: #FFFFFF"> <p align="center" style="line-height: 150%; text-indent:0"> <img border="0" src="images/roughness_optical2.png" width="744" height="966"><br> <font face="Tahoma"><br> Power density spectrum (PDS) of surface roughness shows how the magnitude of surface deviation changes with the trace length, i.e. spatial period. PDS can be of general type, expressed with a simple decaying function approximating smooth, consistent fall off in error magnitude with the increase of spatial frequency of surface deviation (given as the inverse of its size, usually in mm), or surface-specific, with Fourier transform used to generate a cumulative error amplitude for given frequency, based on the surface phase map.<br> <span style="background-color: #FFFF99">TOP</span>: At left, simple illustration of the main parameters used to define surface roughness: <b>roughness average</b> - the average deviation from mean/reference surface - and <b>roughness RMS</b> - the square root of the sum of squared deviations, both over one-dimensional (linear) portion of surface. At right, the illustration of the use of Fourier transform - similarly to the use of Zernike terms - to generate complex surface profiles: a complex real surface profile (anaharmonic function) is roughly approached by combining only three simple harmonic functions. Fourier transform is also used to generate PDS as a cumulative error amplitude per frequency, over the frequency range from figure errors to mid-scale and microroughness structures.<br> <span style="background-color: #FFFF99">BOTTOM</span>: Plots at left show the three specified PDS in their direct numerical form, and their logarithmic forms at right, the last being the typical form of presenting PDS. Frequency range is somewhat arbitrarily divided into low (0.005-0.05, for 200 to 20mm spatial period), mid (0.05-2, for 20 to 0.5mm) and high (more than 2, i.e. below 0.5mm). Two of the three PDS plots - solid red and green - were given constant <b>C</b> and exponent <b>s</b> values to roughly outline the range between an excellent figure with exceptionally smooth surface (<font color="#008000"><b>green</b></font>) and a decent figure with very pronounced mid-scale and microroughness (<font color="#FF0000"><b>solid red</b></font>). The former indicates 7.4 nm RMS surface low-frequency (figure) error which, for a mirror - if in reference to the best fit perfect surface - implies 14.8 nm wavefront RMS, or 1/37 wave in units of 550nm wavelength. That is slightly better than 1/11 wave P-V of primary spherical aberration. Its mid-frequency RMS surface error is low 2.1 nm, and high-frequency surface error is as low as 0.33 nm (3.3 Angstroms). The other PDS (solid red) has 16.3 nm surface RMS, or 1/16.9 wave RMS wavefront (comparable to about 1/5 wave P-V of primary spherical) , unacceptably high mid-frequency error (0.036 wave RMS WFE, for about 0.95 Strehl degradation factor), and inconsequential for general observing 1/120 wave RMS WFE high-frequency error.<br> The third PDS (<b><font color="#FF0000">dashed red</font></b>) is the simplest PDS function form, plotting as a straight line in log-log coordinates. It indicates unacceptable figure error range RMS of 27nm, nearly 0.1 wave RMS wavefront, and unacceptable mid-frequency error as well. It illustrates how the power exponent of PDS function determines its slope, for this simple PDS function form over the entire range of frequencies, and for the <a href="#radius">ABC model PDS</a> type over mid- and high frequencies.<br> The small window in between shows the approximate change of surface RMS error, which is given as a square root of the area under curve. It is a product of the PDS for mid-frequency and that frequency as frequency interval, as described <a href="#it_is">above</a>. Being square root of the PDS-based quantity, the RMS error changes at a significantly slower rate than the PDS itself, in proportion to </font><font face="Tahoma" size="2">1/</font><font face="Georgia">ν</font><font size="1"><span style="vertical-align: super">0.5(s-1)</span></font><font face="Tahoma">. <br> The added illustration of a surface-specific PDS resulting from direct measurement (gray) peaks strongly at about 0.8-0.9 frequency (1.25-1.11mm spatial period), indicating the presence of microripple structure. The area under this spike is well approximated by 200 (PDS value) times 0.1 (frequency interval), giving the RMS of </font><b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline"><font face="Tahoma">20</font></span><font face="Tahoma">=4.5nm. As bad as it appears, it is still only 1/122 RMS surface (</font><font face="Georgia">λ</font><font face="Tahoma">=550nm) and 1/61 RMS wavefront, for 0.99 Strehl degradation factor. </font></div> <p align="justify" style="line-height: 150%"> Roughness standards for optical surfaces are not clearly defined. It is common to see the roughness figure stated without specifying for what frequency range, which makes it meaningless, knowing that surface roughness magnitude is a function of the characteristic length (size) of roughness structure. Unless we know it conforms to MIL-STD-10A standard, which in such case assumes it applies to roughness scale length of less than 0.03 inches. The surface roughness figures quoted are usually for a sub-millimeter roughness length, i.e. high-frequency domain (usually smaller than ~0.1mm) which in the context of amateur telescopes belongs to micro-roughness. For the conventionally polished optical surface, error induced by this roughness scale is negligible. While sometimes micro-roughness is specified in the addition to the figure accuracy, the roughness scale commonly left out of the specs is the mid-scale roughness, potentially much more harmful than micro-roughness.<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Table below illustrates, quite approximately, the relation between ripple diameter and the magnitude of its deviation. For large and medium scale ripple it is assumed that the error magnitude changes nearly in proportion to their characteristic length, but the real surface patterns can deviate from it locally, possibly significantly (sporadic local deviations, even if significant nominally, do not significantly worsen the effect of prevailing pattern). This is not in agreement with the rate of change in the PDS context - which is approximately in proportion to the square root of the roughness scale - but PDS, in addition to be of very general character, does not cover accurately what is here termed large- and medium-scale roughness. While the assumption of the error magnitude changing in proportion to the roughness scale is not very accurate either, it should be more appropriate for this size of roughness structure, with the ranges given creating in effect a wider spectrum of possible rates of change in error magnitude with the structure size.<br> </font><div align="center"> <table border="1" width="666" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#FFFFFF"> <tr> <td rowspan="2">TYPICAL DEVIATION DIAMETER<br> (<font size="2"><b><font face="Arial" size="2">ℓ</font></b></font>)</td> <td rowspan="2"><b>ROUGHNESS</b></td> <td colspan="2">SURFACE</td> <td colspan="2"><b>WAVEFRONT</b></td> </tr> <tr> <td>P-V</td> <td>RMS</td> <td><b>P-V</b></td> <td><b>RMS</b></td> </tr> <tr> <td>D/5-D/10 (0.2-0.1)</td> <td><b>large-scale</b></td> <td>λ/6-<font size="2">λ</font>/12</td> <td><font size="2">λ</font>/20-<font size="2">λ</font>/40</td> <td><b><font size="2">λ</font>/3-<font size="2">λ</font>/6</b></td> <td><b><font size="2">λ</font>/10-<font size="2">λ</font>/20</b></td> </tr> <tr> <td>D/10-D/20 (0.1-0.05)</td> <td><b>medium-scale</b></td> <td><font size="2">λ</font>/13-<font size="2">λ</font>/26</td> <td><font size="2">λ</font>/40-<font size="2">λ</font>/80</td> <td><b><font size="2">λ</font>/6-<font size="2">λ</font>/13</b></td> <td><b><font size="2">λ/20-λ/40</font></b></td> </tr> <tr> <td>1-2mm (>0.01)</td> <td><b>small-scale</b></td> <td><font size="2">λ</font>/400-<font size="2">λ</font>/60</td> <td><font size="2">λ</font>/1200-<font size="2">λ</font>/180</td> <td><b><font size="2">λ</font>/200-<font size="2">λ</font>/30</b></td> <td><b><font size="2">λ</font>/600-<font size="2">λ</font>/90</b></td> </tr> </table> </div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">In general, surface roughness error doubles in the wavefront for reflecting surfaces, while for a lens they are reduced in the wavefront by a factor of n/(n-1)</font><b><font face="Verdana" size="2">√</font></b><span style="text-decoration: overline"><font face="Verdana" size="2">2</font></span><font face="Verdana" size="2"> (statistical probability, assuming similar degree of roughness on both lens surfaces). Assuming nearly uniform roughness structure - or nearly uniform dominant structure - over the entire surface, the corresponding surface roughness P-V wavefront error is about 3 the roughness RMS error (for instance, for a single-plane sinusoidal deformation pattern the RMS is P-V/2.8, for saw-tooth pattern - isosceles triangle - with the same base and height as the sinusoid it is P-V/3.5, for a isosceles trapezoid of the same base and height with the top half as long as the base it is P-V/2.5, and so on). </font> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2"> This indicates that the roughness P-V error extending over most or all of the surface causes more damage than nominally identical P-V error of conic aberrations (the P-V to RMS ratio is 3.354, 5.657 and 4.899 for primary spherical aberration, coma and astigmatism, respectively). However, only large-scale roughness can reach the magnitude needed to reduce the Strehl below diffraction limited 0.80. Also, the smaller relative area affected by roughness, the smaller damage; for instance, if only half of the area is affected, its effect is comparable to that of twice smaller nominal roughness error over the entire surface area (with respect to the portion of energy transferred outside the central maxima; the wider characteristic roughness period, the smaller radius of energy spread by it).</font><p align="justify" style="line-height: 150%"> As for microripple<font face="Verdana" size="2">, their nominal RMS wavefront error is very small for optical surfaces made according to accepted proper procedures - no more than about 5nm, and usually ~1nm (~1/500 wave for the visual peak) and smaller. Suiter cites Texereau stating that the typical RMS wavefront error due to micro-ripple is typically a small fraction of 1/100 wave. Using other sources provides a more detailed picture. For instance, polishing experiment at the University of Arizona (S<i>uper-smooth optical fabrication controlling high spatial frequency surface irregularity</i>, Del Hoyo, Kim, Burge, 2013), reports these numbers for the polish quality of 10-inch Zerodur substrates with varying amounts of polishing time:<br> </font><table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-indent: 0; text-align: center" bordercolor="#518FBD"> <tr> <td rowspan="2">GLASS: Zerodur METHOD: polishing machine GRINDING: aluminum oxide <br> POLISHING COMPOUND: Opaline POLISHING INTERFACE: conventional pitch #64</td> <td colspan="6">POLISHING TIME (hours)<br> waves at <font face="Georgia">λ</font>=550nm</td> </tr> <tr> <td>1</td> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>8</td> </tr> <tr> <td><b>RMS surface roughness (nm)</b> measured over 0.17-4.4mm fields</td> <td><b>10<br> </b>1/55</td> <td><b>2.5<br> </b>1/220</td> <td><b>1<br> </b>1/550</td> <td><b>0.9<br> </b>1/611</td> <td><b>0.7<br> </b>1/786</td> <td><b>0.7<br> </b>1/786</td> </tr> </table> <p align="justify" style="line-height: 150%"> Experiment with more conventional glass types, investigating the effect of combining different polishing agents, glasses and slurry pH (<i>Slurry Particle Size Evolution During the Polishing of Optical Glass</i>), reports these numbers (1<font face="Verdana">Å</font>=0.1nm):<br> <table border="1" width="100%" cellspacing="0" style="font-family: Tahoma; font-size: 10pt; text-align: center; text-indent: 0" bordercolor="#518FBD"> <tr> <td rowspan="2">POLISHING AGENT</td> <td rowspan="2">SLURRY pH</td> <td colspan="9">SURFACE ROUGHNESS RMS (Å) / waves at <font face="Georgia" size="2">λ</font>=5500Å / Strehl </font><font face="Verdana" size="1">(whole surface affected)</font></td> </tr> <tr> <td colspan="3"><b><font size="2" face="Verdana">Fused silica</font></b></td> <td colspan="3"><font size="2"><font face="Verdana"><b>Crown</b> </font>(BK7)</font></td> <td colspan="3"><font size="2"><font face="Verdana"><b>Flint</b></font> (SF6)</font></td> </tr> <tr> <td rowspan="3"><b>CeO</b><font size="1" face="Terminal"><span style="vertical-align: sub">2</span></font></td> <td>4</td> <td><b>13</b></td> <td>1/423</td> <td>0.9991</td> <td><b>16</b></td> <td>1/344</td> <td>0.9987</td> <td><b><font color="#FF0000">478</font></b></td> <td>1/11.5</td> <td>0.3</td> </tr> <tr> <td>7</td> <td><b>12</b></td> <td>1/458</td> <td>0.9992</td> <td><b>13</b></td> <td>1/423</td> <td>0.9991</td> <td><b><font color="#FF0000">308</font></b></td> <td>1/17.9</td> <td>0.61</td> </tr> <tr> <td>10</td> <td><b>10</b></td> <td>1/550</td> <td>0.9995</td> <td><b>11</b></td> <td>1/500</td> <td>0.9994</td> <td><b>13</b></td> <td>1/423</td> <td>0.9991</td> </tr> <tr> <td rowspan="3"><b>m-ZrO</b><font size="1" face="Terminal"><span style="vertical-align: sub">2</span></font></td> <td>4</td> <td><b>13</b></td> <td>1/423</td> <td>0.9991</td> <td><b>19</b></td> <td>1/289</td> <td>0.9981</td> <td><b>24</b></td> <td>1/229</td> <td>0.9970</td> </tr> <tr> <td>7</td> <td><b>12</b></td> <td>1/458</td> <td>0.9992</td> <td><b>16</b></td> <td>1/344</td> <td>0.9987</td> <td><b>21</b></td> <td>1/262</td> <td>0.9977</td> </tr> <tr> <td>10</td> <td><b>13</b></td> <td>1/423</td> <td>0.9991</td> <td><b>14</b></td> <td>1/393</td> <td>0.9990</td> <td><b>14</b></td> <td>1/393</td> <td>0.9990</td> </tr> <tr> <td rowspan="3"><b>n-Al</b><font size="1" face="Terminal"><span style="vertical-align: sub">2</span></font><b>O</b><font size="1" face="Terminal"><span style="vertical-align: sub">3</span></font></td> <td>4</td> <td><b><font color="#FF0000">243</font></b></td> <td>1/22.6</td> <td>0.735</td> <td><b>24</b></td> <td>1/229</td> <td>0.9970</td> <td><b>19</b></td> <td>1/289</td> <td>0.9981</td> </tr> <tr> <td>7</td> <td><b><font color="#FF0000">167</font></b></td> <td>1/32.9</td> <td>0.865</td> <td><b><font color="#FF0000">66</font></b></td> <td>1/83</td> <td>0.9773</td> <td><b><font color="#FF0000">609</font></b></td> <td>1/9</td> <td>0.14</td> </tr> <tr> <td>10</td> <td><b>16</b></td> <td>1/344</td> <td>0.9987</td> <td><b>10</b></td> <td>1/550</td> <td>0.9995</td> <td><b>12</b></td> <td>1/458</td> <td>0.9992</td> </tr> </table> <p align="justify" style="line-height: 150%"> The experiment used continuous polishing machine and 40mm diameter glass discs, 4-hour polishing sessions and 4mm measurement scan length (5 sites per disc, average). Thus it is for nearly identical roughness scale as the previous experiment, with comparable roughness figures - and with important exceptions. Low pH polishing slurry resulted in the much larger roughness error with fused silica and aluminum oxide, while medium pH slurry and aluminum oxide produced it with all three glass types (although in significantly different proportions). The cause, according to study authors, is the difference in electrical charge between the polishing agent and glass surface, resulting in agglomeration of the polishing agent (for a smooth polish, both agent and glass need to have negative charge; the latter is always negative, and the former changes from positive at low, to negative at high pH level).<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Obviously, the excessive roughness obtained with some pH/glass combinations are unacceptable. While the size of roughness structure in both experiments (4 and 5mm spatial period) is somewhat between the mid-scale roughness and microripple, what matters is its magnitude, not the formal classification. The second experiment indicates that it is possible that unacceptable level of roughness remain on a polished glass surface even after polishing session of proper duration and agent applied. It is likely that there are other scenarios where that can happen - and, on the other hand, polishing procedures that would neutralize such potentially harmful combinations - but it all boils down to knowing and following proper fabrication procedures, which includes standard quality control.</font><p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Hence, assuming standard fabrication, microripple does not exceed a few nm RMS surface error, in which case its effect on central intensity is negligible for general observing. The RMS error tells us that the amount of energy scattered by microripple is less than 1% (0.99+ Strehl <a name="degradation">degradation</a> factor). </font><p align="justify" style="line-height: 150%"> If surface roughness is modeled statistically, as a near-uniform pattern of the dominant roughness structure - any roughness structure, from large to micro scale - with the characteristic length (diameter, width) <b> <font face="Arial" size="2">ℓ</font></b> extending over the entire wavefront, its effect on contrast transfer can be expressed with a (contrast) degradation function (<b>FIG. 50</b>, top). This particular function is given in Schroeder's <i>Astronomical Optics</i> with reference to O'Neill. The product of this function with the system's MTF w/o roughness is its actual contrast transfer function (<b>FIG. 50</b>, bottom).<p align="justify" style="line-height: 150%; text-indent:0"> <img border="0" src="images/roughness.PNG" width="455" height="777" align="left"><div style="background-color: #FFFFFF"> <p align="center" style="text-indent:0"> <font face="Tahoma"><b>FIGURE 50</b>: Graphs of the roughness degradation function alone (top) and its effect on MTF (transfer <b>T</b> and normalized spatial frequency </font><i><b><font face="Tahoma">ν</font></b></i><font face="Tahoma">) of otherwise aberration-free aperture (bottom), for selected values of the RMS wavefront error <b>ω</b> and the diameter of typical roughness deviation </font> <b> <font face="Arial" size="2">ℓ</font></b><font face="Tahoma">. Assumed is that near-uniform pattern of roughness extends over the entire wavefront. Evidently, by far the most important factor is the RMS error, which tends to scale with the roughness diameter </font> <b> <font face="Arial" size="2">ℓ</font></b><font face="Tahoma">, the latter merely affecting the width of energy spread - the smaller roughness diameter, the wider energy spread, and the lower amount of energy transferred outside the central maxima. The worst-case scenario for microripple (<font color="#0066FF"><b>blue</b></font>) still has entirely negligible effect on contrast transfer in general observing. The near worst-case scenario for medium-scale roughness (<font color="#FF0000"><b>red</b></font>) does inflict noticeable contrast loss, although it is still below 10%. And near worst-scenario large-scale roughness (<font color="#FF66FF"><b>pink</b></font>), with λ/10 wave RMS (~λ/3.3 wave P-V) wavefront error (WFE), lowers contrast transfer very noticeably. Since large-scale roughness is likely to be accompanied with medium-scale roughness, their combined effect (<font color="#999999"><b>gray</b></font>), given as a product of the two respective degradation functions, is even larger. The form of roughness degradation function plot shows that it lowers contrast uniformly over most - about 90%, or more - of MTF frequency range. Since it is the factor at left in the exponent, -(2</font><font face="Lucida Sans Unicode">π</font>ω<font face="Tahoma">)</font><font size="1"><span style="vertical-align: super">2</span></font><font face="Tahoma">, that determines this degradation constant (factor at right shapes up the plot between zero frequency and the constant level), using this factor alone gives a good approximation of the corresponding Strehl (only slightly pessimistic). Thus, the Strehl values for these selected roughness examples are about 0.91, 0.67 and 0.62 for the red, pink and gray MTF plots, respectively. Unlike most common aberrations, roughness lowers contrast nearly evenly over the range of MTF frequencies. The width between the origin (top left) and the constant contrast drop off range - easier to determine on the degradation function plots on top - indicates the radius of energy spread. For the medium-scale roughness plots energy spreads beyond 0.08 frequency with </font> <b> <font face="Arial" size="2">ℓ</font></b><font face="Tahoma">=0.1, and beyond 0.04 with </font> <b> <font face="Arial" size="2">ℓ</font></b><font face="Tahoma">=0.05 (i.e. beyond 5 and 10 times the Airy disc radius, respectively).</font></div> <p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">Due to the wide radius of scattered energy, the relative contrast drop caused by micro-ripple - as well as any periodic surface roughness in general - is nearly identical at all MTF frequencies, except for the very narrow stretch at the low end of MTF frequency range, in which it drops from 1 at the zero spatial frequency (</font><font face="Georgia" size="2">ν</font><font face="Verdana" size="2">=0) to the relative contrast level slightly below that given by the Strehl ratio. </font> <p align="justify" style="text-indent: 21px; line-height:150%"> The<font face="Verdana" size="2"> width of this initial drop depends on the relative average size </font> <b> <font face="Arial" size="2">ℓ</font></b><font face="Verdana" size="2"> of micro-ripple in units of the aperture radius (assuming relatively limited deviations of the true roughness structure from </font> <b> <font face="Arial" size="2">ℓ</font></b><font face="Verdana" size="2">). Roughly, spatial frequency at which this level is reached is given by </font> <font face="Georgia" size="2">ν</font><font face="Verdana" size="2">~</font><font face="Arial" size="2">ℓ</font><font face="Verdana" size="2">, </font><b><font face="Georgia" size="2">ν</font></b><font face="Verdana" size="2"> being the spatial frequency. So, for, say, </font><font face="Arial" size="2">ℓ</font><font face="Verdana" size="2">~1/50 average relative size of 1/300 wave RMS micro-ripple, contrast would drop to slightly below 0.99956 of the perfect aperture contrast level (<a href="Strehl.htm#the_Strehl_ratio">Eq. 56</a>) at </font> <font face="Georgia" size="2"> ν</font><font face="Verdana" size="2">~1/50, and remain near to that contrast ratio for the remaining ~98% o the spatial frequency range. This also indicates that the energy spread caused by the micro-ripple reaches beyond </font><font face="Georgia" size="2"> ν</font><font face="Verdana" size="2">~1/50 frequency radius, or over 40 Airy disc radii far from diffraction peak (the cutoff frequency </font><font face="Georgia" size="2">ν</font><font face="Verdana" size="2">=1 corresponds to 1/2.44 Airy disc diameters).</font><p align="justify" style="text-indent: 21px; line-height:150%"> Alternately, the radius of light scattered by a roughness structure is given angularly as θ=sin<font size="1"><span style="vertical-align: super">-1</span></font> (<font face="Georgia">λ</font>/<font face="Arial" size="2">ℓ</font>), where <b><font face="Georgia">λ</font></b> is the wavelength of light, and <b> <font face="Arial" size="2">ℓ</font></b> the characteristic roughness length (i.e. average size). So, for instance, with <font face="Georgia"> λ</font>=0.00055mm and <font face="Arial" size="2">ℓ</font>=1mm, the angle of scatter is 0.032 degrees (note that sin<font size="1"><span style="vertical-align: super">-1</span></font> is not the inverse of the sine value, but the angle corresponding to it).<p align="justify" style="line-height: 150%"> <font face="Verdana" size="2">With lenses, glass homogeneity and optical properties are also a factor.</font><p align="justify" style="line-height: 150%"> Overall, it can be concluded that image degradation from microripple is negligible even in the worst-case scenario, that from medium-scale roughness ranges from about 0.95 to 0.9 Strehl degradation factor, and for large-scale roughness from 0.9 to 0.65. For combined large/medium scale roughness from 0.85 to 0.6. These are only approximate ranges and, again, assume that the entire wavefront area is affected with a consistent roughness structure. For medium- and large-scale roughness, it is seldom the case, so these ranges outline the worst-case scenario not likely to be encountered in practice. With a more realistic assumption that only about half of the wavefront area is affected, the damage diminishes to 0.99-0.96, 0.96-0.9 and 0.95-0.85 for medium-, large- and combined medium and large-scale roughness, respectively.<br> <p align="center" style="text-indent: 0"> <span style="font-weight: 400"> <font size="2" face="Arial" color="#336699">◄</font></span><font size="2" face="Verdana"> </font><span style="font-weight: 400"> <font size="2" face="Verdana"> <a href="polychromatic_psf.htm">4.7.3. Measuring chromatic error</a></font></span><font size="2" face="Verdana"> </font><font size="2" face="Arial"><font color="#C0C0C0"> ▐</font> </font><font size="2" face="Verdana"> <a href="testing_optical_quality.htm">4.8.1. Testing optical quality</a> </font> <font face="Arial" size="2" color="#336699">►</font><p align="center" style="text-indent: 0"> <a href="index.htm">Home</a> | <a href="mailto:webpub@fastmail.com">Comments</a><p> </font></td> </tr> </table> </div> </body> </html>