CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 65 results for author: <span class="mathjax">Opitom, C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/" aria-role="search"> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Opitom, C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Opitom%2C+C&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Opitom, C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Opitom%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Opitom%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Opitom%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03460">arXiv:2412.03460</a> <span> [<a href="https://arxiv.org/pdf/2412.03460">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3018288">10.1117/12.3018288 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUBES, the Cassegrain U-Band Efficient Spectrograph: towards final design review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Genoni%2C+M">Matteo Genoni</a>, <a href="/search/?searchtype=author&query=Dekker%2C+H">Hans Dekker</a>, <a href="/search/?searchtype=author&query=Covino%2C+S">Stefano Covino</a>, <a href="/search/?searchtype=author&query=Cirami%2C+R">Roberto Cirami</a>, <a href="/search/?searchtype=author&query=Scalera%2C+M+A">Marcello Agostino Scalera</a>, <a href="/search/?searchtype=author&query=Bissel%2C+L">Lawrence Bissel</a>, <a href="/search/?searchtype=author&query=Seifert%2C+W">Walter Seifert</a>, <a href="/search/?searchtype=author&query=Calcines%2C+A">Ariadna Calcines</a>, <a href="/search/?searchtype=author&query=Avila%2C+G">Gerardo Avila</a>, <a href="/search/?searchtype=author&query=Stuermer%2C+J">Julian Stuermer</a>, <a href="/search/?searchtype=author&query=Ritz%2C+C">Christopher Ritz</a>, <a href="/search/?searchtype=author&query=Lunney%2C+D">David Lunney</a>, <a href="/search/?searchtype=author&query=Miller%2C+C">Chris Miller</a>, <a href="/search/?searchtype=author&query=Watson%2C+S">Stephen Watson</a>, <a href="/search/?searchtype=author&query=Waring%2C+C">Chris Waring</a>, <a href="/search/?searchtype=author&query=Castilho%2C+B+V">Bruno Vaz Castilho</a>, <a href="/search/?searchtype=author&query=De+Arruda%2C+M">Marcio De Arruda</a>, <a href="/search/?searchtype=author&query=Verducci%2C+O">Orlando Verducci</a>, <a href="/search/?searchtype=author&query=Coretti%2C+I">Igor Coretti</a>, <a href="/search/?searchtype=author&query=Oggioni%2C+L">Luca Oggioni</a>, <a href="/search/?searchtype=author&query=Pariani%2C+G">Giorgio Pariani</a>, <a href="/search/?searchtype=author&query=Redaelli%2C+E+A+M">Edoardo Alberto Maria Redaelli</a>, <a href="/search/?searchtype=author&query=D%27Ambrogio%2C+M">Matteo D'Ambrogio</a>, <a href="/search/?searchtype=author&query=Calderone%2C+G">Giorgio Calderone</a>, <a href="/search/?searchtype=author&query=Porru%2C+M">Matteo Porru</a> , et al. (17 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03460v1-abstract-short" style="display: inline;"> In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high instrumental efficiency ( $>$ 37\%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03460v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03460v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03460v1-abstract-full" style="display: none;"> In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high instrumental efficiency ( $>$ 37\%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R $>$ 20, 000 (with a lower-resolution, sky-limited mode of R $\sim$ 7, 000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio -SNR- $\sim$ 20 per spectral resolution element at 313 nm for U $\sim$ 17.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics: i) access to key lines of stellar spectra (e.g. lighter elements, in particular Beryllium), extragalactic studies (e.g. circumgalactic medium of distant galaxies, cosmic UV background) and follow-up of explosive transients. We present the CUBES instrument design, currently in Phase-C and approaching the final design review, summarizing the hardware architecture and interfaces between the different subsystems as well as the relevant technical requirements. We describe the optical, mechanical, electrical design of the different subsystems (from the telescope adapter and support structure, through the main opto-mechanical path, including calibration unit, detector devices and cryostat control, main control electronics), detailing peculiar instrument functions like the Active Flexure Compensation (AFC). Furthermore, we outline the AITV concept and the main instrument operations giving an overview of its software ecosystem. Installation at the VLT is planned for 2028-2029 and first science operations in late 2029. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03460v1-abstract-full').style.display = 'none'; document.getElementById('2412.03460v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings Volume 13096, Ground-based and Airborne Instrumentation for Astronomy X; 130967T (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.19796">arXiv:2411.19796</a> <span> [<a href="https://arxiv.org/pdf/2411.19796">pdf</a>, <a href="https://arxiv.org/format/2411.19796">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Tuning the Legacy Survey of Space and Time (LSST) Observing Strategy for Solar System Science: Incremental Templates in Year 1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Robinson%2C+J+E">James E. Robinson</a>, <a href="/search/?searchtype=author&query=Schwamb%2C+M+E">Megan E. Schwamb</a>, <a href="/search/?searchtype=author&query=Jones%2C+R+L">R. Lynne Jones</a>, <a href="/search/?searchtype=author&query=Juri%C4%87%2C+M">Mario Juri膰</a>, <a href="/search/?searchtype=author&query=Yoachim%2C+P">Peter Yoachim</a>, <a href="/search/?searchtype=author&query=Bolin%2C+B+T">Bryce T. Bolin</a>, <a href="/search/?searchtype=author&query=Chandler%2C+C+O">Colin O. Chandler</a>, <a href="/search/?searchtype=author&query=Chesley%2C+S+R">Steven R. Chesley</a>, <a href="/search/?searchtype=author&query=Fedorets%2C+G">Grigori Fedorets</a>, <a href="/search/?searchtype=author&query=Fraser%2C+W+C">Wesley C. Fraser</a>, <a href="/search/?searchtype=author&query=Greenstreet%2C+S">Sarah Greenstreet</a>, <a href="/search/?searchtype=author&query=Hsieh%2C+H+H">Henry H. Hsieh</a>, <a href="/search/?searchtype=author&query=Merritt%2C+S+R">Stephanie R. Merritt</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Parejko%2C+J+K">John K. Parejko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.19796v1-abstract-short" style="display: inline;"> The Vera C. Rubin Observatory is due to commence the 10-year Legacy Survey of Space and Time (LSST) at the end of 2025. To detect transient/variable sources and identify solar system objects (SSOs), the processing pipelines require templates of the static sky to perform difference imaging. During the first year of the LSST, templates must be generated as the survey progresses, otherwise SSOs canno… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19796v1-abstract-full').style.display = 'inline'; document.getElementById('2411.19796v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.19796v1-abstract-full" style="display: none;"> The Vera C. Rubin Observatory is due to commence the 10-year Legacy Survey of Space and Time (LSST) at the end of 2025. To detect transient/variable sources and identify solar system objects (SSOs), the processing pipelines require templates of the static sky to perform difference imaging. During the first year of the LSST, templates must be generated as the survey progresses, otherwise SSOs cannot be discovered nightly. The incremental template generation strategy has not been finalized; therefore, we use the Metric Analysis Framework (MAF) and a simulation of the survey cadence (one_snap_v4.0_10yrs}) to explore template generation in Year 1. We have assessed the effects of generating templates over timescales of days-weeks, when at least four images of sufficient quality are available for $\geq90\%$ of the visit. We predict that SSO discoveries will begin $\sim$2-3 months after the start of the survey. We find that the ability of the LSST to discover SSOs in real-time is reduced in Year 1. This is especially true for detections in areas of the sky that receive fewer visits, such as the North Ecliptic Spur (NES), and in less commonly used filters, such as the $u$ and $g$-bands. The lack of templates in the NES dominates the loss of real-time SSO discoveries; across the whole sky the MAF Main-Belt asteroid (MBA) discovery metric decreases by up to $63\%$ compared to the baseline observing strategy, whereas the metric decreases by up to $79\%$ for MBAs in the NES alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.19796v1-abstract-full').style.display = 'none'; document.getElementById('2411.19796v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted for consideration in the ApJS Rubin LSST Survey Strategy Optimization Focus Issue</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08133">arXiv:2409.08133</a> <span> [<a href="https://arxiv.org/pdf/2409.08133">pdf</a>, <a href="https://arxiv.org/format/2409.08133">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae2189">10.1093/mnras/stae2189 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coma composition and profiles of comet 12P/Pons-Brooks using long-slit spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ferellec%2C+L">Lea Ferellec</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Donaldson%2C+A">Abbie Donaldson</a>, <a href="/search/?searchtype=author&query=Fynbo%2C+J+P+U">Johan P. U. Fynbo</a>, <a href="/search/?searchtype=author&query=Kokotanekova%2C+R">Rosita Kokotanekova</a>, <a href="/search/?searchtype=author&query=Kelley%2C+M+S+P">Michael S. P. Kelley</a>, <a href="/search/?searchtype=author&query=Lister%2C+T">Tim Lister</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08133v1-abstract-short" style="display: inline;"> Comet 12P/Pons-Brook exhibited multiple large and minor outbursts in 2023 on its way to its 2024 perihelion, as it has done during its previous apparitions. We obtained long-slit optical spectra of the comet in 2023 August and 2023 November with the INT-IDS, and in 2023 December with NOT-ALFOSC. Using a standard Haser model in a 10000km-radius aperture and commonly used empirical parent and daught… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08133v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08133v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08133v1-abstract-full" style="display: none;"> Comet 12P/Pons-Brook exhibited multiple large and minor outbursts in 2023 on its way to its 2024 perihelion, as it has done during its previous apparitions. We obtained long-slit optical spectra of the comet in 2023 August and 2023 November with the INT-IDS, and in 2023 December with NOT-ALFOSC. Using a standard Haser model in a 10000km-radius aperture and commonly used empirical parent and daughter scale-lengths, our calculated abundance ratios show a constant "typical" composition throughout the period with a C$_2$/CN ratio of about 90 per cent. Molecular density profiles of different species along the slit show asymmetries between opposite sides of the coma and that C$_2$ seems to behave differently than CN and C$_3$. Comparing the coma profiles to a standard Haser model shows that this model cannot accurately reproduce the shape of the coma, and therefore that the calculated production rates cannot be deemed as accurate. We show that an outburst Haser model is a {slightly} better match to the C$_3$ and CN profile shapes, but the model still does not explain the shape of the C$_2$ profiles and requires equal parent and daughter scale-lengths. Our results suggest that the coma morphology could be better explained by extended sources, and that the nature of 12P's activity introduces bias in the determination of its composition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08133v1-abstract-full').style.display = 'none'; document.getElementById('2409.08133v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 7 figures, accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> MNRAS 534 3 (2024) p1816-1826 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10759">arXiv:2408.10759</a> <span> [<a href="https://arxiv.org/pdf/2408.10759">pdf</a>, <a href="https://arxiv.org/ps/2408.10759">ps</a>, <a href="https://arxiv.org/format/2408.10759">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202450921">10.1051/0004-6361/202450921 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical composition of comets C/2021 A1 (Leonard) and C/2022 E3 (ZTF) from radio spectroscopy and the abundance of HCOOH and HNCO in comets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Bockelee-Morvan%2C+D">D. Bockelee-Morvan</a>, <a href="/search/?searchtype=author&query=Handzlik%2C+B">B. Handzlik</a>, <a href="/search/?searchtype=author&query=Sandqvist%2C+A">Aa. Sandqvist</a>, <a href="/search/?searchtype=author&query=Boissier%2C+J">J. Boissier</a>, <a href="/search/?searchtype=author&query=Drozdovskaya%2C+M+N">M. N. Drozdovskaya</a>, <a href="/search/?searchtype=author&query=Moreno%2C+R">R. Moreno</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M">M. Cordiner</a>, <a href="/search/?searchtype=author&query=Milam%2C+S">S. Milam</a>, <a href="/search/?searchtype=author&query=Roth%2C+N+X">N. X. Roth</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B+P">B. P. Bonev</a>, <a href="/search/?searchtype=author&query=Russo%2C+N+D">N. Dello Russo</a>, <a href="/search/?searchtype=author&query=Vervack%2C+R">R. Vervack</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Kawakita%2C+H">H. Kawakita</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10759v1-abstract-short" style="display: inline;"> We present the results of a molecular survey of long period comets C/2021 A1 (Leonard) and C/2022 E3 (ZTF). Comet C/2021 A1 was observed with the IRAM 30-m radio telescope in November-December 2021 before perihelion when it was closest to the Earth. We observed C/2022 E3 in January-February 2023 with the Odin 1-m space telescope and IRAM 30-m, shortly after its perihelion, and when it was closest… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10759v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10759v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10759v1-abstract-full" style="display: none;"> We present the results of a molecular survey of long period comets C/2021 A1 (Leonard) and C/2022 E3 (ZTF). Comet C/2021 A1 was observed with the IRAM 30-m radio telescope in November-December 2021 before perihelion when it was closest to the Earth. We observed C/2022 E3 in January-February 2023 with the Odin 1-m space telescope and IRAM 30-m, shortly after its perihelion, and when it was closest to the Earth. Snapshots were obtained during 12-16 November 2021 period for comet C/2021 A1. Spectral surveys were undertaken over the 8-13 December 2021 period for comet C/2021 A1 (8, 16, and 61 GHz bandwidth in the 3 mm, 2 mm, and 1 mm window) and over the 3-7 February 2023 period for comet C/2022 E3 (25 and 61 GHz at 2 and 1mm). We report detections of 14 molecular species (HCN, HNC, CH3CN, HNCO, NH2CHO, CH3OH, H2CO, HCOOH, CH3CHO, H2S, CS, OCS, C2H5OH and aGg-(CH2OH)2 ) in both comets plus HC3N and CH2OHCHO marginally detected in C/2021 A1 and CO and H2O (with Odin detected in C/2022 E3. The spatial distribution of several species is investigated. Significant upper limits on the abundances of other molecules and isotopic ratios are also presented. The activity of comet C/2021 A1 did not vary significantly between 13 November and 13 December 2021. Short-term variability in the outgassing of comet C/2022 E3 on the order of +-20% is present and possibly linked to its 8h rotation period. Both comets exhibit rather low abundances relative to water for volatiles species such as CO (< 2%) and H2S (0.15%). Methanol is also rather depleted in comet C/2021 A1 (0.9%). Following their revised photo-destruction rates, HNCO and HCOOH abundances in comets have been reevaluated. Both molecules are relatively enriched in these two comets (0.2% relative to water). We cannot exclude that these species could be produced by the dissociation of ammonium salts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10759v1-abstract-full').style.display = 'none'; document.getElementById('2408.10759v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To be published in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 690, A271 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13914">arXiv:2406.13914</a> <span> [<a href="https://arxiv.org/pdf/2406.13914">pdf</a>, <a href="https://arxiv.org/format/2406.13914">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1117/12.3019831">10.1117/12.3019831 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Blue Multi Unit Spectroscopic Explorer (BlueMUSE) on the VLT: science drivers and overview of instrument design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/?searchtype=author&query=Giroud%2C+R">R茅mi Giroud</a>, <a href="/search/?searchtype=author&query=Laurent%2C+F">Florence Laurent</a>, <a href="/search/?searchtype=author&query=Krajnovi%C4%87%2C+D">Davor Krajnovi膰</a>, <a href="/search/?searchtype=author&query=Jeanneau%2C+A">Alexandre Jeanneau</a>, <a href="/search/?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/?searchtype=author&query=Abreu%2C+M">Manuel Abreu</a>, <a href="/search/?searchtype=author&query=Adamo%2C+A">Angela Adamo</a>, <a href="/search/?searchtype=author&query=Araujo%2C+R">Ricardo Araujo</a>, <a href="/search/?searchtype=author&query=Bouch%C3%A9%2C+N">Nicolas Bouch茅</a>, <a href="/search/?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/?searchtype=author&query=Cai%2C+Z">Zhemin Cai</a>, <a href="/search/?searchtype=author&query=Castro%2C+N">Norberto Castro</a>, <a href="/search/?searchtype=author&query=Calcines%2C+A">Ariadna Calcines</a>, <a href="/search/?searchtype=author&query=Chapuis%2C+D">Diane Chapuis</a>, <a href="/search/?searchtype=author&query=Claeyssens%2C+A">Ad茅la茂de Claeyssens</a>, <a href="/search/?searchtype=author&query=Cortese%2C+L">Luca Cortese</a>, <a href="/search/?searchtype=author&query=Daddi%2C+E">Emanuele Daddi</a>, <a href="/search/?searchtype=author&query=Davison%2C+C">Christopher Davison</a>, <a href="/search/?searchtype=author&query=Goodwin%2C+M">Michael Goodwin</a>, <a href="/search/?searchtype=author&query=Harris%2C+R">Robert Harris</a>, <a href="/search/?searchtype=author&query=Hayes%2C+M">Matthew Hayes</a>, <a href="/search/?searchtype=author&query=Jauzac%2C+M">Mathilde Jauzac</a>, <a href="/search/?searchtype=author&query=Kelz%2C+A">Andreas Kelz</a>, <a href="/search/?searchtype=author&query=Kneib%2C+J">Jean-Paul Kneib</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13914v2-abstract-short" style="display: inline;"> BlueMUSE is a blue-optimised, medium spectral resolution, panoramic integral field spectrograph under development for the Very Large Telescope (VLT). With an optimised transmission down to 350 nm, spectral resolution of R$\sim$3500 on average across the wavelength range, and a large FoV (1 arcmin$^2$), BlueMUSE will open up a new range of galactic and extragalactic science cases facilitated by its… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13914v2-abstract-full').style.display = 'inline'; document.getElementById('2406.13914v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13914v2-abstract-full" style="display: none;"> BlueMUSE is a blue-optimised, medium spectral resolution, panoramic integral field spectrograph under development for the Very Large Telescope (VLT). With an optimised transmission down to 350 nm, spectral resolution of R$\sim$3500 on average across the wavelength range, and a large FoV (1 arcmin$^2$), BlueMUSE will open up a new range of galactic and extragalactic science cases facilitated by its specific capabilities. The BlueMUSE consortium includes 9 institutes located in 7 countries and is led by the Centre de Recherche Astrophysique de Lyon (CRAL). The BlueMUSE project development is currently in Phase A, with an expected first light at the VLT in 2031. We introduce here the Top Level Requirements (TLRs) derived from the main science cases, and then present an overview of the BlueMUSE system and its subsystems fulfilling these TLRs. We specifically emphasize the tradeoffs that are made and the key distinctions compared to the MUSE instrument, upon which the system architecture is built. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13914v2-abstract-full').style.display = 'none'; document.getElementById('2406.13914v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures, proceedings of the SPIE astronomical telescopes and instrumentation conference, Yokohama, 16-21 June</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12518">arXiv:2405.12518</a> <span> [<a href="https://arxiv.org/pdf/2405.12518">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> WST -- Widefield Spectroscopic Telescope: Motivation, science drivers and top-level requirements for a new dedicated facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/?searchtype=author&query=Maineiri%2C+V">Vincenzo Maineiri</a>, <a href="/search/?searchtype=author&query=Randich%2C+S">Sofia Randich</a>, <a href="/search/?searchtype=author&query=Cimatti%2C+A">Andrea Cimatti</a>, <a href="/search/?searchtype=author&query=Kneib%2C+J">Jean-Paul Kneib</a>, <a href="/search/?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/?searchtype=author&query=Ellis%2C+R">Richard Ellis</a>, <a href="/search/?searchtype=author&query=Tolstoi%2C+E">Eline Tolstoi</a>, <a href="/search/?searchtype=author&query=Smiljanic%2C+R">Rodolfo Smiljanic</a>, <a href="/search/?searchtype=author&query=Hill%2C+V">Vanessa Hill</a>, <a href="/search/?searchtype=author&query=Anderson%2C+R">Richard Anderson</a>, <a href="/search/?searchtype=author&query=Saez%2C+P+S">Paula Sanchez Saez</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Bryson%2C+I">Ian Bryson</a>, <a href="/search/?searchtype=author&query=Dierickx%2C+P">Philippe Dierickx</a>, <a href="/search/?searchtype=author&query=Garilli%2C+B">Bianca Garilli</a>, <a href="/search/?searchtype=author&query=Gonzalez%2C+O">Oscar Gonzalez</a>, <a href="/search/?searchtype=author&query=de+Jong%2C+R">Roelof de Jong</a>, <a href="/search/?searchtype=author&query=Lee%2C+D">David Lee</a>, <a href="/search/?searchtype=author&query=Mieske%2C+S">Steffen Mieske</a>, <a href="/search/?searchtype=author&query=Otarola%2C+A">Angel Otarola</a>, <a href="/search/?searchtype=author&query=Schipani%2C+P">Pietro Schipani</a>, <a href="/search/?searchtype=author&query=Travouillon%2C+T">Tony Travouillon</a>, <a href="/search/?searchtype=author&query=Vernet%2C+J">Joel Vernet</a>, <a href="/search/?searchtype=author&query=Bryant%2C+J">Julia Bryant</a> , et al. (15 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12518v2-abstract-short" style="display: inline;"> In this paper, we describe the wide-field spectroscopic survey telescope (WST) project. WST is a 12-metre wide-field spectroscopic survey telescope with simultaneous operation of a large field-of-view (3 sq. degree), high-multiplex (20,000) multi-object spectrograph (MOS), with both a low and high-resolution modes, and a giant 3x3 arcmin2 integral field spectrograph (IFS). In scientific capability… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12518v2-abstract-full').style.display = 'inline'; document.getElementById('2405.12518v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12518v2-abstract-full" style="display: none;"> In this paper, we describe the wide-field spectroscopic survey telescope (WST) project. WST is a 12-metre wide-field spectroscopic survey telescope with simultaneous operation of a large field-of-view (3 sq. degree), high-multiplex (20,000) multi-object spectrograph (MOS), with both a low and high-resolution modes, and a giant 3x3 arcmin2 integral field spectrograph (IFS). In scientific capability, these specifications place WST far ahead of existing and planned facilities. In only 5 years of operation, the MOS would target 250 million galaxies and 25 million stars at low spectral resolution, plus 2 million stars at high resolution. Without need for pre-imaged targets, the IFS would deliver 4 billion spectra offering many serendipitous discoveries. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work in synergy with future ground and space-based facilities. We show how it can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; the origin of stars and planets; and time domain and multi-messenger astrophysics. WST's uniquely rich dataset may yield unforeseen discoveries in many of these areas. The telescope and instruments are designed as an integrated system and will mostly use existing technology, with the aim to minimise the carbon footprint and environmental impact. We will propose WST as the next European Southern Observatory (ESO) project after completion of the 39-metre ELT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12518v2-abstract-full').style.display = 'none'; document.getElementById('2405.12518v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15644">arXiv:2403.15644</a> <span> [<a href="https://arxiv.org/pdf/2403.15644">pdf</a>, <a href="https://arxiv.org/format/2403.15644">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae881">10.1093/mnras/stae881 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A link between the size and composition of comets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Robinson%2C+J+E">James E. Robinson</a>, <a href="/search/?searchtype=author&query=Malamud%2C+U">Uri Malamud</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Perets%2C+H">Hagai Perets</a>, <a href="/search/?searchtype=author&query=Blum%2C+J">J眉rgen Blum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15644v2-abstract-short" style="display: inline;"> All cometary nuclei that formed in the early Solar System incorporated radionuclides and therefore were subject to internal radiogenic heating. Previous work predicts that if comets have a pebble-pile structure internal temperature build-up is enhanced due to very low thermal conductivity, leading to internal differentiation. An internal thermal gradient causes widespread sublimation and migration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15644v2-abstract-full').style.display = 'inline'; document.getElementById('2403.15644v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15644v2-abstract-full" style="display: none;"> All cometary nuclei that formed in the early Solar System incorporated radionuclides and therefore were subject to internal radiogenic heating. Previous work predicts that if comets have a pebble-pile structure internal temperature build-up is enhanced due to very low thermal conductivity, leading to internal differentiation. An internal thermal gradient causes widespread sublimation and migration of either ice condensates, or gases released from amorphous ice hosts during their crystallisation. Overall, the models predict that the degree of differentiation and re-distribution of volatile species to a shallower near-surface layer depends primarily on nucleus size. Hence, we hypothesise that cometary activity should reveal a correlation between the abundance of volatile species and the size of the nucleus. To explore this hypothesis we have conducted a thorough literature search for measurements of the composition and size of cometary nuclei, compiling these into a unified database. We report a statistically significant correlation between the measured abundance of CO/H$_{2}$O and the size of cometary nuclei. We further recover the measured slope of abundance as a function of size, using a theoretical model based on our previous thermophysical models, invoking re-entrapment of outward migrating high volatility gases in the near-surface pristine amorphous ice layers. This model replicates the observed trend and supports the theory of internal differentiation of cometary nuclei by early radiogenic heating. We make our database available for future studies, and we advocate for collection of more measurements to allow more precise and statistically significant analyses to be conducted in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15644v2-abstract-full').style.display = 'none'; document.getElementById('2403.15644v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 10 figures, published in MNRAS. Minor copyedit changes and updated links to data repositories</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.05398">arXiv:2403.05398</a> <span> [<a href="https://arxiv.org/pdf/2403.05398">pdf</a>, <a href="https://arxiv.org/format/2403.05398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The Wide-field Spectroscopic Telescope (WST) Science White Paper </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Mainieri%2C+V">Vincenzo Mainieri</a>, <a href="/search/?searchtype=author&query=Anderson%2C+R+I">Richard I. Anderson</a>, <a href="/search/?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/?searchtype=author&query=Cimatti%2C+A">Andrea Cimatti</a>, <a href="/search/?searchtype=author&query=Ellis%2C+R+S">Richard S. Ellis</a>, <a href="/search/?searchtype=author&query=Hill%2C+V">Vanessa Hill</a>, <a href="/search/?searchtype=author&query=Kneib%2C+J">Jean-Paul Kneib</a>, <a href="/search/?searchtype=author&query=McLeod%2C+A+F">Anna F. McLeod</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Roth%2C+M+M">Martin M. Roth</a>, <a href="/search/?searchtype=author&query=Sanchez-Saez%2C+P">Paula Sanchez-Saez</a>, <a href="/search/?searchtype=author&query=Smiljanic%2C+R">Rodolfo Smiljanic</a>, <a href="/search/?searchtype=author&query=Tolstoy%2C+E">Eline Tolstoy</a>, <a href="/search/?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/?searchtype=author&query=Randich%2C+S">Sofia Randich</a>, <a href="/search/?searchtype=author&query=Adamo%2C+A">Angela Adamo</a>, <a href="/search/?searchtype=author&query=Annibali%2C+F">Francesca Annibali</a>, <a href="/search/?searchtype=author&query=Arevalo%2C+P">Patricia Arevalo</a>, <a href="/search/?searchtype=author&query=Audard%2C+M">Marc Audard</a>, <a href="/search/?searchtype=author&query=Barsanti%2C+S">Stefania Barsanti</a>, <a href="/search/?searchtype=author&query=Battaglia%2C+G">Giuseppina Battaglia</a>, <a href="/search/?searchtype=author&query=Aran%2C+A+M+B">Amelia M. Bayo Aran</a>, <a href="/search/?searchtype=author&query=Belfiore%2C+F">Francesco Belfiore</a>, <a href="/search/?searchtype=author&query=Bellazzini%2C+M">Michele Bellazzini</a>, <a href="/search/?searchtype=author&query=Bellini%2C+E">Emilio Bellini</a> , et al. (192 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.05398v2-abstract-short" style="display: inline;"> The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05398v2-abstract-full').style.display = 'inline'; document.getElementById('2403.05398v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.05398v2-abstract-full" style="display: none;"> The Wide-field Spectroscopic Telescope (WST) is proposed as a new facility dedicated to the efficient delivery of spectroscopic surveys. This white paper summarises the initial concept as well as the corresponding science cases. WST will feature simultaneous operation of a large field-of-view (3 sq. degree), a high multiplex (20,000) multi-object spectrograph (MOS) and a giant 3x3 sq. arcmin integral field spectrograph (IFS). In scientific capability these requirements place WST far ahead of existing and planned facilities. Given the current investment in deep imaging surveys and noting the diagnostic power of spectroscopy, WST will fill a crucial gap in astronomical capability and work synergistically with future ground and space-based facilities. This white paper shows that WST can address outstanding scientific questions in the areas of cosmology; galaxy assembly, evolution, and enrichment, including our own Milky Way; origin of stars and planets; time domain and multi-messenger astrophysics. WST's uniquely rich dataset will deliver unforeseen discoveries in many of these areas. The WST Science Team (already including more than 500 scientists worldwide) is open to the all astronomical community. To register in the WST Science Team please visit https://www.wstelescope.com/for-scientists/participate <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.05398v2-abstract-full').style.display = 'none'; document.getElementById('2403.05398v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">194 pages, 66 figures. Comments are welcome (wstelescope@gmail.com)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13483">arXiv:2311.13483</a> <span> [<a href="https://arxiv.org/pdf/2311.13483">pdf</a>, <a href="https://arxiv.org/format/2311.13483">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Polarimetry of Didymos-Dimorphos: Unexpected Long-Term Effects of the DART Impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Gray%2C+Z">Zuri Gray</a>, <a href="/search/?searchtype=author&query=Bagnulo%2C+S">Stefano Bagnulo</a>, <a href="/search/?searchtype=author&query=Granvik%2C+M">Mikael Granvik</a>, <a href="/search/?searchtype=author&query=Cellino%2C+A">Alberto Cellino</a>, <a href="/search/?searchtype=author&query=Jones%2C+G+H">Geraint H. Jones</a>, <a href="/search/?searchtype=author&query=Kolokolova%2C+L">Ludmilla Kolokolova</a>, <a href="/search/?searchtype=author&query=Moreno%2C+F">Fernando Moreno</a>, <a href="/search/?searchtype=author&query=Muinonen%2C+K">Karri Muinonen</a>, <a href="/search/?searchtype=author&query=Mu%C3%B1oz%2C+O">Olga Mu帽oz</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Penttil%C3%A4%2C+A">Antti Penttil盲</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13483v1-abstract-short" style="display: inline;"> We have monitored the Didymos-Dimorphos binary system in imaging polarimetric mode before and after the impact from the Double Asteroid Redirection Test (DART) mission. A previous spectropolarimetric study showed that the impact caused a dramatic drop in polarisation. Our longer-term monitoring shows that the polarisation of the post-impact system remains lower than the pre-impact system even mont… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13483v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13483v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13483v1-abstract-full" style="display: none;"> We have monitored the Didymos-Dimorphos binary system in imaging polarimetric mode before and after the impact from the Double Asteroid Redirection Test (DART) mission. A previous spectropolarimetric study showed that the impact caused a dramatic drop in polarisation. Our longer-term monitoring shows that the polarisation of the post-impact system remains lower than the pre-impact system even months after the impact, suggesting that some fresh ejecta material remains in the system at the time of our observations, either in orbit or settled on the surface. The slope of the post-impact polarimetric curve is shallower than that of the pre-impact system, implying an increase in albedo of the system. This suggests that the ejected material is composed of smaller and possibly brighter particles than those present on the pre-impact surface of the asteroid. Our polarimetric maps show that the dust cloud ejected immediately after the impact polarises light in a spatially uniform manner (and at a lower level than pre-impact). Later maps exhibit a gradient in polarisation between the photocentre (which probes the asteroid surface) and the surrounding cloud and tail. The polarisation occasionally shows some small-scale variations, the source of which is not yet clear. The polarimetric phase curve of Didymos-Dimorphos resembles that of the S-type asteroid class. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13483v1-abstract-full').style.display = 'none'; document.getElementById('2311.13483v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in PSJ. 22 pages, 10 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.09977">arXiv:2311.09977</a> <span> [<a href="https://arxiv.org/pdf/2311.09977">pdf</a>, <a href="https://arxiv.org/ps/2311.09977">ps</a>, <a href="https://arxiv.org/format/2311.09977">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> VLT/MUSE Characterisation of Dimorphos Ejecta from the DART Impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Murphy%2C+B+P">Brian P. Murphy</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&query=Chabot%2C+N+L">Nancy L. Chabot</a>, <a href="/search/?searchtype=author&query=Rivkin%2C+A+S">Andrew S. Rivkin</a>, <a href="/search/?searchtype=author&query=Green%2C+S+F">Simon F. Green</a>, <a href="/search/?searchtype=author&query=Guetzoyan%2C+P">Paloma Guetzoyan</a>, <a href="/search/?searchtype=author&query=Gardener%2C+D">Daniel Gardener</a>, <a href="/search/?searchtype=author&query=de+Le%C3%B3n%2C+J">Julia de Le贸n</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.09977v1-abstract-short" style="display: inline;"> We have observed the Didymos-Dimorphos binary system with the MUSE integral field unit spectrograph mounted at the Very Large Telescope (VLT) pre and post-DART impact, and captured the ensuing ejecta cone, debris cloud, and tails at sub-arcsecond resolutions. We targeted the Didymos system over 11 nights from 26 September to 25 October 2022, and utilized both narrow and wide-field observations wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09977v1-abstract-full').style.display = 'inline'; document.getElementById('2311.09977v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.09977v1-abstract-full" style="display: none;"> We have observed the Didymos-Dimorphos binary system with the MUSE integral field unit spectrograph mounted at the Very Large Telescope (VLT) pre and post-DART impact, and captured the ensuing ejecta cone, debris cloud, and tails at sub-arcsecond resolutions. We targeted the Didymos system over 11 nights from 26 September to 25 October 2022, and utilized both narrow and wide-field observations with and without adaptive optics, respectively. We took advantage of the spectral-spatial coupled measurements and produced both white-light images and spectral maps of the dust reflectance. We identified and characterized numerous dust features, such as the ejecta cone, spirals, wings, clumps, and tails. We found that the base of the Sunward edge of the wings, from 03 to 19 October, consistent with maximum grain sizes on the order of 0.05-0.2 mm, and that the earliest detected clumps have the highest velocities on the order of 10 m/s. We also see that three clumps in narrow-field mode (8x8'') exhibit redder colors and slower speeds, around 0.09 m/s, than the surrounding ejecta, likely indicating that the clump is comprised of larger, slower grains. We measured the properties of the primary tail, and resolved and measured the properties of the secondary tail earlier than any other published study, with first retrieval on 03 October. Both tails exhibit similarities in curvature and relative flux, however, the secondary tail appears thinner, which may be caused by lower energy ejecta and possibly a low energy formation mechanism such as secondary impacts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.09977v1-abstract-full').style.display = 'none'; document.getElementById('2311.09977v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures, accepted for publication in the Planetary Science Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05700">arXiv:2311.05700</a> <span> [<a href="https://arxiv.org/pdf/2311.05700">pdf</a>, <a href="https://arxiv.org/format/2311.05700">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Comets $^{12}$CO$^+$ and $^{13}$CO$^+$ fluorescence models for measuring the $^{12}$C/$^{13}$C isotopic ratio in CO$^+$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Rousselot%2C+P">Philippe Rousselot</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">Damien Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">Jean Manfroid</a>, <a href="/search/?searchtype=author&query=Hardy%2C+P">Pierre Hardy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05700v1-abstract-short" style="display: inline;"> Context: CO is an abundant species in comets, creating CO$^+$ ion with emission lines that can be observed in the optical spectral range. A good modeling of its fluorescence spectrum is important for a better measurement of the CO$^+$ abundance. Such a species, if abundant enough, can also be used to measure the $^{12}$C/$^{13}$C isotopic ratio. Aims: This study uses the opportunity of a high CO c… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05700v1-abstract-full').style.display = 'inline'; document.getElementById('2311.05700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05700v1-abstract-full" style="display: none;"> Context: CO is an abundant species in comets, creating CO$^+$ ion with emission lines that can be observed in the optical spectral range. A good modeling of its fluorescence spectrum is important for a better measurement of the CO$^+$ abundance. Such a species, if abundant enough, can also be used to measure the $^{12}$C/$^{13}$C isotopic ratio. Aims: This study uses the opportunity of a high CO content observed in the comet C/2016 R2 (PanSTARRS), that created bright CO$^{+}$ emission lines in the optical range, to build and test a new fluorescence model of this species and to measure for the first time the $^{12}$C/$^{13}$C isotopic ratio in this chemical species with ground-based observations. Methods: Thanks to laboratory data and theoretical works available in the scientific literature we developed a new fluorescence model both for $^{12}$CO$^+$ and $^{13}$CO$^+$ ions. The $^{13}$CO$^+$ model can be used for coadding faint emission lines and obtain a sufficient signal-to-noise ratio to detect this isotopologue. Results: Our fluorescence model provides a good modeling of the $^{12}$CO$^+$ emission lines, allowing to publish revised fluorescence efficiencies. Based on similar transition probabilities for $^{12}$CO$^+$ and $^{13}$CO$^+$ we derive a $^{12}$C/$^{13}$C isotopic ratio of 73$\pm$20 for CO$^+$ in comet C/2016 R2. This value is in agreement with the solar system ratio of 89$\pm$2 within the error bars, making the possibility that this comet was an interstellar object unlikely. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05700v1-abstract-full').style.display = 'none'; document.getElementById('2311.05700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11486">arXiv:2307.11486</a> <span> [<a href="https://arxiv.org/pdf/2307.11486">pdf</a>, <a href="https://arxiv.org/format/2307.11486">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346402">10.1051/0004-6361/202346402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low NH$_{3}$/H$_{2}$O ratio in comet C/2020 F3 (NEOWISE) at 0.7 au from the Sun </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Drozdovskaya%2C+M+N">Maria N. Drozdovskaya</a>, <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">Dominique Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">Jacques Crovisier</a>, <a href="/search/?searchtype=author&query=McGuire%2C+B+A">Brett A. McGuire</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">Nicolas Biver</a>, <a href="/search/?searchtype=author&query=Charnley%2C+S+B">Steven B. Charnley</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11486v1-abstract-short" style="display: inline;"> A lower-than-solar elemental nitrogen content has been demonstrated for several comets, including 1P/Halley and 67P/C-G with independent in situ measurements of volatile and refractory budgets. The recently discovered semi-refractory ammonium salts in 67P/C-G are thought to be the missing nitrogen reservoir in comets. The thermal desorption of ammonium salts from cometary dust particles leads to t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11486v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11486v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11486v1-abstract-full" style="display: none;"> A lower-than-solar elemental nitrogen content has been demonstrated for several comets, including 1P/Halley and 67P/C-G with independent in situ measurements of volatile and refractory budgets. The recently discovered semi-refractory ammonium salts in 67P/C-G are thought to be the missing nitrogen reservoir in comets. The thermal desorption of ammonium salts from cometary dust particles leads to their decomposition into ammonia and a corresponding acid. The NH$_{3}$/H$_{2}$O ratio is expected to increase with decreasing heliocentric distance with evidence for this in near-infrared observations. NH$_{3}$ has been claimed to be more extended than expected for a nuclear source. Here, the aim is to constrain the NH$_{3}$/H$_{2}$O ratio in comet C/2020 F3 (NEOWISE) during its July 2020 passage. OH emission from comet C/2020 F3 (NEOWISE) was monitored for 2 months with NRT and observed from GBT on 24 July and 11 August 2020. Contemporaneously with the 24 July 2020 OH observations, the NH$_{3}$ hyperfine lines were targeted with GBT. The concurrent GBT and NRT observations allowed the OH quenching radius to be determined at $\left(5.96\pm0.10\right)\times10^{4}$ km on 24 July 2020, which is important for accurately deriving $Q(\text{OH})$. C/2020 F3 (NEOWISE) was a highly active comet with $Q(\text{H}_{2}\text{O}) \approx 2\times10^{30}$ molec s$^{-1}$ one day before perihelion. The $3蟽$ upper limit for $Q_{\text{NH}_{3}}/Q_{\text{H}_{2}\text{O}}$ is $<0.29\%$ at $0.7$ au from the Sun. The obtained NH$_{3}$/H$_{2}$O ratio is a factor of a few lower than measurements for other comets at such heliocentric distances. The abundance of NH$_{3}$ may vary strongly with time depending on the amount of water-poor dust in the coma. Lifted dust can be heated, fragmented, and super-heated; whereby, ammonium salts, if present, can rapidly thermally disintegrate and modify the NH$_{3}$/H$_{2}$O ratio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11486v1-abstract-full').style.display = 'none'; document.getElementById('2307.11486v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A; 18 pages, 8 figures, 6 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 677, A157 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.05908">arXiv:2306.05908</a> <span> [<a href="https://arxiv.org/pdf/2306.05908">pdf</a>, <a href="https://arxiv.org/format/2306.05908">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> ALMA Observations of the DART Impact: Characterizing the Ejecta at Sub-Millimeter Wavelengths </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Roth%2C+N+X">Nathan X. Roth</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Remijan%2C+A+J">Anthony J. Remijan</a>, <a href="/search/?searchtype=author&query=Cordiner%2C+M+A">Martin A. Cordiner</a>, <a href="/search/?searchtype=author&query=Busch%2C+M+W">Michael W. Busch</a>, <a href="/search/?searchtype=author&query=Thomas%2C+C+A">Cristina A. Thomas</a>, <a href="/search/?searchtype=author&query=Rivkin%2C+A+S">Andrew S. Rivkin</a>, <a href="/search/?searchtype=author&query=Moullet%2C+A">Arielle Moullet</a>, <a href="/search/?searchtype=author&query=Roush%2C+T+L">Ted L. Roush</a>, <a href="/search/?searchtype=author&query=Siebert%2C+M+A">Mark A. Siebert</a>, <a href="/search/?searchtype=author&query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&query=Fahnestock%2C+E+G">Eugene G. Fahnestock</a>, <a href="/search/?searchtype=author&query=Trigo-Rodriguez%2C+J+M">Josep M. Trigo-Rodriguez</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.05908v2-abstract-short" style="display: inline;"> We report observations of the Didymos-Dimorphos binary asteroid system using the Atacama Large Millimeter/Submillimeter Array (ALMA) and the Atacama Compact Array (ACA) in support of the Double Asteroid Redirection Test (DART) mission. Our observations on UT 2022 September 15 provided a pre-impact baseline and the first measure of Didymos-Dimorphos' spectral emissivity at $位=0.87$ mm, which was co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05908v2-abstract-full').style.display = 'inline'; document.getElementById('2306.05908v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.05908v2-abstract-full" style="display: none;"> We report observations of the Didymos-Dimorphos binary asteroid system using the Atacama Large Millimeter/Submillimeter Array (ALMA) and the Atacama Compact Array (ACA) in support of the Double Asteroid Redirection Test (DART) mission. Our observations on UT 2022 September 15 provided a pre-impact baseline and the first measure of Didymos-Dimorphos' spectral emissivity at $位=0.87$ mm, which was consistent with the handful of siliceous and carbonaceous asteroids measured at millimeter wavelengths. Our post-impact observations were conducted using four consecutive executions each of ALMA and the ACA spanning from T$+$3.52 to T$+$8.60 hours post-impact, sampling thermal emission from the asteroids and the impact ejecta. We scaled our pre-impact baseline measurement and subtracted it from the post-impact observations to isolate the flux density of mm-sized grains in the ejecta. Ejecta dust masses were calculated for a range of materials that may be representative of Dimorphos' S-type asteroid material. The average ejecta mass over our observations is consistent with 1.3--6.4$\times10^7$ kg, with the lower and higher values calculated for amorphous silicates and for crystalline silicates, respectively. Owing to the likely crystalline nature of S-type asteroid material, the higher value is favored. These ejecta masses represent 0.3--1.5\% of Dimorphos' total mass and are in agreement with lower limits on the ejecta mass based on measurements at optical wavelengths. Our results provide the most sensitive measure of mm-sized material in the ejecta and demonstrate the power of ALMA for providing supporting observations to spaceflight missions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.05908v2-abstract-full').style.display = 'none'; document.getElementById('2306.05908v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.01385">arXiv:2305.01385</a> <span> [<a href="https://arxiv.org/pdf/2305.01385">pdf</a>, <a href="https://arxiv.org/format/2305.01385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202345989">10.1051/0004-6361/202345989 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Coma environment of comet C/2017 K2 around the water ice sublimation boundary observed with VLT/MUSE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Kwon%2C+Y+G">Yuna G. Kwon</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Lippi%2C+M">Manuela Lippi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.01385v1-abstract-short" style="display: inline;"> We report a new imaging spectroscopic observation of Oort-cloud comet C/2017 K2 (hereafter K2) on its way to perihelion at 2.53 au, around a heliocentric distance where H2O ice begins to play a key role in comet activation. Normalized reflectances over 6 500--8 500 AA for its inner and outer comae are 9.7+/-0.5 and 7.2+/-0.3 % (10^3 AA)^-1, respectively, the latter being consistent with the slope… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01385v1-abstract-full').style.display = 'inline'; document.getElementById('2305.01385v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.01385v1-abstract-full" style="display: none;"> We report a new imaging spectroscopic observation of Oort-cloud comet C/2017 K2 (hereafter K2) on its way to perihelion at 2.53 au, around a heliocentric distance where H2O ice begins to play a key role in comet activation. Normalized reflectances over 6 500--8 500 AA for its inner and outer comae are 9.7+/-0.5 and 7.2+/-0.3 % (10^3 AA)^-1, respectively, the latter being consistent with the slope observed when the comet was beyond the orbit of Saturn. The dust coma at the time of observation appears to contain three distinct populations: mm-sized chunks prevailing at <~10^3 km; a 10^5-km steady-state dust envelope; and fresh anti-sunward jet particles. the dust chunks dominate the continuum signal and are distributed over a similar radial distance scale as the coma region with redder dust than nearby. they also appear to be co-spatial with OI1D, suggesting that the chunks may accommodate H2O ice with a fraction (>~1 %) of refractory materials. The jet particles do not colocate with any gas species detected. The outer coma spectrum contains three significant emissions from C2(0,0) Swan band, OI1D, and CN(1,0 red band, with an overall deficiency in NH2. Assuming that all OI1D flux results from H2O dissociation, we compute an upper limit on the water production rate Q_H2O of ~7 x 10^28 molec s^-1 (with an uncertainty of a factor of two). the production ratio log[Q_C2/Q_CN] of K2 suggests that the comet has typical carbon-chain composition, with the value potentially changing with distance from the Sun. Our observations suggest that water ice-containing dust chunks (>0.1 mm) near K2's nucleus emitted beyond 4 au may be responsible for its very low gas rotational temperature and the discrepancy between its optical and infrared lights reported at similar heliocentric distances. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.01385v1-abstract-full').style.display = 'none'; document.getElementById('2305.01385v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 674, A206 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.11776">arXiv:2303.11776</a> <span> [<a href="https://arxiv.org/pdf/2303.11776">pdf</a>, <a href="https://arxiv.org/format/2303.11776">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/acb261">10.3847/2041-8213/acb261 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Optical spectropolarimetry of binary asteroid Didymos-Dimorphos before and after the DART impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bagnulo%2C+S">S. Bagnulo</a>, <a href="/search/?searchtype=author&query=Gray%2C+Z">Z. Gray</a>, <a href="/search/?searchtype=author&query=Granvik%2C+M">M. Granvik</a>, <a href="/search/?searchtype=author&query=Cellino%2C+A">A. Cellino</a>, <a href="/search/?searchtype=author&query=Kolokolova%2C+L">L. Kolokolova</a>, <a href="/search/?searchtype=author&query=Muinonen%2C+K">K. Muinonen</a>, <a href="/search/?searchtype=author&query=Munoz%2C+O">O. Munoz</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Penttila%2C+A">A. Penttila</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">C. Snodgrass</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.11776v1-abstract-short" style="display: inline;"> We have monitored the Didymos-Dimorphos binary asteroid in spectropolarimetric mode in the optical range before and after the DART impact. The ultimate goal was to obtain constraints on the characteristics of the ejected dust for modelling purposes. Before impact, Didymos exhibited a linear polarization rapidly increasing with phase angle, reaching a level of about 5% in the blue and about 4.5 in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11776v1-abstract-full').style.display = 'inline'; document.getElementById('2303.11776v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.11776v1-abstract-full" style="display: none;"> We have monitored the Didymos-Dimorphos binary asteroid in spectropolarimetric mode in the optical range before and after the DART impact. The ultimate goal was to obtain constraints on the characteristics of the ejected dust for modelling purposes. Before impact, Didymos exhibited a linear polarization rapidly increasing with phase angle, reaching a level of about 5% in the blue and about 4.5 in the red. The shape of the polarization spectrum was anti-correlated with that of its reflectance spectrum, which appeared typical of an S-class asteroid. After impact, the level of polarization dropped by about 1 percentage point (pp) in the blue band and about 0.5 pp in the red band, then continued to linearly increase with phase angle, with a slope similar to that measured prior to impact. The polarization spectra, once normalised by their values at an arbitrary wavelength, show very little or no change over the course of all observations, before and after impact. The lack of any remarkable change in the shape of the polarization spectrum after impact suggests that the way in which polarization varies with wavelength depends on the composition of the scattering material, rather than on its structure, be this a surface or a debris cloud. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.11776v1-abstract-full').style.display = 'none'; document.getElementById('2303.11776v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJL, in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.02355">arXiv:2303.02355</a> <span> [<a href="https://arxiv.org/pdf/2303.02355">pdf</a>, <a href="https://arxiv.org/format/2303.02355">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acc173">10.3847/1538-4365/acc173 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Tuning the Legacy Survey of Space and Time (LSST) Observing Strategy for Solar System Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Schwamb%2C+M+E">Megan E. Schwamb</a>, <a href="/search/?searchtype=author&query=Jones%2C+R+L">R. Lynne Jones</a>, <a href="/search/?searchtype=author&query=Yoachim%2C+P">Peter Yoachim</a>, <a href="/search/?searchtype=author&query=Volk%2C+K">Kathryn Volk</a>, <a href="/search/?searchtype=author&query=Dorsey%2C+R+C">Rosemary C. Dorsey</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Greenstreet%2C+S">Sarah Greenstreet</a>, <a href="/search/?searchtype=author&query=Lister%2C+T">Tim Lister</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&query=Bolin%2C+B+T">Bryce T. Bolin</a>, <a href="/search/?searchtype=author&query=Inno%2C+L">Laura Inno</a>, <a href="/search/?searchtype=author&query=Bannister%2C+M+T">Michele T. Bannister</a>, <a href="/search/?searchtype=author&query=Eggl%2C+S">Siegfried Eggl</a>, <a href="/search/?searchtype=author&query=Solontoi%2C+M">Michael Solontoi</a>, <a href="/search/?searchtype=author&query=Kelley%2C+M+S+P">Michael S. P. Kelley</a>, <a href="/search/?searchtype=author&query=Juri%C4%87%2C+M">Mario Juri膰</a>, <a href="/search/?searchtype=author&query=Lin%2C+H+W">Hsing Wen Lin</a>, <a href="/search/?searchtype=author&query=Ragozzine%2C+D">Darin Ragozzine</a>, <a href="/search/?searchtype=author&query=Bernardinelli%2C+P+H">Pedro H. Bernardinelli</a>, <a href="/search/?searchtype=author&query=Chesley%2C+S+R">Steven R. Chesley</a>, <a href="/search/?searchtype=author&query=Daylan%2C+T">Tansu Daylan</a>, <a href="/search/?searchtype=author&query=%C4%8Eurech%2C+J">Josef 膸urech</a>, <a href="/search/?searchtype=author&query=Fraser%2C+W+C">Wesley C. Fraser</a>, <a href="/search/?searchtype=author&query=Granvik%2C+M">Mikael Granvik</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a> , et al. (5 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.02355v2-abstract-short" style="display: inline;"> The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multi-band wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over 5 million small bodies.The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02355v2-abstract-full').style.display = 'inline'; document.getElementById('2303.02355v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.02355v2-abstract-full" style="display: none;"> The Vera C. Rubin Observatory is expected to start the Legacy Survey of Space and Time (LSST) in early to mid-2025. This multi-band wide-field synoptic survey will transform our view of the solar system, with the discovery and monitoring of over 5 million small bodies.The final survey strategy chosen for LSST has direct implications on the discoverability and characterization of solar system minor planets and passing interstellar objects. Creating an inventory of the solar system is one of the four main LSST science drivers. The LSST observing cadence is a complex optimization problem that must balance the priorities and needs of all the key LSST science areas. To design the best LSST survey strategy, a series of operation simulations using the Rubin Observatory scheduler have been generated to explore the various options for tuning observing parameters and prioritizations. We explore the impact of the various simulated LSST observing strategies on studying the solar system's small body reservoirs. We examine what are the best observing scenarios and review what are the important considerations for maximizing LSST solar system science. In general, most of the LSST cadence simulations produce +/-5% or less variations in our chosen key metrics, but a subset of the simulations significantly hinder science returns with much larger losses in the discovery and light curve metrics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.02355v2-abstract-full').style.display = 'none'; document.getElementById('2303.02355v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJS, 103 pages (including references), 43 figures, 9 Tables. Videos will be available in the online journal formatted and published version of the paper [v2.0 submission corrects the author list metadata from the arxiv initial submission and updates the abstract]</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.01700">arXiv:2303.01700</a> <span> [<a href="https://arxiv.org/pdf/2303.01700">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41586-023-05811-4">10.1038/s41586-023-05811-4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ejecta from the DART-produced active asteroid Dimorphos </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Li%2C+J">Jian-Yang Li</a>, <a href="/search/?searchtype=author&query=Hirabayashi%2C+M">Masatoshi Hirabayashi</a>, <a href="/search/?searchtype=author&query=Farnham%2C+T+L">Tony L. Farnham</a>, <a href="/search/?searchtype=author&query=Sunshine%2C+J+M">Jessica M. Sunshine</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&query=Tancredi%2C+G">Gonzalo Tancredi</a>, <a href="/search/?searchtype=author&query=Moreno%2C+F">Fernando Moreno</a>, <a href="/search/?searchtype=author&query=Murphy%2C+B">Brian Murphy</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Chesley%2C+S">Steve Chesley</a>, <a href="/search/?searchtype=author&query=Scheeres%2C+D+J">Daniel J. Scheeres</a>, <a href="/search/?searchtype=author&query=Thomas%2C+C+A">Cristina A. Thomas</a>, <a href="/search/?searchtype=author&query=Fahnestock%2C+E+G">Eugene G. Fahnestock</a>, <a href="/search/?searchtype=author&query=Cheng%2C+A+F">Andrew F. Cheng</a>, <a href="/search/?searchtype=author&query=Dressel%2C+L">Linda Dressel</a>, <a href="/search/?searchtype=author&query=Ernst%2C+C+M">Carolyn M. Ernst</a>, <a href="/search/?searchtype=author&query=Ferrari%2C+F">Fabio Ferrari</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Ieva%2C+S">Simone Ieva</a>, <a href="/search/?searchtype=author&query=Ivanovski%2C+S+L">Stavro L. Ivanovski</a>, <a href="/search/?searchtype=author&query=Kareta%2C+T">Teddy Kareta</a>, <a href="/search/?searchtype=author&query=Kolokolova%2C+L">Ludmilla Kolokolova</a>, <a href="/search/?searchtype=author&query=Lister%2C+T">Tim Lister</a>, <a href="/search/?searchtype=author&query=Raducan%2C+S+D">Sabina D. Raducan</a>, <a href="/search/?searchtype=author&query=Rivkin%2C+A+S">Andrew S. Rivkin</a> , et al. (39 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.01700v1-abstract-short" style="display: inline;"> Some active asteroids have been proposed to be the result of impact events. Because active asteroids are generally discovered serendipitously only after their tail formation, the process of the impact ejecta evolving into a tail has never been directly observed. NASA's Double Asteroid Redirection Test (DART) mission, apart from having successfully changed the orbital period of Dimorphos, demonstra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01700v1-abstract-full').style.display = 'inline'; document.getElementById('2303.01700v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.01700v1-abstract-full" style="display: none;"> Some active asteroids have been proposed to be the result of impact events. Because active asteroids are generally discovered serendipitously only after their tail formation, the process of the impact ejecta evolving into a tail has never been directly observed. NASA's Double Asteroid Redirection Test (DART) mission, apart from having successfully changed the orbital period of Dimorphos, demonstrated the activation process of an asteroid from an impact under precisely known impact conditions. Here we report the observations of the DART impact ejecta with the Hubble Space Telescope (HST) from impact time T+15 minutes to T+18.5 days at spatial resolutions of ~2.1 km per pixel. Our observations reveal a complex evolution of ejecta, which is first dominated by the gravitational interaction between the Didymos binary system and the ejected dust and later by solar radiation pressure. The lowest-speed ejecta dispersed via a sustained tail that displayed a consistent morphology with previously observed asteroid tails thought to be produced by impact. The ejecta evolution following DART's controlled impact experiment thus provides a framework for understanding the fundamental mechanisms acting on asteroids disrupted by natural impact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.01700v1-abstract-full').style.display = 'none'; document.getElementById('2303.01700v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by Nature</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.10954">arXiv:2301.10954</a> <span> [<a href="https://arxiv.org/pdf/2301.10954">pdf</a>, <a href="https://arxiv.org/format/2301.10954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244779">10.1051/0004-6361/202244779 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Activity and composition of the hyperactive comet 46P/Wirtanen during its close approach in 2018 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">D. Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Shinnaka%2C+Y">Y. Shinnaka</a>, <a href="/search/?searchtype=author&query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/?searchtype=author&query=Jabiri%2C+A">A. Jabiri</a>, <a href="/search/?searchtype=author&query=Hmiddouch%2C+S">S. Hmiddouch</a>, <a href="/search/?searchtype=author&query=Donckt%2C+M+V">M. Vander Donckt</a>, <a href="/search/?searchtype=author&query=Pozuelos%2C+F+J">F. J. Pozuelos</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">B. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.10954v1-abstract-short" style="display: inline;"> Hyperactive comets are a small group of comets whose activity are higher than expected. They seem to emit more water than they should based on the size of their nucleus and comet 46P/Wirtanen is one of them. Investigating its activity and composition evolution could provide clues about its origins and formation region in the Solar nebulae. Given the exceptional close approach in 2018 of comet 46P… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10954v1-abstract-full').style.display = 'inline'; document.getElementById('2301.10954v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.10954v1-abstract-full" style="display: none;"> Hyperactive comets are a small group of comets whose activity are higher than expected. They seem to emit more water than they should based on the size of their nucleus and comet 46P/Wirtanen is one of them. Investigating its activity and composition evolution could provide clues about its origins and formation region in the Solar nebulae. Given the exceptional close approach in 2018 of comet 46P to the Earth, we aim to study the evolution of its activity and composition as a function of heliocentric distances before and after perihelion. We used both TRAPPIST telescopes to monitor the comet for almost a year with broad-band and narrow-band filters. We derived the production rates of five gaseous species, e.g. OH, NH, CN, C$_3$ and C$_2$, using a Haser model as well as the A($胃$)f$蟻$, dust proxy parameter. The comet was also observed with two optical high resolution spectrographs UVES and ESPRESSO mounted on the 8-m ESO VLT to measure the isotopic ratios of C and N, the oxygen forbidden lines ratios and the NH$_2$ ortho-to-para ratios. We followed during almost a year the rise and decline of the production rates of different species as well as the dust activity of 46P on both pre- and post-perihelion. Relative abundances with respect to CN and OH along the orbit of the comet show constant and symmetric abundance ratios and a typical coma composition. We determined the rotation period of the nucleus using high cadence observations and long series of CN images on several nights, and we obtained a value of (9.18$\pm$0.05) hr at perihelion. Using high resolution spectra of 46P coma, we derived C and N isotopic ratios of 100$\pm$20 and 150$\pm$30 and a green-to-red forbidden oxygen [OI] lines ratio of 0.23$\pm$0.02. We measured a NH$_2$ ortho-to-para ratio of 3.31$\pm$0.03 and derived an ammonia ratio of 1.19$\pm$0.03 corresponding to a spin temperature of 27$\pm$1 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.10954v1-abstract-full').style.display = 'none'; document.getElementById('2301.10954v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 670, A159 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.12791">arXiv:2212.12791</a> <span> [<a href="https://arxiv.org/pdf/2212.12791">pdf</a>, <a href="https://arxiv.org/format/2212.12791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> CUBES: a UV spectrograph for the future </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Covino%2C+S">S. Covino</a>, <a href="/search/?searchtype=author&query=Cristiani%2C+S">S. Cristiani</a>, <a href="/search/?searchtype=author&query=Alcala%27%2C+J+M">J. M. Alcala'</a>, <a href="/search/?searchtype=author&query=Alencar%2C+S+H+P">S. H. P. Alencar</a>, <a href="/search/?searchtype=author&query=Balashev%2C+S+A">S. A. Balashev</a>, <a href="/search/?searchtype=author&query=Barbuy%2C+B">B. Barbuy</a>, <a href="/search/?searchtype=author&query=Bastian%2C+N">N. Bastian</a>, <a href="/search/?searchtype=author&query=Battino%2C+U">U. Battino</a>, <a href="/search/?searchtype=author&query=Bissell%2C+L">L. Bissell</a>, <a href="/search/?searchtype=author&query=Bristow%2C+P">P. Bristow</a>, <a href="/search/?searchtype=author&query=Calcines%2C+A">A. Calcines</a>, <a href="/search/?searchtype=author&query=Calderone%2C+G">G. Calderone</a>, <a href="/search/?searchtype=author&query=Cambianica%2C+P">P. Cambianica</a>, <a href="/search/?searchtype=author&query=Carini%2C+R">R. Carini</a>, <a href="/search/?searchtype=author&query=Carter%2C+B">B. Carter</a>, <a href="/search/?searchtype=author&query=Cassisi%2C+S">S. Cassisi</a>, <a href="/search/?searchtype=author&query=Castilho%2C+B+V">B. V. Castilho</a>, <a href="/search/?searchtype=author&query=Cescutti%2C+G">G. Cescutti</a>, <a href="/search/?searchtype=author&query=Christlieb%2C+N">N. Christlieb</a>, <a href="/search/?searchtype=author&query=Cirami%2C+R">R. Cirami</a>, <a href="/search/?searchtype=author&query=Conzelmann%2C+R">R. Conzelmann</a>, <a href="/search/?searchtype=author&query=Coretti%2C+I">I. Coretti</a>, <a href="/search/?searchtype=author&query=Cooke%2C+R">R. Cooke</a>, <a href="/search/?searchtype=author&query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&query=Cunha%2C+K">K. Cunha</a> , et al. (64 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.12791v1-abstract-short" style="display: inline;"> In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12791v1-abstract-full').style.display = 'inline'; document.getElementById('2212.12791v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.12791v1-abstract-full" style="display: none;"> In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.12791v1-abstract-full').style.display = 'none'; document.getElementById('2212.12791v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings for the HACK100 conference, Trieste, June 2022. arXiv admin note: substantial text overlap with arXiv:2208.01672</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.01435">arXiv:2211.01435</a> <span> [<a href="https://arxiv.org/pdf/2211.01435">pdf</a>, <a href="https://arxiv.org/format/2211.01435">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac3199">10.1093/mnras/stac3199 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Targeted Search for Main Belt Comets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Ferellec%2C+L">L茅a Ferellec</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Ro%C5%BCek%2C+A">Agata Ro偶ek</a>, <a href="/search/?searchtype=author&query=Gardener%2C+D">Daniel Gardener</a>, <a href="/search/?searchtype=author&query=Smith%2C+R">Richard Smith</a>, <a href="/search/?searchtype=author&query=Medeiros%2C+H">Hissa Medeiros</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Hsieh%2C+H+H">Henry H. Hsieh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.01435v1-abstract-short" style="display: inline;"> Main Belt Comets (MBCs) exhibit sublimation-driven activity while occupying asteroid-like orbits in the Main Asteroid Belt. MBCs and candidates show stronger clustering of their longitudes of perihelion around 15掳 than other objects from the Outer Main Belt (OMB). This potential property of MBCs could facilitate the discovery of new candidates by observing objects in similar orbits. We acquired de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01435v1-abstract-full').style.display = 'inline'; document.getElementById('2211.01435v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.01435v1-abstract-full" style="display: none;"> Main Belt Comets (MBCs) exhibit sublimation-driven activity while occupying asteroid-like orbits in the Main Asteroid Belt. MBCs and candidates show stronger clustering of their longitudes of perihelion around 15掳 than other objects from the Outer Main Belt (OMB). This potential property of MBCs could facilitate the discovery of new candidates by observing objects in similar orbits. We acquired deep r-band images of 534 targeted asteroids using the INT/WFC between 2018 and 2020. Our sample is comprised of OMB objects observed near perihelion, with longitudes of perihelion between 0掳 and 30掳 and orbital parameters similar to knowns MBCs. Our pipeline applied activity detection methods to 319 of these objects to look for tails or comae, and we visually inspected the remaining asteroids. Our activity detection pipeline highlighted a faint anti-solar tail-like feature around 2001 NL19 (279870) observed on 2018 November 07, six months after perihelion. This is consistent with cometary activity but additional observations of this object will be needed during its next perihelion to investigate its potential MBC status. If it is active our survey yields a detection rate of $\sim$1:300, which is higher than previous similar surveys, supporting the idea of dynamical clustering of MBCs. If not, it is consistent with previously estimated abundance rates of MBCs in the OMB (<1:500). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.01435v1-abstract-full').style.display = 'none'; document.getElementById('2211.01435v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14849">arXiv:2208.14849</a> <span> [<a href="https://arxiv.org/pdf/2208.14849">pdf</a>, <a href="https://arxiv.org/format/2208.14849">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2091">10.1093/mnras/stac2091 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The N$_2$ Production Rate in Comet C/2016 R2 (PanSTARRS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Anderson%2C+S+E">Sarah E. Anderson</a>, <a href="/search/?searchtype=author&query=Rousselot%2C+P">Philippe Rousselot</a>, <a href="/search/?searchtype=author&query=Noyelles%2C+B">Beno卯t Noyelles</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Hutsemeker%2C+D">Damien Hutsemeker</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">Jean Manfroid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14849v1-abstract-short" style="display: inline;"> Observations of comet C/2016 R2 (PanSTARRS) have revealed exceptionally bright emission bands of N$_2^+$, the strongest ever observed in a comet spectrum. Alternatively, it appears to be poor in CN compared to other comets, and remarkably depleted in H$_2$O. Here we quantify the N$_2$ production rate from N$_2^+$ emission lines using the Haser model. We derived effective parent and daughter scalel… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14849v1-abstract-full').style.display = 'inline'; document.getElementById('2208.14849v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14849v1-abstract-full" style="display: none;"> Observations of comet C/2016 R2 (PanSTARRS) have revealed exceptionally bright emission bands of N$_2^+$, the strongest ever observed in a comet spectrum. Alternatively, it appears to be poor in CN compared to other comets, and remarkably depleted in H$_2$O. Here we quantify the N$_2$ production rate from N$_2^+$ emission lines using the Haser model. We derived effective parent and daughter scalelengths for N2 producing N2+. This is the first direct measurement of such parameters. Using a revised fluorescence efficiency for N2+, the resulting production rate of molecular nitrogen is inferred to be Q(N$_2$) ~ 1 $\times 10^{28}$ molecules.s-1 on average for 11, 12, and 13 Feb. 2018, the highest for any known comet. Based on a CO production rate of Q(CO) ~ 1.1 $\times 10^{29}$ molecules.s-1, we find Q(N$-2$)/Q(CO)~0.09, which is consistent with the N$_2^+$/CO$^+$ ratio derived from the observed intensities of N$_2^+$ and CO$^+$ emission lines. We also measure significant variations in this production rate between our three observing nights, with Q(N$_2$) varying by plus or minus 20% according to the average value <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14849v1-abstract-full').style.display = 'none'; document.getElementById('2208.14849v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 515, Issue 4, October 2022, Pages 5869-5876 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01677">arXiv:2208.01677</a> <span> [<a href="https://arxiv.org/pdf/2208.01677">pdf</a>, <a href="https://arxiv.org/format/2208.01677">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-022-09864-7">10.1007/s10686-022-09864-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The CUBES Science Case </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Evans%2C+C">Chris Evans</a>, <a href="/search/?searchtype=author&query=Cristiani%2C+S">Stefano Cristiani</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Cescutti%2C+G">Gabriele Cescutti</a>, <a href="/search/?searchtype=author&query=D%27Odorico%2C+V">Valentina D'Odorico</a>, <a href="/search/?searchtype=author&query=Alcal%C3%A1%2C+J+M">Juan Manuel Alcal谩</a>, <a href="/search/?searchtype=author&query=Alencar%2C+S+H+P">Silvia H. P. Alencar</a>, <a href="/search/?searchtype=author&query=Balashev%2C+S">Sergei Balashev</a>, <a href="/search/?searchtype=author&query=Barbuy%2C+B">Beatriz Barbuy</a>, <a href="/search/?searchtype=author&query=Bastian%2C+N">Nate Bastian</a>, <a href="/search/?searchtype=author&query=Battino%2C+U">Umberto Battino</a>, <a href="/search/?searchtype=author&query=Cambianica%2C+P">Pamela Cambianica</a>, <a href="/search/?searchtype=author&query=Carini%2C+R">Roberta Carini</a>, <a href="/search/?searchtype=author&query=Carter%2C+B">Brad Carter</a>, <a href="/search/?searchtype=author&query=Cassisi%2C+S">Santi Cassisi</a>, <a href="/search/?searchtype=author&query=Castilho%2C+B+V">Bruno Vaz Castilho</a>, <a href="/search/?searchtype=author&query=Christlieb%2C+N">Norbert Christlieb</a>, <a href="/search/?searchtype=author&query=Cooke%2C+R">Ryan Cooke</a>, <a href="/search/?searchtype=author&query=Covino%2C+S">Stefano Covino</a>, <a href="/search/?searchtype=author&query=Cremonese%2C+G">Gabriele Cremonese</a>, <a href="/search/?searchtype=author&query=Cunha%2C+K">Katia Cunha</a>, <a href="/search/?searchtype=author&query=da+Silva%2C+A+R">Andr茅 R. da Silva</a>, <a href="/search/?searchtype=author&query=D%27Elia%2C+V">Valerio D'Elia</a>, <a href="/search/?searchtype=author&query=De+Cia%2C+A">Annalisa De Cia</a>, <a href="/search/?searchtype=author&query=De+Silva%2C+G">Gayandhi De Silva</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01677v2-abstract-short" style="display: inline;"> We introduce the scientific motivations for the development of the Cassegrain U-Band Efficient Spectrograph (CUBES) that is now in construction for the Very Large Telescope. The assembled cases span a broad range of contemporary topics across Solar System, Galactic and extragalactic astronomy, where observations are limited by the performance of current ground-based spectrographs shortwards of 400… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01677v2-abstract-full').style.display = 'inline'; document.getElementById('2208.01677v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01677v2-abstract-full" style="display: none;"> We introduce the scientific motivations for the development of the Cassegrain U-Band Efficient Spectrograph (CUBES) that is now in construction for the Very Large Telescope. The assembled cases span a broad range of contemporary topics across Solar System, Galactic and extragalactic astronomy, where observations are limited by the performance of current ground-based spectrographs shortwards of 400nm. A brief background to each case is presented and specific technical requirements on the instrument design that flow-down from each case are identified. These were used as inputs to the CUBES design, that will provide a factor of ten gain in efficiency for astronomical spectroscopy over 300-405nm, at resolving powers of R~24,000 and ~7,000. We include performance estimates that demonstrate the ability of CUBES to observe sources that are up to three magnitudes fainter than currently possible at ground-ultraviolet wavelengths, and we place its predicted performance in the context of existing facillities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01677v2-abstract-full').style.display = 'none'; document.getElementById('2208.01677v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Experimental Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.01672">arXiv:2208.01672</a> <span> [<a href="https://arxiv.org/pdf/2208.01672">pdf</a>, <a href="https://arxiv.org/format/2208.01672">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> CUBES, the Cassegrain U-Band Efficient Spectrograph </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Cristiani%2C+S">S. Cristiani</a>, <a href="/search/?searchtype=author&query=Alcal%C3%A1%2C+J+M">J. M. Alcal谩</a>, <a href="/search/?searchtype=author&query=Alencar%2C+S+H+P">S. H. P. Alencar</a>, <a href="/search/?searchtype=author&query=Balashev%2C+S+A">S. A. Balashev</a>, <a href="/search/?searchtype=author&query=Bastian%2C+N">N. Bastian</a>, <a href="/search/?searchtype=author&query=Barbuy%2C+B">B. Barbuy</a>, <a href="/search/?searchtype=author&query=Battino%2C+U">U. Battino</a>, <a href="/search/?searchtype=author&query=Calcines%2C+A">A. Calcines</a>, <a href="/search/?searchtype=author&query=Calderone%2C+G">G. Calderone</a>, <a href="/search/?searchtype=author&query=Cambianica%2C+P">P. Cambianica</a>, <a href="/search/?searchtype=author&query=Carini%2C+R">R. Carini</a>, <a href="/search/?searchtype=author&query=Carter%2C+B">B. Carter</a>, <a href="/search/?searchtype=author&query=Cassisi%2C+S">S. Cassisi</a>, <a href="/search/?searchtype=author&query=Castilho%2C+B+V">B. V. Castilho</a>, <a href="/search/?searchtype=author&query=Cescutti%2C+G">G. Cescutti</a>, <a href="/search/?searchtype=author&query=Christlieb%2C+N">N. Christlieb</a>, <a href="/search/?searchtype=author&query=Cirami%2C+R">R. Cirami</a>, <a href="/search/?searchtype=author&query=Coretti%2C+I">I. Coretti</a>, <a href="/search/?searchtype=author&query=Cooke%2C+R">R. Cooke</a>, <a href="/search/?searchtype=author&query=Covino%2C+S">S. Covino</a>, <a href="/search/?searchtype=author&query=Cremonese%2C+G">G. Cremonese</a>, <a href="/search/?searchtype=author&query=Cunha%2C+K">K. Cunha</a>, <a href="/search/?searchtype=author&query=Cupani%2C+G">G. Cupani</a>, <a href="/search/?searchtype=author&query=da+Silva%2C+A+R">A. R. da Silva</a>, <a href="/search/?searchtype=author&query=De+Caprio%2C+V">V. De Caprio</a> , et al. (52 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.01672v1-abstract-short" style="display: inline;"> In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000 (with a lowe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01672v1-abstract-full').style.display = 'inline'; document.getElementById('2208.01672v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.01672v1-abstract-full" style="display: none;"> In the era of Extremely Large Telescopes, the current generation of 8-10m facilities are likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000 (with a lower-resolution, sky-limited mode of R ~ 7,000). With the design focusing on maximizing the instrument throughput (ensuring a Signal to Noise Ratio (SNR) ~20 per high-resolution element at 313 nm for U ~18.5 mag objects in 1h of observations), it will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the detailed design and construction phase. First science operations are planned for 2028. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.01672v1-abstract-full').style.display = 'none'; document.getElementById('2208.01672v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">SPIE proceedings, SPIE Astronomical Telescopes + Instrumentation 2022, Montr茅al, Canada; 20 pages, 13 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.04800">arXiv:2207.04800</a> <span> [<a href="https://arxiv.org/pdf/2207.04800">pdf</a>, <a href="https://arxiv.org/format/2207.04800">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Chemistry of comet atmospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Biver%2C+N">Nicolas Biver</a>, <a href="/search/?searchtype=author&query=Russo%2C+N+D">Neil Dello Russo</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Rubin%2C+M">Martin Rubin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.04800v1-abstract-short" style="display: inline;"> The composition of cometary ices provides key information on the thermal and chemical properties of the outer parts of the protoplanetary disk where they formed 4.6 Gy ago. This chapter reviews our knowledge of composition of cometary comae based on remote spectroscopy and in-situ investigations techniques. Cometary comae can be dominated by water vapour, CO or CO2. The abundances of several dozen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04800v1-abstract-full').style.display = 'inline'; document.getElementById('2207.04800v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.04800v1-abstract-full" style="display: none;"> The composition of cometary ices provides key information on the thermal and chemical properties of the outer parts of the protoplanetary disk where they formed 4.6 Gy ago. This chapter reviews our knowledge of composition of cometary comae based on remote spectroscopy and in-situ investigations techniques. Cometary comae can be dominated by water vapour, CO or CO2. The abundances of several dozen of molecules, with a growing number of complex organics, have been measured in comets. Many species that are not directly sublimating from the nucleus ices have also been observed and traced out into the coma in order to determine their production mechanisms. Chemical diversity in the comet population and compositional heterogeneity of the coma are discussed. With the completion of the Rosetta mission, isotopic ratios, which hold additional clues on the origin of cometary material, have been measured in several species. Finally, important pending questions (e.g., the nitrogen deficiency in comets) and the need for further work in certain critical areas are discussed in order to answer questions and resolve discrepancies between techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.04800v1-abstract-full').style.display = 'none'; document.getElementById('2207.04800v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">40 pages, 13 figures, 8 tables, Chapter in press for the book Comets III, edited by K. Meech and M. Combi, University of Arizona Press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.09028">arXiv:2206.09028</a> <span> [<a href="https://arxiv.org/pdf/2206.09028">pdf</a>, <a href="https://arxiv.org/format/2206.09028">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> The LCO Outbursting Objects Key Project: Overview and Year 1 Status </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Lister%2C+T">Tim Lister</a>, <a href="/search/?searchtype=author&query=Kelley%2C+M+S+P">Michael S. P. Kelley</a>, <a href="/search/?searchtype=author&query=Holt%2C+C+E">Carrie E. Holt</a>, <a href="/search/?searchtype=author&query=Hsieh%2C+H+H">Henry H. Hsieh</a>, <a href="/search/?searchtype=author&query=Bannister%2C+M+T">Michele T. Bannister</a>, <a href="/search/?searchtype=author&query=Verma%2C+A+A">Aayushi A. Verma</a>, <a href="/search/?searchtype=author&query=Dobson%2C+M+M">Matthew M. Dobson</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Youssef Moulane</a>, <a href="/search/?searchtype=author&query=Schwamb%2C+M+E">Megan E. Schwamb</a>, <a href="/search/?searchtype=author&query=Bodewits%2C+D">Dennis Bodewits</a>, <a href="/search/?searchtype=author&query=Bauer%2C+J">James Bauer</a>, <a href="/search/?searchtype=author&query=Chatelain%2C+J">Joseph Chatelain</a>, <a href="/search/?searchtype=author&query=Fern%C3%A1ndez-Valenzuela%2C+E">Estela Fern谩ndez-Valenzuela</a>, <a href="/search/?searchtype=author&query=Gardener%2C+D">Daniel Gardener</a>, <a href="/search/?searchtype=author&query=Gyuk%2C+G">Geza Gyuk</a>, <a href="/search/?searchtype=author&query=Hammergren%2C+M">Mark Hammergren</a>, <a href="/search/?searchtype=author&query=Huynh%2C+K">Ky Huynh</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Kokotanekova%2C+R">Rosita Kokotanekova</a>, <a href="/search/?searchtype=author&query=Lilly%2C+E">Eva Lilly</a>, <a href="/search/?searchtype=author&query=Hui%2C+M">Man-To Hui</a>, <a href="/search/?searchtype=author&query=McKay%2C+A">Adam McKay</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Protopapa%2C+S">Silvia Protopapa</a> , et al. (10 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.09028v1-abstract-short" style="display: inline;"> The LCO Outbursting Objects Key (LOOK) Project uses the telescopes of the Las Cumbres Observatory (LCO) Network to: (1) to systematically monitor a sample of Dynamically New Comets over the whole sky, and (2) use alerts from existing sky surveys to rapidly respond to and characterize detected outburst activity in all small bodies. The data gathered on outbursts helps to characterize each outburst'… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09028v1-abstract-full').style.display = 'inline'; document.getElementById('2206.09028v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.09028v1-abstract-full" style="display: none;"> The LCO Outbursting Objects Key (LOOK) Project uses the telescopes of the Las Cumbres Observatory (LCO) Network to: (1) to systematically monitor a sample of Dynamically New Comets over the whole sky, and (2) use alerts from existing sky surveys to rapidly respond to and characterize detected outburst activity in all small bodies. The data gathered on outbursts helps to characterize each outburst's evolution with time, assess the frequency and magnitude distribution of outbursts in general, and contributes to the understanding of outburst processes and volatile distribution in the Solar System. The LOOK Project exploits the synergy between current and future wide-field surveys such as ZTF, PanSTARRS, and LSST as well as rapid-response telescope networks such as LCO, and serves as an excellent testbed for what will be needed the much larger number of objects coming from Rubin Observatory. We will describe the LOOK Project goals, the planning and target selection (including the use of NEOexchange as a Target and Observation Manager or "TOM"), and results from the first phase of observations, including the detection of activity and outbursts on the giant comet C/2014 UN271 (Bernardinelli-Bernstein) and the discovery and follow-up of outbursts on comets. Within these outburst discoveries, we present a high cadence of 7P/Pons-Winnecke with days, a large outburst on 57P/duToit-Neujmin-Delporte, and evidence that comet P/2020 X1 (ATLAS) was in outburst when discovered. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.09028v1-abstract-full').style.display = 'none'; document.getElementById('2206.09028v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 11 figures, accepted for publication in PSJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.11425">arXiv:2205.11425</a> <span> [<a href="https://arxiv.org/pdf/2205.11425">pdf</a>, <a href="https://arxiv.org/ps/2205.11425">ps</a>, <a href="https://arxiv.org/format/2205.11425">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243241">10.1051/0004-6361/202243241 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Water, hydrogen cyanide, carbon monoxide, and dust production from distant comet 29P/Schwassmann-Wachmann 1 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bockel%C3%A9e-Morvan%2C+D">D. Bockel茅e-Morvan</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Schambeau%2C+C+A">C. A. Schambeau</a>, <a href="/search/?searchtype=author&query=Crovisier%2C+J">J. Crovisier</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Borro%2C+M+d+V">M. de Val Borro</a>, <a href="/search/?searchtype=author&query=Lellouch%2C+E">E. Lellouch</a>, <a href="/search/?searchtype=author&query=Hartogh%2C+P">P. Hartogh</a>, <a href="/search/?searchtype=author&query=Vandenbussche%2C+B">B. Vandenbussche</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Kidger%2C+M">M. Kidger</a>, <a href="/search/?searchtype=author&query=K%C3%BCppers%2C+M">M. K眉ppers</a>, <a href="/search/?searchtype=author&query=Lis%2C+D+C">D. C. Lis</a>, <a href="/search/?searchtype=author&query=Moreno%2C+R">R. Moreno</a>, <a href="/search/?searchtype=author&query=Szutowicz%2C+S">S. Szutowicz</a>, <a href="/search/?searchtype=author&query=Zakharov%2C+V">V. Zakharov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.11425v2-abstract-short" style="display: inline;"> 29P/Schwassmann-Wachmann 1 is a distant Centaur/comet, showing persistent CO-driven activity and frequent outbursts. We used the Herschel space observatory in 2010, 2011, and 2013 to observe H$_2$O and NH$_3$ and to image the dust coma. Observations with the IRAM 30 m were undertaken in 2007, 2010, 2011, and 2021 to monitor the CO production rate and to search for HCN. Modeling was performed to co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11425v2-abstract-full').style.display = 'inline'; document.getElementById('2205.11425v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.11425v2-abstract-full" style="display: none;"> 29P/Schwassmann-Wachmann 1 is a distant Centaur/comet, showing persistent CO-driven activity and frequent outbursts. We used the Herschel space observatory in 2010, 2011, and 2013 to observe H$_2$O and NH$_3$ and to image the dust coma. Observations with the IRAM 30 m were undertaken in 2007, 2010, 2011, and 2021 to monitor the CO production rate and to search for HCN. Modeling was performed to constrain the size of the sublimating icy grains and to derive the dust production rate. HCN is detected for the first time in comet 29P (at 5$蟽$ in the line area). H$_2$O is detected as well, but not NH$_3$. H$_2$O and HCN line shapes differ strongly from the CO line shape, indicating that these two species are released from icy grains. CO production rates are in the range (2.9-5.6) $\times$ 10$^{28}$ s$^{-1}$ (1400--2600 kg s$^{-1}$). A correlation between the CO production rate and coma brightness is observed, as is a correlation between CO and H$_2$O production. The correlation obtained between the excess of CO production and excess of dust brightness with respect to the quiescent state is similar to that established for the continuous activity of comet Hale-Bopp. The measured $Q$(H$_2$O)/$Q$(CO) and $Q$(HCN)/$Q$(CO) production rate ratios are 10.0 $\pm$ 1.5 % and 0.12 $\pm$ 0.03 %, respectively, averaging the April-May 2010 measurements ($Q$(H$_2$O) = (4.1 $\pm$ 0.6) $\times$ 10$^{27}$ s$^{-1}$, $Q$(HCN) = (4.8 $\pm$ 1.1) $\times$ 10$^{25}$ s$^{-1}$). We derive three independent and similar values of the effective radius of the nucleus, $\sim$ 31 $\pm$ 3 km. The inferred dust mass-loss rates during quiescent phases are in the range 30-120 kg s$^{-1}$, indicating a dust-to-gas mass ratio $<$ 0.1 during quiescent activity. We conclude that strong local heterogeneities exist on the surface of 29P, with quenched dust activity from most of the surface, but not in outbursting regions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.11425v2-abstract-full').style.display = 'none'; document.getElementById('2205.11425v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 15 figures, A&A in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15579">arXiv:2203.15579</a> <span> [<a href="https://arxiv.org/pdf/2203.15579">pdf</a>, <a href="https://arxiv.org/format/2203.15579">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-022-09853-w">10.1007/s10686-022-09853-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cometary science with CUBES </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&query=La+Forgia%2C+F">Fiorangela La Forgia</a>, <a href="/search/?searchtype=author&query=Evans%2C+C">Chris Evans</a>, <a href="/search/?searchtype=author&query=Cambianica%2C+P">Pamela Cambianica</a>, <a href="/search/?searchtype=author&query=Cremonese%2C+G">Gabriele Cremonese</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Lazzarin%2C+M">Monica Lazzarin</a>, <a href="/search/?searchtype=author&query=Migliorini%2C+A">Alessandra Migliorini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15579v1-abstract-short" style="display: inline;"> The proposed CUBES spectrograph for ESO's Very Large Telescope will be an exceptionally powerful instrument for the study of comets. The gas coma of a comet contains a large number of emission features in the near-UV range covered by CUBES (305-400 nm), which are diagnostic of the composition of the ices in its nucleus and the chemistry in the coma. Production rates and relative ratios between dif… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15579v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15579v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15579v1-abstract-full" style="display: none;"> The proposed CUBES spectrograph for ESO's Very Large Telescope will be an exceptionally powerful instrument for the study of comets. The gas coma of a comet contains a large number of emission features in the near-UV range covered by CUBES (305-400 nm), which are diagnostic of the composition of the ices in its nucleus and the chemistry in the coma. Production rates and relative ratios between different species reveal how much ice is present and inform models of the conditions in the early solar system. In particular, CUBES will lead to advances in detection of water from very faint comets, revealing how much ice may be hidden in the main asteroid belt, and in measuring isotopic and molecular composition ratios in a much wider range of comets than currently possible, provide constraints on their formation temperatures. CUBES will also be sensitive to emissions from gaseous metals (e.g., FeI and NiI), which have recently been identified in comets and offer an entirely new area of investigation to understand these enigmatic objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15579v1-abstract-full').style.display = 'none'; document.getElementById('2203.15579v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Experimental Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15352">arXiv:2203.15352</a> <span> [<a href="https://arxiv.org/pdf/2203.15352">pdf</a>, <a href="https://arxiv.org/format/2203.15352">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10686-022-09837-w">10.1007/s10686-022-09837-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CUBES Phase A design overview -- The Cassegrain U-Band Efficient Spectrograph for the Very Large Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Zanutta%2C+A">Alessio Zanutta</a>, <a href="/search/?searchtype=author&query=Cristiani%2C+S">Stefano Cristiani</a>, <a href="/search/?searchtype=author&query=Atkinson%2C+D">David Atkinson</a>, <a href="/search/?searchtype=author&query=Baldini%2C+V">Veronica Baldini</a>, <a href="/search/?searchtype=author&query=Balestra%2C+A">Andrea Balestra</a>, <a href="/search/?searchtype=author&query=Barbuy%2C+B">Beatriz Barbuy</a>, <a href="/search/?searchtype=author&query=Macanhan%2C+V+B+P">Vanessa Bawden P. Macanhan</a>, <a href="/search/?searchtype=author&query=Calcines%2C+A">Ariadna Calcines</a>, <a href="/search/?searchtype=author&query=Calderone%2C+G">Giorgio Calderone</a>, <a href="/search/?searchtype=author&query=Case%2C+S">Scott Case</a>, <a href="/search/?searchtype=author&query=Castilho%2C+B+V">Bruno V. Castilho</a>, <a href="/search/?searchtype=author&query=Cescutti%2C+G">Gabriele Cescutti</a>, <a href="/search/?searchtype=author&query=Cirami%2C+R">Roberto Cirami</a>, <a href="/search/?searchtype=author&query=Coretti%2C+I">Igor Coretti</a>, <a href="/search/?searchtype=author&query=Covino%2C+S">Stefano Covino</a>, <a href="/search/?searchtype=author&query=Cupani%2C+G">Guido Cupani</a>, <a href="/search/?searchtype=author&query=De+Caprio%2C+V">Vincenzo De Caprio</a>, <a href="/search/?searchtype=author&query=Dekker%2C+H">Hans Dekker</a>, <a href="/search/?searchtype=author&query=Di+Marcantonio%2C+P">Paolo Di Marcantonio</a>, <a href="/search/?searchtype=author&query=D%27Odorico%2C+V">Valentina D'Odorico</a>, <a href="/search/?searchtype=author&query=Ernandes%2C+H">Heitor Ernandes</a>, <a href="/search/?searchtype=author&query=Evans%2C+C">Chris Evans</a>, <a href="/search/?searchtype=author&query=Feger%2C+T">Tobias Feger</a>, <a href="/search/?searchtype=author&query=Feiz%2C+C">Carmen Feiz</a>, <a href="/search/?searchtype=author&query=Franchini%2C+M">Mariagrazia Franchini</a> , et al. (29 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15352v1-abstract-short" style="display: inline;"> We present the baseline conceptual design of the Cassegrain U-Band Efficient Spectrograph (CUBES) for the Very Large Telescope. CUBES will provide unprecedented sensitivity for spectroscopy on a 8 - 10 m class telescope in the ground ultraviolet (UV), spanning a bandwidth of > 100 nm that starts at 300 nm, the shortest wavelength accessible from the ground. The design has been optimized for end-to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15352v1-abstract-full').style.display = 'inline'; document.getElementById('2203.15352v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15352v1-abstract-full" style="display: none;"> We present the baseline conceptual design of the Cassegrain U-Band Efficient Spectrograph (CUBES) for the Very Large Telescope. CUBES will provide unprecedented sensitivity for spectroscopy on a 8 - 10 m class telescope in the ground ultraviolet (UV), spanning a bandwidth of > 100 nm that starts at 300 nm, the shortest wavelength accessible from the ground. The design has been optimized for end-to-end efficiency and provides a spectral resolving power of R > 20000, that will unlock a broad range of new topics across solar system, Galactic and extraglactic astronomy. The design also features a second, lower-resolution (R \sim 7000) mode and has the option of a fiberlink to the UVES instrument for simultaneous observations at longer wavelengths. Here we present the optical, mechanical and software design of the various subsystems of the instrument after the Phase A study of the project. We discuss the expected performances for the layout choices and highlight some of the performance trade-offs considered to best meet the instrument top-level requirements. We also introduce the model-based system engineering approach used to organize and manage the project activities and interfaces, in the context that it is increasingly necessary to integrate such tools in the development of complex astronomical projects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15352v1-abstract-full').style.display = 'none'; document.getElementById('2203.15352v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Experimental Astronomy</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.05932">arXiv:2107.05932</a> <span> [<a href="https://arxiv.org/pdf/2107.05932">pdf</a>, <a href="https://arxiv.org/format/2107.05932">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141554">10.1051/0004-6361/202141554 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> FeI and NiI in cometary atmospheres. Connections between the NiI/FeI abundance ratio and chemical characteristics of Jupiter-family and Oort-cloud comets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">Damien Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">Jean Manfroid</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Youssef Moulane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.05932v1-abstract-short" style="display: inline;"> FeI and NiI emission lines have recently been found in the spectra of 17 Solar System comets observed at heliocentric distances between 0.68 and 3.25 au and in the interstellar comet 2I/Borisov. The blackbody equilibrium temperature at the nucleus surface is too low to vaporize the refractory dust grains that contain metals, making the presence of iron and nickel atoms in cometary atmospheres a pu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05932v1-abstract-full').style.display = 'inline'; document.getElementById('2107.05932v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.05932v1-abstract-full" style="display: none;"> FeI and NiI emission lines have recently been found in the spectra of 17 Solar System comets observed at heliocentric distances between 0.68 and 3.25 au and in the interstellar comet 2I/Borisov. The blackbody equilibrium temperature at the nucleus surface is too low to vaporize the refractory dust grains that contain metals, making the presence of iron and nickel atoms in cometary atmospheres a puzzling observation. Moreover, the measured NiI/FeI abundance ratio is on average one order of magnitude larger than the solar photosphere value. We report new measurements of FeI and NiI production rates and abundance ratios for the Jupiter-family comet (JFC) 46P/Wirtanen in its 2018 apparition and from archival data of the Oort-cloud comet (OCC) C/1996 B2 (Hyakutake). The comets were at geocentric distances of 0.09 au and 0.11 au, respectively. The emission line surface brightness was found to be inversely proportional to the projected distance to the nucleus, confirming that FeI and NiI atoms are ejected from the surface of the nucleus or originate from a short-lived parent. Considering the full sample of 20 comets, we find that the range of NiI/FeI abundance ratios is significantly larger in JFCs than in OCCs. We also unveil significant correlations between NiI/FeI and C$_2$/CN, C$_2$H$_6$/H$_2$O, and NH/CN. Carbon-chain- and NH-depleted comets show the highest NiI/FeI ratios. The existence of such relations suggests that the diversity of NiI/FeI abundance ratios in comets could be related to the cometary formation rather than to subsequent processes~in~the~coma. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.05932v1-abstract-full').style.display = 'none'; document.getElementById('2107.05932v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 652, L1 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.04431">arXiv:2106.04431</a> <span> [<a href="https://arxiv.org/pdf/2106.04431">pdf</a>, <a href="https://arxiv.org/format/2106.04431">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202141245">10.1051/0004-6361/202141245 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The similarity of the interstellar comet 2I/Borisov to solar system comets from high resolution optical spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">D. Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Shinnaka%2C+Y">Y. Shinnaka</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a>, <a href="/search/?searchtype=author&query=Rousselot%2C+P">P. Rousselot</a>, <a href="/search/?searchtype=author&query=Raghuram%2C+S">S. Raghuram</a>, <a href="/search/?searchtype=author&query=Kawakita%2C+H">H. Kawakita</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">A. Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Meech%2C+K">K. Meech</a>, <a href="/search/?searchtype=author&query=Micheli%2C+M">M. Micheli</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">B. Yang</a>, <a href="/search/?searchtype=author&query=Hainaut%2C+O">O. Hainaut</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.04431v1-abstract-short" style="display: inline;"> 2I/Borisov - hereafter 2I - is the first visibly active interstellar comet observed in the solar system, allowing us for the first time to sample the composition of a building block from another system. We report on the monitoring of 2I with UVES, the high resolution optical spectrograph of the ESO Very Large Telescope at Paranal, during four months from November 15, 2019 to March 16, 2020. Our go… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04431v1-abstract-full').style.display = 'inline'; document.getElementById('2106.04431v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.04431v1-abstract-full" style="display: none;"> 2I/Borisov - hereafter 2I - is the first visibly active interstellar comet observed in the solar system, allowing us for the first time to sample the composition of a building block from another system. We report on the monitoring of 2I with UVES, the high resolution optical spectrograph of the ESO Very Large Telescope at Paranal, during four months from November 15, 2019 to March 16, 2020. Our goal is to characterize the activity and composition of 2I with respect to solar system comets. We collected high resolution spectra at 12 different epochs from 2.1 au pre-perihelion to 2.6 au post perihelion. On December 24 and 26, 2019, close to perihelion, we detected several OH lines of the 309 nm (0-0) band and derived a water production rate of $2.2\pm0.2 \times 10^{26}$ molecules/s. The three [OI] forbidden oxygen lines were detected at different epochs and we derive a green-to-red doublet intensity ratio (G/R) of $0.31\pm0.05$ close to perihelion. NH$_2$ ortho and para lines from various bands were measured and allowed us to derive an ortho-to-para ratio (OPR) of $3.21\pm0.15$, corresponding to an OPR and spin temperature of ammonia of $1.11\pm0.08$ and $31^{+10}_{-5}$ K, respectively. These values are consistent with the values usually measured for solar system comets. Emission lines of the radicals NH (336 nm), CN (388 nm), CH (431 nm), and C$_2$ (517 nm) were also detected. Several FeI and NiI lines were identified and their intensities were measured to provide a ratio of log (NiI/FeI) = $0.21\pm0.18$ in agreement with the value recently found in solar system comets. Our high spectral resolution observations of 2I/Borisov and the associated measurements of the NH$_2$ OPR and the Ni/Fe abundance ratio are remarkably similar to solar system comets. Only the G/R ratio is unusually high but consistent with the high abundance ratio of CO/H$_2$O found by other investigators. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.04431v1-abstract-full').style.display = 'none'; document.getElementById('2106.04431v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.04611">arXiv:2012.04611</a> <span> [<a href="https://arxiv.org/pdf/2012.04611">pdf</a>, <a href="https://arxiv.org/format/2012.04611">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3885">10.1093/mnras/staa3885 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A physico-chemical model to study the ion densitydistribution in the inner coma of comet C/2016 R2(Pan-STARRS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Raghuram%2C+S">Susarla Raghuram</a>, <a href="/search/?searchtype=author&query=Bhardwaj%2C+A">Anil Bhardwaj</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">Damien Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">Jean Manfroid</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.04611v1-abstract-short" style="display: inline;"> The recent observations show that comet C/2016 R2 (Pan-Starrs) has a unique and peculiar composition when compared with several other comets observed at 2.8 au heliocentric distance. Assuming solar resonance fluorescence is the only excitation source, the observed ionic emission intensity ratios are used to constrain the corresponding neutral abundances in this comet. We developed a physico-chemic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04611v1-abstract-full').style.display = 'inline'; document.getElementById('2012.04611v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.04611v1-abstract-full" style="display: none;"> The recent observations show that comet C/2016 R2 (Pan-Starrs) has a unique and peculiar composition when compared with several other comets observed at 2.8 au heliocentric distance. Assuming solar resonance fluorescence is the only excitation source, the observed ionic emission intensity ratios are used to constrain the corresponding neutral abundances in this comet. We developed a physico-chemical model to study the ion density distribution in the inner coma of this comet by accounting for photon and electron impact ionization of neutrals, charge exchange and proton transfer reactions between ions and neutrals, and electron-ion thermal recombination reactions. Our calculations show that CO2+ and CO+ are the major ions in the inner coma, and close to the surface of nucleus CH3OH+, CH3OH2+ and O2+ are also important ions. By considering various excitation sources, we also studied the emission mechanisms of different excited states of CO+, CO2+, N2+, and H2O+. We found that the photon and electron impact ionization and excitation of corresponding neutrals significantly contribute to the observed ionic emissions for radial distances smaller than 300 km and at larger distances, solar resonance fluorescence is the major excitation source. Our modelled ion emission intensity ratios are consistent with the ground-based observations. Based on the modelled emission processes, we suggest that the observed ion emission intensity ratios can be used to derive the neutral composition in the cometary coma only when the ion densities are significantly controlled by photon and photoelectron impact ionization of neutrals rather than by the ion-neutral chemistry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.04611v1-abstract-full').style.display = 'none'; document.getElementById('2012.04611v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 16 figures, 5 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.05064">arXiv:2010.05064</a> <span> [<a href="https://arxiv.org/pdf/2010.05064">pdf</a>, <a href="https://arxiv.org/format/2010.05064">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202039017">10.1051/0004-6361/202039017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> MUSE observations of comet 67P/Churyumov-Gerasimenko: A reference for future comet observations with MUSE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Guilbert-Lepoutre%2C+A">A. Guilbert-Lepoutre</a>, <a href="/search/?searchtype=author&query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">B. Yang</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">C. Snodgrass</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.05064v1-abstract-short" style="display: inline;"> Observations of comet 67P/Churyumov-Gerasimenko were performed with MUSE at large heliocentric distances post-perihelion, between March 3 and 7, 2016. Those observations were part of a simultaneous ground-based campaign aimed at providing large-scale information about comet 67P that complement the ESA/Rosetta mission. We obtained a total of 38 datacubes over 5 nights. We take advantage of the inte… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05064v1-abstract-full').style.display = 'inline'; document.getElementById('2010.05064v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.05064v1-abstract-full" style="display: none;"> Observations of comet 67P/Churyumov-Gerasimenko were performed with MUSE at large heliocentric distances post-perihelion, between March 3 and 7, 2016. Those observations were part of a simultaneous ground-based campaign aimed at providing large-scale information about comet 67P that complement the ESA/Rosetta mission. We obtained a total of 38 datacubes over 5 nights. We take advantage of the integral field unit (IFU) nature of the instrument to study simultaneously the spectrum of 67P's dust and its spatial distribution in the coma. We also look for evidence of gas emission in the coma. We produce a high quality spectrum of the dust coma over the optical range that could be used as a reference for future comet observations with the instrument. The slope of the dust reflectivity is of 10%$/100$ nm over the 480-900 nm interval, with a shallower slope towards redder wavelengths. We use the $\mathrm{Af蟻}$ to quantify the dust production and measure values of 65$\pm$4 cm, 75$\pm$4 cm, and 82$\pm$4 cm in the V, R, and I bands respectively. We detect several jets in the coma, as well as the dust trail. Finally, using a novel method combining spectral and spatial information, we detect the forbidden oxygen emission line at 630 nm. Using this line we derive a water production rate of $1.5\pm0.6 \times 10^{26} \mathrm{molec./s}$, assuming all oxygen atoms come from the photo-dissociation of water. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.05064v1-abstract-full').style.display = 'none'; document.getElementById('2010.05064v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy and Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 644, A143 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09155">arXiv:2007.09155</a> <span> [<a href="https://arxiv.org/pdf/2007.09155">pdf</a>, <a href="https://arxiv.org/format/2007.09155">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/aba6a0">10.1088/1538-3873/aba6a0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exocomets from a Solar System Perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Str%C3%B8m%2C+P+A">Paul A. Str酶m</a>, <a href="/search/?searchtype=author&query=Bodewits%2C+D">Dennis Bodewits</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&query=Kiefer%2C+F">Flavien Kiefer</a>, <a href="/search/?searchtype=author&query=Jones%2C+G+H">Geraint H. Jones</a>, <a href="/search/?searchtype=author&query=Kral%2C+Q">Quentin Kral</a>, <a href="/search/?searchtype=author&query=Matr%C3%A0%2C+L">Luca Matr脿</a>, <a href="/search/?searchtype=author&query=Bodman%2C+E">Eva Bodman</a>, <a href="/search/?searchtype=author&query=Capria%2C+M+T">Maria Teresa Capria</a>, <a href="/search/?searchtype=author&query=Cleeves%2C+I">Ilsedore Cleeves</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Haghighipour%2C+N">Nader Haghighipour</a>, <a href="/search/?searchtype=author&query=Harrison%2C+J+H+D">John H. D. Harrison</a>, <a href="/search/?searchtype=author&query=Iglesias%2C+D">Daniela Iglesias</a>, <a href="/search/?searchtype=author&query=Kama%2C+M">Mihkel Kama</a>, <a href="/search/?searchtype=author&query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/?searchtype=author&query=Majumdar%2C+L">Liton Majumdar</a>, <a href="/search/?searchtype=author&query=de+Mooij%2C+E+J+W">Ernst J. W. de Mooij</a>, <a href="/search/?searchtype=author&query=Milam%2C+S+N">Stefanie N. Milam</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Rebollido%2C+I">Isabel Rebollido</a>, <a href="/search/?searchtype=author&query=Rogers%2C+L+K">Laura K. Rogers</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&query=Sousa-Silva%2C+C">Clara Sousa-Silva</a>, <a href="/search/?searchtype=author&query=Xu%2C+S">Siyi Xu</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09155v1-abstract-short" style="display: inline;"> Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris disks. As (exo)comets are considered to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09155v1-abstract-full').style.display = 'inline'; document.getElementById('2007.09155v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09155v1-abstract-full" style="display: none;"> Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris disks. As (exo)comets are considered to contain the most pristine material accessible in stellar systems, they hold the potential to give us information about early stage formation and evolution conditions of extra Solar Systems. In the Solar System, comets carry the physical and chemical memory of the protoplanetary disk environment where they formed, providing relevant information on processes in the primordial solar nebula. The aim of this paper is to compare essential compositional properties between Solar System comets and exocomets. The paper aims to highlight commonalities and to discuss differences which may aid the communication between the involved research communities and perhaps also avoid misconceptions. Exocomets likely vary in their composition depending on their formation environment like Solar System comets do, and since exocomets are not resolved spatially, they pose a challenge when comparing them to high fidelity observations of Solar System comets. Observations of gas around main sequence stars, spectroscopic observations of "polluted" white dwarf atmospheres and spectroscopic observations of transiting exocomets suggest that exocomets may show compositional similarities with Solar System comets. The recent interstellar visitor 2I/Borisov showed gas, dust and nuclear properties similar to that of Solar System comets. This raises the tantalising prospect that observations of interstellar comets may help bridge the fields of exocomet and Solar System comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09155v1-abstract-full').style.display = 'none'; document.getElementById('2007.09155v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 3 figures. To be published in PASP. This paper is the product of a workshop at the Lorentz Centre in Leiden, the Netherlands</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.05017">arXiv:2006.05017</a> <span> [<a href="https://arxiv.org/pdf/2006.05017">pdf</a>, <a href="https://arxiv.org/format/2006.05017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202037997">10.1051/0004-6361/202037997 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photometry and high-resolution spectroscopy of comet 21P/Giacobini-Zinner during its 2018 apparition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Rousselot%2C+P">P. Rousselot</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a>, <a href="/search/?searchtype=author&query=Shinnaka%2C+Y">Y. Shinnaka</a>, <a href="/search/?searchtype=author&query=Pozuelos%2C+F+J">F. J. Pozuelos</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">D. Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">B. Yang</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.05017v1-abstract-short" style="display: inline;"> We report on photometry and high resolution spectroscopy of the chemically peculiar Jupiter-family Comet (hereafter JFC) 21P/Giacobini-Zinner. Comet 21P is a well known member of the carbon-chain depleted family but displays also a depletion of amines. We monitored continuously the comet over more than seven months with the two TRAPPIST telescopes (TN and TS), covering a large heliocentric distanc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05017v1-abstract-full').style.display = 'inline'; document.getElementById('2006.05017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.05017v1-abstract-full" style="display: none;"> We report on photometry and high resolution spectroscopy of the chemically peculiar Jupiter-family Comet (hereafter JFC) 21P/Giacobini-Zinner. Comet 21P is a well known member of the carbon-chain depleted family but displays also a depletion of amines. We monitored continuously the comet over more than seven months with the two TRAPPIST telescopes (TN and TS), covering a large heliocentric distance range from 1.60 au inbound to 2.10 au outbound with a perihelion at 1.01 au on September 10, 2018. We computed and followed the evolution of the dust (represented by Af$蟻$) and gas production rates of the daughter species OH, NH, CN, C$_3$, and C$_2$ and their relative abundances to OH and to CN over the comet orbit. We compared them to those measured in the previous apparitions. The activity of the comet and its water production rate reached a maximum of (3.72$\pm$0.07)$\times$10$^{28}$ molec/s on August 17, 2018 (r$_h$=1.07 au), 24 days before perihelion. The peak value of A(0)f$蟻$ was reached on the same date (1646$\pm$13) cm in the red filter. The abundance ratios of the various species are remarkably constant over a large range of heliocentric distances, before and after perihelion, showing a high level of homogeneity of the ices in the surface of the nucleus. The behaviour and level of the activity of the comet is also remarkably similar over the last five orbits. About the coma dust colour, 21P shows reflectively gradients similar to JFCs. We obtained a high resolution spectrum of 21P with UVES at ESO VLT one week after perihelion. Using the CN B-X (0,0) violet band, we measured $^{12}$C/$^{13}$C and $^{14}$N/$^{15}$N isotopic ratios of 100$\pm$10 and 145$\pm$10, respectively, both in very good agreement with what is usually found in comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05017v1-abstract-full').style.display = 'none'; document.getElementById('2006.05017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures, Accepted for publication in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 640, A54 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.11605">arXiv:2001.11605</a> <span> [<a href="https://arxiv.org/pdf/2001.11605">pdf</a>, <a href="https://arxiv.org/format/2001.11605">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Interstellar comet 2I/Borisov as seen by MUSE: C$_2$, NH$_2$ and red CN detections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Bannister%2C+M+T">Michele T. Bannister</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Youssef Moulane</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Seligman%2C+D">Darryl Seligman</a>, <a href="/search/?searchtype=author&query=Rousselot%2C+P">Philippe Rousselot</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&query=Marsset%2C+M">Michael Marsset</a>, <a href="/search/?searchtype=author&query=Schwamb%2C+M+E">Megan E. Schwamb</a>, <a href="/search/?searchtype=author&query=Guilbert-Lepoutre%2C+A">Aur茅lie Guilbert-Lepoutre</a>, <a href="/search/?searchtype=author&query=Jorda%2C+L">Laurent Jorda</a>, <a href="/search/?searchtype=author&query=Vernazza%2C+P">Pierre Vernazza</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Zouhair Benkhaldoun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.11605v1-abstract-short" style="display: inline;"> We report the clear detection of C$_2$ and of abundant NH$_2$ in the first prominently active interstellar comet, 2I/Borisov. We observed 2I on three nights in November 2019 at optical wavelengths 4800--9300 脜with the Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectrograph on the ESO/Very Large Telescope. These data, together with observations close in time from both 0.6-m TRAPPIST te… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11605v1-abstract-full').style.display = 'inline'; document.getElementById('2001.11605v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.11605v1-abstract-full" style="display: none;"> We report the clear detection of C$_2$ and of abundant NH$_2$ in the first prominently active interstellar comet, 2I/Borisov. We observed 2I on three nights in November 2019 at optical wavelengths 4800--9300 脜with the Multi-Unit Spectroscopic Explorer (MUSE) integral-field spectrograph on the ESO/Very Large Telescope. These data, together with observations close in time from both 0.6-m TRAPPIST telescopes, provide constraints on the production rates of species of gas in 2I's coma. From the MUSE detection on all epochs of several bands of the optical emission of the C$_2$ Swan system, a rich emission spectrum of NH$_2$ with many highly visible bands, and the red (1-0) bandhead of CN, together with violet CN detections by TRAPPIST, we infer production rates of $Q$(C$_2$) = $1.1\times10^{24}$ mol s$^{-1}$, $Q$(NH$_2$) = $4.8\times10^{24}$ mol s$^{-1}$ and $Q$(CN) = $(1.8\pm0.2)\times 10^{24}$ mol s$^{-1}$. In late November at 2.03~au, 2I had a production ratio of C$_2$/CN$=0.61$, only barely carbon-chain depleted, in contrast to earlier reports measured further from the Sun of strong carbon-chain depletion. Thus, 2I has shown evolution in its C$_2$ production rate: a parent molecule reservoir has started sublimating. At $Q$(NH$_2$)/$Q$(CN) = 2.7, this second interstellar object is enriched in NH$_2$, relative to the known Solar System sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.11605v1-abstract-full').style.display = 'none'; document.getElementById('2001.11605v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures. Submitted to AAS Journals</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.03315">arXiv:2001.03315</a> <span> [<a href="https://arxiv.org/pdf/2001.03315">pdf</a>, <a href="https://arxiv.org/format/2001.03315">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936713">10.1051/0004-6361/201936713 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atomic carbon, nitrogen, and oxygen forbidden emission lines in the water-poor comet C/2016 R2 (Pan-STARRS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Raghuram%2C+S">S. Raghuram</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">D. Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Bhardwaj%2C+A">A. Bhardwaj</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.03315v1-abstract-short" style="display: inline;"> The N$_2$ and CO-rich and water-depleted comet C/2016 R2 (Pan-STARRS) (hereafter `C/2016 R2') is a unique comet for detailed spectroscopic analysis. We aim to explore the associated photochemistry of parent species, which produces different metastable states and forbidden emissions, in this cometary coma of peculiar composition. We re-analyzed the high-resolution spectra of comet C/2016 R2, which… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03315v1-abstract-full').style.display = 'inline'; document.getElementById('2001.03315v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.03315v1-abstract-full" style="display: none;"> The N$_2$ and CO-rich and water-depleted comet C/2016 R2 (Pan-STARRS) (hereafter `C/2016 R2') is a unique comet for detailed spectroscopic analysis. We aim to explore the associated photochemistry of parent species, which produces different metastable states and forbidden emissions, in this cometary coma of peculiar composition. We re-analyzed the high-resolution spectra of comet C/2016 R2, which were obtained in February 2018, using the UVES spectrograph of the European Southern Observatory (ESO) Very Large Telescope (VLT). Various forbidden atomic emission lines of [CI], [NI], and [OI] were observed in the optical spectrum of this comet when it was at 2.8 au from the Sun. The observed forbidden emission intensity ratios are studied in the framework of a couple-chemistry emission model. The model calculations show that CO$_2$ is the major source of both atomic oxygen green and red-doublet emissions in the coma of C/2016 R2 (while for most comets it is generally H$_2$O), whereas, CO and N$_2$ govern the atomic carbon and nitrogen emissions, respectively. Our modelled oxygen green to red-doublet and carbon to nitrogen emission ratios are higher by a factor {of 3}, when compared to the observations. These discrepancies can be due to uncertainties associated with photon cross sections or unknown production/loss sources. Our modelled oxygen green to red-doublet emission ratio is close to the observations, when we consider an O$_2$ abundance with a production rate of 30\% relative to the CO production rate. The collisional quenching is not a significant loss process for N($^2$D) though its radiative lifetime is significant ($\sim$10 hrs). Hence, the observed [NI] doublet-emission ratio ([NI] 5198/5200) of 1.22, which is smaller than the terrestrial measurement by a factor {1.4}, is mainly due to the characteristic radiative decay of N($^2$D). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.03315v1-abstract-full').style.display = 'none'; document.getElementById('2001.03315v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages,11 Figures, 7 Tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 635, A108 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.09078">arXiv:1910.09078</a> <span> [<a href="https://arxiv.org/pdf/1910.09078">pdf</a>, <a href="https://arxiv.org/format/1910.09078">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936959">10.1051/0004-6361/201936959 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 2I/Borisov: A C$_2$ depleted interstellar comet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">A. Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Hainaut%2C+O">O. Hainaut</a>, <a href="/search/?searchtype=author&query=Meech%2C+K+J">K. J. Meech</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">B. Yang</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&query=Micheli%2C+M">M. Micheli</a>, <a href="/search/?searchtype=author&query=Keane%2C+J+V">J. V. Keane</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/?searchtype=author&query=Kleyna%2C+J+T">J. T. Kleyna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.09078v2-abstract-short" style="display: inline;"> The discovery of the first active interstellar object 2I/Borisov provides an unprecedented opportunity to study planetary formation processes in another planetary system. In particular, spectroscopic observations of 2I allow us to constrain the composition of its nuclear ices. We obtained optical spectra of 2I with the 4.2 m William Herschel and 2.5 m Isaac Newton telescopes between 2019 September… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09078v2-abstract-full').style.display = 'inline'; document.getElementById('1910.09078v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.09078v2-abstract-full" style="display: none;"> The discovery of the first active interstellar object 2I/Borisov provides an unprecedented opportunity to study planetary formation processes in another planetary system. In particular, spectroscopic observations of 2I allow us to constrain the composition of its nuclear ices. We obtained optical spectra of 2I with the 4.2 m William Herschel and 2.5 m Isaac Newton telescopes between 2019 September 30 and October 13, when the comet was between 2.5 au and 2.4 au from the Sun. We also imaged the comet with broadband filters on 15 nights from September 11 to October 17, as well as with a CN narrow-band filter on October 18 and 20, with the TRAPPIST-North telescope. Broadband imaging confirms that the dust coma colours (B-V=0.82$\pm$0.02, V-R=0.46$\pm$0.03, R-I=0.44$\pm$0.03, B-R=1.28$\pm$0.03) are the same as for Solar System comets. We detect CN emission in all spectra and in the TRAPPIST narrow-band images with production rates between 1.6$\times10^{24}$ and 2.1$\times10^{24}$ molec/s. No other species are detected. We determine three-sigma upper limits for C$_2$, C$_3$, and OH production rates of 6$\times10^{23}$ molec/s, 3$\times10^{23}$ molec/s and 2$\times10^{27}$ molec/s, respectively, on October 02. There is no significant increase of the CN production rate or A(0)f$蟻$ during our observing period. Finally, we place a three-sigma upper limit on the Q(C$_2$)/Q(CN) ratio of 0.3 (on October 13). From this, we conclude that 2I is highly depleted in C$_2$, and may have a composition similar to Solar System carbon-chain depleted comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.09078v2-abstract-full').style.display = 'none'; document.getElementById('1910.09078v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version, Accepted for publication in A&A Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.13331">arXiv:1909.13331</a> <span> [<a href="https://arxiv.org/pdf/1909.13331">pdf</a>, <a href="https://arxiv.org/format/1909.13331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201936469">10.1051/0004-6361/201936469 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Comet 66P/du Toit: not a near Earth main belt comet </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yang%2C+B">B. Yang</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Pozuelos%2C+F+J">F. J. Pozuelos</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Shinnaka%2C+Y">Y. Shinnaka</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Hsieh%2C+H+H">H. H. Hsieh</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">D. Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.13331v1-abstract-short" style="display: inline;"> Main belt comets (MBCs) are a peculiar class of volatile-containing objects with comet-like morphology and asteroid-like orbits. However, MBCs are challenging targets to study remotely due to their small sizes and the relatively large distance they are from the Sun and the Earth. Recently, a number of weakly active short-period comets have been identified that might originate in the asteroid main… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13331v1-abstract-full').style.display = 'inline'; document.getElementById('1909.13331v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.13331v1-abstract-full" style="display: none;"> Main belt comets (MBCs) are a peculiar class of volatile-containing objects with comet-like morphology and asteroid-like orbits. However, MBCs are challenging targets to study remotely due to their small sizes and the relatively large distance they are from the Sun and the Earth. Recently, a number of weakly active short-period comets have been identified that might originate in the asteroid main belt. Among all of the known candidates, comet 66P/du Toit has been suggested to have one of the highest probabilities of coming from the main belt. We obtained medium and high-resolution spectra of 66P from 300-2500 nm with the X-shooter/VLT and the UVES/VLT instruments in July 2018. We also obtained a series of narrow-band images of 66P to monitor the gas and dust activity between May and July 2018 with TRAPPIST-South. In addition, we applied a dust model to characterize the dust coma of 66P and performed dynamical simulations to study the orbital evolution of 66P. We derive the OPR of ammonia (NH$_3$) in 66P to be 1.08$\pm$0.06, which corresponds to a nuclear spin temperature of $\sim$34 K. We computed the production rates of OH, NH, CN, C$_3,$ and C$_2$ radicals and measured the dust proxy, Af$蟻$. The dust analysis reveals that the coma can be best-fit with an anisotropic model and the peak dust production rate is about 55 kg s$^{-1}$ at the perihelion distance of 1.29 au. Dynamical simulations show that 66P is moderately asteroidal with the capture time, t$_{cap} \sim 10^4$ yr. Our observations demonstrate that the measured physical properties of 66P are consistent with other typical short-period comets and differ significantly from other MBCs. Therefore, 66P is unlikely to have a main belt origin. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.13331v1-abstract-full').style.display = 'none'; document.getElementById('1909.13331v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 11 figures, to be published in A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 631, A168 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.12144">arXiv:1909.12144</a> <span> [<a href="https://arxiv.org/pdf/1909.12144">pdf</a>, <a href="https://arxiv.org/format/1909.12144">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ab49fc">10.3847/2041-8213/ab49fc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection of CN gas in Interstellar Object 2I/Borisov </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Hainaut%2C+O">Olivier Hainaut</a>, <a href="/search/?searchtype=author&query=Meech%2C+K">Karen Meech</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Youssef Moulane</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">Bin Yang</a>, <a href="/search/?searchtype=author&query=Keane%2C+J+V">Jacqueline V. Keane</a>, <a href="/search/?searchtype=author&query=Kleyna%2C+J+T">Jan T. Kleyna</a>, <a href="/search/?searchtype=author&query=Micheli%2C+M">Marco Micheli</a>, <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.12144v2-abstract-short" style="display: inline;"> The detection of Interstellar Objects passing through the Solar System offers the promise of constraining the physical and chemical processes involved in planetary formation in other extrasolar systems. While the effect of outgassing by 1I/2017 U1 ('Oumuamua) was dynamically observed, no direct detection of the ejected material was made. The discovery of the active interstellar comet 2I/Borisov me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12144v2-abstract-full').style.display = 'inline'; document.getElementById('1909.12144v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.12144v2-abstract-full" style="display: none;"> The detection of Interstellar Objects passing through the Solar System offers the promise of constraining the physical and chemical processes involved in planetary formation in other extrasolar systems. While the effect of outgassing by 1I/2017 U1 ('Oumuamua) was dynamically observed, no direct detection of the ejected material was made. The discovery of the active interstellar comet 2I/Borisov means spectroscopic investigations of the sublimated ices is possible for this object. We report the first detection of gas emitted by an interstellar comet via the near-UV emission of CN from 2I/Borisov at a heliocentric distance of $r$ = 2.7 au on 2019 September 20. The production rate was found to be Q(CN) = $(3.7\pm0.4)\times10^{24}$ s$^{-1}$, using a simple Haser model with an outflow velocity of 0.5 km s$^{-1}$. No other emission was detected, with an upper limit to the production rate of C$_2$ of $4\times10^{24}$ s$^{-1}$. The spectral reflectance slope of the dust coma over $3900$ 脜 $< 位< 6000$ 脜\ is steeper than at longer wavelengths, as found for other comets. Broad band $R_c$ photometry on 2019 September 19 gave a dust production rate of $Af蟻=143\pm10$ cm. Modelling of the observed gas and dust production rates constrains the nuclear radius to $0.7-3.3$ km assuming reasonable nuclear properties. Overall, we find the gas, dust and nuclear properties for the first active Interstellar Object are similar to normal Solar System comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.12144v2-abstract-full').style.display = 'none'; document.getElementById('1909.12144v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures, accepted for publication in ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.06645">arXiv:1908.06645</a> <span> [<a href="https://arxiv.org/pdf/1908.06645">pdf</a>, <a href="https://arxiv.org/format/1908.06645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab3b05">10.3847/1538-3881/ab3b05 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The trans-Neptunian object (84922) 2003 VS2 through stellar occultations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Benedetti-Rossi%2C+G">Gustavo Benedetti-Rossi</a>, <a href="/search/?searchtype=author&query=Santos-Sanz%2C+P">P. Santos-Sanz</a>, <a href="/search/?searchtype=author&query=Ortiz%2C+J+L">J. L. Ortiz</a>, <a href="/search/?searchtype=author&query=Assafin%2C+M">M. Assafin</a>, <a href="/search/?searchtype=author&query=Sicardy%2C+B">B. Sicardy</a>, <a href="/search/?searchtype=author&query=Morales%2C+N">N. Morales</a>, <a href="/search/?searchtype=author&query=Vieira-Martins%2C+R">R. Vieira-Martins</a>, <a href="/search/?searchtype=author&query=Duffard%2C+R">R. Duffard</a>, <a href="/search/?searchtype=author&query=Braga-Ribas%2C+F">F. Braga-Ribas</a>, <a href="/search/?searchtype=author&query=Rommel%2C+F+L">F. L. Rommel</a>, <a href="/search/?searchtype=author&query=Camargo%2C+J+I+B">J. I. B. Camargo</a>, <a href="/search/?searchtype=author&query=Desmars%2C+J">J. Desmars</a>, <a href="/search/?searchtype=author&query=Colas%2C+A+F">A. F. Colas</a>, <a href="/search/?searchtype=author&query=Vachier%2C+F">F. Vachier</a>, <a href="/search/?searchtype=author&query=Alvarez-Candal"> Alvarez-Candal</a>, <a href="/search/?searchtype=author&query=Fern%C3%A1ndez-Valenzuela%2C+E">E. Fern谩ndez-Valenzuela</a>, <a href="/search/?searchtype=author&query=Almenares%2C+L">L. Almenares</a>, <a href="/search/?searchtype=author&query=Artola%2C+R">R. Artola</a>, <a href="/search/?searchtype=author&query=Baum%2C+T+-">T. -P. Baum</a>, <a href="/search/?searchtype=author&query=Behrend%2C+R">R. Behrend</a>, <a href="/search/?searchtype=author&query=B%C3%A9rard%2C+D">D. B茅rard</a>, <a href="/search/?searchtype=author&query=Bianco%2C+F">F. Bianco</a>, <a href="/search/?searchtype=author&query=Brosch%2C+N">N. Brosch</a>, <a href="/search/?searchtype=author&query=Ceretta%2C+A">A. Ceretta</a>, <a href="/search/?searchtype=author&query=Colazo%2C+C+A">C. A. Colazo</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.06645v1-abstract-short" style="display: inline;"> We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS$_2$. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7th, 2014, we obtained the parameters of the best-f… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06645v1-abstract-full').style.display = 'inline'; document.getElementById('1908.06645v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.06645v1-abstract-full" style="display: none;"> We present results from three world-wide campaigns that resulted in the detections of two single-chord and one multi-chord stellar occultations by the Plutino object (84922) 2003~VS$_2$. From the single-chord occultations in 2013 and 2014 we obtained accurate astrometric positions for the object, while from the multi-chord occultation on November 7th, 2014, we obtained the parameters of the best-fitting ellipse to the limb of the body at the time of occultation. We also obtained short-term photometry data for the body in order to derive its rotational phase during the occultation. The rotational light curve present a peak-to-peak amplitude of 0.141 $\pm$ 0.009 mag. This allows us to reconstruct the three-dimensional shape of the body, with principal semi-axes $a = 313.8 \pm 7.1$ km, $b = 265.5^{+8.8}_{-9.8}$ km, and $c = 247.3^{+26.6}_{-43.6}$ km, which is not consistent with a Jacobi triaxial equilibrium figure. The derived spherical volume equivalent diameter of $548.3 ^{+29.5}_{-44.6}$ km is about 5\% larger than the radiometric diameter of 2003~VS$_2$ derived from Herschel data of $523 \pm 35$ km, but still compatible with it within error bars. From those results we can also derive the geometric albedo ($0.123 ^{+0.015}_{-0.014}$) and, under the assumption that the object is a Maclaurin spheroid, the density $蟻= 1400^{+1000}_{-300}$ for the plutino. The disappearances and reappearances of the star during the occultations do not show any compelling evidence for a global atmosphere considering a pressure upper limit of about 1 microbar for a pure nitrogen atmosphere, nor secondary features (e.g. rings or satellite) around the main body. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.06645v1-abstract-full').style.display = 'none'; document.getElementById('1908.06645v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 14 figures, 1 appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.01657">arXiv:1906.01657</a> <span> [<a href="https://arxiv.org/pdf/1906.01657">pdf</a>, <a href="https://arxiv.org/format/1906.01657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> BlueMUSE: Project Overview and Science Cases </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Richard%2C+J">Johan Richard</a>, <a href="/search/?searchtype=author&query=Bacon%2C+R">Roland Bacon</a>, <a href="/search/?searchtype=author&query=Blaizot%2C+J">J茅r茅my Blaizot</a>, <a href="/search/?searchtype=author&query=Boissier%2C+S">Samuel Boissier</a>, <a href="/search/?searchtype=author&query=Boselli%2C+A">Alessandro Boselli</a>, <a href="/search/?searchtype=author&query=NicolasBouch%C3%A9"> NicolasBouch茅</a>, <a href="/search/?searchtype=author&query=Brinchmann%2C+J">Jarle Brinchmann</a>, <a href="/search/?searchtype=author&query=Castro%2C+N">Norberto Castro</a>, <a href="/search/?searchtype=author&query=Ciesla%2C+L">Laure Ciesla</a>, <a href="/search/?searchtype=author&query=Crowther%2C+P">Paul Crowther</a>, <a href="/search/?searchtype=author&query=Daddi%2C+E">Emanuele Daddi</a>, <a href="/search/?searchtype=author&query=Dreizler%2C+S">Stefan Dreizler</a>, <a href="/search/?searchtype=author&query=Duc%2C+P">Pierre-Alain Duc</a>, <a href="/search/?searchtype=author&query=Elbaz%2C+D">David Elbaz</a>, <a href="/search/?searchtype=author&query=Epinat%2C+B">Benoit Epinat</a>, <a href="/search/?searchtype=author&query=Evans%2C+C">Chris Evans</a>, <a href="/search/?searchtype=author&query=Fossati%2C+M">Matteo Fossati</a>, <a href="/search/?searchtype=author&query=Fumagalli%2C+M">Michele Fumagalli</a>, <a href="/search/?searchtype=author&query=Garcia%2C+M">Miriam Garcia</a>, <a href="/search/?searchtype=author&query=Garel%2C+T">Thibault Garel</a>, <a href="/search/?searchtype=author&query=Hayes%2C+M">Matthew Hayes</a>, <a href="/search/?searchtype=author&query=Adamo%2C+A">Angela Adamo</a>, <a href="/search/?searchtype=author&query=Herrero%2C+A">Artemio Herrero</a>, <a href="/search/?searchtype=author&query=Hugot%2C+E">Emmanuel Hugot</a>, <a href="/search/?searchtype=author&query=Humphrey%2C+A">Andrew Humphrey</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.01657v4-abstract-short" style="display: inline;"> We present the concept of BlueMUSE, a blue-optimised, medium spectral resolution, panoramic integral field spectrograph based on the MUSE concept and proposed for the Very Large Telescope. With an optimised transmission down to 350 nm, a larger FoV (1.4 x 1.4 arcmin$^2$) and a higher spectral resolution compared to MUSE, BlueMUSE will open up a new range of galactic and extragalactic science cases… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01657v4-abstract-full').style.display = 'inline'; document.getElementById('1906.01657v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.01657v4-abstract-full" style="display: none;"> We present the concept of BlueMUSE, a blue-optimised, medium spectral resolution, panoramic integral field spectrograph based on the MUSE concept and proposed for the Very Large Telescope. With an optimised transmission down to 350 nm, a larger FoV (1.4 x 1.4 arcmin$^2$) and a higher spectral resolution compared to MUSE, BlueMUSE will open up a new range of galactic and extragalactic science cases allowed by its specific capabilities, beyond those possible with MUSE. For example a survey of massive stars in our galaxy and the Local Group will increase the known population of massive stars by a factor $>$100, to answer key questions about their evolution. Deep field observations with BlueMUSE will also significantly increase samples of Lyman-alpha emitters, spanning the era of Cosmic Noon. This will revolutionise the study of the distant Universe: allowing the intergalactic medium to be detected unambiguously in emission, enabling the study of the exchange of baryons between galaxies and their surroundings. By 2030, at a time when the focus of most of the new large facilities (ELT, JWST) will be on the infra-red, BlueMUSE will be a unique facility, outperforming any ELT instrument in the Blue/UV. It will have a strong synergy with ELT, JWST as well as ALMA, SKA, Euclid and Athena. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.01657v4-abstract-full').style.display = 'none'; document.getElementById('1906.01657v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">60 pages, 22 figures, minor updates</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.02315">arXiv:1903.02315</a> <span> [<a href="https://arxiv.org/pdf/1903.02315">pdf</a>, <a href="https://arxiv.org/format/1903.02315">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834281">10.1051/0004-6361/201834281 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pluto's lower atmosphere and pressure evolution from ground-based stellar occultations, 1988-2016 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Meza%2C+E">E. Meza</a>, <a href="/search/?searchtype=author&query=Sicardy%2C+B">B. Sicardy</a>, <a href="/search/?searchtype=author&query=Assafin%2C+M">M. Assafin</a>, <a href="/search/?searchtype=author&query=Ortiz%2C+J+L">J. L. Ortiz</a>, <a href="/search/?searchtype=author&query=Bertrand%2C+T">T. Bertrand</a>, <a href="/search/?searchtype=author&query=Lellouch%2C+E">E. Lellouch</a>, <a href="/search/?searchtype=author&query=Desmars%2C+J">J. Desmars</a>, <a href="/search/?searchtype=author&query=Forget%2C+F">F. Forget</a>, <a href="/search/?searchtype=author&query=B%C3%A9rard%2C+D">D. B茅rard</a>, <a href="/search/?searchtype=author&query=Doressoundiram%2C+A">A. Doressoundiram</a>, <a href="/search/?searchtype=author&query=Lecacheux%2C+J">J. Lecacheux</a>, <a href="/search/?searchtype=author&query=Oliveira%2C+J+M">J. Marques Oliveira</a>, <a href="/search/?searchtype=author&query=Roques%2C+F">F. Roques</a>, <a href="/search/?searchtype=author&query=Widemann%2C+T">T. Widemann</a>, <a href="/search/?searchtype=author&query=Colas%2C+F">F. Colas</a>, <a href="/search/?searchtype=author&query=Vachier%2C+F">F. Vachier</a>, <a href="/search/?searchtype=author&query=Renner%2C+S">S. Renner</a>, <a href="/search/?searchtype=author&query=Leiva%2C+R">R. Leiva</a>, <a href="/search/?searchtype=author&query=Braga-Ribas%2C+F">F. Braga-Ribas</a>, <a href="/search/?searchtype=author&query=Benedetti-Rossi%2C+G">G. Benedetti-Rossi</a>, <a href="/search/?searchtype=author&query=Camargo%2C+J+I+B">J. I. B. Camargo</a>, <a href="/search/?searchtype=author&query=Dias-Oliveira%2C+A">A. Dias-Oliveira</a>, <a href="/search/?searchtype=author&query=Morgado%2C+B">B. Morgado</a>, <a href="/search/?searchtype=author&query=Gomes-J%C3%BAnior%2C+A+R">A. R. Gomes-J煤nior</a>, <a href="/search/?searchtype=author&query=Vieira-Martins%2C+R">R. Vieira-Martins</a> , et al. (145 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.02315v1-abstract-short" style="display: inline;"> Context. Pluto's tenuous nitrogen (N2) atmosphere undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has been recently (July 2015) observed by the New Horizons spacecraft. Goals are (i) construct a well calibrated record of the seasonal evolution of surface pressure on Pluto and (ii) constrain the structure of the lower atmosphere using a central flash observed i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02315v1-abstract-full').style.display = 'inline'; document.getElementById('1903.02315v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.02315v1-abstract-full" style="display: none;"> Context. Pluto's tenuous nitrogen (N2) atmosphere undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has been recently (July 2015) observed by the New Horizons spacecraft. Goals are (i) construct a well calibrated record of the seasonal evolution of surface pressure on Pluto and (ii) constrain the structure of the lower atmosphere using a central flash observed in 2015. Method: eleven stellar occultations by Pluto observed between 2002 and 2016 are used to retrieve atmospheric profiles (density, pressure, temperature) between $\sim$5 km and $\sim$380 km altitude levels (i.e. pressures from about 10 microbar to 10 nanobar). Results: (i) Pressure has suffered a monotonic increase from 1988 to 2016, that is compared to a seasonal volatile transport model, from which tight constraints on a combination of albedo and emissivity of N2 ice are derived; (ii) A central flash observed on 2015 June 29 is consistent with New Horizons REX profiles, provided that (a) large diurnal temperature variations (not expected by current models) occur over Sputnik Planitia and/or (b) hazes with tangential optical depth of about 0.3 are present at 4-7 km altitude levels and/or (c) the nominal REX density values are overestimated by an implausibly large factor of about 20% and/or (d) higher terrains block part of the flash in the Charon facing hemisphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.02315v1-abstract-full').style.display = 'none'; document.getElementById('1903.02315v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 625, A42 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.00657">arXiv:1901.00657</a> <span> [<a href="https://arxiv.org/pdf/1901.00657">pdf</a>, <a href="https://arxiv.org/format/1901.00657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834357">10.1051/0004-6361/201834357 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> High resolution optical spectroscopy of the $\mathrm{N_2}$-rich comet C/2016 R2 (PanSTARRS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Hutsem%C3%A9kers%2C+D">D. Hutsem茅kers</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Rousselot%2C+P">P. Rousselot</a>, <a href="/search/?searchtype=author&query=Pozuelos%2C+F+J">F. J. Pozuelos</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Gillon%2C+M">M. Gillon</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.00657v1-abstract-short" style="display: inline;"> Early observations of comet C/2016 R2 (PanSTARRS) have shown that the composition of this comet is very peculiar. We obtained high resolution spectra of the comet in February when it was at 2.8 au from the Sun. We used the UVES spectrograph of the ESO VLT, complemented with narrow-band images obtained with the TRAPPIST telescopes. We detect strong emissions from the ions $\mathrm{N_2^+}$ and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00657v1-abstract-full').style.display = 'inline'; document.getElementById('1901.00657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.00657v1-abstract-full" style="display: none;"> Early observations of comet C/2016 R2 (PanSTARRS) have shown that the composition of this comet is very peculiar. We obtained high resolution spectra of the comet in February when it was at 2.8 au from the Sun. We used the UVES spectrograph of the ESO VLT, complemented with narrow-band images obtained with the TRAPPIST telescopes. We detect strong emissions from the ions $\mathrm{N_2^+}$ and $\mathrm{CO^+}$, but also $\mathrm{CO_2^+}$, emission from the CH radical, and much fainter emissions of the CN, $\mathrm{C_2}$, and $\mathrm{C_3}$ radicals which were not detected in previous observations of this comet. We do not detect OH or $\mathrm{H_2O^+}$, and derive an upper limit of the $\mathrm{H_2O^+/CO^+}$ ratio of 0.4, implying that the comet has a low water abundance. We measure a $\mathrm{N_2^+/CO^+}$ ratio of $0.06\pm0.01$. The non-detection of $\mathrm{NH_2}$ indicates that most of the nitrogen content of the comet lies within $\mathrm{N_2}$. Together with the high $\mathrm{N_2^+/CO^+}$ ratio, this could indicate a low formation temperature of the comet, or that the comet is a fragment of a large differentiated Kuiper Belt object. The $\mathrm{CO_2^+/CO^+}$ ratio is $1.1\pm0.3$. We do not detect $\mathrm{^{14}N^{15}N^+}$ lines, and can only put a lower limit on the $\mathrm{^{14}N/^{15}N}$ ratio measured from $\mathrm{N_2^+}$ of about 100, compatible with measurements of the same isotopic ratio for $\mathrm{NH_2}$ and CN in other comets. Finally, in addition to the [OI] and [CI] forbidden lines, we detect for the first time the forbidden nitrogen lines [NI] doublet at 519.79 and 520.04 nm in the coma of a comet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.00657v1-abstract-full').style.display = 'none'; document.getElementById('1901.00657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Astronomy and Astrophysics, pending minor revisions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 624, A64 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.01419">arXiv:1810.01419</a> <span> [<a href="https://arxiv.org/pdf/1810.01419">pdf</a>, <a href="https://arxiv.org/format/1810.01419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201834135">10.1051/0004-6361/201834135 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Raman-scattered laser guide star photons to monitor the scatter of astronomical telescope mirrors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vogt%2C+F+P+A">F. P. A. Vogt</a>, <a href="/search/?searchtype=author&query=%C3%81lvarez%2C+J+L">J. L. 脕lvarez</a>, <a href="/search/?searchtype=author&query=Calia%2C+D+B">D. Bonaccini Calia</a>, <a href="/search/?searchtype=author&query=Hackenberg%2C+W">W. Hackenberg</a>, <a href="/search/?searchtype=author&query=Bourget%2C+P">P. Bourget</a>, <a href="/search/?searchtype=author&query=Aranda%2C+I">I. Aranda</a>, <a href="/search/?searchtype=author&query=Bellhouse%2C+C">C. Bellhouse</a>, <a href="/search/?searchtype=author&query=Blanchard%2C+I">I. Blanchard</a>, <a href="/search/?searchtype=author&query=Cerda%2C+S">S. Cerda</a>, <a href="/search/?searchtype=author&query=Cid%2C+C">C. Cid</a>, <a href="/search/?searchtype=author&query=Comin%2C+M">M. Comin</a>, <a href="/search/?searchtype=author&query=Contreras%2C+M+E">M. Espinoza Contreras</a>, <a href="/search/?searchtype=author&query=Hau%2C+G">G. Hau</a>, <a href="/search/?searchtype=author&query=Hibon%2C+P">P. Hibon</a>, <a href="/search/?searchtype=author&query=Holzl%C3%B6hner%2C+R">R. Holzl枚hner</a>, <a href="/search/?searchtype=author&query=Jaff%C3%A9%2C+Y+L">Y. L. Jaff茅</a>, <a href="/search/?searchtype=author&query=Kolb%2C+J">J. Kolb</a>, <a href="/search/?searchtype=author&query=Kuntschner%2C+H">H. Kuntschner</a>, <a href="/search/?searchtype=author&query=Madec%2C+P+-">P. -Y. Madec</a>, <a href="/search/?searchtype=author&query=Mieske%2C+S">S. Mieske</a>, <a href="/search/?searchtype=author&query=Milli%2C+J">J. Milli</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Parraguez%2C+D">D. Parraguez</a>, <a href="/search/?searchtype=author&query=Romero%2C+C">C. Romero</a>, <a href="/search/?searchtype=author&query=Selman%2C+F">F. Selman</a> , et al. (4 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.01419v1-abstract-short" style="display: inline;"> The first observations of laser guide star photons Raman-scattered by air molecules above the Very Large Telescope (VLT) were reported in June 2017. The initial detection came from the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph, following the installation of the 4 Laser Guide Star Facility (4LGSF) on the Unit Telescope 4 (UT4) of the VLT. In this Letter, we delve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.01419v1-abstract-full').style.display = 'inline'; document.getElementById('1810.01419v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.01419v1-abstract-full" style="display: none;"> The first observations of laser guide star photons Raman-scattered by air molecules above the Very Large Telescope (VLT) were reported in June 2017. The initial detection came from the Multi-Unit Spectroscopic Explorer (MUSE) optical integral field spectrograph, following the installation of the 4 Laser Guide Star Facility (4LGSF) on the Unit Telescope 4 (UT4) of the VLT. In this Letter, we delve further into the symbiotic relationship between the 4LGSF laser guide star system, the UT4 telescope, and MUSE by monitoring the spectral contamination of MUSE observations by Raman photons over a 27 month period. This dataset reveals that dust particles deposited on the primary and tertiary mirrors of UT4 -- responsible for a reflectivity loss of ~8% at 6000脜 -- contribute (60$\pm5)% to the laser line fluxes detected by MUSE. The flux of Raman lines, contaminating scientific observations acquired with optical spectrographs, thus provides a new, non-invasive means to monitor the evolving scatter properties of the mirrors of astronomical telescopes equipped with laser guide star systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.01419v1-abstract-full').style.display = 'none'; document.getElementById('1810.01419v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures, 1 table, accepted for publication in A&A Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 618, L7 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.03787">arXiv:1809.03787</a> <span> [<a href="https://arxiv.org/pdf/1809.03787">pdf</a>, <a href="https://arxiv.org/ps/1809.03787">ps</a>, <a href="https://arxiv.org/format/1809.03787">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201833582">10.1051/0004-6361/201833582 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Monitoring of the activity and composition of comets 41P/Tuttle-Giacobini-Kresak and 45P/Honda-Mrkos-Pajdusakova </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Pozuelos%2C+F+J">F. J. Pozuelos</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/?searchtype=author&query=Daassou%2C+A">A. Daassou</a>, <a href="/search/?searchtype=author&query=Gillon%2C+M">M. Gillon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.03787v1-abstract-short" style="display: inline;"> We report on photometry and imaging of the Jupiter Family Comets 41P/Tuttle-Giacobini-Kresak and 45P/Honda-Mrkos-Pajdusakova with the TRAPPIST-North telescope. We observed 41P on 34 nights from February 16, 2017 to July 27, 2017 pre- and post-perihelion (r$_h$=1.04 au), while we collected data for comet 45P from February 10 to March 30 after perihelion (r$_h$=0.53 au). We computed the production r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03787v1-abstract-full').style.display = 'inline'; document.getElementById('1809.03787v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.03787v1-abstract-full" style="display: none;"> We report on photometry and imaging of the Jupiter Family Comets 41P/Tuttle-Giacobini-Kresak and 45P/Honda-Mrkos-Pajdusakova with the TRAPPIST-North telescope. We observed 41P on 34 nights from February 16, 2017 to July 27, 2017 pre- and post-perihelion (r$_h$=1.04 au), while we collected data for comet 45P from February 10 to March 30 after perihelion (r$_h$=0.53 au). We computed the production rates of the daughter species OH, NH, CN, C$_3$ and C$_2$ and we measured the dust proxy, Af$蟻$, for both comets. The peak of water production rate of 41P was (3.46$\pm$0.20)$\times$10$^{27}$ molecules/s on April 3, 2017 when the comet was at 1.05 au from the Sun. We have shown that the activity of 41P is decreasing by about 30% to 40% from one apparition to the next. We measured a mean water production rate for 45P of (1.43$\pm$0.62)$\times$10$^{27}$ molecules/s during a month after perihelion. Our results show that these Jupiter Family Comets had low gas and dust activity and no outburst was detected. Relative abundances, expressed as ratios of production rates and Af$蟻$ parameter with respect to OH and to CN, were compared to those measured in other comets. We found that 41P and 45P have a typical composition in term of carbon bearing species. The study of coma features exhibited by the CN gas species allowed the measurement of the rotation period of 41P, showing a surprisingly large increase of the rotation period from (30$\pm$5) hrs at the end of March to (50$\pm$10) hrs at the end of April, 2017 in agreement with recent observations by other teams. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.03787v1-abstract-full').style.display = 'none'; document.getElementById('1809.03787v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 619, A156 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.00493">arXiv:1805.00493</a> <span> [<a href="https://arxiv.org/pdf/1805.00493">pdf</a>, <a href="https://arxiv.org/format/1805.00493">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201832851">10.1051/0004-6361/201832851 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dust modelling and a dynamical study of comet 41P/Tuttle-Giacobini-Kresak during its 2017 perihelion passage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Pozuelos%2C+F+J">F. J. Pozuelos</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">E. Jehin</a>, <a href="/search/?searchtype=author&query=Moulane%2C+Y">Y. Moulane</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">J. Manfroid</a>, <a href="/search/?searchtype=author&query=Benkhaldoun%2C+Z">Z. Benkhaldoun</a>, <a href="/search/?searchtype=author&query=Gillon%2C+M">M. Gillon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.00493v1-abstract-short" style="display: inline;"> Thanks to the Rosetta mission, our understanding of comets has greatly improved. A very good opportunity to apply this knowledge appeared in early 2017 with the appearance of the Jupiter family comet 41P/TGK. We performed an observational campaign with the TRAPPIST telescopes that covered almost the entire period of time when the comet was active. In this work we present a comprehensive study of t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.00493v1-abstract-full').style.display = 'inline'; document.getElementById('1805.00493v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.00493v1-abstract-full" style="display: none;"> Thanks to the Rosetta mission, our understanding of comets has greatly improved. A very good opportunity to apply this knowledge appeared in early 2017 with the appearance of the Jupiter family comet 41P/TGK. We performed an observational campaign with the TRAPPIST telescopes that covered almost the entire period of time when the comet was active. In this work we present a comprehensive study of the evolution of the dust environment of 41P based on observational data from January to July, 2017. Also, we performed numerical simulations to constrain its origin and dynamical nature. To model the observational data set we used a Monte Carlo dust tail model, which allowed us to derive the dust parameters that best describe its dust environment as a function of heliocentric distance. In order to study its dynamical evolution, we completed several experiments to evaluate the degree of stability of its orbit, its life time in its current region close to Earth, and its future behaviour. From the dust analysis, we found that comet 41P has a complex emission pattern that shifted from full isotropic to anisotropic ejection sometime during February 24-March 14 in 2017, and then from anisotropic to full isotropic again between June 7-28. During the anisotropic period, the emission was controlled by two strongly active areas, where one was located in the southern and one in the northern hemisphere of the nucleus. The total dust mass loss is estimated to be $\sim7.5\times10^{8}$ kg. From the dynamical simulations we estimate that $\sim$3600 yr is the period of time during which 41P will remain in a similar orbit. Taking into account the estimated mass loss per orbit, after 3600 yr, the nucleus may lose about 30$\%$ of its mass. However, based on its observed dust-to-water mass ratio and its propensity to outbursts, the lifetime of this comet could be much shorter. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.00493v1-abstract-full').style.display = 'none'; document.getElementById('1805.00493v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures. Accepted for its publication in Astronomy & Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 615, A154 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.02810">arXiv:1712.02810</a> <span> [<a href="https://arxiv.org/pdf/1712.02810">pdf</a>, <a href="https://arxiv.org/format/1712.02810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201732100">10.1051/0004-6361/201732100 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Isotopic ratios in outbursting comet C/2015 ER61 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Yang%2C+B">Bin Yang</a>, <a href="/search/?searchtype=author&query=Hutsemekers%2C+D">Damien Hutsemekers</a>, <a href="/search/?searchtype=author&query=Shinnaka%2C+Y">Yoshiharu Shinnaka</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Manfroid%2C+J">Jean Manfroid</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Meech%2C+K+J">Karen J. Meech</a>, <a href="/search/?searchtype=author&query=Hainaut%2C+O+R">Olivier R. Hainaut</a>, <a href="/search/?searchtype=author&query=Keane%2C+J+V">Jacqueline V. Keane</a>, <a href="/search/?searchtype=author&query=Gillon%2C+M">Michael Gillon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.02810v1-abstract-short" style="display: inline;"> Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02810v1-abstract-full').style.display = 'inline'; document.getElementById('1712.02810v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.02810v1-abstract-full" style="display: none;"> Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0,0) band and found that $^{12}$C/$^{13}$C=100 $\pm$ 15, $^{14}$N/$^{15}$N=130 $\pm$ 15. In addition, we determined the $^{14}$N/$^{15}$N ratio from four pairs of NH$_2$ isotopolog lines and measured $^{14}$N/$^{15}$N=140 $\pm$ 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.02810v1-abstract-full').style.display = 'none'; document.getElementById('1712.02810v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 4 figures, accepted to be published by A&A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&A 609, L4 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1709.05549">arXiv:1709.05549</a> <span> [<a href="https://arxiv.org/pdf/1709.05549">pdf</a>, <a href="https://arxiv.org/format/1709.05549">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s00159-017-0104-7">10.1007/s00159-017-0104-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Main Belt Comets and Ice in the Solar System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Snodgrass%2C+C">Colin Snodgrass</a>, <a href="/search/?searchtype=author&query=Agarwal%2C+J">Jessica Agarwal</a>, <a href="/search/?searchtype=author&query=Combi%2C+M">Michael Combi</a>, <a href="/search/?searchtype=author&query=Fitzsimmons%2C+A">Alan Fitzsimmons</a>, <a href="/search/?searchtype=author&query=Guilbert-Lepoutre%2C+A">Aurelie Guilbert-Lepoutre</a>, <a href="/search/?searchtype=author&query=Hsieh%2C+H+H">Henry H. Hsieh</a>, <a href="/search/?searchtype=author&query=Hui%2C+M">Man-To Hui</a>, <a href="/search/?searchtype=author&query=Jehin%2C+E">Emmanuel Jehin</a>, <a href="/search/?searchtype=author&query=Kelley%2C+M+S+P">Michael S. P. Kelley</a>, <a href="/search/?searchtype=author&query=Knight%2C+M+M">Matthew M. Knight</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">Cyrielle Opitom</a>, <a href="/search/?searchtype=author&query=Orosei%2C+R">Roberto Orosei</a>, <a href="/search/?searchtype=author&query=de+Val-Borro%2C+M">Miguel de Val-Borro</a>, <a href="/search/?searchtype=author&query=Yang%2C+B">Bin Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1709.05549v1-abstract-short" style="display: inline;"> We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modell… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.05549v1-abstract-full').style.display = 'inline'; document.getElementById('1709.05549v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1709.05549v1-abstract-full" style="display: none;"> We review the evidence for buried ice in the asteroid belt; specifically the questions around the so-called Main Belt Comets (MBCs). We summarise the evidence for water throughout the Solar System, and describe the various methods for detecting it, including remote sensing from ultraviolet to radio wavelengths. We review progress in the first decade of study of MBCs, including observations, modelling of ice survival, and discussion on their origins. We then look at which methods will likely be most effective for further progress, including the key challenge of direct detection of (escaping) water in these bodies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1709.05549v1-abstract-full').style.display = 'none'; document.getElementById('1709.05549v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Invited review for Astron. Astrophys. Rev. 43 pages + references. Product of ISSI team http://www.issibern.ch/teams/mainbeltcomets/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.07050">arXiv:1706.07050</a> <span> [<a href="https://arxiv.org/pdf/1706.07050">pdf</a>, <a href="https://arxiv.org/format/1706.07050">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.7.021044">10.1103/PhysRevX.7.021044 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detection and Implications of Laser-Induced Raman Scattering at Astronomical Observatories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Vogt%2C+F+P+A">F. P. A. Vogt</a>, <a href="/search/?searchtype=author&query=Calia%2C+D+B">D. Bonaccini Calia</a>, <a href="/search/?searchtype=author&query=Hackenberg%2C+W">W. Hackenberg</a>, <a href="/search/?searchtype=author&query=Opitom%2C+C">C. Opitom</a>, <a href="/search/?searchtype=author&query=Comin%2C+M">M. Comin</a>, <a href="/search/?searchtype=author&query=Schmidtobreik%2C+L">L. Schmidtobreik</a>, <a href="/search/?searchtype=author&query=Smoker%2C+J">J. Smoker</a>, <a href="/search/?searchtype=author&query=Blanchard%2C+I">I. Blanchard</a>, <a href="/search/?searchtype=author&query=Contreras%2C+M+E">M. Espinoza Contreras</a>, <a href="/search/?searchtype=author&query=Aranda%2C+I">I. Aranda</a>, <a href="/search/?searchtype=author&query=Milli%2C+J">J. Milli</a>, <a href="/search/?searchtype=author&query=Jaffe%2C+Y+L">Y. L. Jaffe</a>, <a href="/search/?searchtype=author&query=Selman%2C+F">F. Selman</a>, <a href="/search/?searchtype=author&query=Kolb%2C+J">J. Kolb</a>, <a href="/search/?searchtype=author&query=Hibon%2C+P">P. Hibon</a>, <a href="/search/?searchtype=author&query=Kuntschner%2C+H">H. Kuntschner</a>, <a href="/search/?searchtype=author&query=Madec%2C+P+-">P. -Y. Madec</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.07050v2-abstract-short" style="display: inline;"> (Abr.) Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on UT4 at the VLT, we characterize the spectral signature of the uplink beams from the 22W lasers to assess the impac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07050v2-abstract-full').style.display = 'inline'; document.getElementById('1706.07050v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.07050v2-abstract-full" style="display: none;"> (Abr.) Laser guide stars employed at astronomical observatories provide artificial wavefront reference sources to help correct (in part) the impact of atmospheric turbulence on astrophysical observations. Following the recent commissioning of the 4 Laser Guide Star Facility (4LGSF) on UT4 at the VLT, we characterize the spectral signature of the uplink beams from the 22W lasers to assess the impact of laser scattering from the 4LGSF on science observations. We use the MUSE optical integral field spectrograph to acquire spectra at a resolution of R~3000 of the uplink laser beams over the wavelength range of 4750脜 to 9350脜. We report the first detection of laser-induced Raman scattering by N2, O2, CO2, H2O and (tentatively) CH4 molecules in the atmosphere above the astronomical observatory of Cerro Paranal. In particular, our observations reveal the characteristic spectral signature of laser photons -- but 480脜 to 2210脜 redder than the original laser wavelength of 5889.959脜 -- landing on the 8.2m primary mirror of UT4 after being Raman-scattered on their way up to the sodium layer. Laser-induced Raman scattering is not unique to the observatory of Cerro Paranal, but common to any astronomical telescope employing a laser-guide-star (LGS) system. It is thus essential for any optical spectrograph coupled to a LGS system to handle thoroughly the possibility of a Raman spectral contamination via a proper baffling of the instrument and suitable calibrations procedures. These considerations are particularly applicable for the HARMONI optical spectrograph on the upcoming Extremely Large Telescope. At sites hosting multiple telescopes, laser collision prediction tools also ought to account for the presence of Raman emission from the uplink laser beam(s) to avoid the unintentional contamination of observations acquired with telescopes in the vicinity of a LGS system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.07050v2-abstract-full').style.display = 'none'; document.getElementById('1706.07050v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 11 figures, published in Physical Review X. v2: Fixed typo in Eq. 9 and y-labels in Fig. 6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.10539">arXiv:1705.10539</a> <span> [<a href="https://arxiv.org/pdf/1705.10539">pdf</a>, <a href="https://arxiv.org/format/1705.10539">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1098/rsta.2016.0249">10.1098/rsta.2016.0249 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The 67P/Churyumov-Gerasimenko observation campaign in support of the Rosetta mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/?searchtype=author&query=Snodgrass%2C+C">C. Snodgrass</a>, <a href="/search/?searchtype=author&query=A%27Hearn%2C+M+F">M. F. A'Hearn</a>, <a href="/search/?searchtype=author&query=Aceituno%2C+F">F. Aceituno</a>, <a href="/search/?searchtype=author&query=Afanasiev%2C+V">V. Afanasiev</a>, <a href="/search/?searchtype=author&query=Bagnulo%2C+S">S. Bagnulo</a>, <a href="/search/?searchtype=author&query=Bauer%2C+J">J. Bauer</a>, <a href="/search/?searchtype=author&query=Bergond%2C+G">G. Bergond</a>, <a href="/search/?searchtype=author&query=Besse%2C+S">S. Besse</a>, <a href="/search/?searchtype=author&query=Biver%2C+N">N. Biver</a>, <a href="/search/?searchtype=author&query=Bodewits%2C+D">D. Bodewits</a>, <a href="/search/?searchtype=author&query=Boehnhardt%2C+H">H. Boehnhardt</a>, <a href="/search/?searchtype=author&query=Bonev%2C+B+P">B. P. Bonev</a>, <a href="/search/?searchtype=author&query=Borisov%2C+G">G. Borisov</a>, <a href="/search/?searchtype=author&query=Carry%2C+B">B. Carry</a>, <a href="/search/?searchtype=author&query=Casanova%2C+V">V. Casanova</a>, <a href="/search/?searchtype=author&query=Cochran%2C+A">A. Cochran</a>, <a href="/search/?searchtype=author&query=Conn%2C+B+C">B. C. Conn</a>, <a href="/search/?searchtype=author&query=Davidsson%2C+B">B. Davidsson</a>, <a href="/search/?searchtype=author&query=Davies%2C+J+K">J. K. Davies</a>, <a href="/search/?searchtype=author&query=de+Le%C3%B3n%2C+J">J. de Le贸n</a>, <a href="/search/?searchtype=author&query=de+Mooij%2C+E">E. de Mooij</a>, <a href="/search/?searchtype=author&query=de+Val-Borro%2C+M">M. de Val-Borro</a>, <a href="/search/?searchtype=author&query=Delacruz%2C+M">M. Delacruz</a>, <a href="/search/?searchtype=author&query=DiSanti%2C+M+A">M. A. DiSanti</a>, <a href="/search/?searchtype=author&query=Drew%2C+J+E">J. E. Drew</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.10539v1-abstract-short" style="display: inline;"> We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10539v1-abstract-full').style.display = 'inline'; document.getElementById('1705.10539v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.10539v1-abstract-full" style="display: none;"> We present a summary of the campaign of remote observations that supported the European Space Agency's Rosetta mission. Telescopes across the globe (and in space) followed comet 67P/Churyumov-Gerasimenko from before Rosetta's arrival until nearly the end of mission in September 2016. These provided essential data for mission planning, large-scale context information for the coma and tails beyond the spacecraft, and a way to directly compare 67P with other comets. The observations revealed 67P to be a relatively `well behaved' comet, typical of Jupiter family comets and with activity patterns that repeat from orbit-to-orbit. Comparison between this large collection of telescopic observations and the in situ results from Rosetta will allow us to better understand comet coma chemistry and structure. This work is just beginning as the mission ends -- in this paper we present a summary of the ground-based observations and early results, and point to many questions that will be addressed in future studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.10539v1-abstract-full').style.display = 'none'; document.getElementById('1705.10539v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Author prepared version; final published version available at journal. 22 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phil. Trans. R. Soc. A 375, 20160249 (2017) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Opitom%2C+C&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Opitom%2C+C&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Opitom%2C+C&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>