CINXE.COM

Search results for: unconventional hydrocarbon

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: unconventional hydrocarbon</title> <meta name="description" content="Search results for: unconventional hydrocarbon"> <meta name="keywords" content="unconventional hydrocarbon"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="unconventional hydrocarbon" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="unconventional hydrocarbon"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 502</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: unconventional hydrocarbon</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> Ecological Effects of Oil Spill on Water and Sediment from Two Riverine Communities in Warri</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doris%20Fovwe%20Ogeleka">Doris Fovwe Ogeleka</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20E.%20Tudararo-Aherobo"> L. E. Tudararo-Aherobo</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20E.%20Okieimen"> F. E. Okieimen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ecological effects of oil spill in the environment were studied in Warri riverine areas of Ubeji and Jeddo, Delta State. In the two communities, water and sediment samples were analysed for organics (polyaromatic hydrocarbon; total petroleum hydrocarbon (TPH)) and heavy metals (lead, copper, zinc, iron and chromium). The American Public Health Association (APHA) and the American Society for Testing and Materials (ASTM) methods were employed for the laboratory test. The results indicated that after a long period of oil spill (above one year), there were still significant concentrations (p<0.05) of organics indicating hydrocarbon pollution. Mean concentrations recorded for TPH in Ubeji and Jeddo waters were 23.60 ± 1.18 mg/L and 29.96 ± 0.14 mg/L respectively while total PAHs was 0.009 ± 0.002 mg/L and 0.008 ± 0.001 mg/L. Mean concentrations of TPH in the sediment was 48.83 ± 1.49 ppm and 1093 ± 74 ppm in the above order while total PAHs was 0.012 ± 0.002 ppm and 0.026 ± 0.004 ppm. Low concentrations were recorded for most of the heavy metals in the water and sediment. The observed concentrations of hydrocarbons in the study areas should provide the impetus for regulatory surveillance of oil discharged intentionally/unintentionally into the Warri riverine waters and sediment since hydrocarbon released into the environment sorb to the sediment particles where they cause harm to organisms in the sediment and overlying waters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crude%20oil" title="crude oil">crude oil</a>, <a href="https://publications.waset.org/abstracts/search?q=PAHs" title=" PAHs"> PAHs</a>, <a href="https://publications.waset.org/abstracts/search?q=TPH" title=" TPH"> TPH</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20spillage" title=" oil spillage"> oil spillage</a>, <a href="https://publications.waset.org/abstracts/search?q=water" title=" water"> water</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment" title=" sediment"> sediment</a> </p> <a href="https://publications.waset.org/abstracts/15552/ecological-effects-of-oil-spill-on-water-and-sediment-from-two-riverine-communities-in-warri" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Influence of Confinement on Phase Behavior in Unconventional Gas Condensate Reservoirs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Szymon%20Kuczynski">Szymon Kuczynski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Poland is characterized by the presence of numerous sedimentary basins and hydrocarbon provinces. Since 2006 exploration for hydrocarbons in Poland become gradually more focus on new unconventional targets, particularly on the shale gas potential of the Upper Ordovician and Lower Silurian in the Baltic-Podlasie-Lublin Basin. The first forecast prepared by US Energy Information Administration in 2011 indicated to 5.3 Tcm of natural gas. In 2012, Polish Geological Institute presented its own forecast which estimated maximum reserves on 1.92 Tcm. The difference in the estimates was caused by problems with calculations of the initial amount of adsorbed, as well as free, gas trapped in shale rocks (GIIP - Gas Initially in Place). This value is dependent from sorption capacity, gas saturation and mutual interactions between gas, water, and rock. Determination of the reservoir type in the initial exploration phase brings essential knowledge, which has an impact on decisions related to the production. The study of porosity impact for phase envelope shift eliminates errors and improves production profitability. Confinement phenomenon affects flow characteristics, fluid properties, and phase equilibrium. The thermodynamic behavior of confined fluids in porous media is subject to the basic considerations for industrial applications such as hydrocarbons production. In particular the knowledge of the phase equilibrium and the critical properties of the contained fluid is essential for the design and optimization of such process. In pores with a small diameter (nanopores), the effect of the wall interaction with the fluid particles becomes significant and occurs in shale formations. Nano pore size is similar to the fluid particles’ diameter and the area of particles which flow without interaction with pore wall is almost equal to the area where this phenomenon occurs. The molecular simulation studies have shown an effect of confinement to the pseudo critical properties. Therefore, the critical parameters pressure and temperature and the flow characteristics of hydrocarbons in terms of nano-scale are under the strong influence of fluid particles with the pore wall. It can be concluded that the impact of a single pore size is crucial when it comes to the nanoscale because there is possible the above-described effect. Nano- porosity makes it difficult to predict the flow of reservoir fluid. Research are conducted to explain the mechanisms of fluid flow in the nanopores and gas extraction from porous media by desorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20condensation" title=" capillary condensation"> capillary condensation</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20envelope" title=" phase envelope"> phase envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopores" title=" nanopores"> nanopores</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional%20natural%20gas" title=" unconventional natural gas"> unconventional natural gas</a> </p> <a href="https://publications.waset.org/abstracts/37434/influence-of-confinement-on-phase-behavior-in-unconventional-gas-condensate-reservoirs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Comparative Analysis of the Computer Methods&#039; Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Shcherban">Pavel Shcherban</a>, <a href="https://publications.waset.org/abstracts/search?q=Vlad%20Golovanov"> Vlad Golovanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title="cluster analysis">cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20modelling%20of%20deposits" title=" computer modelling of deposits"> computer modelling of deposits</a>, <a href="https://publications.waset.org/abstracts/search?q=correction%20of%20the%20feasibility%20study" title=" correction of the feasibility study"> correction of the feasibility study</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20hydrocarbon%20fields" title=" offshore hydrocarbon fields"> offshore hydrocarbon fields</a> </p> <a href="https://publications.waset.org/abstracts/88053/comparative-analysis-of-the-computer-methods-usage-for-calculation-of-hydrocarbon-reserves-in-the-baltic-sea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88053.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Identity Struggle of Young Muslim Women in the Spatial Context in Turki̇ye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ay%C3%A7a%20%C3%87avdar">Ayça Çavdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the ‘Kadınlar Camilerde (Women in Mosques)’ movement in Turkey will be investigated. Specifically, this paper focuses on the identity struggle of young Muslim women in Turkey in a spatial context. Kadınlar Camilerde is composed of a group of Muslim women who constantly use mosques, come together in mosques, communicate via social media, talk about the situation of women in mosques, and seek solutions for the conditions they find "unequal". This paper’s objective is to understand the relationship between women’s participation in the public sphere (work-education) and their spatial demands, the relationship between the support they receive from their close and distant environment and their ability to take unconventional actions, the relationship between religiosity and the ability to engage in unconventional actions, and also to understand how the social and cultural meanings of mosque spaces differ for women. To find answers to the research questions, an online survey will be conducted. Participants of this survey will be Muslim women who are supporters and non-supporters of ‘Kadınlar Camilerde.’ Although the aim is to investigate supporters of Kadınlar Camilerde, there will be a need for the participants to the non-supporters to see their revealed differences in thoughts and behaviors. In addition to the aforementioned research questions, the paper will seek to find out how supporters and non-supporters Muslim women differ. It is expected to find out that younger women tend to participate in Kadınlar Camilerde. It is also hypothesized that the more women get involved in the public sphere, the more space they demand from society. The paper hypothesizes that the women encouraged by their family, husband, and friends are eager to participate in unconventional actions. It is finally hypothesized that there is no relation between religiosity and the choice of unconventional actions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=women" title="women">women</a>, <a href="https://publications.waset.org/abstracts/search?q=mosques" title=" mosques"> mosques</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=t%C3%BCrkiye" title=" türkiye"> türkiye</a> </p> <a href="https://publications.waset.org/abstracts/175799/identity-struggle-of-young-muslim-women-in-the-spatial-context-in-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Microkinetic Modelling of NO Reduction on Pt Catalysts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vishnu%20S.%20Prasad">Vishnu S. Prasad</a>, <a href="https://publications.waset.org/abstracts/search?q=Preeti%20Aghalayam"> Preeti Aghalayam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major harmful automobile exhausts are nitric oxide (NO) and unburned hydrocarbon (HC). Reduction of NO using unburned fuel HC as a reductant is the technique used in hydrocarbon-selective catalytic reduction (HC-SCR). In this work, we study the microkinetic modelling of NO reduction using propene as a reductant on Pt catalysts. The selectivity of NO reduction to N<sub>2</sub>O is detected in some ranges of operating conditions, whereas the effect of inlet O<sub>2</sub>% causes a number of changes in the feasible regimes of operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microkinetic%20modelling" title="microkinetic modelling">microkinetic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=NOx" title=" NOx"> NOx</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum%20on%20alumina%20catalysts" title=" platinum on alumina catalysts"> platinum on alumina catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20catalytic%20reduction" title=" selective catalytic reduction"> selective catalytic reduction</a> </p> <a href="https://publications.waset.org/abstracts/53965/microkinetic-modelling-of-no-reduction-on-pt-catalysts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hakima%20Althalb">Hakima Althalb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title="bioremediation">bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20hydrocarbons" title=" petroleum hydrocarbons"> petroleum hydrocarbons</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a> </p> <a href="https://publications.waset.org/abstracts/90318/potential-of-ozonation-and-phytoremediation-to-reduce-hydrocarbon-levels-remaining-after-the-pilot-scale-microbial-based-bioremediation-land-farming-of-a-heavily-polluted-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Basin Professor, Petroleum Geology Assessor in Indonesia Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arditya%20Nugraha">Arditya Nugraha</a>, <a href="https://publications.waset.org/abstracts/search?q=Herry%20Gunawan"> Herry Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Agung%20P.%20Widodo"> Agung P. Widodo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The various possible strategies to find hydrocarbon are explored within a wide ranging of efforts. It started to identify petroleum concept in the basin. The main objectives of this paper are to integrate and develop information, knowledge, and evaluation from Indonesia’s sedimentary basins system in terms of their suitability for exploration activity and estimate the hydrocarbon potential available. The system which compiled data information and knowledge and comprised exploration and production data of all basins in Indonesia called as Basin Professor which stands for Basin Professional and Processor. Basin Professor is a website application using Geography Information System which consists of all information about basin montage, basin summary, petroleum system, stratigraphy, development play, risk factor, exploration history, working area, regional cross section, well correlation, prospect & lead inventory and infrastructure spatial. From 82 identified sedimentary basins, North Sumatra, Central Sumatra, South Sumatera, East Java, Kutai, and Tarakan basins are respectively positioned of the Indonesia’ s mature basin and the most productive basin. The Eastern of Indonesia also have many hydrocarbon potential and discovered several fields in Papua and East Abadi. Basin Professor compiled the well data in all of the basin in Indonesia from mature basin to frontier basin. Well known geological data, subsurface mapping, prospect and lead, resources and established infrastructures are the main factors make these basins have higher suitability beside another potential basin. The hydrocarbon potential resulted from this paper based on the degree of geological data, petroleum, and economic evaluation. Basin Professor has provided by a calculator tool in lead and prospect for estimate the hydrocarbon reserves, recoverable in place and geological risk. Furthermore, the calculator also defines the preliminary economic evaluation such as investment, POT IRR and infrastructures in each basin. From this Basin Professor, petroleum companies are able to estimate that Indonesia has a huge potential of hydrocarbon oil and gas reservoirs and still interesting for hydrocarbon exploration and production activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basin%20summary" title="basin summary">basin summary</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20system" title=" petroleum system"> petroleum system</a>, <a href="https://publications.waset.org/abstracts/search?q=resources" title=" resources"> resources</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20evaluation" title=" economic evaluation"> economic evaluation</a> </p> <a href="https://publications.waset.org/abstracts/62961/basin-professor-petroleum-geology-assessor-in-indonesia-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Reactivity of Clay Minerals of the Hydrocarbon Reservoir Rocks and the Effect of Zeolites on Operation and Production Costs That the Oil Industry in the World Assumes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Alberto%20R%C3%ADos%20Reyes">Carlos Alberto Ríos Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditionally, clays have been considered as one of the main problems in the flow of fluids in hydrocarbon reservoirs. However, there is not known the significance of zeolites formed from the reactivity of clays and their effect not only on the costs of operations carried out by the oil industry in the world but also on production. The present work focused on understanding the interaction between clay minerals with brines and alkaline solutions used in the oil industry. For this, a comparative study was conducted where the reaction of sedimentary rocks under laboratory conditions was examined. Original and treated rocks were examined by X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM) to determine the changes that these rocks underwent upon contact with fluids of variable chemical composition. As a result, zeolite Linde Type A (LTA), sodalite (SOD), and cancrinite (CAN) can be formed after experimental work, which coincided with the dissolution of kaolinite and smectite. Results reveal that the Oil Industry should invest efforts and focus its gaze to understand at the pore scale the problem that could arise as a consequence of the clay-fluid interaction in hydrocarbon reservoir rocks due to the presence of clays in their porous system, as well as the formation of zeolites, which are better hydrocarbon absorbents. These issues could be generating losses in world production. We conclude that there is a critical situation that may be occurring in the stimulation of hydrocarbon reservoirs, where real solutions are necessary not only for the formulation of more efficient and effective injection fluids but also to contribute to the improvement of production and avoid considerable losses in operating costs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title="clay minerals">clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=zeolites" title=" zeolites"> zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=rock-fluid%20interaction" title=" rock-fluid interaction"> rock-fluid interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20work" title=" experimental work"> experimental work</a>, <a href="https://publications.waset.org/abstracts/search?q=reactivity" title=" reactivity"> reactivity</a> </p> <a href="https://publications.waset.org/abstracts/165555/reactivity-of-clay-minerals-of-the-hydrocarbon-reservoir-rocks-and-the-effect-of-zeolites-on-operation-and-production-costs-that-the-oil-industry-in-the-world-assumes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20G.%20Kalmykov">Anton G. Kalmykov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Yu.%20Bychkov"> Andrew Yu. Bychkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgy%20A.%20Kalmykov"> Georgy A. Kalmykov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bazhenov%20formation" title="Bazhenov formation">Bazhenov formation</a>, <a href="https://publications.waset.org/abstracts/search?q=fossil%20fuels" title=" fossil fuels"> fossil fuels</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropyrolysis" title=" hydropyrolysis"> hydropyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=synthetic%20oil" title=" synthetic oil"> synthetic oil</a> </p> <a href="https://publications.waset.org/abstracts/101705/features-of-fossil-fuels-generation-from-bazhenov-formation-source-rocks-by-hydropyrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Moosavi">Nastaran Moosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mokhtari"> Mohammad Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=p-impedance" title=" p-impedance"> p-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=s-impedance" title=" s-impedance"> s-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=post-stack%20seismic%20inversion" title=" post-stack seismic inversion"> post-stack seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stack%20seismic%20inversion" title=" pre-stack seismic inversion"> pre-stack seismic inversion</a> </p> <a href="https://publications.waset.org/abstracts/54295/application-of-post-stack-and-pre-stack-seismic-inversion-for-prediction-of-hydrocarbon-reservoirs-in-a-persian-gulf-gas-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> The Cellular Internalization Mechanisms of Cationic Niosomes/DNA Complex in HeLa Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Orapan%20Paecharoenchai">Orapan Paecharoenchai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanasait%20Ngawhirunpat"> Tanasait Ngawhirunpat</a>, <a href="https://publications.waset.org/abstracts/search?q=Theerasak%20Rojanarata"> Theerasak Rojanarata</a>, <a href="https://publications.waset.org/abstracts/search?q=Auayporn%20Apirakaramwong"> Auayporn Apirakaramwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Praneet%20Opanasopit"> Praneet Opanasopit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cationic niosomes formulated with Span20, cholesterol and novel synthesized spermine-cationic lipids (2-hydrocarbon tail and 4- hydrocarbon tail) in a molar ratio of 2.5:2.5:1 can mediate high gene transfection in vitro. However, the uptake mechanisms of these systems are not well clarified. In the present study, effect of endocytic inhibitors on the transfection efficiency of niosomes/DNA complexes was determined on a human cervical carcinoma cell line (HeLa cells) using the inhibitors of macropinocytosis (wortmannin), clathrin- and caveolae-mediated endocytosis (methyl-β-cyclodextrin), clathrin-mediated endocytosis (chlorpromazine), caveolae-mediated endocytosis (genistein and filipin), cytosolic transfer (ammonium chloride) and microtubules polymerization (nocodazole). The transfection of niosomes with 2-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride and filipin, respectively, whereas, the transfection of niosomes with 4-hydrocarbon tail lipid was blocked by nocodazole, genistein, ammonium chloride, methyl-β-cyclodextrin and filipin, respectively. It can be concluded that these niosomes/DNA complexes were internalized predominantly by endocytosis via clathrin and caveolae-independent pathway. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20internalization" title="cellular internalization">cellular internalization</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20niosomes" title=" cationic niosomes"> cationic niosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20carriers" title=" gene carriers"> gene carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=spermine-cationic%20lipids" title=" spermine-cationic lipids"> spermine-cationic lipids</a> </p> <a href="https://publications.waset.org/abstracts/11538/the-cellular-internalization-mechanisms-of-cationic-niosomesdna-complex-in-hela-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">461</span> Intelligent Chemistry Approach to Improvement of Oxygenates Analytical Method in Light Hydrocarbon by Multidimensional Gas Chromatography - FID and MS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Aboforn">Ahmed Aboforn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Butene-1 product is consider effectively raw material in Polyethylene production, however Oxygenates impurities existing will be effected ethylene/butene-1 copolymers synthesized through titanium-magnesium-supported Ziegler-Natta catalysts. Laterally, Petrochemical industries are challenge against poor quality of Butene-1 and other C4 mix – feedstock that reflected on business impact and production losing. In addition, propylene product suffering from contamination by oxygenates components and causing for lose production and plant upset of Polypropylene process plants. However, Multidimensional gas chromatography (MDGC) innovative analytical methodology is a chromatography technique used to separate complex samples, as mixing different functional group as Hydrocarbon and oxygenates compounds and have similar retention factors, by running the eluent through two or more columns instead of the customary single column. This analytical study striving to enhance the quality of Oxygenates analytical method, as monitoring the concentration of oxygenates with accurate and precise analytical method by utilizing multidimensional GC supported by Backflush technique and Flame Ionization Detector, which have high performance separation of hydrocarbon and Oxygenates; also improving the minimum detection limits (MDL) to detect the concentration <1.0 ppm. However different types of oxygenates as (Alcohols, Aldehyde, Ketones, Ester and Ether) may be determined in other Hydrocarbon streams asC3, C4-mix, until C12 mixture, supported by liquid injection auto-sampler. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytical%20chemistry" title="analytical chemistry">analytical chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemicals" title=" petrochemicals"> petrochemicals</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygenates" title=" oxygenates"> oxygenates</a> </p> <a href="https://publications.waset.org/abstracts/179622/intelligent-chemistry-approach-to-improvement-of-oxygenates-analytical-method-in-light-hydrocarbon-by-multidimensional-gas-chromatography-fid-and-ms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">460</span> Potential Hydrocarbon Degraders Present in Oil from WWII Wrecks in the Pacific</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awei%20Bainivalu">Awei Bainivalu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Larsen"> Joachim Larsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Logesh%20Panneerselvan"> Logesh Panneerselvan</a>, <a href="https://publications.waset.org/abstracts/search?q=Toby%20Mills"> Toby Mills</a>, <a href="https://publications.waset.org/abstracts/search?q=Brett%20Neilan"> Brett Neilan</a>, <a href="https://publications.waset.org/abstracts/search?q=Megharaj%20Mallavarapu"> Megharaj Mallavarapu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> World War II (WWII) shipwrecks harbour up to 20 million tonnes of oil. More than 3000 wrecks are in the Pacific Ocean; 300 are oil tankers. Compared to other oil removal methods, bioremediation is environmentally friendly and cost-effective. Oil's microbial community and hydrocarbon properties from the Pacific WWII wrecks were identified. Dominant phyla are Proteobacteria, Actinobacteria, and Firmicutes. Native marine bacteria oil-degraders were isolated for bioremediation. Petroleum degradation data from the bacterial consortium will be analyzed over the next three months. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20bioremediation" title="oil bioremediation">oil bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=marine%20bacteria" title=" marine bacteria"> marine bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=WWII%20shipwrecks" title=" WWII shipwrecks"> WWII shipwrecks</a>, <a href="https://publications.waset.org/abstracts/search?q=pacific" title=" pacific"> pacific</a> </p> <a href="https://publications.waset.org/abstracts/147889/potential-hydrocarbon-degraders-present-in-oil-from-wwii-wrecks-in-the-pacific" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">459</span> Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gavin%20Hutama%20Farandiarta">Gavin Hutama Farandiarta</a>, <a href="https://publications.waset.org/abstracts/search?q=Hegi%20Adi%20Prabowo"> Hegi Adi Prabowo</a>, <a href="https://publications.waset.org/abstracts/search?q=Istiara%20Rizqillah%20Hanifah"> Istiara Rizqillah Hanifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Millati%20Hanifah%20Saprudin"> Millati Hanifah Saprudin</a>, <a href="https://publications.waset.org/abstracts/search?q=Raden%20Iqrafia%20Ashna"> Raden Iqrafia Ashna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=petroleum%20sewage%20sludge" title="petroleum sewage sludge">petroleum sewage sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation%20soil" title=" remediation soil"> remediation soil</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20desorption" title=" thermal desorption"> thermal desorption</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20petroleum%20hydrocarbon%20%28TPH%29" title=" total petroleum hydrocarbon (TPH)"> total petroleum hydrocarbon (TPH)</a> </p> <a href="https://publications.waset.org/abstracts/48698/efficient-of-technology-remediation-soil-that-contaminated-by-petroleum-based-on-heat-without-combustion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">458</span> Remediation of Oil and Gas Exploration and Production (O&amp;G E&amp;P) Wastes Using Soil-Poultry Dropping Amendment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ofonime%20U.%20M.%20John">Ofonime U. M. John</a>, <a href="https://publications.waset.org/abstracts/search?q=Justina%20I.%20R.%20Udotong"> Justina I. R. Udotong</a>, <a href="https://publications.waset.org/abstracts/search?q=Victor%20O.%20Nwaugo"> Victor O. Nwaugo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ime%20R.%20Udotong"> Ime R. Udotong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oily wastes from oil and gas exploration and production (O&G E&P) activities were remediated for twelve weeks using Soil-Poultry dropping amendment. Culture-dependent microbiological, chemical and enzymatic techniques were employed to assess the efficacy of remediation process. Microbiological activities of the remediated wastes showed increased hydrocarbonoclastic microbial populations with increased remediation time; 2.7±0.1 x 105cfu/g to 8.3 ± 0.04 x106cfu/g for hydrocarbon utilizing bacteria, 1.7 ± 0.2 x103cfu/g to 6.0 ± 0.01 x 104cfu/g for hydrocarbon utilizing fungi and 2.2 ± 0.1 x 102cfu/g to 6.7 ± 0.1 x 103cfu/g for hydrocarbon utilizing actinomycetes. Bacteria associated with the remediated wastes after the remediation period included the genera Bacillus, Psuedomonas, Beijerinckia, Acinetobacter, Alcaligenes and Serratia. Fungal isolates included species of Penicillium, Aspergillus and Cladosporium, while the Actinomycetes included species of Rhodococcus, Nocardia and Streptomyces. Slight fluctuations in pH values between 6.5± 0.2 and 7.1 ± 0.08 were recorded throughout the process, while total petroleum hydrocarbon (TPH) content decreased from 89, 900 ± 0.03mg/kg to 425 ± 0.1 mg/kg after twelve weeks of remediation. The polycyclic aromatic hydrocarbon (PAH) levels decreased with increased remediation time; naphthalene, flourene, pheneanthrene, anthracene, pyrene, chrysene and benzo(b)flouranthene showed decreased values < 0.01 after twelve weeks of remediation. Enzyme activities revealed increased dehydrogenase and urease activities with increased remediation time and decreased phenol oxidase activity with increased remediation period. There was a positive linear correlation between densities of hydrocarbonoclastic microbes and dehydrogenase activity. On the contrary, phenol oxidase and urease activities showed negative correlation with microbial population. Results of this study confirmed that remediation of oily wastes using soil-poultry dropping amendment can result in eco-friendly O&G E&P wastes. It also indicates that urease and phenol oxidase activities can be reliable indices/tools to monitor PAH levels and rates of petroleum hydrocarbon degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dehydrogenase%20activity" title="dehydrogenase activity">dehydrogenase activity</a>, <a href="https://publications.waset.org/abstracts/search?q=oily%20wastes" title=" oily wastes"> oily wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=remediation" title=" remediation"> remediation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-poultry%20dropping%20amendment" title=" soil-poultry dropping amendment"> soil-poultry dropping amendment</a> </p> <a href="https://publications.waset.org/abstracts/24504/remediation-of-oil-and-gas-exploration-and-production-og-ep-wastes-using-soil-poultry-dropping-amendment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">457</span> The Implementation of Poisson Impedance Inversion to Improve Hydrocarbon Reservoir Characterization in Poseidon Field, Browse Basin, Australia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Riky%20Tri%20Hartagung">Riky Tri Hartagung</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Syamsu%20Rosid"> Mohammad Syamsu Rosid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lithology prediction process, as well as the fluid content is the most important part in the reservoir characterization. One of the methods used in this process is the simultaneous seismic inversion method. In the Posseidon field, Browse Basin, Australia, the parameters generated through simultaneous seismic inversion are not able to characterize the reservoir accurately because of the overlapping impedance values between hydrocarbon sand, water sand, and shale, which causes a high level of ambiguity in the interpretation. The Poisson Impedance inversion provides a solution to this problem by rotating the impedance a few degrees, which is obtained through the coefficient c. Coefficient c is obtained through the Target Correlation Coefficient Analysis (TCCA) by finding the optimum correlation coefficient between Poisson Impedance and the target log, namely gamma ray, effective porosity, and resistivity. Correlation of each of these target logs will produce Lithology Impedance (LI) which is sensitive to lithology sand, Porosity Impedance (ϕI) which is sensitive to porous sand, and Fluid Impedance (FI) which is sensitive to fluid content. The results show that PI gives better results in separating hydrocarbon saturated reservoir zones. Based on the results of the LI-GR crossplot, the ϕI-effective porosity crossplot, and the FI-Sw crossplot with optimum correlations of 0.74, 0.91, and 0.82 respectively, it shows that the lithology of hidrocarbon-saturated porous sand is at the value of LI ≤ 2800 (m/s)(g *cc), ϕI ≤ 5500 (m/s)(g*cc), and FI ≤ 4000 (m/s)(g*cc). The presence of low values of LI, ϕI, and FI correlates accurately with the presence of hydrocarbons in the well. Each value of c is then applied to the seismic data. The results show that the PI inversion gives a good distribution of Hydrocarbon-saturated porous sand lithology. The distribution of hydrocarbon saturated porous sand on the seismic inversion section is seen in the northeast – southwest direction, which is estimated as the direction of gas distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reservoir%20characterization" title="reservoir characterization">reservoir characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=poisson%20impedance" title=" poisson impedance"> poisson impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=browse%20basin" title=" browse basin"> browse basin</a>, <a href="https://publications.waset.org/abstracts/search?q=poseidon%20field" title=" poseidon field"> poseidon field</a> </p> <a href="https://publications.waset.org/abstracts/148389/the-implementation-of-poisson-impedance-inversion-to-improve-hydrocarbon-reservoir-characterization-in-poseidon-field-browse-basin-australia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148389.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">456</span> Organic Geochemical Evaluation of the Ecca Group Shale: Implications for Hydrocarbon Potential</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temitope%20L.%20Baiyegunhi">Temitope L. Baiyegunhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuiwu%20Liu"> Kuiwu Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Oswald%20Gwavava"> Oswald Gwavava</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Baiyegunhi"> Christopher Baiyegunhi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shale gas has recently been the exploration focus for future energy resource in South Africa. Specifically, the black shales of the lower Ecca Group in the study area are considered to be one of the most prospective targets for shale gas exploration. Evaluation of this potential resource has been restricted due to the lack of exploration and scarcity of existing drill core data. Thus, only limited previous geochemical data exist for these formations. In this study, outcrop and core samples of the Ecca Group were analysed to assess their total organic carbon (TOC), organic matter type, thermal maturity and hydrocarbon generation potential (SP). The results show that these rocks have TOC ranging from 0.11 to 7.35 wt.%. The SP values vary from 0.09 to 0.53 mg HC/g, suggesting poor hydrocarbon generative potential. The plot of S1 versus TOC shows that the source rocks were characterized by autochthonous hydrocarbons. S2/S3 values range between 0.40 and 7.5, indicating Type- II/III, III, and IV kerogen. With the exception of one sample from the collingham formation which has HI value of 53 mg HC/g TOC, all other samples have HI values of less than 50 mg HC/g TOC, thus suggesting Type-IV kerogen, which is mostly derived from reworked organic matter (mainly dead carbon) with little or no potential for hydrocarbon generation. Tmax values range from 318 to 601℃, indicating immature to over-maturity of hydrocarbon. The vitrinite reflectance values range from 2.22 to 3.93%, indicating over-maturity of the kerogen. Binary plots of HI against OI and HI versus Tmax show that the shales are of Type II and mixed Type II-III kerogen, which are capable of generating both natural gas and minor oil at suitable burial depth. Based on the geochemical data, it can be inferred that the source rocks are immature to over-matured variable from localities and have potential of producing wet to dry gas at present-stage. Generally, the Whitehill formation of the Ecca Group is comparable to the Marcellus and Barnett Shales. This further supports the assumption that the Whitehill Formation has a high probability of being a profitable shale gas play, but only when explored in dolerite-free area and away from the Cape Fold Belt. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=source%20rock" title="source rock">source rock</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20matter%20type" title=" organic matter type"> organic matter type</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20maturity" title=" thermal maturity"> thermal maturity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20generation%20potential" title=" hydrocarbon generation potential"> hydrocarbon generation potential</a>, <a href="https://publications.waset.org/abstracts/search?q=Ecca%20Group" title=" Ecca Group"> Ecca Group</a> </p> <a href="https://publications.waset.org/abstracts/100472/organic-geochemical-evaluation-of-the-ecca-group-shale-implications-for-hydrocarbon-potential" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">455</span> Establishing Sequence Stratigraphic Framework and Hydrocarbon Potential of the Late Cretaceous Strata: A Case Study from Central Indus Basin, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Wadood">Bilal Wadood</a>, <a href="https://publications.waset.org/abstracts/search?q=Suleman%20Khan"> Suleman Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sajjad%20Ahmed"> Sajjad Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Late Cretaceous strata (Mughal Kot Formation) exposed in Central Indus Basin, Pakistan is evaluated for establishing sequence stratigraphic framework and potential of hydrocarbon accumulation. The petrographic studies and SEM analysis were carried out to infer the hydrocarbon potential of the rock unit. The petrographic details disclosed 4 microfacies including Pelagic Mudstone, OrbitoidalWackestone, Quartz Arenite, and Quartz Wacke. The lowermost part of the rock unit consists of OrbitoidalWackestone which shows deposition in the middle shelf environment. The Quartz Arenite and Quartz Wacke suggest deposition on the deep slope settings while the Pelagic Mudstone microfacies point toward deposition in the distal deep marine settings. Based on the facies stacking patterns and cyclicity in the chronostratigraphic context, the strata is divided into two 3rd order cycles. One complete sequence i.e Transgressive system tract (TST), Highstand system tract (HST) and Lowstand system tract (LST) are again replaced by another Transgressive system tract and Highstant system tract with no markers of sequence boundary. The LST sands are sandwiched between TST and HST shales but no potential porosity/permeability values have been determined. Microfacies and SEM studies revealed very fewer chances for hydrocarbon accumulation and overall reservoir potential is characterized as low. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cycle" title="cycle">cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=deposition" title=" deposition"> deposition</a>, <a href="https://publications.waset.org/abstracts/search?q=microfacies" title=" microfacies"> microfacies</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a> </p> <a href="https://publications.waset.org/abstracts/93674/establishing-sequence-stratigraphic-framework-and-hydrocarbon-potential-of-the-late-cretaceous-strata-a-case-study-from-central-indus-basin-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">454</span> Preliminary Analysis for Oil and Gas Geological Characteristics and Exploration Prospects of Doseo Basin in Central Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haiqiang%20Song">Haiqiang Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Huiqing%20Liu"> Huiqing Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Doseo basin in Chad, Central Africa is one of the most important oil and gas blocks in the world. However, the low degree of oil and gas exploration and the lack of relevant geological data restrict the understanding and resource evaluation of the basin. To further develop the Doseo basin efficiently, it is urgent to deeply analyze the source rock characteristics and hydrocarbon generation potential of the Doseo basin. Based on seismic and drilling data in recent years, this paper systematically evaluates the geochemical characteristics of source rocks and their generated oils in Doseo Basin, explores the development, distribution, and evolution characteristics of source rocks, and evaluates the exploration potential of Doseo Basin according to the hydrocarbon enrichment law. The results show that the Lower Cretaceous Baliemian and Apudian source rocks in Doseo Basin are well developed, with high organic matter abundance (average TOC≥3%) and good organic matter types (type I~II), which are the main development layers of source rocks, but the organic matter maturity is generally low (Ro of the drilled source rocks is mainly between 0.4%~0.8%). The planar structure also shows that the main hydrocarbon accumulation mode in Doseo sag is the forward tectonic reservoirs such as near source anticlines and faulted noses. Finally, it is estimated that the accumulative resources of the main source rocks in the Doseo Basin are about 4.33× 108T in Apudite and Balim terrace layers. The results of this study will help guide the next step of oil and gas exploration, which is expected to drive the next step of oil and gas development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Doseo%20basin" title="Doseo basin">Doseo basin</a>, <a href="https://publications.waset.org/abstracts/search?q=lower%20cretaceous" title=" lower cretaceous"> lower cretaceous</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20rock%20characteristics" title=" source rock characteristics"> source rock characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20characteristics" title=" developmental characteristics"> developmental characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20generation%20potential" title=" hydrocarbon generation potential"> hydrocarbon generation potential</a> </p> <a href="https://publications.waset.org/abstracts/158057/preliminary-analysis-for-oil-and-gas-geological-characteristics-and-exploration-prospects-of-doseo-basin-in-central-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">453</span> Subsurface Structures Related to the Hydrocarbon Migration and Accumulation in the Afghan Tajik Basin, Northern Afghanistan: Insights from Seismic Attribute Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samim%20Khair%20Mohammad">Samim Khair Mohammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Takeshi%20Tsuji"> Takeshi Tsuji</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanmaly%20Chhun"> Chanmaly Chhun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Afghan Tajik (foreland) basin, located in the depression zone between mountain axes, is under compression and deformation during the collision of India with the Eurasian plate. The southern part of the Afghan Tajik basin in the Northern part of Afghanistan has not been well studied and explored, but considered for the significant potential for oil and gas resources. The Afghan Tajik basin depositional environments (< 8km) resulted from mixing terrestrial and marine systems, which has potential prospects of Jurrasic (deep) and Tertiary (shallow) petroleum systems. We used 2D regional seismic profiles with a total length of 674.8 km (or over an area of 2500 km²) in the southern part of the basin. To characterize hydrocarbon systems and structures in this study area, we applied advanced seismic attributes such as spectral decomposition (10 - 60Hz) based on time-frequency analysis with continuous wavelet transform. The spectral decomposition results yield the (averaging 20 - 30Hz group) spectral amplitude anomaly. Based on this anomaly result, seismic, and structural interpretation, the potential hydrocarbon accumulations were inferred around the main thrust folds in the tertiary (Paleogene+Neogene) petroleum systems, which appeared to be accumulated around the central study area. Furthermore, it seems that hydrocarbons dominantly migrated along the main thrusts and then concentrated around anticline fold systems which could be sealed by mudstone/carbonate rocks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=The%20Afghan%20Tajik%20basin" title="The Afghan Tajik basin">The Afghan Tajik basin</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20lines" title=" seismic lines"> seismic lines</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20decomposition" title=" spectral decomposition"> spectral decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=thrust%20folds" title=" thrust folds"> thrust folds</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20reservoirs" title=" hydrocarbon reservoirs"> hydrocarbon reservoirs</a> </p> <a href="https://publications.waset.org/abstracts/168361/subsurface-structures-related-to-the-hydrocarbon-migration-and-accumulation-in-the-afghan-tajik-basin-northern-afghanistan-insights-from-seismic-attribute-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">452</span> Investigation of Ignition Delay for Low Molecular Hydrocarbon Fuel and Oxygen Mixture behind the Reflected Shock</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20R.%20Guna">K. R. Guna</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldin%20Justin%20Sundararaj"> Aldin Justin Sundararaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20C.%20Pillai"> B. C. Pillai</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Subash"> A. N. Subash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A systematic study has been made for ignition delay times measurement behind a reflected shock wave for the low molecular weight hydrocarbon fuel in argon simulated gas mixtures. The low molecular hydrocarbon fuel–oxygen was diluted with argon for desired concentration is taken for the study. The suitability of the shock tube for measuring the ignition delay time is demonstrated by measuring the ignition delay for the liquefied petroleum gas for equivalence ratios (ф=0.5 & 1) in the temperature range 1150-1650 K. The pressure range was fixed from 5-15 bar. The ignition delay was measured by recording the ignition-induced pressure jump and emission from CH radical simultaneously. From conducting experiments, it was found that the ignition delay time for liquefied petroleum gas reduces with increase in temperature. The shock tube was calibrated for ethane-oxygen gas mixture and the results obtained from this study is compared with the earlier reported values and found to be comparably well suited for the measurement of ignition delay times. The above work was carried out using the shock tube facility at propulsion and high enthalpy laboratory, Karunya University. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay" title="ignition delay">ignition delay</a>, <a href="https://publications.waset.org/abstracts/search?q=LPG" title=" LPG"> LPG</a>, <a href="https://publications.waset.org/abstracts/search?q=reflected%20shock" title=" reflected shock"> reflected shock</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20wave" title=" shock wave"> shock wave</a> </p> <a href="https://publications.waset.org/abstracts/58522/investigation-of-ignition-delay-for-low-molecular-hydrocarbon-fuel-and-oxygen-mixture-behind-the-reflected-shock" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">451</span> Aseismic Stiffening of Architectural Buildings as Preventive Restoration Using Unconventional Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jefto%20Terzovic">Jefto Terzovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Ana%20Kontic"> Ana Kontic</a>, <a href="https://publications.waset.org/abstracts/search?q=Isidora%20Ilic"> Isidora Ilic</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the proposed design concept, laminated glass and laminated plexiglass, as ”unconventional materials”, are considered as a filling in a steel frame on which they overlap by the intermediate rubber layer, thereby forming a composite assembly. In this way vertical elements of stiffening are formed, capable for reception of seismic force and integrated into the structural system of the building. The applicability of such a system was verified by experiments in laboratory conditions where the experimental models based on laminated glass and laminated plexiglass had been exposed to the cyclic loads that simulate the seismic force. In this way the load capacity of composite assemblies was tested for the effects of dynamic load that was parallel to assembly plane. Thus, the stress intensity to which composite systems might be exposed was determined as well as the range of the structure stiffening referring to the expressed deformation along with the advantages of a particular type of filling compared to the other one. Using specialized software whose operation is based on the finite element method, a computer model of the structure was created and processed in the case study; the same computer model was used for analyzing the problem in the first phase of the design process. The stiffening system based on composite assemblies tested in laboratories is implemented in the computer model. The results of the modal analysis and seismic calculation from the computer model with stiffeners applied showed an efficacy of such a solution, thus rounding the design procedures for aseismic stiffening by using unconventional materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminated%20glass" title="laminated glass">laminated glass</a>, <a href="https://publications.waset.org/abstracts/search?q=laminated%20plexiglass" title=" laminated plexiglass"> laminated plexiglass</a>, <a href="https://publications.waset.org/abstracts/search?q=aseismic%20stiffening" title=" aseismic stiffening"> aseismic stiffening</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20testing" title=" laboratory testing"> laboratory testing</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20model" title=" computer model"> computer model</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/150416/aseismic-stiffening-of-architectural-buildings-as-preventive-restoration-using-unconventional-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">450</span> Catalytic Deoxygenation of Non-Edible Oil to Renewable Fuel by Using Calcium-Based Nanocatalyst</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hwei%20Voon%20Lee">Hwei Voon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Asikin-Mijana"> N. Asikin-Mijana</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Taufiq-Yap"> Y. H. Taufiq-Yap</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Juan"> J. C. Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Rahman"> N. A. Rahman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cracking–Deoxygenation process is one of the important reaction pathways for the production of bio-fuel with desirable n-C17 hydrocarbon chain via removal of oxygen compounds. Calcium-based catalyst has attracted much attention in deoxygenation process due to its relatively high capacity in removing oxygenated compounds in the form of CO₂ and CO under decarboxylation and decarbonylation reaction, respectively. In the present study, deoxygenation of triolein was investigated using Ca(OH)₂ nanocatalyst derived from low cost natural waste shells. The Ca(OH)₂ nanocatalyst was prepared via integration techniques between surfactant treatment (anionic and non-ionic) and wet sonochemical effect. Results showed that sonochemically assisted surfactant treatment has successfully enhanced the physicochemical properties of Ca(OH)₂ nanocatalyst in terms of nanoparticle sizes (∼50 nm), high surface area(∼130 m²g⁻¹), large porosity (∼18.6 nm) and strong basic strength. The presence of superior properties from surfactant treated Ca(OH)₂ nanocatalysts rendered high deoxygenation degree, which is capable of producing high alkane and alkene selectivity in chain length of n-C17(high value of C17/(n-C17+ n-C18)ratio = 0.88). Furthermore, both Ca(OH)₂–EG and Ca(OH)₂–CTAB nanocatalysts showed high reactivity with 47.37% and 44.50%, respectively in total liquid hydrocarbon content of triolein conversion with high H/C and low O/C ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clamshell" title="clamshell">clamshell</a>, <a href="https://publications.waset.org/abstracts/search?q=cracking" title=" cracking"> cracking</a>, <a href="https://publications.waset.org/abstracts/search?q=decarboxylation-decarbonylation" title=" decarboxylation-decarbonylation"> decarboxylation-decarbonylation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/81377/catalytic-deoxygenation-of-non-edible-oil-to-renewable-fuel-by-using-calcium-based-nanocatalyst" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">449</span> Ionic Liquid Effects on Metal Ion-Based Extractions of Olefin/Paraffin Hydrocarbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellen%20M.%20Lukasik">Ellen M. Lukasik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In coordination and support of the Center for Innovative and Strategic Transformation of Alkane Resources (CISTAR) Research Experience for Teachers (RET) at the University of Texas at Austin and under the guidance and direction of Professor Joan Brennecke, this study examined the addition of silver in an ionic liquid used to separate cyclohexane from cyclohexene. We recreated the liquid-liquid separation experimental results from the literature on cyclohexene, cyclohexane, and [allylmim][Tf2N] to verify our method, then evaluated the separation performance of silver - ionic liquid (IL) mixtures by various characterization techniques. To introduce the concepts of this research in high school education, a lesson plan was developed to instruct students on the principles of liquid-liquid separation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquids" title="ionic liquids">ionic liquids</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-liquid%20separation" title=" liquid-liquid separation"> liquid-liquid separation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20experience%20for%20teachers" title=" research experience for teachers"> research experience for teachers</a> </p> <a href="https://publications.waset.org/abstracts/153896/ionic-liquid-effects-on-metal-ion-based-extractions-of-olefinparaffin-hydrocarbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">448</span> Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Bazrafshan">Hamed Bazrafshan</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeideh%20Dabirnia"> Saeideh Dabirnia</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Alipour%20Tesieh"> Zahra Alipour Tesieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Alavi"> Samaneh Alavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Dabir"> Bahram Dabir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title="photocatalyst">photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=Ag-doped" title=" Ag-doped"> Ag-doped</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO%E2%82%82" title=" TiO₂"> TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=produced%20water" title=" produced water"> produced water</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/149150/photocatalytic-degradation-of-produced-water-hydrocarbon-of-an-oil-field-by-using-ag-doped-tio2-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">447</span> Evaluation of Shale Gas Resource Potential of the Middle Benue Trough, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ovye%20Yohanna%20Musah">Ovye Yohanna Musah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Shale formations of the Middle Benue Trough in North Central Nigeria present a variety of opportunities for the exploration, development and exploitation of unconventional natural gas. Prospective formations range in age from Albian through Coniacian; they include the Asu River Group, Awe, Ezeaku and the Awgu formations, however, the Keana and Lafia formations are thought to be of lesser importance. The Awgu formation presents the best prospect when compared to the Barnett Shales of Fort Worth Basin in Texa, United States with regards to the organic matter maturition, TOC content of formation and shale thicknesses which are key attributes that aid in determining the economic viability of any shale gas play. The vitrinite reflectance value from Rock Eval pyrolysis for Awe and Awgu formations are 0.89—1.34(%) and 0.83—1.13(%) respectively and are good and sufficiently mature to generate gas from the Benue Trough. The TOC value are good for Awgu formation which is 0.83—6.54(%) and closest to that of the Barnett at 1—4.5(%). Asu River and Ezeaku are less viable. Furthermore, the High to Medium Volatile bituminous coals found in the Awgu formation are characterized by high TOC contents which may enhance gas generation and this is good for further examination and possible development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shale%20gas" title="shale gas">shale gas</a>, <a href="https://publications.waset.org/abstracts/search?q=resource" title=" resource"> resource</a>, <a href="https://publications.waset.org/abstracts/search?q=unconventional" title=" unconventional"> unconventional</a>, <a href="https://publications.waset.org/abstracts/search?q=benue" title=" benue"> benue</a>, <a href="https://publications.waset.org/abstracts/search?q=TOC" title=" TOC"> TOC</a> </p> <a href="https://publications.waset.org/abstracts/27272/evaluation-of-shale-gas-resource-potential-of-the-middle-benue-trough-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">446</span> Permeable Bio-Reactive Barriers to Tackle Petroleum Hydrocarbon Contamination in the Sub-Antarctic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20L.%20Freidman">Benjamin L. Freidman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sally%20L.%20Gras"> Sally L. Gras</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20Snape"> Ian Snape</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoff%20W.%20Stevens"> Geoff W. Stevens</a>, <a href="https://publications.waset.org/abstracts/search?q=Kathryn%20A.%20Mumford"> Kathryn A. Mumford</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Increasing transportation and storage of petroleum hydrocarbons in Antarctic and sub-Antarctic regions have resulted in frequent accidental spills. Migrating petroleum hydrocarbon spills can have a significant impact on terrestrial and marine ecosystems in cold regions, as harsh environmental conditions result in heightened sensitivity to pollution. This migration of contaminants has led to the development of Permeable Reactive Barriers (PRB) for application in cold regions. PRB’s are one of the most practical technologies for on-site or in-situ groundwater remediation in cold regions due to their minimal energy, monitoring and maintenance requirements. The Main Power House site has been used as a fuel storage and power generation area for the Macquarie Island research station since at least 1960. Soil analysis at the site has revealed Total Petroleum Hydrocarbon (TPH) (C9-C28) concentrations as high as 19,000 mg/kg soil. Groundwater TPH concentrations at this site can exceed 350 mg/L TPH. Ongoing migration of petroleum hydrocarbons into the neighbouring marine ecosystem resulted in the installation of a ‘funnel and gate’ PRB in November 2014. The ‘funnel and gate’ design successfully intercepted contaminated groundwater and analysis of TPH retention and biodegradation on PRB media are currently underway. Installation of the PRB facilitates research aimed at better understanding the contribution of particle attached biofilms to the remediation of groundwater systems. Bench-scale PRB system analysis at The University of Melbourne is currently examining the role biofilms play in petroleum hydrocarbon degradation, and how controlled release nutrient media can heighten the metabolic activity of biofilms in cold regions in the presence of low temperatures and low nutrient groundwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=groundwater" title="groundwater">groundwater</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum" title=" petroleum"> petroleum</a>, <a href="https://publications.waset.org/abstracts/search?q=Macquarie%20island" title=" Macquarie island"> Macquarie island</a>, <a href="https://publications.waset.org/abstracts/search?q=funnel%20and%20gate" title=" funnel and gate"> funnel and gate</a> </p> <a href="https://publications.waset.org/abstracts/37838/permeable-bio-reactive-barriers-to-tackle-petroleum-hydrocarbon-contamination-in-the-sub-antarctic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">445</span> Solvent-Aided Dilution Approach for Heavy Hydrocarbon Liquid Evaluation in the Eastern Dahomey Basin, Southwestern Nigeria: Case Study of Agbabu Bitumen in Ondo State.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adetokunbo%20Ademola%20Falade">Adetokunbo Ademola Falade</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwatoyin%20Olakunle%20Akinsete"> Oluwatoyin Olakunle Akinsete</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussein%20Omeiza%20Aliu"> Hussein Omeiza Aliu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solvent-aided dilution processes are often employed to recover bitumen by reducing its viscosity. In this study, methanol, toluene, and xylene were investigated as potential hydrocarbon solvents for solvent-aided hydrocarbon recovery of Agbabu bitumen. Solubility, Viscosity, and Saturate, Aromatic, Resin and Asphaltene (SARA) Analysis tests were carried out to determine the solubility of the bitumen in the solvents, the viscosity, and the SARA fraction of the natural bitumen and bitumen-solvent mixtures. Agbabu bitumen was found to have a high content of saturates and aromatics. Viscosity decreases as pressure increases, while solubility reduces as temperature increases. The experimental diffusivity of the sample decreases with temperature and increases with pressure, indicating that the presence of additional solvent molecules in the oil phase facilitates diffusion. Agbabu bitumen was found to be most soluble in toluene, and its viscosity was reduced most in it. Xylene exhibited a similar effect as toluene on the sample, though lesser but better than methanol. Methanol reduced the saturated content and significantly raised the asphaltene content, keeping the mixture viscosity high, a condition that, in turn, favors its colloidal stability. The colloidal instability index (CII) values, which account for the asphaltene stability of the mixture, show that the bitumen-methanol system with a CII of 0.874 will have mild asphaltene deposit issues while others are unstable. This approach of combining multiple tests with the CII can accurately predict the behavior of Agbabu bitumen in solvents and enhance the decision on the choice of bitumen recovery technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=bitumen" title=" bitumen"> bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon%20solvent" title=" hydrocarbon solvent"> hydrocarbon solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=SARA" title=" SARA"> SARA</a> </p> <a href="https://publications.waset.org/abstracts/187476/solvent-aided-dilution-approach-for-heavy-hydrocarbon-liquid-evaluation-in-the-eastern-dahomey-basin-southwestern-nigeria-case-study-of-agbabu-bitumen-in-ondo-state" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">444</span> Prediction of Oil Recovery Factor Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20P.%20Oladipo">O. P. Oladipo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Falode"> O. A. Falode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recovery%20factor" title="recovery factor">recovery factor</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir" title=" reservoir"> reservoir</a>, <a href="https://publications.waset.org/abstracts/search?q=reserves" title=" reserves"> reserves</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrocarbon" title=" hydrocarbon"> hydrocarbon</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=API" title=" API"> API</a>, <a href="https://publications.waset.org/abstracts/search?q=Guthrie" title=" Guthrie"> Guthrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Greenberger" title=" Greenberger"> Greenberger</a> </p> <a href="https://publications.waset.org/abstracts/18896/prediction-of-oil-recovery-factor-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">443</span> Geochemical Study of the Bound Hydrocarbon in the Asphaltene of Biodegraded Oils of Cambay Basin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayani%20Chatterjee">Sayani Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusum%20Lata%20Pangtey"> Kusum Lata Pangtey</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Singh"> Sarita Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Harvir%20Singh"> Harvir Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradation leads to a systematic alteration of the chemical and physical properties of crude oil showing sequential depletion of n-alkane, cycloalkanes, aromatic which increases its specific gravity, viscosity and the abundance of heteroatom-containing compounds. The biodegradation leads to a change in the molecular fingerprints and geochemical parameters of degraded oils, thus make source and maturity identification inconclusive or ambiguous. Asphaltene is equivalent to the most labile part of the respective kerogen and generally has high molecular weight. Its complex chemical structure with substantial microporous units makes it suitable to occlude the hydrocarbon expelled from the source. The occluded molecules are well preserved by the macromolecular structure and thus prevented from secondary alterations. They retain primary organic geochemical information over the geological time. The present study involves the extraction of this occluded hydrocarbon from the asphaltene cage through mild oxidative degradation using mild oxidative reagents like Hydrogen Peroxide (H₂O₂) and Acetic Acid (CH₃COOH) on purified asphaltene of the biodegraded oils of Mansa, Lanwa and Santhal fields in Cambay Basin. The study of these extracted occluded hydrocarbons was carried out for establishing oil to oil and oil to source correlation in the Mehsana block of Cambay Basin. The n-alkane and biomarker analysis through GC and GC-MS of these occluded hydrocarbons show similar biomarker imprint as the normal oil in the area and hence correlatable with them. The abundance of C29 steranes, presence of Oleanane, Gammacerane and 4-Methyl sterane depicts that the oils are derived from terrestrial organic matter deposited in the stratified saline water column in the marine environment with moderate maturity (VRc 0.6-0.8). The oil source correlation study suggests that the oils are derived from Jotana-Warosan Low area. The developed geochemical technique to extract the occluded hydrocarbon has effectively resolved the ambiguity that resulted from the inconclusive fingerprint of the biodegraded oil and the method can be also applied in other biodegraded oils as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphaltene" title="asphaltene">asphaltene</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=mild%20oxidation" title=" mild oxidation"> mild oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=occluded%20hydrocarbon" title=" occluded hydrocarbon"> occluded hydrocarbon</a> </p> <a href="https://publications.waset.org/abstracts/109021/geochemical-study-of-the-bound-hydrocarbon-in-the-asphaltene-of-biodegraded-oils-of-cambay-basin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=unconventional%20hydrocarbon&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10