CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;48 of 48 results for author: <span class="mathjax">Chaudhuri, S</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Chaudhuri%2C+S">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Chaudhuri, S"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Chaudhuri%2C+S&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Chaudhuri, S"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08513">arXiv:2411.08513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08513">pdf</a>, <a href="https://arxiv.org/ps/2411.08513">ps</a>, <a href="https://arxiv.org/format/2411.08513">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> On the soliton solutions in a self-gravitating strongly coupled electron-ion-dusty plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Shatadru Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Nasrin%2C+S">Shahin Nasrin</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+A+R">Asesh Roy Chowdhury</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08513v1-abstract-short" style="display: inline;"> The effect of electrostatic strong-coupling of dust particles along with their self-gravitational force has been analyzed in a three component dusty plasma. The electrons and ions forming the charge neutral background where the electron distribution is assumed to be Maxwellian while the ion distribution is non-thermal. These days, one of the key topics in plasma physics is nonlinear waves in plasm&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08513v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08513v1-abstract-full" style="display: none;"> The effect of electrostatic strong-coupling of dust particles along with their self-gravitational force has been analyzed in a three component dusty plasma. The electrons and ions forming the charge neutral background where the electron distribution is assumed to be Maxwellian while the ion distribution is non-thermal. These days, one of the key topics in plasma physics is nonlinear waves in plasma. Thus using the reductive perturbation technique to the set of hydrodynamic equation considered for an electron-ion-dusty (e-i-d) plasma, a coupled KdV equation is derived. The impact of strong coupling and self-gravitation on the solitary wave profiles, nonlinear coefficient and dispersive coefficient are studied both analytically and by numerical simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08513v1-abstract-full').style.display = 'none'; document.getElementById('2411.08513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.16704">arXiv:2409.16704</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.16704">pdf</a>, <a href="https://arxiv.org/format/2409.16704">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Theory and Atomistic Simulation of Electrodeposition </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Shayantan Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+R+J">Reinhard J. Maurer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.16704v1-abstract-short" style="display: inline;"> Electrodeposition is a fundamental process in electrochemistry, and has applications in numerous industries, such as corrosion protection, decorative finishing, energy storage, catalysis, and electronics. While there is a long history of using electrodeposition, its application for controlled nanostructure growth is limited. The establishment of an atomic-scale understanding of the electrodepositi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16704v1-abstract-full').style.display = 'inline'; document.getElementById('2409.16704v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.16704v1-abstract-full" style="display: none;"> Electrodeposition is a fundamental process in electrochemistry, and has applications in numerous industries, such as corrosion protection, decorative finishing, energy storage, catalysis, and electronics. While there is a long history of using electrodeposition, its application for controlled nanostructure growth is limited. The establishment of an atomic-scale understanding of the electrodeposition process and dynamics is crucial to enable the controlled fabrication of metal nanoparticles and other nanostructures. Significant advancements in molecular simulation capabilities and the electronic structure theory of electrified solid-liquid interfaces bring theory closer to realistic applications, but a gap remains between realistic applications, theoretical understanding of dynamics, and atomistic simulation. In this review we briefly summarize the current state-of-the-art computational techniques available for the simulation of electrodeposition and electrochemical growth on surfaces, and identify the remaining open challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.16704v1-abstract-full').style.display = 'none'; document.getElementById('2409.16704v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">72 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17197">arXiv:2405.17197</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.17197">pdf</a>, <a href="https://arxiv.org/format/2405.17197">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.combustflame.2024.113903">10.1016/j.combustflame.2024.113903 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> How &#34;mixing&#34; affects propagation and structure of intensely turbulent, lean, hydrogen-air premixed flames </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuvraj"> Yuvraj</a>, <a href="/search/physics?searchtype=author&amp;query=Im%2C+H+G">Hong G. Im</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17197v3-abstract-short" style="display: inline;"> Understanding how intrinsically fast hydrogen-air premixed flames can be rendered much faster in turbulence is crucial for systematically developing hydrogen-based gas turbines and spark ignition engines. Here, we present fundamental insights into the variation of flame displacement speeds by investigating how the disrupted flame structure affects speed and vice-versa. Three DNS cases of lean hydr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17197v3-abstract-full').style.display = 'inline'; document.getElementById('2405.17197v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17197v3-abstract-full" style="display: none;"> Understanding how intrinsically fast hydrogen-air premixed flames can be rendered much faster in turbulence is crucial for systematically developing hydrogen-based gas turbines and spark ignition engines. Here, we present fundamental insights into the variation of flame displacement speeds by investigating how the disrupted flame structure affects speed and vice-versa. Three DNS cases of lean hydrogen-air mixtures with $Le$ from 0.5 to 1 and $Ka$ from 100 to 1000 are analyzed. Suitable comparisons are made with the closest canonical laminar flame configurations at same mixture conditions and their suitability and limitations in expounding turbulent flame properties are elucidated. Since near zero-curvature surface locations are most probable and representative of the average flame geometry in such large $Ka$ flames, this study focuses on the statistical variation of flame displacement speed and the concomitant change in flame structure at those locations. Relevant flame properties are averaged normal to the zero-curvature isotherm regions to obtain the conditional mean flame structures. In the smallest $Le$ case, downstream of the most probable zero-curvature regions, the temperature exceeds that of the standard laminar flame, leading to enhanced local thermal gradient and flame speed. This is due to increased heat-release rate contribution by differential diffusion in positive curvatures downstream of the zero-curvature locations. Furthermore, locally, the flame structure is broadened for all cases due to a reversal in the direction of the flame speed gradient. This reversal is caused by cylindrical flame-flame interactions upstream of the zero-curvature regions, resulting in localized scalar mixing within the flame structure. These non-local effects, in combination, define the mean flame structure and the associated variation in local flame speed in turbulent premixed flames. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17197v3-abstract-full').style.display = 'none'; document.getElementById('2405.17197v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Combust. Flame, 273 (2025), 113903 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18319">arXiv:2403.18319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.18319">pdf</a>, <a href="https://arxiv.org/format/2403.18319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Doppler-assisted quantum resonances through swappable excitation pathways in Potassium vapor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Pal%2C+G">Gourab Pal</a>, <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+S+D">Subhasish Dutta Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18319v1-abstract-short" style="display: inline;"> We report the observation of two additional sub-natural line width quantum interference in the $D_2$ manifold of $^{39}K$ vapor, in addition to the usual single Electromagnetically induced transparency peak. The other two features appear exclusively because $^{39}K$ ground hyperfine splitting is smaller than the Doppler broadened absorption profile. This allows probe and control beams to swap thei&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18319v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18319v1-abstract-full" style="display: none;"> We report the observation of two additional sub-natural line width quantum interference in the $D_2$ manifold of $^{39}K$ vapor, in addition to the usual single Electromagnetically induced transparency peak. The other two features appear exclusively because $^{39}K$ ground hyperfine splitting is smaller than the Doppler broadened absorption profile. This allows probe and control beams to swap their transition pathways. The control beam detuning captures the nature of the coherence, therefore an unusual phenomenon of conversion from perfect transparency to enhanced absorption is observed and explained by utilizing adiabatic elimination of the excited state in the Master equation. Controlling such dark and bright resonances leads to new applications in quantum technologies viz. frequency offset laser stabilization and long-lived quantum memory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18319v1-abstract-full').style.display = 'none'; document.getElementById('2403.18319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.17707">arXiv:2403.17707</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.17707">pdf</a>, <a href="https://arxiv.org/format/2403.17707">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> </div> <p class="title is-5 mathjax"> Effect of light-assisted tunable interaction on the position response function of cold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Misra%2C+A">Anirban Misra</a>, <a href="/search/physics?searchtype=author&amp;query=Satpathi%2C+U">Urbashi Satpathi</a>, <a href="/search/physics?searchtype=author&amp;query=Sinha%2C+S">Supurna Sinha</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+S">Sanjukta Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.17707v1-abstract-short" style="display: inline;"> The position response of a particle subjected to a perturbation is of general interest in physics. We study the modification of the position response function of an ensemble of cold atoms in a magneto-optical trap in the presence of tunable light-assisted interactions. We subject the cold atoms to an intense laser light tuned near the photoassociation resonance and observe the position response of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17707v1-abstract-full').style.display = 'inline'; document.getElementById('2403.17707v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.17707v1-abstract-full" style="display: none;"> The position response of a particle subjected to a perturbation is of general interest in physics. We study the modification of the position response function of an ensemble of cold atoms in a magneto-optical trap in the presence of tunable light-assisted interactions. We subject the cold atoms to an intense laser light tuned near the photoassociation resonance and observe the position response of the atoms subjected to a sudden displacement. Surprisingly, we observe that the entire cold atomic cloud undergoes collective oscillations. We use a generalised quantum Langevin approach to theoretically analyse the results of the experiments and find good agreement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.17707v1-abstract-full').style.display = 'none'; document.getElementById('2403.17707v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 7 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00682">arXiv:2311.00682</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00682">pdf</a>, <a href="https://arxiv.org/format/2311.00682">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Deep Learning-Based Classification of Gamma Photon Interactions in Room-Temperature Semiconductor Radiation Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S+K">Sandeep K. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+Q">Qinyang Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mandal%2C+K+C">Krishna C. Mandal</a>, <a href="/search/physics?searchtype=author&amp;query=Hu%2C+J">Jianjun Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00682v1-abstract-short" style="display: inline;"> Photon counting radiation detectors have become an integral part of medical imaging modalities such as Positron Emission Tomography or Computed Tomography. One of the most promising detectors is the wide bandgap room temperature semiconductor detectors, which depends on the interaction gamma/x-ray photons with the detector material involves Compton scattering which leads to multiple interaction ph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00682v1-abstract-full').style.display = 'inline'; document.getElementById('2311.00682v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00682v1-abstract-full" style="display: none;"> Photon counting radiation detectors have become an integral part of medical imaging modalities such as Positron Emission Tomography or Computed Tomography. One of the most promising detectors is the wide bandgap room temperature semiconductor detectors, which depends on the interaction gamma/x-ray photons with the detector material involves Compton scattering which leads to multiple interaction photon events (MIPEs) of a single photon. For semiconductor detectors like CdZnTeSe (CZTS), which have a high overlap of detected energies between Compton and photoelectric events, it is nearly impossible to distinguish between Compton scattered events from photoelectric events using conventional readout electronics or signal processing algorithms. Herein, we report a deep learning classifier CoPhNet that distinguishes between Compton scattering and photoelectric interactions of gamma/x-ray photons with CdZnTeSe (CZTS) semiconductor detectors. Our CoPhNet model was trained using simulated data to resemble actual CZTS detector pulses and validated using both simulated and experimental data. These results demonstrated that our CoPhNet model can achieve high classification accuracy over the simulated test set. It also holds its performance robustness under operating parameter shifts such as Signal-Noise-Ratio (SNR) and incident energy. Our work thus laid solid foundation for developing next-generation high energy gamma-rays detectors for better biomedical imaging. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00682v1-abstract-full').style.display = 'none'; document.getElementById('2311.00682v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13514">arXiv:2310.13514</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13514">pdf</a>, <a href="https://arxiv.org/format/2310.13514">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics Education">physics.ed-ph</span> </div> </div> <p class="title is-5 mathjax"> Eat, Sleep, Code, Repeat: Tips for Early-Career Researchers in Computational Science </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ismail%2C+I">Idil Ismail</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Shayantan Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Morgan%2C+D">Dylan Morgan</a>, <a href="/search/physics?searchtype=author&amp;query=Woodgate%2C+C+D">Christopher D. Woodgate</a>, <a href="/search/physics?searchtype=author&amp;query=Fakhoury%2C+Z">Ziad Fakhoury</a>, <a href="/search/physics?searchtype=author&amp;query=Targett%2C+J+M">James M. Targett</a>, <a href="/search/physics?searchtype=author&amp;query=Pilgrim%2C+C">Charlie Pilgrim</a>, <a href="/search/physics?searchtype=author&amp;query=Maino%2C+C">Carlo Maino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13514v1-abstract-short" style="display: inline;"> This article is intended as a guide for new graduate students in the field of computational science. With the increasing influx of students from diverse backgrounds joining the ever-popular field, this short guide aims to help students navigate through the various computational techniques that they are likely to encounter during their studies. These techniques span from Bash scripting and scientif&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13514v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13514v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13514v1-abstract-full" style="display: none;"> This article is intended as a guide for new graduate students in the field of computational science. With the increasing influx of students from diverse backgrounds joining the ever-popular field, this short guide aims to help students navigate through the various computational techniques that they are likely to encounter during their studies. These techniques span from Bash scripting and scientific programming to machine learning, among other areas. This paper is divided into ten sections, each introducing a different computational method. To enhance readability, we have adopted a casual and instructive tone, and included code snippets where relevant. Please note that due to the introductory nature of this article, it is not intended to be exhaustive; instead, we direct readers to a list of references to expand their knowledge of the techniques discussed within the paper. It is likely that this article will continue to evolve with time, and as such, we advise readers to seek the latest version. Finally, readers should note this article serves as an extension to our student-led seminar series, with additional resources and videos available at \url{https://computationaltoolkit.github.io/} for reference. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13514v1-abstract-full').style.display = 'none'; document.getElementById('2310.13514v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">45 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.03140">arXiv:2308.03140</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.03140">pdf</a>, <a href="https://arxiv.org/format/2308.03140">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0170972">10.1063/5.0170972 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> libMBD: A general-purpose package for scalable quantum many-body dispersion calculations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Hermann%2C+J">Jan Hermann</a>, <a href="/search/physics?searchtype=author&amp;query=St%C3%B6hr%2C+M">Martin St枚hr</a>, <a href="/search/physics?searchtype=author&amp;query=G%C3%B3ger%2C+S">Szabolcs G贸ger</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Shayantan Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Aradi%2C+B">B谩lint Aradi</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+R+J">Reinhard J. Maurer</a>, <a href="/search/physics?searchtype=author&amp;query=Tkatchenko%2C+A">Alexandre Tkatchenko</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.03140v1-abstract-short" style="display: inline;"> Many-body dispersion (MBD) is a powerful framework to treat van der Waals (vdW) dispersion interactions in density-functional theory and related atomistic modeling methods. Several independent implementations of MBD with varying degree of functionality exist across a number of electronic structure codes, which both limits the current users of those codes and complicates dissemination of new varian&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03140v1-abstract-full').style.display = 'inline'; document.getElementById('2308.03140v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.03140v1-abstract-full" style="display: none;"> Many-body dispersion (MBD) is a powerful framework to treat van der Waals (vdW) dispersion interactions in density-functional theory and related atomistic modeling methods. Several independent implementations of MBD with varying degree of functionality exist across a number of electronic structure codes, which both limits the current users of those codes and complicates dissemination of new variants of MBD. Here, we develop and document libMBD, a library implementation of MBD that is functionally complete, efficient, easy to integrate with any electronic structure code, and already integrated in FHI-aims, DFTB+, VASP, Q-Chem, CASTEP, and Quantum ESPRESSO. libMBD is written in modern Fortran with bindings to C and Python, uses MPI/ScaLAPACK for parallelization, and implements MBD for both finite and periodic systems, with analytical gradients with respect to all input parameters. The computational cost has asymptotic cubic scaling with system size, and evaluation of gradients only changes the prefactor of the scaling law, with libMBD exhibiting strong scaling up to 256 processor cores. Other MBD properties beyond energy and gradients can be calculated with libMBD, such as the charge-density polarization, first-order Coulomb correction, the dielectric function, or the order-by-order expansion of the energy in the dipole interaction. Calculations on supramolecular complexes with MBD-corrected electronic structure methods and a meta-review of previous applications of MBD demonstrate the broad applicability of the libMBD package to treat vdW interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.03140v1-abstract-full').style.display = 'none'; document.getElementById('2308.03140v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures, submitted to JCP</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.09770">arXiv:2306.09770</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.09770">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Mumbai Floods in recent Years with Crowdsourced Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Tripathy%2C+S+S">Shrabani Sailaja Tripathy</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Sautrik Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Murtugudde%2C+R">Raghu Murtugudde</a>, <a href="/search/physics?searchtype=author&amp;query=Mharte%2C+V">Vedant Mharte</a>, <a href="/search/physics?searchtype=author&amp;query=Parmar%2C+D">Dulari Parmar</a>, <a href="/search/physics?searchtype=author&amp;query=Pinto%2C+M">Manasi Pinto</a>, <a href="/search/physics?searchtype=author&amp;query=Zope%2C+P+E">P. E. Zope</a>, <a href="/search/physics?searchtype=author&amp;query=Dixit%2C+V">Vishal Dixit</a>, <a href="/search/physics?searchtype=author&amp;query=Ghosh%2C+S">Subimal Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.09770v1-abstract-short" style="display: inline;"> Mumbai, a densely populated city, experiences frequent extreme rainfall events leading to floods and waterlogging. However, the lack of real-time flood monitoring and detailed past flooding data limits the scientific analysis to extreme rainfall assessment. To address this, we explore the usability of crowdsourced data for identifying flood hotspots and extracting reliable flood information from t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09770v1-abstract-full').style.display = 'inline'; document.getElementById('2306.09770v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.09770v1-abstract-full" style="display: none;"> Mumbai, a densely populated city, experiences frequent extreme rainfall events leading to floods and waterlogging. However, the lack of real-time flood monitoring and detailed past flooding data limits the scientific analysis to extreme rainfall assessment. To address this, we explore the usability of crowdsourced data for identifying flood hotspots and extracting reliable flood information from the past. Through an automated program, we filter and retrieve flood-related data from Twitter, using location information to generate flood maps for past heavy rainfall events. The validity of the retrieved data is confirmed by comparing it with volunteered geographic information (VGI) which is more accurate but less abundant. In the absence of direct flood information, Twitter data is cross-verified with the Height above the Nearest Drainage (HAND) map, which serves as a proxy for elevation. Interestingly, while extreme rainfall events are increasing in frequency, recent Twitter-based information shows a decrease in flood reporting, attributed to effective mitigation measures implemented at various flood hotspots. Local surveys support this finding and highlight measures such as underground storage tanks and pumping stations that have reduced flood severity. Our study demonstrates the value of crowdsourced data in identifying urban flood hotspots and its potential for real-time flood monitoring and forecasting. This approach can be adapted for data-sparse urban regions to generate location-specific warnings, contributing to improved early warnings and mitigating the impact on lives and property. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.09770v1-abstract-full').style.display = 'none'; document.getElementById('2306.09770v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.06274">arXiv:2306.06274</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.06274">pdf</a>, <a href="https://arxiv.org/format/2306.06274">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> </div> <p class="title is-5 mathjax"> Stability of Single Metal Atoms on Defective and Doped Diamond Surfaces </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Shayantan Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Logsdail%2C+A+J">Andrew J. Logsdail</a>, <a href="/search/physics?searchtype=author&amp;query=Maurer%2C+R+J">Reinhard J. Maurer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.06274v1-abstract-short" style="display: inline;"> Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures for electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single metal adatoms on BDD surfaces. W&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06274v1-abstract-full').style.display = 'inline'; document.getElementById('2306.06274v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.06274v1-abstract-full" style="display: none;"> Polycrystalline boron-doped diamond (BDD) is widely used as a working electrode material in electrochemistry, and its properties, such as its stability, make it an appealing support material for nanostructures for electrocatalytic applications. Recent experiments have shown that electrodeposition can lead to the creation of stable small nanoclusters and even single metal adatoms on BDD surfaces. We investigate the adsorption energy and kinetic stability of single metal atoms adsorbed onto an atomistic model of BDD surfaces using density functional theory. The surface model is constructed using hybrid quantum/molecular mechanics embedding techniques and is based on an oxygen-terminated diamond (110) surface. We use the hybrid quantum mechanics/molecular mechanics method to assess the ability of different density-functional approximations to predict the adsorption structure, energy and the barrier for diffusion on pristine and defective surfaces. We find that surface defects (vacancies and surface dopants) strongly anchor metal adatoms on vacancy sites. We further investigate the thermal stability of metal adatoms, which reveals high barriers associated with lateral diffusion away from the vacancy site. The result provides an explanation for the high stability of experimentally imaged single metal adatoms on BDD and a starting point to investigate the early stages of nucleation during metal surface deposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.06274v1-abstract-full').style.display = 'none'; document.getElementById('2306.06274v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00911">arXiv:2303.00911</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.00911">pdf</a>, <a href="https://arxiv.org/format/2303.00911">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> On flame speed enhancement in turbulent premixed hydrogen-air flames during local flame-flame interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuvraj"> Yuvraj</a>, <a href="/search/physics?searchtype=author&amp;query=Ardebili%2C+Y+N">Yazdan Naderzadeh Ardebili</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+W">Wonsik Song</a>, <a href="/search/physics?searchtype=author&amp;query=Im%2C+H+G">Hong G. Im</a>, <a href="/search/physics?searchtype=author&amp;query=Law%2C+C+K">Chung K. Law</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00911v1-abstract-short" style="display: inline;"> Given the need to develop zero-carbon combustors for power and aircraft engine applications, $S_d$ of a turbulent premixed flame, especially for H$_2$-air, is of immediate interest. The present study investigates 3D DNS cases of premixed H$_2$-air turbulent flames at varied pressures for different $Re_t$ and $Ka$ with detailed chemistry to theoretically model $S_d$ at negative curvatures. Prior st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00911v1-abstract-full').style.display = 'inline'; document.getElementById('2303.00911v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00911v1-abstract-full" style="display: none;"> Given the need to develop zero-carbon combustors for power and aircraft engine applications, $S_d$ of a turbulent premixed flame, especially for H$_2$-air, is of immediate interest. The present study investigates 3D DNS cases of premixed H$_2$-air turbulent flames at varied pressures for different $Re_t$ and $Ka$ with detailed chemistry to theoretically model $S_d$ at negative curvatures. Prior studies at atmospheric pressure showed $\widetilde{S_d}$ to be enhanced significantly over $S_L$ at large negative $魏$ due to flame-flame interactions. 1D simulations of an imploding cylindrical H$_2$-air laminar premixed flame used to represent the local flame surfaces undergoing flame-flame interaction in a turbulent flame at the corresponding pressure conditions are performed to understand the interaction dynamics. These simulations emphasized the transient nature of the flame structure during flame-flame interactions and enabled analytical modeling of $\widetilde{S_d}$ at these regions of extreme negative $魏$ of the 3D DNS. The JPDF of $\widetilde{S_d}$ and $魏$ and the corresponding conditional averages from 3D DNS showed a negative correlation between $\widetilde{S_d}$ and $魏$. The model successfully predicts the variation of $\langle\widetilde{S_d}|_魏\rangle$ with $魏$ for the regions on the flame surface with $魏未_L \! \ll \! -1$ at all pressures, with good accuracy. This shows the aforementioned configuration to be fruitful in representing local flame-flame interaction in 3D turbulent flames. Moreover, at $魏=0$, on average $\widetilde{S_d}$ can deviate from $S_L$, manifested by the internal flame structure, controlled by turbulence transport in the large $Ka$ regime. Thus, the correlation of $\langle\widetilde{S_d}\rangle/S_L$ with $\langle|\widehat{\nabla c}|_{c_0}\rangle$ at $魏=0$ is explored. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00911v1-abstract-full').style.display = 'none'; document.getElementById('2303.00911v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.14084">arXiv:2302.14084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2302.14084">pdf</a>, <a href="https://arxiv.org/format/2302.14084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetic modeling and science reach of DMRadio-m$^3$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DMRadio+Collaboration"> DMRadio Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=AlShirawi%2C+A">A. AlShirawi</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Benabou%2C+J+N">J. N. Benabou</a>, <a href="/search/physics?searchtype=author&amp;query=Brouwer%2C+L">L. Brouwer</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+H+-">H. -M. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Corbin%2C+J">J. Corbin</a>, <a href="/search/physics?searchtype=author&amp;query=Craddock%2C+W">W. Craddock</a>, <a href="/search/physics?searchtype=author&amp;query=Droster%2C+A">A. Droster</a>, <a href="/search/physics?searchtype=author&amp;query=Foster%2C+J+W">J. W. Foster</a>, <a href="/search/physics?searchtype=author&amp;query=Fry%2C+J+T">J. T. Fry</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+P+W">P. W. Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Henning%2C+R">R. Henning</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/physics?searchtype=author&amp;query=Kadribasic%2C+F">F. Kadribasic</a>, <a href="/search/physics?searchtype=author&amp;query=Kahn%2C+Y">Y. Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Keller%2C+A">A. Keller</a>, <a href="/search/physics?searchtype=author&amp;query=Kolevatov%2C+R">R. Kolevatov</a>, <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S">S. Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=Kurita%2C+N">N. Kurita</a>, <a href="/search/physics?searchtype=author&amp;query=Leder%2C+A+F">A. F. Leder</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ouellet%2C+J+L">J. L. Ouellet</a>, <a href="/search/physics?searchtype=author&amp;query=Pappas%2C+K+M+W">K. M. W. Pappas</a> , et al. (12 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.14084v1-abstract-short" style="display: inline;"> DMRadio-m$^3$ is an experiment that is designed to be sensitive to KSVZ and DFSZ QCD axion models in the 10-200 MHz (41 neV$/c^2$ - 0.83 $渭$eV/$c^2$) range. The experiment uses a solenoidal dc magnetic field to convert an axion dark-matter signal to an ac electromagnetic response in a coaxial copper pickup. The current induced by this axion signal is measured by dc SQUIDs. In this work, we present&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14084v1-abstract-full').style.display = 'inline'; document.getElementById('2302.14084v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.14084v1-abstract-full" style="display: none;"> DMRadio-m$^3$ is an experiment that is designed to be sensitive to KSVZ and DFSZ QCD axion models in the 10-200 MHz (41 neV$/c^2$ - 0.83 $渭$eV/$c^2$) range. The experiment uses a solenoidal dc magnetic field to convert an axion dark-matter signal to an ac electromagnetic response in a coaxial copper pickup. The current induced by this axion signal is measured by dc SQUIDs. In this work, we present the electromagnetic modeling of the response of the experiment to an axion signal over the full frequency range of DMRadio-m$^3$, which extends from the low-frequency, lumped-element limit to a regime where the axion Compton wavelength is only a factor of two larger than the detector size. With these results, we determine the live time and sensitivity of the experiment. The primary science goal of sensitivity to DFSZ axions across 30-200 MHz can be achieved with a $3蟽$ live scan time of 3.7 years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.14084v1-abstract-full').style.display = 'none'; document.getElementById('2302.14084v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.14084">arXiv:2210.14084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.14084">pdf</a>, <a href="https://arxiv.org/format/2210.14084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0154985">10.1063/5.0154985 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast loading of a cold mixture of Sodium and Potassium atoms from compact and versatile cold atomic beam sources </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sutradhar%2C+S">Sagar Sutradhar</a>, <a href="/search/physics?searchtype=author&amp;query=Misra%2C+A">Anirban Misra</a>, <a href="/search/physics?searchtype=author&amp;query=Pal%2C+G">Gourab Pal</a>, <a href="/search/physics?searchtype=author&amp;query=Majumder%2C+S">Sayari Majumder</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+S">Sanjukta Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.14084v2-abstract-short" style="display: inline;"> We present the design, implementation and detailed experimental characterization of two-dimensional Magneto-optical traps (MOT) of bosonic $^{23}$Na and $^{39}$K atoms for loading the cold atomic mixture in a dual-species 3DMOT with a large number of atoms. We report our various measurements pertaining to the characterisation of the two 2D$^+$MOTs via the capture rate in the 3DMOT and also present&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14084v2-abstract-full').style.display = 'inline'; document.getElementById('2210.14084v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.14084v2-abstract-full" style="display: none;"> We present the design, implementation and detailed experimental characterization of two-dimensional Magneto-optical traps (MOT) of bosonic $^{23}$Na and $^{39}$K atoms for loading the cold atomic mixture in a dual-species 3DMOT with a large number of atoms. We report our various measurements pertaining to the characterisation of the two 2D$^+$MOTs via the capture rate in the 3DMOT and also present the optimised parameters for the best performance of the system of the cold atomic mixture. In the optimised condition, we capture more than $3 \times 10^{10}$ $^{39}$K atoms and $5.8 \times 10^8$ $^{23}$Na atoms in the 3DMOT simultaneously from the individual 2D$^+$MOTs with the capture rate of $5 \times 10^{10}$ atoms/sec and $3.5 \times 10^8$ atoms/sec for $^{39}$K and $^{23}$Na, respectively. We also demonstrate improvements of more than a factor of 5 in the capture rate into the 3DMOT from the cold atomic sources when a relatively high-power ultra-violet light is used to cause light-induced atomic desorption (LIAD) in the 2D$^+$MOT glass cells. The cold atomic mixture would be useful for further experiments on Quantum simulation with ultra-cold quantum mixtures in optical potentials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.14084v2-abstract-full').style.display = 'none'; document.getElementById('2210.14084v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> AIP Advances 13, 065317 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.05576">arXiv:2210.05576</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.05576">pdf</a>, <a href="https://arxiv.org/format/2210.05576">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Quantum metrology of low frequency electromagnetic modes with frequency upconverters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S+E">Stephen E. Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=van+Assendelft%2C+E+C">Elizabeth C. van Assendelft</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarshi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+H">Hsiao-Mei Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Corbin%2C+J">Jason Corbin</a>, <a href="/search/physics?searchtype=author&amp;query=Henderson%2C+S+W">Shawn W. Henderson</a>, <a href="/search/physics?searchtype=author&amp;query=Kadribasic%2C+F">Fedja Kadribasic</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dale Li</a>, <a href="/search/physics?searchtype=author&amp;query=Phipps%2C+A">Arran Phipps</a>, <a href="/search/physics?searchtype=author&amp;query=Rapidis%2C+N+M">Nicholas M. Rapidis</a>, <a href="/search/physics?searchtype=author&amp;query=Simanovskaia%2C+M">Maria Simanovskaia</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+J">Jyotirmai Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">Cyndia Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K+D">Kent D. Irwin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.05576v2-abstract-short" style="display: inline;"> We present the RF Quantum Upconverter (RQU) and describe its application to quantum metrology of electromagnetic modes between dc and the Very High Frequency band (VHF) ($\lesssim$300MHz). The RQU uses a Josephson interferometer made up of superconducting loops and Josephson junctions to implement a parametric interaction between a low-frequency electromagnetic mode (between dc and VHF) and a mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05576v2-abstract-full').style.display = 'inline'; document.getElementById('2210.05576v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.05576v2-abstract-full" style="display: none;"> We present the RF Quantum Upconverter (RQU) and describe its application to quantum metrology of electromagnetic modes between dc and the Very High Frequency band (VHF) ($\lesssim$300MHz). The RQU uses a Josephson interferometer made up of superconducting loops and Josephson junctions to implement a parametric interaction between a low-frequency electromagnetic mode (between dc and VHF) and a mode in the microwave C Band ($\sim$ 5GHz), analogous to the radiation pressure interaction between electromagnetic and mechanical modes in cavity optomechanics. We analyze RQU performance with quantum amplifier theory, and show that the RQU can operate as a quantum-limited op-amp in this frequency range. It can also use non-classical measurement protocols equivalent to those used in cavity optomechanics, including back-action evading (BAE) measurements, sideband cooling, and two-mode squeezing. These protocols enable experiments using dc--VHF electromagnetic modes as quantum sensors with sensitivity better than the Standard Quantum Limit (SQL). We demonstrate signal upconversion from low frequencies to microwave C band using an RQU and show a phase-sensitive gain (extinction ratio) of $46.9$\;dB, which is a necessary step towards the realization of full BAE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.05576v2-abstract-full').style.display = 'none'; document.getElementById('2210.05576v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">-minor rewording and clarification of arguments in abstract, introduction, and conclusion -added discussion and citations for related devices in Section IIA -renamed section II C to Quantum Amplifier Theory -added discussion of Kerr nonlinearity in II C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03957">arXiv:2209.03957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.03957">pdf</a>, <a href="https://arxiv.org/format/2209.03957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applications">stat.AP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation">stat.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Methodology">stat.ME</span> </div> </div> <p class="title is-5 mathjax"> An Unified Statistical Procedure to Analyse Irreversible Thermal Curves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhattacharyya%2C+J">Jhimli Bhattacharyya</a>, <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+G+S">Gopinatha Suresh Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Maiti%2C+S">Souvik Maiti</a>, <a href="/search/physics?searchtype=author&amp;query=Miyoshi%2C+D">Daisuke Miyoshi</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Sanjay Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03957v1-abstract-short" style="display: inline;"> The phenomenon of hysteresis is commonly observed in many UV thermal experiments involving unmodified or modified nucleic acids. In presence of hysteresis, the thermal curves are irreversible and demand a significant effort to produce the reaction-specific kinetic and thermodynamic parameters. In this article, we describe a unified statistical procedure to analyze such thermal curves. Our method a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03957v1-abstract-full').style.display = 'inline'; document.getElementById('2209.03957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03957v1-abstract-full" style="display: none;"> The phenomenon of hysteresis is commonly observed in many UV thermal experiments involving unmodified or modified nucleic acids. In presence of hysteresis, the thermal curves are irreversible and demand a significant effort to produce the reaction-specific kinetic and thermodynamic parameters. In this article, we describe a unified statistical procedure to analyze such thermal curves. Our method applies to experiments with intramolecular as well as intermolecular reactions. More specifically, the proposed method allows one to handle the thermal curves for the formation of duplexes, triplexes, and various quadruplexes in exactly the same way. The proposed method uses a local polynomial regression for finding the smoothed thermal curves and calculating their slopes. This method is more flexible and easy to implement than the least squares polynomial smoothing which is currently almost universally used for such purposes. Full analyses of the curves including computation of kinetic and thermodynamic parameters can be done using freely available statistical software. In the end, we illustrate our method by analyzing irreversible curves encountered in the formations of a G-quadruplex and an LNA-modified parallel duplex. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03957v1-abstract-full').style.display = 'none'; document.getElementById('2209.03957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.11550">arXiv:2208.11550</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2208.11550">pdf</a>, <a href="https://arxiv.org/format/2208.11550">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Pattern Formation and Solitons">nlin.PS</span> </div> </div> <p class="title is-5 mathjax"> Mean-field synchronization model of turbulent thermoacoustic transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singh%2C+S">Samarjeet Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+A">Amitesh Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Dhadphale%2C+J+M">Jayesh M. Dhadphale</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Sujith%2C+R+I">Raman I. Sujith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.11550v1-abstract-short" style="display: inline;"> Thermoacoustic instabilities observed in turbulent combustion systems have disastrous consequences and are notoriously challenging to model, predict and control. Here, we introduce a mean-field model of thermoacoustic transitions, where the nonlinear flame response is modeled as the amplitude weighted response of an ensemble of phase oscillators constrained to collectively evolve at the rhythm of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11550v1-abstract-full').style.display = 'inline'; document.getElementById('2208.11550v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.11550v1-abstract-full" style="display: none;"> Thermoacoustic instabilities observed in turbulent combustion systems have disastrous consequences and are notoriously challenging to model, predict and control. Here, we introduce a mean-field model of thermoacoustic transitions, where the nonlinear flame response is modeled as the amplitude weighted response of an ensemble of phase oscillators constrained to collectively evolve at the rhythm of acoustic fluctuations. Starting from the acoustic wave equation coupled with the phase oscillators, we derive the evolution equations for the amplitude and phase and obtain the limit cycle solution. We show that the model captures abrupt and continuous transition to thermoacoustic instability observed in disparate combustors. We obtain quantitative insights into the model by estimating the model parameters from the experimental data using parameter optimisation. Importantly, our approach provides an explanation of spatiotemporal synchronization and pattern-formation underlying the transition to thermoacoustic instability while encapsulating the statistical properties of desynchronization, chimeras, and global phase synchronization. We further show using the model that continuous and abrupt transitions to limit cycle oscillations in turbulent combustors corresponds to synchronization transitions of \textit{second-order} and \textit{first-order}, respectively. The present formulation provides a highly interpretable model of thermoacoustic transitions: changes in empirical bifurcation parameters which lead to limit cycle oscillations amounts to an increase in the coupling strength of the phase oscillators, promoting global phase synchronization. The generality of the model in capturing different types of transitions and states of pattern-formation highlights the possibility of extending the present model to a broad range of fluid-dynamical phenomena beyond thermoacoustics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.11550v1-abstract-full').style.display = 'none'; document.getElementById('2208.11550v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review in JFM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.14218">arXiv:2204.14218</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.14218">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> </div> </div> <p class="title is-5 mathjax"> An Interactive Polymer Building Toolkit for Molecular Dynamics Simulations: PolyMAPS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yan%2C+X">Xiaoli Yan</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Santanu Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.14218v2-abstract-short" style="display: inline;"> PolyMAPS is an open-source library that helps researchers to initialize LAMMPS molecular dynamics simulations. It introduces an integrated workflow by combining preparation, launching, visualization, and analysis into a single Jupyter notebook. PolyMAPS enables users to build small or polymeric molecules in a user-friendly interactive 3D plotting system that supports reading and writing systems in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14218v2-abstract-full').style.display = 'inline'; document.getElementById('2204.14218v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.14218v2-abstract-full" style="display: none;"> PolyMAPS is an open-source library that helps researchers to initialize LAMMPS molecular dynamics simulations. It introduces an integrated workflow by combining preparation, launching, visualization, and analysis into a single Jupyter notebook. PolyMAPS enables users to build small or polymeric molecules in a user-friendly interactive 3D plotting system that supports reading and writing systems in LAMMPS data file format. Hence, PolyMAPS demonstrates the potential of reducing the learning difficulties of new users of the LAMMPS software. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.14218v2-abstract-full').style.display = 'none'; document.getElementById('2204.14218v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.13781">arXiv:2204.13781</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.13781">pdf</a>, <a href="https://arxiv.org/format/2204.13781">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.103008">10.1103/PhysRevD.106.103008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected Sensitivity of DMRadio-m$^3$: A Search for the QCD Axion Below $1\,渭$eV </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=DMRadio+Collaboration"> DMRadio Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Brouwer%2C+L">L. Brouwer</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+H+-">H. -M. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Corbin%2C+J">J. Corbin</a>, <a href="/search/physics?searchtype=author&amp;query=Craddock%2C+W">W. Craddock</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+C+S">C. S. Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=Droster%2C+A">A. Droster</a>, <a href="/search/physics?searchtype=author&amp;query=Foster%2C+J+W">J. W. Foster</a>, <a href="/search/physics?searchtype=author&amp;query=Fry%2C+J+T">J. T. Fry</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+P+W">P. W. Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Henning%2C+R">R. Henning</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/physics?searchtype=author&amp;query=Kadribasic%2C+F">F. Kadribasic</a>, <a href="/search/physics?searchtype=author&amp;query=Kahn%2C+Y">Y. Kahn</a>, <a href="/search/physics?searchtype=author&amp;query=Keller%2C+A">A. Keller</a>, <a href="/search/physics?searchtype=author&amp;query=Kolevatov%2C+R">R. Kolevatov</a>, <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S">S. Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=Leder%2C+A+F">A. F. Leder</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Ouellet%2C+J+L">J. L. Ouellet</a>, <a href="/search/physics?searchtype=author&amp;query=Pappas%2C+K">K. Pappas</a>, <a href="/search/physics?searchtype=author&amp;query=Phipps%2C+A">A. Phipps</a>, <a href="/search/physics?searchtype=author&amp;query=Rapidis%2C+N+M">N. M. Rapidis</a>, <a href="/search/physics?searchtype=author&amp;query=Safdi%2C+B+R">B. R. Safdi</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.13781v3-abstract-short" style="display: inline;"> The QCD axion is one of the most compelling candidates to explain the dark matter abundance of the universe. With its extremely small mass ($\ll 1\,\mathrm{eV}/c^2$), axion dark matter interacts as a classical field rather than a particle. Its coupling to photons leads to a modification of Maxwell&#39;s equations that can be measured with extremely sensitive readout circuits. DMRadio-m$^3$ is a next-g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13781v3-abstract-full').style.display = 'inline'; document.getElementById('2204.13781v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.13781v3-abstract-full" style="display: none;"> The QCD axion is one of the most compelling candidates to explain the dark matter abundance of the universe. With its extremely small mass ($\ll 1\,\mathrm{eV}/c^2$), axion dark matter interacts as a classical field rather than a particle. Its coupling to photons leads to a modification of Maxwell&#39;s equations that can be measured with extremely sensitive readout circuits. DMRadio-m$^3$ is a next-generation search for axion dark matter below $1\,渭$eV using a $&gt;4$ T static magnetic field, a coaxial inductive pickup, a tunable LC resonator, and a DC-SQUID readout. It is designed to search for QCD axion dark matter over the range $20\,\mathrm{neV}\lesssim m_ac^2\lesssim 800\,\mathrm{neV}$ ($5\,\mathrm{MHz}&lt;谓&lt;200\,\mathrm{MHz}$). The primary science goal aims to achieve DFSZ sensitivity above $m_ac^2\approx 120$ neV (30 MHz), with a secondary science goal of probing KSVZ axions down to $m_ac^2\approx40\,\mathrm{neV}$ (10 MHz). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.13781v3-abstract-full').style.display = 'none'; document.getElementById('2204.13781v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures. Updated to fix small errors and correct acknowledgements. Updated title and notational clarifications</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.09513">arXiv:2204.09513</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.09513">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Physics-Informed Bayesian Learning of Electrohydrodynamic Polymer Jet Printing Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Oikonomou%2C+A">Athanasios Oikonomou</a>, <a href="/search/physics?searchtype=author&amp;query=Loutas%2C+T">Theodoros Loutas</a>, <a href="/search/physics?searchtype=author&amp;query=Fan%2C+D">Dixia Fan</a>, <a href="/search/physics?searchtype=author&amp;query=Garmulewicz%2C+A">Alysia Garmulewicz</a>, <a href="/search/physics?searchtype=author&amp;query=Nounesis%2C+G">George Nounesis</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Santanu Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Tourlomousis%2C+F">Filippos Tourlomousis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.09513v1-abstract-short" style="display: inline;"> Calibration of highly dynamic multi-physics manufacturing processes such as electro-hydrodynamics-based additive manufacturing (AM) technologies (E-jet printing) is still performed by labor-intensive trial-and-error practices. These practices have hindered the broad adoption of these technologies, demanding a new paradigm of self-calibrating E-jet printing machines. To address this need, we develo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09513v1-abstract-full').style.display = 'inline'; document.getElementById('2204.09513v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.09513v1-abstract-full" style="display: none;"> Calibration of highly dynamic multi-physics manufacturing processes such as electro-hydrodynamics-based additive manufacturing (AM) technologies (E-jet printing) is still performed by labor-intensive trial-and-error practices. These practices have hindered the broad adoption of these technologies, demanding a new paradigm of self-calibrating E-jet printing machines. To address this need, we developed GPJet, an end-to-end physics-informed Bayesian learning framework, and tested it on a virtual E-jet printing machine with in-process jet monitoring capabilities. GPJet consists of three modules: a) the Machine Vision module, b) the Physics-Based Modeling Module, and c) the Machine Learning (ML) module. We demonstrate that the Machine Vision module can extract high-fidelity jet features in real-time from video data using an automated parallelized computer vision workflow. In addition, we show that the Machine Vision module, combined with the Physics-based modeling module, can act as closed-loop sensory feedback to the Machine Learning module of high- and low-fidelity data. Powered by our data-centric approach, we demonstrate that the online ML planner can actively learn the jet process dynamics using video and physics with minimum experimental cost. GPJet brings us one step closer to realizing the vision of intelligent AM machines that can efficiently search complex process-structure-property landscapes and create optimized material solutions for a wide range of applications at a fraction of the cost and speed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.09513v1-abstract-full').style.display = 'none'; document.getElementById('2204.09513v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 9 figures, 4 supporting figures, research article</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14923">arXiv:2203.14923</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14923">pdf</a>, <a href="https://arxiv.org/format/2203.14923">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Axion Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adams%2C+C+B">C. B. Adams</a>, <a href="/search/physics?searchtype=author&amp;query=Aggarwal%2C+N">N. Aggarwal</a>, <a href="/search/physics?searchtype=author&amp;query=Agrawal%2C+A">A. Agrawal</a>, <a href="/search/physics?searchtype=author&amp;query=Balafendiev%2C+R">R. Balafendiev</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Baryakhtar%2C+M">M. Baryakhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Bekker%2C+H">H. Bekker</a>, <a href="/search/physics?searchtype=author&amp;query=Belov%2C+P">P. Belov</a>, <a href="/search/physics?searchtype=author&amp;query=Berggren%2C+K+K">K. K. Berggren</a>, <a href="/search/physics?searchtype=author&amp;query=Berlin%2C+A">A. Berlin</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Carenza%2C+P">P. Carenza</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Cervantes%2C+R">R. Cervantes</a>, <a href="/search/physics?searchtype=author&amp;query=Chakrabarty%2C+S+S">S. S. Chakrabarty</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Chen%2C+T+Y">T. Y. Chen</a>, <a href="/search/physics?searchtype=author&amp;query=Cheong%2C+S">S. Cheong</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Co%2C+R+T">R. T. Co</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Croon%2C+D">D. Croon</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14923v3-abstract-short" style="display: inline;"> Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to detect axion dark matter. There are vibrant synerg&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14923v3-abstract-full').style.display = 'inline'; document.getElementById('2203.14923v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14923v3-abstract-full" style="display: none;"> Axions are well-motivated dark matter candidates with simple cosmological production mechanisms. They were originally introduced to solve the strong CP problem, but also arise in a wide range of extensions to the Standard Model. This Snowmass white paper summarizes axion phenomenology and outlines next-generation laboratory experiments proposed to detect axion dark matter. There are vibrant synergies with astrophysical searches and advances in instrumentation including quantum-enabled readout, high-Q resonators and cavities and large high-field magnets. This white paper outlines a clear roadmap to discovery, and shows that the US is well-positioned to be at the forefront of the search for axion dark matter in the coming decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14923v3-abstract-full').style.display = 'none'; document.getElementById('2203.14923v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">restore and expand author list</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14915">arXiv:2203.14915</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14915">pdf</a>, <a href="https://arxiv.org/format/2203.14915">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> New Horizons: Scalar and Vector Ultralight Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Antypas%2C+D">D. Antypas</a>, <a href="/search/physics?searchtype=author&amp;query=Banerjee%2C+A">A. Banerjee</a>, <a href="/search/physics?searchtype=author&amp;query=Bartram%2C+C">C. Bartram</a>, <a href="/search/physics?searchtype=author&amp;query=Baryakhtar%2C+M">M. Baryakhtar</a>, <a href="/search/physics?searchtype=author&amp;query=Betz%2C+J">J. Betz</a>, <a href="/search/physics?searchtype=author&amp;query=Bollinger%2C+J+J">J. J. Bollinger</a>, <a href="/search/physics?searchtype=author&amp;query=Boutan%2C+C">C. Boutan</a>, <a href="/search/physics?searchtype=author&amp;query=Bowring%2C+D">D. Bowring</a>, <a href="/search/physics?searchtype=author&amp;query=Budker%2C+D">D. Budker</a>, <a href="/search/physics?searchtype=author&amp;query=Carney%2C+D">D. Carney</a>, <a href="/search/physics?searchtype=author&amp;query=Carosi%2C+G">G. Carosi</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cheong%2C+S">S. Cheong</a>, <a href="/search/physics?searchtype=author&amp;query=Chou%2C+A">A. Chou</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+M+D">M. D. Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Co%2C+R+T">R. T. Co</a>, <a href="/search/physics?searchtype=author&amp;query=L%C3%B3pez-Urrutia%2C+J+R+C">J. R. Crespo L贸pez-Urrutia</a>, <a href="/search/physics?searchtype=author&amp;query=Demarteau%2C+M">M. Demarteau</a>, <a href="/search/physics?searchtype=author&amp;query=DePorzio%2C+N">N. DePorzio</a>, <a href="/search/physics?searchtype=author&amp;query=Derbin%2C+A+V">A. V. Derbin</a>, <a href="/search/physics?searchtype=author&amp;query=Deshpande%2C+T">T. Deshpande</a>, <a href="/search/physics?searchtype=author&amp;query=Chowdhury%2C+M+D">M. D. Chowdhury</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Luzio%2C+L">L. Di Luzio</a>, <a href="/search/physics?searchtype=author&amp;query=Diaz-Morcillo%2C+A">A. Diaz-Morcillo</a>, <a href="/search/physics?searchtype=author&amp;query=Doyle%2C+J+M">J. M. Doyle</a> , et al. (104 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14915v1-abstract-short" style="display: inline;"> The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight ($&lt;10\,$eV) bosonic dark matter that can be described by an oscillating classical,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14915v1-abstract-full').style.display = 'inline'; document.getElementById('2203.14915v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14915v1-abstract-full" style="display: none;"> The last decade has seen unprecedented effort in dark matter model building at all mass scales coupled with the design of numerous new detection strategies. Transformative advances in quantum technologies have led to a plethora of new high-precision quantum sensors and dark matter detection strategies for ultralight ($&lt;10\,$eV) bosonic dark matter that can be described by an oscillating classical, largely coherent field. This white paper focuses on searches for wavelike scalar and vector dark matter candidates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14915v1-abstract-full').style.display = 'none'; document.getElementById('2203.14915v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 White Paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.04852">arXiv:2203.04852</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.04852">pdf</a>, <a href="https://arxiv.org/format/2203.04852">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTCON.458153">10.1364/OPTCON.458153 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transition frequency measurement of highly excited Rydberg states of 87Rb for a wide range of principal quantum numbers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=S%2C+S+B">Silpa B S</a>, <a href="/search/physics?searchtype=author&amp;query=Barik%2C+S+K">Shovan Kanti Barik</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+S">Sanjukta Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.04852v2-abstract-short" style="display: inline;"> We report our measurements of the absolute transition frequencies of 5P_3/2,F = 3 to nS and nD Rydberg states of 87Rb with high principal quantum numbers in a wide range of values (n = 45-124). The measurements were performed using Rydberg Electromagnetically Induced Transparency (EIT) in ladder-type three-level systems. We measure the transition frequencies with an accuracy of less than 2 MHz. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04852v2-abstract-full').style.display = 'inline'; document.getElementById('2203.04852v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.04852v2-abstract-full" style="display: none;"> We report our measurements of the absolute transition frequencies of 5P_3/2,F = 3 to nS and nD Rydberg states of 87Rb with high principal quantum numbers in a wide range of values (n = 45-124). The measurements were performed using Rydberg Electromagnetically Induced Transparency (EIT) in ladder-type three-level systems. We measure the transition frequencies with an accuracy of less than 2 MHz. We determine the values of the Rydberg-Ritz parameter for 87Rb from our experimental measurements of the transition frequencies. Our measurements of the absolute transition frequencies of the highly excited Rydberg states would be useful for diverse applications in quantum information processing, quantum simulation and quantum sensing with Rydberg atoms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.04852v2-abstract-full').style.display = 'none'; document.getElementById('2203.04852v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Continuum Vol 1 (5), 1176-1192 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.12990">arXiv:2202.12990</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.12990">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.electacta.2022.141195">10.1016/j.electacta.2022.141195 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Role of Zirconium Conversion Coating in Corrosion Performance of Aluminum Alloys: An Integrated First-Principles and Multiphysics Modeling Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Samaei%2C+A">Arash Samaei</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Santanu Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.12990v3-abstract-short" style="display: inline;"> A variety of chromate-free conversion coatings are being actively investigated to improve the corrosion performance of light-weight alloys for aerospace and defense applications. Advancing conversion coating, however, requires an in-depth understanding of the underlying corrosion mechanisms in order to rationally design sustainable coatings. Here, we present a multiscale modeling approach to predi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12990v3-abstract-full').style.display = 'inline'; document.getElementById('2202.12990v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.12990v3-abstract-full" style="display: none;"> A variety of chromate-free conversion coatings are being actively investigated to improve the corrosion performance of light-weight alloys for aerospace and defense applications. Advancing conversion coating, however, requires an in-depth understanding of the underlying corrosion mechanisms in order to rationally design sustainable coatings. Here, we present a multiscale modeling approach to predict corrosion performance of metallic materials, with a focus on localized corrosion of Cu-containing aluminum alloys coated with ZrO2 layer. First-principles and transition-state theory are used to implement the kinetics model, which includes electrolyte-metal interfacial reactions. The modeling framework systematically characterizes and couples multiple electrochemical and physical (e.g., transport) phenomena to explore interrelationships between pit morphology, surface chemistry, and local environment. This multiscale model can quantitatively link the corrosion rate of ZrO2-coated aluminum alloys with the evolution of interfacial reactions during immersion, which is very difficult to establish using in situ experiments. We have evaluated the presented multiscale model using available experimental data. The rate of corrosion and pit stability were quantitatively assessed for various environmental parameters and applied potentials. Results show that Zr-based conversion coating strongly enhances the corrosion performance of aluminum alloys due to zirconium involvement in interfacial kinetics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.12990v3-abstract-full').style.display = 'none'; document.getElementById('2202.12990v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Electrochim. Acta 433 (2022) 141195 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.06719">arXiv:2202.06719</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.06719">pdf</a>, <a href="https://arxiv.org/format/2202.06719">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Turbulent flame speed based on the mass flow rate: theory and DNS </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Savard%2C+B">Bruno Savard</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.06719v2-abstract-short" style="display: inline;"> Starting with an integral formulation of mass flow rate through an ensemble of isotherms constituting a statistically planar, turbulent premixed flame, a scaling for the corresponding turbulent flame speed is derived without invoking Damk{枚}hler&#39;s hypotheses. Major approximations and interim results are validated using a large Karlovitz number, unity Lewis number, Direct Numerical Simulation (DNS)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06719v2-abstract-full').style.display = 'inline'; document.getElementById('2202.06719v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.06719v2-abstract-full" style="display: none;"> Starting with an integral formulation of mass flow rate through an ensemble of isotherms constituting a statistically planar, turbulent premixed flame, a scaling for the corresponding turbulent flame speed is derived without invoking Damk{枚}hler&#39;s hypotheses. Major approximations and interim results are validated using a large Karlovitz number, unity Lewis number, Direct Numerical Simulation (DNS) dataset of n-heptane/air mixture, computed with reduced chemistry. A new length scale quantifying the fluctuation distance of the isotherms within the premixed flame structure is introduced. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.06719v2-abstract-full').style.display = 'none'; document.getElementById('2202.06719v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.01764">arXiv:2201.01764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.01764">pdf</a>, <a href="https://arxiv.org/format/2201.01764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Adaptation and Self-Organizing Systems">nlin.AO</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0136385">10.1063/5.0136385 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mean-field synchronization model for open-loop, swirl controlled thermoacoustic system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Singh%2C+S">Samarjeet Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Dutta%2C+A+K">Ankit Kumar Dutta</a>, <a href="/search/physics?searchtype=author&amp;query=Dhadphale%2C+J+M">Jayesh M. Dhadphale</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+A">Amitesh Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Sujith%2C+R+I">R. I. Sujith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.01764v2-abstract-short" style="display: inline;"> Open-loop control is known to be an effective strategy for controlling self-excited thermoacoustic oscillations in turbulent combustors. In this study, we investigate the suppression of thermoacoustic instability in a lean premixed, laboratory-scale combustor using experiments and analysis. Starting with a self-excited thermoacoustic instability in the combustor, we find that a progressive increas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01764v2-abstract-full').style.display = 'inline'; document.getElementById('2201.01764v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.01764v2-abstract-full" style="display: none;"> Open-loop control is known to be an effective strategy for controlling self-excited thermoacoustic oscillations in turbulent combustors. In this study, we investigate the suppression of thermoacoustic instability in a lean premixed, laboratory-scale combustor using experiments and analysis. Starting with a self-excited thermoacoustic instability in the combustor, we find that a progressive increase in the swirler rotation rate transitions the system from thermoacoustic instability to the suppressed state through a state of intermittency. To model such transition while also quantifying the underlying synchronization characteristics, we extend the model of Dutta et al. [Phys. Rev. E 99, 032215 (2019)] by introducing a feedback between the ensemble of mean-field phase oscillators and the basis expansion of the acoustic pressure governing equation. The assumption that coupling strength among the oscillators is a linear combination of acoustic and swirler rotation frequency is justified \textit{a posteriori}. The link between the model and experimental results is quantitatively established by implementing an optimization algorithm for model parameter estimation. We show that the model replicates the bifurcation characteristics, time series, probability density function (PDF), and power spectral density (PSD) of the various dynamical states observed during the transition to the suppressed state, to excellent accuracy. Specifically, the model captures the change in the PDF of pressure and heat release rate fluctuations from a bimodal distribution during thermoacoustic instability to a unimodal distribution during suppression. Finally, we discuss the global and local flame dynamics and show that the model qualitatively captures various aspects of spatio-temporal synchronization that underlies the transition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.01764v2-abstract-full').style.display = 'none'; document.getElementById('2201.01764v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">S.S. and A. K. D. contributed equally in this paper. 8 pages and 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.01823">arXiv:2111.01823</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2111.01823">pdf</a>, <a href="https://arxiv.org/format/2111.01823">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevFluids.6.110510">10.1103/PhysRevFluids.6.110510 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Penetration and Secondary Atomization of Droplets Impacted on Wet Facemasks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bagchi%2C+S">Sombuddha Bagchi</a>, <a href="/search/physics?searchtype=author&amp;query=Basu%2C+S">Saptarshi Basu</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+A">Abhishek Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.01823v1-abstract-short" style="display: inline;"> Face covering, commonly known as facemask, is considered to be one of the most effective Personal Protective Equipments (PPEs) to reduce transmissions of pathogens through respiratory droplets - both large drops and liquid aerosol particles. Face masks, not only inhibit the expulsion of such respiratory droplets from the user, but also protects the user from inhaling pathogen-laden potentially har&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01823v1-abstract-full').style.display = 'inline'; document.getElementById('2111.01823v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.01823v1-abstract-full" style="display: none;"> Face covering, commonly known as facemask, is considered to be one of the most effective Personal Protective Equipments (PPEs) to reduce transmissions of pathogens through respiratory droplets - both large drops and liquid aerosol particles. Face masks, not only inhibit the expulsion of such respiratory droplets from the user, but also protects the user from inhaling pathogen-laden potentially harmful droplets or their dried nuclei. While the efficacies of various dry face masks have been explored in the recent past, a comprehensive investigation of a wet mask is lacking. Yet, users wear masks for a long period of time and during this period, owing to respiratory droplets released through multiple respiratory events, the mask matrix becomes wet. We, herein, present an experimental study on the dynamics of sequential impacts of droplets on masks to understand how wetness affects possible penetration and secondary atomization of the impacted droplet. Two different types of masks, hydrophobic and hydrophilic, were used in this study to evaluate the underlying physical mechanism that controls the penetration in each of them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.01823v1-abstract-full').style.display = 'none'; document.getElementById('2111.01823v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The manuscript is accepted for publication in Physical Review Fluids. APS holds the copyright. See https://journals.aps.org/prfluids/accepted/d107fS0eT7f10109110330f4bae7b00a7446193d3</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Fluids 6, 110510 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.08407">arXiv:2106.08407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.08407">pdf</a>, <a href="https://arxiv.org/format/2106.08407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.combustflame.2021.111812">10.1016/j.combustflame.2021.111812 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Local flame displacement speeds of hydrogen-air premixed flames in moderate to intense turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yuvraj"> Yuvraj</a>, <a href="/search/physics?searchtype=author&amp;query=Song%2C+W">Wonsik Song</a>, <a href="/search/physics?searchtype=author&amp;query=Dave%2C+H">Himanshu Dave</a>, <a href="/search/physics?searchtype=author&amp;query=Im%2C+H+G">Hong G. Im</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.08407v1-abstract-short" style="display: inline;"> Comprehensive knowledge of local flame displacement speed, $S_d$, in turbulent premixed flames is crucial towards the design and development of hydrogen fuelled next-generation engines. Premixed hydrogen-air flames are characterized by significantly higher laminar flame speed compared to other conventional fuels. Furthermore, in the presence of turbulence, $S_d$ is enhanced much beyond its corresp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08407v1-abstract-full').style.display = 'inline'; document.getElementById('2106.08407v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.08407v1-abstract-full" style="display: none;"> Comprehensive knowledge of local flame displacement speed, $S_d$, in turbulent premixed flames is crucial towards the design and development of hydrogen fuelled next-generation engines. Premixed hydrogen-air flames are characterized by significantly higher laminar flame speed compared to other conventional fuels. Furthermore, in the presence of turbulence, $S_d$ is enhanced much beyond its corresponding unstretched, planar laminar value $S_L$. In this study, the effect of high Karlovitz number ($Ka$) turbulence on density-weighted flame displacement speed, $\widetilde{S_d}$, in a H$_2$-air flame is investigated. Recently, it has been identified that flame-flame interactions in regions of large negative curvature govern large deviations of $\widetilde{S_d}$ from $S_L$, for moderately turbulent flames. An interaction model for the same has also been proposed. In this work, we seek to test the interaction model&#39;s applicability to intensely turbulent flames characterized by large $Ka$. To that end, we investigate the local flame structures: thermal, chemical structure, the effect of curvature, along the direction that is normal to the chosen isothermal surfaces. Furthermore, relative contributions of the transport and chemistry terms to $\widetilde{S_d}$ are also analyzed. It is found that, unlike the moderately turbulent premixed flames, where enhanced $\widetilde{S_d}$ is driven by interactions among complete flame structures, $\widetilde{S_d}$ enhancement in high $Re_t$ and high $Ka$ flame is predominantly governed by local interactions of the isotherms. It is found that enhancement in $\widetilde{S_d}$ in regions of large negative curvature occurs as a result of these interactions, evincing that the interaction model is useful for high $Ka$ turbulent premixed flames as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.08407v1-abstract-full').style.display = 'none'; document.getElementById('2106.08407v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10473">arXiv:2104.10473</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10473">pdf</a>, <a href="https://arxiv.org/format/2104.10473">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Detection of Spin Coherence in Cold Atoms via Faraday Rotation Fluctuations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Swar%2C+M">Maheswar Swar</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+D">Dibyendu Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Bhar%2C+S">Subhajit Bhar</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+S">Sanjukta Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10473v1-abstract-short" style="display: inline;"> We report non-invasive detection of spin coherence in a collection of Raman-driven cold atoms using dispersive Faraday rotation fluctuation measurements, which opens up new possibilities of probing spin correlations in quantum gases and other similar systems. We demonstrate five orders of magnitude enhancement of the measured signal strength than the traditional spin noise spectroscopy with therma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10473v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10473v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10473v1-abstract-full" style="display: none;"> We report non-invasive detection of spin coherence in a collection of Raman-driven cold atoms using dispersive Faraday rotation fluctuation measurements, which opens up new possibilities of probing spin correlations in quantum gases and other similar systems. We demonstrate five orders of magnitude enhancement of the measured signal strength than the traditional spin noise spectroscopy with thermal atoms in equilibrium. Our observations are in good agreement with the comprehensive theoretical modeling of the driven atoms at various temperatures. The extracted spin relaxation rate of cold rubidium atoms with atom number density $\sim$10$^9/$cm$^3$ is of the order of 2$蟺\times$0.5 kHz at 150 $渭$K, two orders of magnitude less than $\sim$ 2$蟺\times$50 kHz of a thermal atomic vapor with atom number density $\sim$10$^{12}/$cm$^3$ at 373 K. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10473v1-abstract-full').style.display = 'none'; document.getElementById('2104.10473v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.10235">arXiv:2104.10235</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.10235">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Accelerated Discovery of Molten Salt Corrosion-resistant Alloy by High-throughput Experimental and Modeling Methods Coupled to Data Analytics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Wang%2C+Y">Yafei Wang</a>, <a href="/search/physics?searchtype=author&amp;query=Goh%2C+B">Bonita Goh</a>, <a href="/search/physics?searchtype=author&amp;query=Nelaturu%2C+P">Phalgun Nelaturu</a>, <a href="/search/physics?searchtype=author&amp;query=Duong%2C+T">Thien Duong</a>, <a href="/search/physics?searchtype=author&amp;query=Hassan%2C+N">Najlaa Hassan</a>, <a href="/search/physics?searchtype=author&amp;query=David%2C+R">Raphaelle David</a>, <a href="/search/physics?searchtype=author&amp;query=Moorehead%2C+M">Michael Moorehead</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Santanu Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Creuziger%2C+A">Adam Creuziger</a>, <a href="/search/physics?searchtype=author&amp;query=Hattrick-Simpers%2C+J">Jason Hattrick-Simpers</a>, <a href="/search/physics?searchtype=author&amp;query=Thoma%2C+D+J">Dan J. Thoma</a>, <a href="/search/physics?searchtype=author&amp;query=Sridharan%2C+K">Kumar Sridharan</a>, <a href="/search/physics?searchtype=author&amp;query=Couet%2C+A">Adrien Couet</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.10235v1-abstract-short" style="display: inline;"> Insufficient availability of molten salt corrosion-resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here we present an integrated approach using a set of high-th&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10235v1-abstract-full').style.display = 'inline'; document.getElementById('2104.10235v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.10235v1-abstract-full" style="display: none;"> Insufficient availability of molten salt corrosion-resistant alloys severely limits the fruition of a variety of promising molten salt technologies that could otherwise have significant societal impacts. To accelerate alloy development for molten salt applications and develop fundamental understanding of corrosion in these environments, here we present an integrated approach using a set of high-throughput alloy synthesis, corrosion testing, and modeling coupled with automated characterization and machine learning. By using this approach, a broad range of Cr-Fe-Mn-Ni alloys were evaluated for their corrosion resistances in molten salt simultaneously demonstrating that corrosion-resistant alloy development can be accelerated by thousands of times. Based on the obtained results, we unveiled a sacrificial mechanism in the corrosion of Cr-Fe-Mn-Ni alloys in molten salts which can be applied to protect the less unstable elements in the alloy from being depleted, and provided new insights on the design of high-temperature molten salt corrosion-resistant alloys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.10235v1-abstract-full').style.display = 'none'; document.getElementById('2104.10235v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09927">arXiv:2101.09927</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09927">pdf</a>, <a href="https://arxiv.org/format/2101.09927">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TIM.2020.3026843">10.1109/TIM.2020.3026843 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A real time digital receiver for correlation measurements in atomic systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mugundhan%2C+V">V. Mugundhan</a>, <a href="/search/physics?searchtype=author&amp;query=Swar%2C+M">Maheswar Swar</a>, <a href="/search/physics?searchtype=author&amp;query=Bhar%2C+S">Subhajit Bhar</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09927v1-abstract-short" style="display: inline;"> We present the development and characterization of a generic, reconfigurable, low-cost ($&lt;$ 350 USD) software-defined digital receiver system (DRS) for temporal correlation measurements in atomic spin ensembles. We demonstrate the use of the DRS as a component of a high resolution magnetometer. Digital receiver based fast Fourier transform spectrometers (FFTS) are generally superior in performance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09927v1-abstract-full').style.display = 'inline'; document.getElementById('2101.09927v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09927v1-abstract-full" style="display: none;"> We present the development and characterization of a generic, reconfigurable, low-cost ($&lt;$ 350 USD) software-defined digital receiver system (DRS) for temporal correlation measurements in atomic spin ensembles. We demonstrate the use of the DRS as a component of a high resolution magnetometer. Digital receiver based fast Fourier transform spectrometers (FFTS) are generally superior in performance in terms of signal-to-noise ratio (SNR) compared to traditional swept-frequency spectrum analyzers (SFSA). In applications where the signals being analyzed are very narrow band in frequency domain, recording them at high speeds over a reduced bandwidth provides flexibility to study them for longer periods. We have built the DRS on the STEMLab 125-14 FPGA platform and it has two different modes of operation: FFT Spectrometer and real time raw voltage recording mode. We evaluate its performance by using it in atomic spin noise spectroscopy (SNS). We demonstrate that the SNR is improved by more than one order of magnitude with the FFTS as compared to that of the commercial SFSA. We also highlight that with this DRS operating in the triggered data acquisition mode one can achieve spin noise (SN) signal with high SNR in a recording time window as low as 100 msec. We make use of this feature to perform time resolved high-resolution magnetometry. While the receiver was initially developed for SNS experiments, it can be easily used for other atomic, molecular and optical (AMO) physics experiments as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09927v1-abstract-full').style.display = 'none'; document.getElementById('2101.09927v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Instrumentation and Measurement, vol. 70, 2021, pp. 1-8, </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.09118">arXiv:2101.09118</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2101.09118">pdf</a>, <a href="https://arxiv.org/format/2101.09118">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Statistical Mechanics">cond-mat.stat-mech</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OPTCON.448535">10.1364/OPTCON.448535 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements and analysis of response function of cold atoms in optical molasses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Bhar%2C+S">Subhajit Bhar</a>, <a href="/search/physics?searchtype=author&amp;query=Swar%2C+M">Maheswar Swar</a>, <a href="/search/physics?searchtype=author&amp;query=Satpathi%2C+U">Urbashi Satpathi</a>, <a href="/search/physics?searchtype=author&amp;query=Sinha%2C+S">Supurna Sinha</a>, <a href="/search/physics?searchtype=author&amp;query=Sorkin%2C+R+D">Rafael D. Sorkin</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+S">Sanjukta Roy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.09118v2-abstract-short" style="display: inline;"> We report our experimental measurements and theoretical analysis of the position response function of a cloud of cold atoms residing in the viscous medium of an optical molasses and confined by a magneto-optical trap (MOT). We measure the position response function by applying a transient homogeneous magnetic field as a perturbing force. We observe a transition from a damped oscillatory motion to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09118v2-abstract-full').style.display = 'inline'; document.getElementById('2101.09118v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.09118v2-abstract-full" style="display: none;"> We report our experimental measurements and theoretical analysis of the position response function of a cloud of cold atoms residing in the viscous medium of an optical molasses and confined by a magneto-optical trap (MOT). We measure the position response function by applying a transient homogeneous magnetic field as a perturbing force. We observe a transition from a damped oscillatory motion to an over-damped relaxation, stemming from a competition between the viscous drag provided by the optical molasses and the restoring force of the MOT. Our observations are in both qualitative and quantitative agreement with the predictions of a theoretical model based on the Langevin equation. As a consistency check, and as a prototype for future experiments, we also study the free diffusive spreading of the atomic cloud in our optical molasses with the confining magnetic field of the MOT turned off. We find that the measured value of the diffusion coefficient agrees with the value predicted by our Langevin model, using the damping coefficient. The damping coefficient was deduced from our measurements of the position response function at the same temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.09118v2-abstract-full').style.display = 'none'; document.getElementById('2101.09118v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Continuum Vol 1 (2), 171-188 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.00591">arXiv:2010.00591</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2010.00591">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/sciadv.abf0452">10.1126/sciadv.abf0452 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On Secondary Atomization and blockage of surrogate cough droplets in single and multi-layer face masks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Sharma%2C+S">Shubham Sharma</a>, <a href="/search/physics?searchtype=author&amp;query=Pinto%2C+R">Roven Pinto</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+A">Abhishek Saha</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Basu%2C+S">Saptarshi Basu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.00591v3-abstract-short" style="display: inline;"> By now it is well-understood that the usage of facemasks provides protection from transmission of viral loads through exhalation and inhalation of respiratory droplets. Therefore, during the current Covid-19 pandemic the usage of face masks is strongly recommended by health officials. Although three-layer masks are generally advised for usage, many commonly available or homemade masks contain only&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00591v3-abstract-full').style.display = 'inline'; document.getElementById('2010.00591v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.00591v3-abstract-full" style="display: none;"> By now it is well-understood that the usage of facemasks provides protection from transmission of viral loads through exhalation and inhalation of respiratory droplets. Therefore, during the current Covid-19 pandemic the usage of face masks is strongly recommended by health officials. Although three-layer masks are generally advised for usage, many commonly available or homemade masks contain only single and double layers. In this study, we show through detailed physics based analyses and high speed imaging that high momentum cough droplets on impingement on single- and double-layer masks can lead to significant partial penetration and more importantly atomization into numerous much smaller daughter droplets, thereby increasing the total population of the aerosol, which can remain suspended for a longer time. The possibility of secondary atomization of high momentum cough droplets due to impingement, hydrodynamic focusing and extrusion through the microscale pores in the fibrous network of the mask has not been explored before. However, this unique mode of aerosol generation poses a finite risk of infection as shown in this work. We also demonstrate that in single layer masks close to 70 % of a given droplet volume is atomized and only 30 % is trapped within the fibers. The entrapped volume is close to 90 % for double layer masks which still allows some atomization into smaller droplets. We however found that a triple-layer surgical mask permits negligible penetration and hence should be effective in preventing disease transmission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.00591v3-abstract-full').style.display = 'none'; document.getElementById('2010.00591v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Advances, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13557">arXiv:2009.13557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13557">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Uncertainty Quantification in Atomistic Modeling of Metals and its Effect on Mesoscale and Continuum Modeling A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gabriel%2C+J+J">Joshua J. Gabriel</a>, <a href="/search/physics?searchtype=author&amp;query=Paulson%2C+N+H">Noah H. Paulson</a>, <a href="/search/physics?searchtype=author&amp;query=Duong%2C+T+C">Thien C. Duong</a>, <a href="/search/physics?searchtype=author&amp;query=Tavazza%2C+F">Francesca Tavazza</a>, <a href="/search/physics?searchtype=author&amp;query=Becker%2C+C+A">Chandler A. Becker</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Santanu Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Stan%2C+M">Marius Stan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13557v1-abstract-short" style="display: inline;"> The design of next-generation alloys through the Integrated Computational Materials Engineering (ICME) approach relies on multi-scale computer simulations to provide thermodynamic properties when experiments are difficult to conduct. Atomistic methods such as Density Functional Theory (DFT) and Molecular Dynamics (MD) have been successful in predicting properties of never before studied compounds&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13557v1-abstract-full').style.display = 'inline'; document.getElementById('2009.13557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13557v1-abstract-full" style="display: none;"> The design of next-generation alloys through the Integrated Computational Materials Engineering (ICME) approach relies on multi-scale computer simulations to provide thermodynamic properties when experiments are difficult to conduct. Atomistic methods such as Density Functional Theory (DFT) and Molecular Dynamics (MD) have been successful in predicting properties of never before studied compounds or phases. However, uncertainty quantification (UQ) of DFT and MD results is rarely reported due to computational and UQ methodology challenges. Over the past decade, studies have emerged that mitigate this gap. These advances are reviewed in the context of thermodynamic modeling and information exchange with mesoscale methods such as Phase Field Method (PFM) and Calculation of Phase Diagrams (CALPHAD). The importance of UQ is illustrated using properties of metals, with aluminum as an example, and highlighting deterministic, frequentist and Bayesian methodologies. Challenges facing routine uncertainty quantification and an outlook on addressing them are also presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13557v1-abstract-full').style.display = 'none'; document.getElementById('2009.13557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">submitted to JOM, under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2008.00934">arXiv:2008.00934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2008.00934">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0037360">10.1063/5.0037360 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Insights on drying and precipitation dynamics of respiratory droplets in the perspective of Covid-19 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kabi%2C+P">Prasenjit Kabi</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+A">Abhishek Saha</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Basu%2C+S">Saptarshi Basu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2008.00934v2-abstract-short" style="display: inline;"> We isolate a nano-colloidal droplet of surrogate mucosalivary fluid to gain fundamental insights into the infectivity of air borne nuclei during the Covid-19 pandemic. Evaporation experiments are performed with salt-water solutions seeded with a viral load of inactive nanoparticles in an acoustic levitator. We seek to emulate the drying, flow and precipitation dynamics of such air borne mucosaliva&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00934v2-abstract-full').style.display = 'inline'; document.getElementById('2008.00934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2008.00934v2-abstract-full" style="display: none;"> We isolate a nano-colloidal droplet of surrogate mucosalivary fluid to gain fundamental insights into the infectivity of air borne nuclei during the Covid-19 pandemic. Evaporation experiments are performed with salt-water solutions seeded with a viral load of inactive nanoparticles in an acoustic levitator. We seek to emulate the drying, flow and precipitation dynamics of such air borne mucosalivary droplets. Observations with the surrogate fluid are validated by similar experiments with actual samples from a healthy subject. A unique feature emerges with regards to the final crystallite dimension; it is always 20-30% of the initial droplet diameter for different sizes and ambient conditions. The preserved precipitates from levitated droplets show that 15% of the total virion population remain dispersed on the outer surface of air-desiccated air borne nuclei. This fraction increases to ~90% if the respiratory droplets (of larger initial size) settle on a surface and then evaporate in the sessile mode. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2008.00934v2-abstract-full').style.display = 'none'; document.getElementById('2008.00934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics of Fluids 32 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13596">arXiv:2007.13596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.13596">pdf</a>, <a href="https://arxiv.org/format/2007.13596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0034032">10.1063/5.0034032 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analyzing the dominant SARS-CoV-2 transmission routes towards an ab initio SEIR model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Basu%2C+S">Saptarshi Basu</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+A">Abhishek Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13596v3-abstract-short" style="display: inline;"> Identifying the relative importance of the different transmission routes of the SARS-CoV-2 virus is an urgent research priority. To that end, the different transmission routes, and their role in determining the evolution of the Covid-19 pandemic are analyzed in this work. Probability of infection caused by inhaling virus-laden droplets (initial, ejection diameters between $0.5-750渭m$) and the corr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13596v3-abstract-full').style.display = 'inline'; document.getElementById('2007.13596v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13596v3-abstract-full" style="display: none;"> Identifying the relative importance of the different transmission routes of the SARS-CoV-2 virus is an urgent research priority. To that end, the different transmission routes, and their role in determining the evolution of the Covid-19 pandemic are analyzed in this work. Probability of infection caused by inhaling virus-laden droplets (initial, ejection diameters between $0.5-750渭m$) and the corresponding desiccated nuclei that mostly encapsulate the virions post droplet evaporation, are individually calculated. At typical, air-conditioned yet quiescent indoor space, for average viral loading, cough droplets of initial diameter between $10-50 渭m$ have the highest infection probability. However, by the time they are inhaled, the diameters reduce to about $1/6^{th}$ of their initial diameters. While the initially near unity infection probability due to droplets rapidly decays within the first $25s$, the small yet persistent infection probability of desiccated nuclei decays appreciably only by $\mathcal{O} (1000s)$, assuming the virus sustains equally well within the dried droplet nuclei as in the droplets. Combined with molecular collision theory adapted to calculate frequency of contact between the susceptible population and the droplet/nuclei cloud, infection rate constants are derived ab-initio, leading to a SEIR model applicable for any respiratory event - vector combination. Viral load, minimum infectious dose, sensitivity of the virus half-life to the phase of its vector and dilution of the respiratory jet/puff by the entraining air are shown to mechanistically determine specific physical modes of transmission and variation in the basic reproduction number $\mathcal{R}_0$, from first principle calculations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13596v3-abstract-full').style.display = 'none'; document.getElementById('2007.13596v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10929">arXiv:2004.10929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2004.10929">pdf</a>, <a href="https://arxiv.org/format/2004.10929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Populations and Evolution">q-bio.PE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0015984">10.1063/5.0015984 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling ambient temperature and relative humidity sensitivity of respiratory droplets and their role in Covid-19 outbreaks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Basu%2C+S">Saptarshi Basu</a>, <a href="/search/physics?searchtype=author&amp;query=Kabi%2C+P">Prasenjit Kabi</a>, <a href="/search/physics?searchtype=author&amp;query=Unni%2C+V+R">Vishnu R. Unni</a>, <a href="/search/physics?searchtype=author&amp;query=Saha%2C+A">Abhishek Saha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10929v3-abstract-short" style="display: inline;"> One of the many unresolved questions that revolves around the Covid-19 pandemic is whether local outbreaks can depend on ambient conditions like temperature and relative humidity. In this paper, we develop a model that tries to explain and describe the temperature and relative humidity sensitivity of respiratory droplets and their possible connection in determining viral outbreaks. The model has t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10929v3-abstract-full').style.display = 'inline'; document.getElementById('2004.10929v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10929v3-abstract-full" style="display: none;"> One of the many unresolved questions that revolves around the Covid-19 pandemic is whether local outbreaks can depend on ambient conditions like temperature and relative humidity. In this paper, we develop a model that tries to explain and describe the temperature and relative humidity sensitivity of respiratory droplets and their possible connection in determining viral outbreaks. The model has two parts. First, we model the growth rate of the infected population based on a reaction mechanism - the final equations of which are similar to the well-known SIR model. The advantage of modeling the pandemic using the reaction mechanism is that the rate constants have sound physical interpretation. The infection rate constant is derived using collision rate theory and shown to be a function of the respiratory droplet lifetime. In the second part, we have emulated the respiratory droplets responsible for disease transmission as salt solution droplets and computed their evaporation time accounting for droplet cooling, heat and mass transfer and finally crystallization of the salt. The model output favourably compares with the experimentally obtained evaporation characteristics of levitated droplets of pure water and salt solution, respectively, ensuring fidelity of the model. Droplet evaporation/desiccation time is indeed dependent on ambient temperature and relative humidity, considered at both outdoor and indoor conditions. Since the droplet evaporation time determines the infection rate constant, ambient temperature and relative humidity are shown to impact the outbreak growth rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10929v3-abstract-full').style.display = 'none'; document.getElementById('2004.10929v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised Equations 7 and 24. This resulted in a minor change in Figure 6</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.07561">arXiv:2001.07561</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.07561">pdf</a>, <a href="https://arxiv.org/format/2001.07561">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.proci.2020.08.053">10.1016/j.proci.2020.08.053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Flame dynamics during intermittency and secondary bifurcation to longitudinal thermoacoustic instability in a swirl-stabilized annular combustor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Roy%2C+A">Amitesh Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Singh%2C+S">Samarjeet Singh</a>, <a href="/search/physics?searchtype=author&amp;query=Nair%2C+A">Asalatha Nair</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Sujith%2C+R+I">R I Sujith</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.07561v3-abstract-short" style="display: inline;"> In this experimental study on a laboratory-scale turbulent annular combustor with sixteen swirl-stabilized burners, we study the flame-flame and flame-acoustic interactions during different dynamical states associated with the longitudinal mode of the combustor. We simultaneously measure the acoustic pressure and CH* chemiluminescence emission of the flame using a high-speed camera. Upon increasin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07561v3-abstract-full').style.display = 'inline'; document.getElementById('2001.07561v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.07561v3-abstract-full" style="display: none;"> In this experimental study on a laboratory-scale turbulent annular combustor with sixteen swirl-stabilized burners, we study the flame-flame and flame-acoustic interactions during different dynamical states associated with the longitudinal mode of the combustor. We simultaneously measure the acoustic pressure and CH* chemiluminescence emission of the flame using a high-speed camera. Upon increasing the equivalence ratio, the combustor undergoes the following sequence of transition: combustion noise (CN) to low amplitude longitudinal thermoacoustic instability (TAI) through the state of intermittency (INT), and from low amplitude to high amplitude longitudinal TAI through a secondary bifurcation. We report the first evidence of secondary bifurcation from low amplitude TAI to high amplitude TAI for a turbulent thermoacoustic system which allows us to test the flame response at two different amplitude of perturbation in a natural setting. We find a significant difference in the dynamics of the flame interactions during the periodic part of intermittency and low and high amplitude TAI. Specifically, during the periodic part of intermittency, the phase difference between the local heat release rate (HRR) measured from various burners show significant phase slips in time. During low amplitude TAI, there are fewer phase slips among the HRR response of the burners, which result in a state of weak synchronization among the flames. During high amplitude TAI, we find that the flames are in perfect synchrony amongst themselves and with the pressure fluctuations. We then quantify the degree of temporal and spatial synchronization between different flames, and flames and pressure fluctuations using the Kuramoto order parameter and the phase-locking value. We show that synchronization theory can be conveniently used to characterize and quantify flame-acoustic interactions in an annular combustor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.07561v3-abstract-full').style.display = 'none'; document.getElementById('2001.07561v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 7 figures. Submitted to Proceedings of the Combustion Institute. Article replaced to correct the author name</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Proceedings of the Combustion Institute 2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.02763">arXiv:2001.02763</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2001.02763">pdf</a>, <a href="https://arxiv.org/format/2001.02763">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> An Impedance-Modulated Code-Division Microwave SQUID Multiplexer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Yu%2C+C">C. Yu</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+C">C. Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S+E">S. E. Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Titus%2C+C+J">C. J. Titus</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.02763v1-abstract-short" style="display: inline;"> Large arrays of cryogenic detectors, including transition-edge sensors (TESs) or magnetic micro-calorimeters (MMCs), are needed for future experiments across a wide range of applications. Complexities in integration and cryogenic wiring have driven efforts to develop cryogenic readout technologies with large multiplexing factors while maintaining minimal readout noise. One such example is the micr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02763v1-abstract-full').style.display = 'inline'; document.getElementById('2001.02763v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.02763v1-abstract-full" style="display: none;"> Large arrays of cryogenic detectors, including transition-edge sensors (TESs) or magnetic micro-calorimeters (MMCs), are needed for future experiments across a wide range of applications. Complexities in integration and cryogenic wiring have driven efforts to develop cryogenic readout technologies with large multiplexing factors while maintaining minimal readout noise. One such example is the microwave SQUID multiplexer ($渭$mux), which couples an incoming TES or magnetic calorimeter signal to a unique GHz-frequency resonance that is modulated in frequency. Here, we present a hybrid scheme combining the microwave SQUID multiplexer with code division multiplexing: the impedance-modulated code-division multiplexer (Z-CDM), which may enable an order of magnitude increase in multiplexing factor particularly for low-bandwidth signal applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.02763v1-abstract-full').style.display = 'none'; document.getElementById('2001.02763v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages including references, 3 figures; submitted to Engineering Research Express</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.08814">arXiv:1906.08814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1906.08814">pdf</a>, <a href="https://arxiv.org/format/1906.08814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Exclusion Limits on Hidden-Photon Dark Matter near 2 neV from a Fixed-Frequency Superconducting Lumped-Element Resonator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Phipps%2C+A">A. Phipps</a>, <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S+E">S. E. Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+C+S">C. S. Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=Young%2C+B+A">B. A. Young</a>, <a href="/search/physics?searchtype=author&amp;query=FitzGerald%2C+C+T">C. T. FitzGerald</a>, <a href="/search/physics?searchtype=author&amp;query=Froland%2C+H">H. Froland</a>, <a href="/search/physics?searchtype=author&amp;query=Wells%2C+K">K. Wells</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+H+M">H. M. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Rajendran%2C+S">S. Rajendran</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+P+W">P. W. Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.08814v1-abstract-short" style="display: inline;"> We present the design and performance of a simple fixed-frequency superconducting lumped-element resonator developed for axion and hidden photon dark matter detection. A rectangular NbTi inductor was coupled to a Nb-coated sapphire capacitor and immersed in liquid helium within a superconducting shield. The resonator was transformer-coupled to a DC SQUID for readout. We measured a quality factor o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08814v1-abstract-full').style.display = 'inline'; document.getElementById('1906.08814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.08814v1-abstract-full" style="display: none;"> We present the design and performance of a simple fixed-frequency superconducting lumped-element resonator developed for axion and hidden photon dark matter detection. A rectangular NbTi inductor was coupled to a Nb-coated sapphire capacitor and immersed in liquid helium within a superconducting shield. The resonator was transformer-coupled to a DC SQUID for readout. We measured a quality factor of $\sim$40,000 at the resonant frequency of 492.027 kHz and set a simple exclusion limit on $\sim$2 neV hidden photons with kinetic mixing angle $\varepsilon\gtrsim1.5\times10^{-9}$ based on 5.14 hours of integrated noise. This test device informs the development of the Dark Matter Radio, a tunable superconducting lumped-element resonator which will search for axions and hidden photons over the 100 Hz to 300 MHz frequency range. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.08814v1-abstract-full').style.display = 'none'; document.getElementById('1906.08814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Proceedings of the 3rd International Workshop on Microwave Cavities and Detectors for Axion Research</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.04201">arXiv:1809.04201</a> <span>&nbsp;&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> Wave Packets in Curved Space: Curvature-Field Coupling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Mondal%2C+P">Puskar Mondal</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Subhajyoti Chaudhuri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.04201v3-abstract-short" style="display: inline;"> Elastic wave propagation is a century-old problem. Unlike on a flat manifold, analytical solution is not well established for a curved manifold. In this study we take a step towards building an analytical framework for solving the elastic wave propagation problem on an arbitrary manifold which admits a Riemannian metric with a global non-zero scalar curvature. We demonstrate the accuracy of the me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.04201v3-abstract-full').style.display = 'inline'; document.getElementById('1809.04201v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.04201v3-abstract-full" style="display: none;"> Elastic wave propagation is a century-old problem. Unlike on a flat manifold, analytical solution is not well established for a curved manifold. In this study we take a step towards building an analytical framework for solving the elastic wave propagation problem on an arbitrary manifold which admits a Riemannian metric with a global non-zero scalar curvature. We demonstrate the accuracy of the method by solving for some test cases, and also discuss some interesting physical insight that comes from solving the wave equations for non-vanishing curvature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.04201v3-abstract-full').style.display = 'none'; document.getElementById('1809.04201v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Need substantial modification</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.02321">arXiv:1809.02321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.02321">pdf</a>, <a href="https://arxiv.org/format/1809.02321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.26.032168">10.1364/OE.26.032168 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of spin properties of atomic systems in and out of equilibrium via noise spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Swar%2C+M">Maheswar Swar</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+D">Dibyendu Roy</a>, <a href="/search/physics?searchtype=author&amp;query=D%2C+D">Dhanalakshmi D</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Roy%2C+S">Sanjukta Roy</a>, <a href="/search/physics?searchtype=author&amp;query=Ramachandran%2C+H">Hema Ramachandran</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.02321v1-abstract-short" style="display: inline;"> We explore the applications of spin noise spectroscopy (SNS) for detection of the spin properties of atomic ensembles in and out of equilibrium. In SNS, a linearly polarized far-detuned probe beam on passing through an ensemble of atomic spins acquires the information of the spin correlations of the system which is extracted using its time-resolved Faraday-rotation noise. We measure various atomic&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02321v1-abstract-full').style.display = 'inline'; document.getElementById('1809.02321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.02321v1-abstract-full" style="display: none;"> We explore the applications of spin noise spectroscopy (SNS) for detection of the spin properties of atomic ensembles in and out of equilibrium. In SNS, a linearly polarized far-detuned probe beam on passing through an ensemble of atomic spins acquires the information of the spin correlations of the system which is extracted using its time-resolved Faraday-rotation noise. We measure various atomic, magnetic and sub-atomic properties as well as perform precision magnetometry using SNS in rubidium atomic vapor in thermal equilibrium. Thereafter, we manipulate the relative spin populations between different ground state hyperfine levels of rubidium by controlled optical pumping which drives the system out of equilibrium. We then apply SNS to probe such spin imbalance nonperturbatively. We further use this driven atomic vapor to demonstrate that SNS can have better resolution than typical absorption spectroscopy in detecting spectral lines in the presence of various spectral broadening mechanisms. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.02321v1-abstract-full').style.display = 'none'; document.getElementById('1809.02321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Optics Express Vol. 26, Issue 24, pp. 32168-32183 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1806.02805">arXiv:1806.02805</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1806.02805">pdf</a>, <a href="https://arxiv.org/format/1806.02805">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Superconductivity">cond-mat.supr-con</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10909-018-1987-z">10.1007/s10909-018-1987-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Spread-Spectrum SQUID Multiplexer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K+D">K. D. Irwin</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">S. Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+H+-">H. -M. Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+C">C. Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S">S. Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">D. Li</a>, <a href="/search/physics?searchtype=author&amp;query=Titus%2C+C+J">C. J. Titus</a>, <a href="/search/physics?searchtype=author&amp;query=Young%2C+B+A">B. A. Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1806.02805v1-abstract-short" style="display: inline;"> The Transition-Edge Sensors (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz fr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02805v1-abstract-full').style.display = 'inline'; document.getElementById('1806.02805v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1806.02805v1-abstract-full" style="display: none;"> The Transition-Edge Sensors (TES) is a mature, high-resolution x-ray spectrometer technology that provides a much higher efficiency than dispersive spectrometers such as gratings and crystal spectrometers. As larger arrays are developed, time-division multiplexing schemes operating at MHz frequencies are being replaced by microwave SQUID multiplexers using frequency-division multiplexing at GHz frequencies. However, the multiplexing factor achievable with microwave SQUIDs is limited by the high slew rate on the leading edge of x-ray pulses. In this paper, we propose a new multiplexing scheme for high-slew-rate TES x-ray calorimeters: the spread-spectrum SQUID multiplexer, which has the potential to enable higher multiplexing factors, especially in applications with lower photon arrival rates. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1806.02805v1-abstract-full').style.display = 'none'; document.getElementById('1806.02805v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 June, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 2 figures, Submitted to the Journal of Low Temperature Physics (Proceedings of the 17th International Workshop on Low Temperature Detectors)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.09344">arXiv:1610.09344</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.09344">pdf</a>, <a href="https://arxiv.org/format/1610.09344">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Design Overview of the DM Radio Pathfinder Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Silva-Feaver%2C+M">Maximiliano Silva-Feaver</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarshi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Cho%2C+H">Hsiao-Mei Cho</a>, <a href="/search/physics?searchtype=author&amp;query=Dawson%2C+C">Carl Dawson</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+P">Peter Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K">Kent Irwin</a>, <a href="/search/physics?searchtype=author&amp;query=Kuenstner%2C+S">Stephen Kuenstner</a>, <a href="/search/physics?searchtype=author&amp;query=Li%2C+D">Dale Li</a>, <a href="/search/physics?searchtype=author&amp;query=Mardon%2C+J">Jeremy Mardon</a>, <a href="/search/physics?searchtype=author&amp;query=Moseley%2C+H">Harvey Moseley</a>, <a href="/search/physics?searchtype=author&amp;query=Mule%2C+R">Richard Mule</a>, <a href="/search/physics?searchtype=author&amp;query=Phipps%2C+A">Arran Phipps</a>, <a href="/search/physics?searchtype=author&amp;query=Rajendran%2C+S">Surjeet Rajendran</a>, <a href="/search/physics?searchtype=author&amp;query=Steffen%2C+Z">Zach Steffen</a>, <a href="/search/physics?searchtype=author&amp;query=Young%2C+B">Betty Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.09344v1-abstract-short" style="display: inline;"> We introduce the DM Radio, a dual search for axion and hidden photon dark matter using a tunable superconducting lumped-element resonator. We discuss the prototype DM Radio Pathfinder experiment, which will probe hidden photons in the 500 peV (100 kHz)-50 neV (10 MHz) mass range. We detail the design of the various components: the LC resonant detector, the resonant frequency tuning procedure, the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09344v1-abstract-full').style.display = 'inline'; document.getElementById('1610.09344v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.09344v1-abstract-full" style="display: none;"> We introduce the DM Radio, a dual search for axion and hidden photon dark matter using a tunable superconducting lumped-element resonator. We discuss the prototype DM Radio Pathfinder experiment, which will probe hidden photons in the 500 peV (100 kHz)-50 neV (10 MHz) mass range. We detail the design of the various components: the LC resonant detector, the resonant frequency tuning procedure, the differential SQUID readout circuit, the shielding, and the cryogenic mounting structure. We present the current status of the pathfinder experiment and illustrate its potential science reach in the context of the larger experimental program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.09344v1-abstract-full').style.display = 'none'; document.getElementById('1610.09344v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1411.7382">arXiv:1411.7382</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1411.7382">pdf</a>, <a href="https://arxiv.org/format/1411.7382">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.92.075012">10.1103/PhysRevD.92.075012 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Radio for Hidden-Photon Dark Matter Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarshi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Graham%2C+P+W">Peter W. Graham</a>, <a href="/search/physics?searchtype=author&amp;query=Irwin%2C+K">Kent Irwin</a>, <a href="/search/physics?searchtype=author&amp;query=Mardon%2C+J">Jeremy Mardon</a>, <a href="/search/physics?searchtype=author&amp;query=Rajendran%2C+S">Surjeet Rajendran</a>, <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+Y">Yue Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1411.7382v2-abstract-short" style="display: inline;"> We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled &#34;hidden electric field,&#34; oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that observable effect of the h&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.7382v2-abstract-full').style.display = 'inline'; document.getElementById('1411.7382v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1411.7382v2-abstract-full" style="display: none;"> We propose a resonant electromagnetic detector to search for hidden-photon dark matter over an extensive range of masses. Hidden-photon dark matter can be described as a weakly coupled &#34;hidden electric field,&#34; oscillating at a frequency fixed by the mass, and able to penetrate any shielding. At low frequencies (compared to the inverse size of the shielding), we find that observable effect of the hidden photon inside any shielding is a real, oscillating magnetic field. We outline experimental setups designed to search for hidden-photon dark matter, using a tunable, resonant LC circuit designed to couple to this magnetic field. Our &#34;straw man&#34; setups take into consideration resonator design, readout architecture and noise estimates. At high frequencies,there is an upper limit to the useful size of a single resonator set by $1/谓$. However, many resonators may be multiplexed within a hidden-photon coherence length to increase the sensitivity in this regime. Hidden-photon dark matter has an enormous range of possible frequencies, but current experiments search only over a few narrow pieces of that range. We find the potential sensitivity of our proposal is many orders of magnitude beyond current limits over an extensive range of frequencies, from 100 Hz up to 700 GHz and potentially higher. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1411.7382v2-abstract-full').style.display = 'none'; document.getElementById('1411.7382v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 November, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages + appendices, 7 figures. v2 contains a rewritten &#34;Note Added&#34;, other minor text tweaks, typos corrected in Eqs. (B12) and (C28), and 2 figures added in the appendices. Matches version published in PRD</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 92, 075012 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1203.1029">arXiv:1203.1029</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1203.1029">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.88.033005">10.1103/PhysRevE.88.033005 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Turbulent Flame Speed Scaling for Expanding Flames with Markstein Diffusion Considerations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Swetaprovo Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+F">Fujia Wu</a>, <a href="/search/physics?searchtype=author&amp;query=Law%2C+C+K">Chung K. Law</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1203.1029v3-abstract-short" style="display: inline;"> In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it&#39;s scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures appro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.1029v3-abstract-full').style.display = 'inline'; document.getElementById('1203.1029v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1203.1029v3-abstract-full" style="display: none;"> In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it&#39;s scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental $Re_{T,f}^{0.5} $ scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant $Re_{T,f} $, the normalized turbulent flame speed decreases with increasing Markstein Number. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new $Re_{T,M}^{0.5} $irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames over a large range of Damk枚hler numbers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1203.1029v3-abstract-full').style.display = 'none'; document.getElementById('1203.1029v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 September, 2013; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 March, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1202.1782">arXiv:1202.1782</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1202.1782">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TNANO.2012.2206051">10.1109/TNANO.2012.2206051 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cross-point architecture for spin transfer torque magnetic random access memory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Zhao%2C+W">Weisheng Zhao</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Sumanta Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Accoto%2C+C">Celso Accoto</a>, <a href="/search/physics?searchtype=author&amp;query=Klein%2C+J">Jacques-Olivier Klein</a>, <a href="/search/physics?searchtype=author&amp;query=Chappert%2C+C">Claude Chappert</a>, <a href="/search/physics?searchtype=author&amp;query=Mazoyer%2C+P">Pascale Mazoyer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1202.1782v1-abstract-short" style="display: inline;"> Spin transfer torque magnetic random access memory (STT-MRAM) is considered as one of the most promising candidates to build up a true universal memory thanks to its fast write/read speed, infinite endurance and non-volatility. However the conventional access architecture based on 1 transistor + 1 memory cell limits its storage density as the selection transistor should be large enough to ensure t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1782v1-abstract-full').style.display = 'inline'; document.getElementById('1202.1782v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1202.1782v1-abstract-full" style="display: none;"> Spin transfer torque magnetic random access memory (STT-MRAM) is considered as one of the most promising candidates to build up a true universal memory thanks to its fast write/read speed, infinite endurance and non-volatility. However the conventional access architecture based on 1 transistor + 1 memory cell limits its storage density as the selection transistor should be large enough to ensure the write current higher than the critical current for the STT operation. This paper describes a design of cross-point architecture for STT-MRAM. The mean area per word corresponds to only two transistors, which are shared by a number of bits (e.g. 64). This leads to significant improvement of data density (e.g. 1.75 F2/bit). Special techniques are also presented to address the sneak currents and low speed issues of conventional cross-point architecture, which are difficult to surmount and few efficient design solutions have been reported in the literature. By using a STT-MRAM SPICE model including precise experimental parameters and STMicroelectronics 65 nm technology, some chip characteristic results such as cell area, data access speed and power have been calculated or simulated to demonstrate the expected performances of this new memory architecture. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1202.1782v1-abstract-full').style.display = 'none'; document.getElementById('1202.1782v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 February, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1108.0618">arXiv:1108.0618</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1108.0618">pdf</a>, <a href="https://arxiv.org/ps/1108.0618">ps</a>, <a href="https://arxiv.org/format/1108.0618">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Other Condensed Matter">cond-mat.other</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1209/0295-5075/96/33001">10.1209/0295-5075/96/33001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photoassociative creation of ultracold heteronuclear 6Li40K* molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Ridinger%2C+A">Armin Ridinger</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Saptarishi Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Salez%2C+T">Thomas Salez</a>, <a href="/search/physics?searchtype=author&amp;query=Fernandes%2C+D+R">Diogo Rio Fernandes</a>, <a href="/search/physics?searchtype=author&amp;query=Bouloufa%2C+N">Nadia Bouloufa</a>, <a href="/search/physics?searchtype=author&amp;query=Dulieu%2C+O">Olivier Dulieu</a>, <a href="/search/physics?searchtype=author&amp;query=Salomon%2C+C">Christophe Salomon</a>, <a href="/search/physics?searchtype=author&amp;query=Chevy%2C+F">Frederic Chevy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1108.0618v1-abstract-short" style="display: inline;"> We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 att&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.0618v1-abstract-full').style.display = 'inline'; document.getElementById('1108.0618v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1108.0618v1-abstract-full" style="display: none;"> We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1危^+(v&#39;=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1108.0618v1-abstract-full').style.display = 'none'; document.getElementById('1108.0618v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 August, 2011; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2011. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, submitted to EPL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Europhysics Letters, 96 33001 (2011) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/0104036">arXiv:physics/0104036</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/physics/0104036">pdf</a>, <a href="https://arxiv.org/ps/physics/0104036">ps</a>, <a href="https://arxiv.org/format/physics/0104036">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevE.65.026311">10.1103/PhysRevE.65.026311 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Quasiperiodic waves at the onset of zero Prandtl number convection with rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Kumar%2C+K">Krishna Kumar</a>, <a href="/search/physics?searchtype=author&amp;query=Chaudhuri%2C+S">Sanjay Chaudhuri</a>, <a href="/search/physics?searchtype=author&amp;query=Das%2C+A">Alaka Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/0104036v3-abstract-short" style="display: inline;"> We show the possibility of quasiperiodic waves at the onset of thermal convection in a thin horizontal layer of slowly rotating zero-Prandtl number Boussinesq fluid confined between stress-free conducting boundaries. Two independent frequencies emerge due to an interaction between a stationary instability and a self-tuned wavy instability in presence of coriolis force, if Taylor number is raised&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0104036v3-abstract-full').style.display = 'inline'; document.getElementById('physics/0104036v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/0104036v3-abstract-full" style="display: none;"> We show the possibility of quasiperiodic waves at the onset of thermal convection in a thin horizontal layer of slowly rotating zero-Prandtl number Boussinesq fluid confined between stress-free conducting boundaries. Two independent frequencies emerge due to an interaction between a stationary instability and a self-tuned wavy instability in presence of coriolis force, if Taylor number is raised above a critical value. Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/0104036v3-abstract-full').style.display = 'none'; document.getElementById('physics/0104036v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2001; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 April, 2001; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2001. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages of text (LaTex), 5 figures (Jpeg format)</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10