CINXE.COM

Search results for: Ti alloys

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Ti alloys</title> <meta name="description" content="Search results for: Ti alloys"> <meta name="keywords" content="Ti alloys"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Ti alloys" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Ti alloys"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 491</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Ti alloys</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Phase Segregating and Complex Forming Pb Based (=X-Pb) Liquid Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Indra%20Bahadur%20Bhandari">Indra Bahadur Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Panthi"> Narayan Panthi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishwar%20Koirala"> Ishwar Koirala</a>, <a href="https://publications.waset.org/abstracts/search?q=Devendra%20Adhikari"> Devendra Adhikari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have used a theoretical model based on the assumption of compound formation in binary alloys to study the thermodynamic, microscopic, and surface properties of Bi-Pb and In-Pb liquid alloys. A review of the phase diagrams for these alloys shows that one of the stable complexes for Bi-Pb liquid alloy is BiPb3; also, that InPb is a stable phase in liquid In-Pb alloys. Using the same interaction parameters that are fitted for the free energy of mixing, we have been able to compute the bulk and thermodynamic properties of the alloys. From our observations, we are able to show that the Bi-Pb liquid alloy exhibits compound formation over the whole concentration range and the In-Pb alloys undergo phase separation. With regards to surface properties, Pb segregates more to the surface in In-Pb alloys than in Bi-Pb alloys. The viscosity isotherms have a positive deviation from ideality for both Bi-Pb and In-Pb alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetry" title="asymmetry">asymmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=Bi-Pb" title=" Bi-Pb"> Bi-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=deviation" title=" deviation"> deviation</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Pb" title=" In-Pb"> In-Pb</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20parameters" title=" interaction parameters"> interaction parameters</a> </p> <a href="https://publications.waset.org/abstracts/136406/phase-segregating-and-complex-forming-pb-based-x-pb-liquid-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> Characterization of Titanium -Niobium Alloys by Powder Metallurgy as İmplant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyy%C3%BCp%20Murat%20Karakurt">Eyyüp Murat Karakurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Huang">Yan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Kaya">Mehmet Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%BCseyin%20Demirta%C5%9F">Hüseyin Demirtaş</a>, <a href="https://publications.waset.org/abstracts/search?q=Alper%20%C4%B0ncesu">Alper İncesu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Ti-(x) Nb (at. %) master alloys (x:10, 20, and 30) were fabricated following a standard powder metallurgy route and were sintered at 1200 ˚C for 6h, under 300 MPa by powder metallurgy method. The effect of the Nb concentration in Ti matrix and porosity level was examined experimentally. For metallographic examination, the alloys were analysed by optical microscopy and energy dispersive spectrometry analysis. In addition, X-ray diffraction was performed on the alloys to determine which compound formed in the microstructure. The compression test was applied to the alloys to understand the mechanical behaviors of the alloys. According to Nb concentration in Ti matrix, the β phase increased. Also, porosity level played a crucial role on the mechanical performance of the alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nb%20concentration" title="Nb concentration">Nb concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=porosity%20level" title=" porosity level"> porosity level</a>, <a href="https://publications.waset.org/abstracts/search?q=powder%20metallurgy" title=" powder metallurgy"> powder metallurgy</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20%CE%B2%20phase" title=" The β phase"> The β phase</a> </p> <a href="https://publications.waset.org/abstracts/143340/characterization-of-titanium-niobium-alloys-by-powder-metallurgy-as-implant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> Magnesium Alloys for Biomedical Applications Processed by Severe Plastic Deformation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariana%20P.%20Medeiros">Mariana P. Medeiros</a>, <a href="https://publications.waset.org/abstracts/search?q=Amanda%20P.%20Carvallo"> Amanda P. Carvallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Augusta%20Isaac"> Augusta Isaac</a>, <a href="https://publications.waset.org/abstracts/search?q=Milos%20Janecek"> Milos Janecek</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Minarik"> Peter Minarik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayerling%20Martinez%20Celis"> Mayerling Martinez Celis</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto.%20R.%20Figueiredo"> Roberto. R. Figueiredo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of high pressure torsion processing on mechanical properties and corrosion behavior of pure magnesium and Mg-Zn, Mg-Zn-Ca, Mg-Li-Y, and Mg-Y-RE alloys is investigated. Micro-tomography and SEM characterization are used to estimate corrosion rate and evaluate non-uniform corrosion features. The results show the severe plastic deformation processing improves the strength of all magnesium alloys, but deformation localization can take place in the Mg-Zn-Ca and Mg-Y-RE alloys. The occurrence of deformation localization is associated with low strain rate sensitivity in these alloys and with severe corrosion localization. Pure magnesium and Mg-Zn and Mg-Li-Y alloys display good corrosion resistance with low corrosion rate and maintained integrity after 28 days of immersion in Hank`s solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title="magnesium alloys">magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20alloys" title=" biodegradable alloys"> biodegradable alloys</a> </p> <a href="https://publications.waset.org/abstracts/157866/magnesium-alloys-for-biomedical-applications-processed-by-severe-plastic-deformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> Melting and Making Zn-Based Alloys and Examine Their Biodegradable and Biocompatible Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Sumayli">Abdulrahman Sumayli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural Zinc has many significant biological functions, including developments and sustainable of bones and wound healing. Metallic zinc has recently been explored as potential biomaterials that have preferable biodegradable, biocompatible, and mechanical properties. Pure metal zinc has a preferable physical and mechanical properties for biodegradable and biocompatible applications such as density and modulus of elasticity. The aim of the research is to make different Zn-based metallic alloys and test them effectively to be used as biocompatible and biodegradable materials in the field biomedical application. Microstructure study of the as-cast alloys will be examined using SEM (scanning electron microscope) followed by X-ray diffraction investigated so as to evaluate phase constitution of the designed alloys. After that, immersion test and electrochemical test will be applied to the designed alloys so as to study bio corrosion behaviour of the proposed alloys. Finally, in vitro cytocompatibility well conducted to study biocompatibility of the made alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zn-based%20alloys" title="Zn-based alloys">Zn-based alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradable%20and%20biocompatible%20materials" title=" biodegradable and biocompatible materials"> biodegradable and biocompatible materials</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity%20test" title=" cytotoxicity test"> cytotoxicity test</a>, <a href="https://publications.waset.org/abstracts/search?q=neutron%20synchrotron%20imaging" title=" neutron synchrotron imaging"> neutron synchrotron imaging</a> </p> <a href="https://publications.waset.org/abstracts/110848/melting-and-making-zn-based-alloys-and-examine-their-biodegradable-and-biocompatible-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Amrane">C. Amrane</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Haman"> D. Haman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg%20alloys" title="Al-Mg alloys">Al-Mg alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatments" title=" heat treatments"> heat treatments</a> </p> <a href="https://publications.waset.org/abstracts/15618/comparative-study-on-the-precipitation-behavior-in-two-al-mg-alloys-al-12-wt-mg-and-al-8-wt-mg" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Corrosion of Fe-(9~37) Wt%Cr Alloys at 700-800 °C in N₂-H₂O-H₂S Mixed Gas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Jung%20Kim">Min Jung Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe-(9, 19, 28, 37) wt%Cr alloys were corroded at 700 and 800 °C for 70 h under 1 atm of N₂, 1 atm of N₂/3.2%H₂O-mixed gas, and 1 atm of N₂/3.1%H₂O/2.42%H₂S-mixed gas. The corrosion rate of Fe-9Cr alloy increased with the addition of H₂O and increased further with the addition of H₂S in N₂/H₂O gas. Fe-9Cr alloy was non-protective in all gas types. In contrast, Fe-(19, 28, 37) wt%Cr alloys were protective in N₂ and N₂/H₂O-mixed gas because of the formation of the Cr₂O₃ layer. They were, however, non-protective in N₂/H₂O/H₂S-mixed gas because sulfidation dominated, forming the outer FeS layer and the inner Cr₂S₃ layer containing some FeCr₂S₄. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe-%289" title="Fe-(9">Fe-(9</a>, <a href="https://publications.waset.org/abstracts/search?q=19" title=" 19"> 19</a>, <a href="https://publications.waset.org/abstracts/search?q=28" title=" 28"> 28</a>, <a href="https://publications.waset.org/abstracts/search?q=37%29%20wt%25Cr%20alloys" title=" 37) wt%Cr alloys"> 37) wt%Cr alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfidation" title=" sulfidation"> sulfidation</a>, <a href="https://publications.waset.org/abstracts/search?q=FeS" title=" FeS"> FeS</a> </p> <a href="https://publications.waset.org/abstracts/50849/corrosion-of-fe-937-wtcr-alloys-at-700-800-c-in-n2-h2o-h2s-mixed-gas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50849.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Experimental Study on Thermomechanical Properties of New-Generation ODS Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Khalaj">O. Khalaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Ma%C5%A1ek"> B. Mašek</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jirkov%C3%A1"> H. Jirková</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Svoboda"> J. Svoboda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By using a combination of new technologies together with an unconventional use of different types of materials, specific mechanical properties and structures of the material can be achieved. Some possibilities are enabled by a combination of powder metallurgy in the preparation of a metal matrix with dispersed stable particles achieved by mechanical alloying and hot consolidation. This paper explains the thermomechanical properties of new generation of Oxide Dispersion Strengthened alloys (ODS) within three ranges of temperature with specified deformation profiles. The results show that the mechanical properties of new ODS alloys are significantly affected by the thermomechanical treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20forming" title="hot forming">hot forming</a>, <a href="https://publications.waset.org/abstracts/search?q=ODS" title=" ODS"> ODS</a>, <a href="https://publications.waset.org/abstracts/search?q=alloys" title=" alloys"> alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=thermomechanical" title=" thermomechanical"> thermomechanical</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-Al" title=" Fe-Al"> Fe-Al</a>, <a href="https://publications.waset.org/abstracts/search?q=Al2O3" title=" Al2O3"> Al2O3</a> </p> <a href="https://publications.waset.org/abstracts/74378/experimental-study-on-thermomechanical-properties-of-new-generation-ods-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74378.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuncang%20Li">Yuncang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Cuie%20Wen"> Cuie Wen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20and%20biodegrade%20properties" title=" mechanical and biodegrade properties"> mechanical and biodegrade properties</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a> </p> <a href="https://publications.waset.org/abstracts/113098/biodegradable-magnesium-alloys-with-addition-of-rare-earth-elements-for-biomedical-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahil%20Kumar">Sahil Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Surinder%20Pal"> Surinder Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Kapoor"> Rahul Kapoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hot%20chamber%20die%20casting" title="hot chamber die casting">hot chamber die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=cold%20chamber%20die%20casting" title=" cold chamber die casting"> cold chamber die casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metals%20and%20alloys" title=" metals and alloys"> metals and alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=casting%20technology" title=" casting technology"> casting technology</a> </p> <a href="https://publications.waset.org/abstracts/25342/fundamental-research-dissension-between-hot-and-cold-chamber-high-pressure-die-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">618</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> Beta Titanium Alloys: The Lowest Elastic Modulus for Biomedical Applications: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Talib%20Mohammed">Mohsin Talib Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahid%20A.%20Khan"> Zahid A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arshad%20N.%20Siddiquee"> Arshad N. Siddiquee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biometallic materials are the most important materials for use in biomedical applications especially in manufacturing a variety of biological artificial replacements in a modern worlds, e.g. hip, knee or shoulder joints, due to their advanced characteristics. Titanium (Ti) and its alloys are used extensively in biomedical applications based on their high specific strength and excellent corrosion resistance. Beta-Ti alloys containing completely biocompatible elements are exceptionally prospective materials for manufacturing of bioimplants. They have superior mechanical, chemical and electrochemical properties for use as biomaterials. These biomaterials have the ability to introduce the most important property of biochemical compatibility which is low elastic modulus. This review examines current information on the recent developments in alloying elements leading to improvements of beta Ti alloys for use as biomaterials. Moreover, this paper focuses mainly on the evolution, evaluation and development of the modulus of elasticity as an effective factor on the performance of beta alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beta%20alloys" title="beta alloys">beta alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%27s%20modulus" title=" Young&#039;s modulus"> Young&#039;s modulus</a> </p> <a href="https://publications.waset.org/abstracts/6030/beta-titanium-alloys-the-lowest-elastic-modulus-for-biomedical-applications-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Friction Stir Welding of Al-Mg-Mn Aluminum Alloy Plates: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Subbaiah">K. Subbaiah</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Jayakumar"> C. V. Jayakumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg-Mn alloys (5000 Series) have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Mn%20alloys" title="Al-Mg-Mn alloys">Al-Mg-Mn alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20pin%20profile" title=" tool pin profile"> tool pin profile</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20mechanical%20properties" title=" microstructure and mechanical properties"> microstructure and mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/17095/friction-stir-welding-of-al-mg-mn-aluminum-alloy-plates-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Biological Evaluation of Some Modern Titanium Alloys for Dental Implants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roxana%20Maria%20Angelescu">Roxana Maria Angelescu</a>, <a href="https://publications.waset.org/abstracts/search?q=Raluca%20Ion"> Raluca Ion</a>, <a href="https://publications.waset.org/abstracts/search?q=Ani%C5%9Foara%20C%C3%AEmpean"> Anişoara Cîmpean</a>, <a href="https://publications.waset.org/abstracts/search?q=Doina%20R%C4%83ducanu"> Doina Răducanu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Lucia%20Angelescu"> Mariana Lucia Angelescu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an attempt to find titanium alloys that fulfill the requirements for mechanical and biological compatibility, laboratory and material related tests were performed during the years, as well as preclinical and clinical trials. The multidisciplinary scientific research facilitates the global evaluation of biocompatibility and osseointegration regarding the dental implant alloys. The aim of this study was to determine the in vitro biocompatibility of three modern titanium alloys: Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (wt%), Ti-36.5Nb-4.5Zr-3Ta-0.16O (wt%) and Ti-20Nb-5Ta (wt%), in order to establish whether the use of these titanium alloys can have any toxic or injurious effects on biological systems. The commonly used Ti-6Al-4V alloy was investigated as a reference material. The behavior of MC3T3-E1 pre-osteoblasts on all these four metallic surfaces was evaluated. The tests of immunofluorescence, cytotoxicity and cellular proliferation lead to the conclusion that the newly-developed titanium alloys elicit a good cellular response in terms of cellular survival, adhesion, morphology and proliferative potential as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility%20tests" title="biocompatibility tests">biocompatibility tests</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20implants" title=" dental implants"> dental implants</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20engineering" title=" biomedical engineering"> biomedical engineering</a> </p> <a href="https://publications.waset.org/abstracts/27562/biological-evaluation-of-some-modern-titanium-alloys-for-dental-implants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> Friction Stir Welding of Aluminum Alloys: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Tiwari">S. K. Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Kumar%20Shukla"> Dinesh Kumar Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Chandra"> R. Chandra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding is a solid state joining process. High strength aluminum alloys are widely used in aircraft and marine industries. Generally, the mechanical properties of fusion-welded aluminum joints are poor. As friction stir welding occurs in the solid state, no solidification structures are created thereby eliminating the brittle and eutectic phases common in fusion welding of high strength aluminum alloys. In this review, the process parameters, microstructural evolution and effect of friction stir welding on the properties of weld specific to aluminum alloys have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding%20%28FSW%29" title=" friction stir welding (FSW)"> friction stir welding (FSW)</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=Properties." title=" Properties. "> Properties. </a> </p> <a href="https://publications.waset.org/abstracts/2141/friction-stir-welding-of-aluminum-alloys-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Subbaiah">K. Subbaiah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5000%20series%20and%206000%20series%20Al%20alloys" title="5000 series and 6000 series Al alloys">5000 series and 6000 series Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20pin%20profile" title=" tool pin profile"> tool pin profile</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20properties" title=" microstructure and properties"> microstructure and properties</a> </p> <a href="https://publications.waset.org/abstracts/17281/review-of-friction-stir-welding-of-dissimilar-5000-and-6000-series-aluminum-alloy-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17281.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Evaluation of As-Cast U-Mo Alloys Processed in Graphite Crucible Coated with Boron Nitride </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kleiner%20Marques%20Marra">Kleiner Marques Marra</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%A9rcio%20Pedrosa"> Tércio Pedrosa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the production of uranium-molybdenum alloys, which have been considered promising fuel for test and research nuclear reactors. U-Mo alloys were produced in three molybdenum contents: 5 wt.%, 7 wt.%, and 10 wt.%, using an electric vacuum induction furnace. A boron nitride-coated graphite crucible was employed in the production of the alloys and, after melting, the material was immediately poured into a boron nitride-coated graphite mold. The incorporation of carbon was observed, but it happened in a lower intensity than in the case of the non-coated crucible/mold. It is observed that the carbon incorporation increased and alloys density decreased with Mo addition. It was also noticed that the increase in the carbon or molybdenum content did not seem to change the as-cast structure in terms of granulation. The three alloys presented body-centered cubic crystal structure (g phase), after solidification, besides a seeming negative microsegregation of molybdenum, from the center to the periphery of the grains. There were signs of macrosegregation, from the base to the top of the ingots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=uranium-molybdenum%20alloys" title="uranium-molybdenum alloys">uranium-molybdenum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=incorporation%20of%20carbon" title=" incorporation of carbon"> incorporation of carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=solidification" title=" solidification"> solidification</a>, <a href="https://publications.waset.org/abstracts/search?q=macrosegregation%20and%20microsegregation" title=" macrosegregation and microsegregation"> macrosegregation and microsegregation</a> </p> <a href="https://publications.waset.org/abstracts/110649/evaluation-of-as-cast-u-mo-alloys-processed-in-graphite-crucible-coated-with-boron-nitride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> Electrochemical Corrosion Behavior of New Developed Titanium Alloys in Ringer’s Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20M.%20Abd-elrhman">Yasser M. Abd-elrhman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Gepreel"> Mohamed A. Gepreel</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiochi%20Nakamura"> Kiochi Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abd%20El-Moneim"> Ahmed Abd El-Moneim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sengo%20Kobayashi"> Sengo Kobayashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mervat%20M.%20Ibrahim"> Mervat M. Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Titanium alloys are known as highly bio compatible metallic materials due to their high strength, low elastic modulus, and high corrosion resistance in biological media. Besides other important material features, the corrosion parameters and corrosion products are responsible for limiting the biological and chemical bio compatibility of metallic materials that produce undesirable reactions in implant-adjacent and/or more distant tissues. Electrochemical corrosion behaviors of novel beta titanium alloys, Ti-4.7Mo-4.5Fe, Ti-3Mo-0.5Fe, and Ti-2Mo-0.5Fe were characterized in naturally aerated Ringer’s solution at room temperature compared with common used biomedical titanium alloy, Ti-6Al-4V. The corrosion resistance of titanium alloys were investigated through open circuit potential (OCP), potentiodynamic polarization measurements and optical microscope (OM). A high corrosion resistance was obtained for all alloys due to the stable passive film formed on their surfaces. The new present alloys are promising metallic biomaterials for the future, owing to their very low elastic modulus and good corrosion resistance capabilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title="titanium alloys">titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20resistance" title=" corrosion resistance"> corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=Ringer%E2%80%99s%20solution" title=" Ringer’s solution"> Ringer’s solution</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20corrosion" title=" electrochemical corrosion"> electrochemical corrosion</a> </p> <a href="https://publications.waset.org/abstracts/19503/electrochemical-corrosion-behavior-of-new-developed-titanium-alloys-in-ringers-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">659</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Texture and Twinning in Selective Laser Melting Ti-6Al-4V Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kazantseva">N. Kazantseva</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krakhmalev"> P. Krakhmalev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Yadroitsev"> I. Yadroitsev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fefelov"> A. Fefelov</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Vinogradova"> N. Vinogradova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ezhov"> I. Ezhov</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Kurennykh"> T. Kurennykh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Martensitic texture-phase transition in Selective Laser Melting (SLM) Ti-6Al-4V (ELI) alloys was found. Electron Backscatter Diffraction (EBSD) analysis showed the initial cubic beta &lt; 100 &gt; (001) BCC texture. Such kind of texture is observed in BCC metals with flat rolling texture when axis is in the direction of rolling and the texture plane coincides with the plane of rolling. It was found that the texture of the parent BCC beta-phase determined the texture of low-temperature HCP alpha-phase limited the choice of its orientation variants. The {10-12} &lt; -1011 &gt; twinning system in titanium alloys after SLM was determined. Analysis of the oxygen contamination in SLM alloys was done. Comparison of the obtained results with the conventional titanium alloys is also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20technology" title="additive technology">additive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a>, <a href="https://publications.waset.org/abstracts/search?q=twins" title=" twins"> twins</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti-6Al-4V" title=" Ti-6Al-4V"> Ti-6Al-4V</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20content" title=" oxygen content"> oxygen content</a> </p> <a href="https://publications.waset.org/abstracts/63604/texture-and-twinning-in-selective-laser-melting-ti-6al-4v-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Design of New Alloys from Al-Ti-Zn-Mg-Cu System by in situ Al3Ti Formation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joao%20Paulo%20De%20Oliveira%20Paschoal">Joao Paulo De Oliveira Paschoal</a>, <a href="https://publications.waset.org/abstracts/search?q=Andre%20Victor%20Rodrigues%20Dantas"> Andre Victor Rodrigues Dantas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernando%20Almeida%20Da%20Silva%20Fernandes"> Fernando Almeida Da Silva Fernandes</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugenio%20Jose%20Zoqui"> Eugenio Jose Zoqui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the adoption of High Pressure Die Casting technologies for the production of automotive bodies by the famous Giga Castings, the technology of processing metal alloys in the semi-solid state (SSM) becomes interesting because it allows for higher product quality, such as lower porosity and shrinkage voids. However, the alloys currently processed are derived from the foundry industry and are based on the Al-Si-(Cu-Mg) system. High-strength alloys, such as those of the Al-Zn-Mg-Cu system, are not usually processed, but the benefits of using this system, which is susceptible to heat treatments, can be associated with the advantages obtained by processing in the semi-solid state, promoting new possibilities for production routes and improving product performance. The current work proposes a new range of alloys to be processed in the semi-solid state through the modification of aluminum alloys of the Al-Zn-Mg-Cu system by the in-situ formation of Al3Ti intermetallic. Such alloys presented the thermodynamic stability required for semi-solid processing, with a sensitivity below 0.03(Celsius degrees * -1), in a wide temperature range. Furthermore, these alloys presented high hardness after aging heat treatment, reaching 190HV. Therefore, they are excellent candidates for the manufacture of parts that require low levels of defects and high mechanical strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=semisolid%20metals%20processing" title=" semisolid metals processing"> semisolid metals processing</a>, <a href="https://publications.waset.org/abstracts/search?q=intermetallics" title=" intermetallics"> intermetallics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20aluminide" title=" titanium aluminide"> titanium aluminide</a> </p> <a href="https://publications.waset.org/abstracts/194660/design-of-new-alloys-from-al-ti-zn-mg-cu-system-by-in-situ-al3ti-formation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> Corrosion Properties of Friction Welded Dissimilar Aluminum Alloys; Duralumin and AA6063</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sori%20Won">Sori Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Bosung%20Seo"> Bosung Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwangsuk%20Park"> Kwangsuk Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Seok%20Hong%20Min"> Seok Hong Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Tae%20Kwon%20Ha"> Tae Kwon Ha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increased needs for lightweight materials in automobile industry, the usage of aluminum alloys becomes prevailed as components and car bodies due to their comparative specific strength. These parts composed of different aluminum alloys should be connected each other, where welding technologies are commonly applied. Among various welding methods, friction welding method as a solid state welding gets to be popular in joining aluminum alloys as it does not produce a defect such as blowhole that is often formed during typical welding processes. Once two metals are joined, corrosion would become an issue due to different electrochemical potentials. In this study, we investigated variations of corrosion properties when Duralumin and AA6063 were joined by friction welding. From the polarization test, it was found that the potential of the welded was placed between those of two original metals, which could be explained by a concept of mixed potential. Pitting is a common form as a result of the corrosion of aluminum alloys when they are exposed to 3.5 wt% NaCl solution. However, when two different aluminum alloys (Duralumin and AA6063) were joined, pitting corrosion occurred severely and uniformly in Duralumin while there were a few pits around precipitates in AA6063, indicating that AA6063 was cathodically protected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion%20properties" title="corrosion properties">corrosion properties</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20welding" title=" friction welding"> friction welding</a>, <a href="https://publications.waset.org/abstracts/search?q=dissimilar%20Al%20alloys" title=" dissimilar Al alloys"> dissimilar Al alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=polarization%20test" title=" polarization test"> polarization test</a> </p> <a href="https://publications.waset.org/abstracts/77807/corrosion-properties-of-friction-welded-dissimilar-aluminum-alloys-duralumin-and-aa6063" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> A Review on the Studies on Mechanical and Tribological Properties of Aluminum and Magnesium Alloys Welded by Friction Stir Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sukhdeep%20Singh%20Gill">Sukhdeep Singh Gill</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurbhinder%20Singh%20Brar"> Gurbhinder Singh Brar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, friction stir welding (FSW) has attracted the main attention of the concerned researcher especially in case of joining of nonferrous alloys like aluminum and magnesium due to its unmatchable properties with respect to other welding techniques. Friction stir welding is a solid state welding process which is most suitable for the welding of nonferrous alloys, especially aluminum and magnesium alloys. Aluminum and magnesium alloys are widely used for structural applications of all types of automobiles due to their superior mechanical properties with their low density. This paper deals with the critical review of the different properties (like tensile strength, microhardness, impact strength, corrosion resistance, and metallurgical investigation on SEM) obtained by the FSW of aluminum and magnesium alloys. After a critical review of the existing published literature on concerned topics, all the properties of welding joins are compared in the tabulated manner to optimize the selection of materials and FSW parameters according to mechanical and tribological properties. Different tool designs used for the FSW process are also thoroughly studied, and the influence of the design of the tool used in FSW on the different properties has also been incorporated in this paper. It has been observed from the existing published literature that FSW is the most effective and practical technique for joining the non ferrous alloys especially aluminum and magnesium alloys, and among the different FSW tools, left hand threaded tri-flute (LHTTF) tool is best for the welding of non ferrous alloys like aluminum and magnesium alloys which gives the superior mechanical properties to welding joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum" title="aluminum">aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium" title=" magnesium"> magnesium</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20applications" title=" structural applications"> structural applications</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20design" title=" tool design"> tool design</a> </p> <a href="https://publications.waset.org/abstracts/108193/a-review-on-the-studies-on-mechanical-and-tribological-properties-of-aluminum-and-magnesium-alloys-welded-by-friction-stir-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Effect of Hot Extrusion on the Mechanical and Corrosion Properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn Alloys for Medical Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20E.%20Bazhenov">V. E. Bazhenov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Li"> A. V. Li</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Komissarov"> A. A. Komissarov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20V.%20Koltygin"> A. V. Koltygin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Tavolzhanskii"> S. A. Tavolzhanskii</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Voropaeva"> O. O. Voropaeva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Mukhametshina"> A. M. Mukhametshina</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Tokar"> A. A. Tokar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20Bautin"> V. A. Bautin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnesium-based alloys are considered as effective materials in the development of biodegradable implants. The magnesium alloys containing Mg, Zn, Ca as an alloying element are the subject of the particular interest. These elements are the nutrients for the human body, which provide their high biocompatibility. In this work, we investigated the effect of severe plastic deformation (SPD) on the mechanical and corrosion properties of Mg-Zn-Ca and Mg-Zn-Ca-Mn alloys containing from 2 to 4 wt.% Zn; 0.7 wt.% Ca and up to 1 wt.% Mn. Hot extrusion was used as a method of intensive plastic deformation. The temperature of hot extrusion was set to 220 °C and 300 °C. Metallographic analysis after hot extrusion shows that the grain size in the studied alloys depends on the deformation temperature. The grain size for all of investigated alloys is in the range from 3 to 7 microns, and 3 μm corresponds to the extrusion temperature of 220 °C. Analysis of mechanical properties after extrusion shows that extrusion at a temperature of 220 °C and alloying with Mn increase the strength characteristics and decrease the ductility of studied alloys. A slight anisotropy of properties in the longitudinal and transverse directions was also observed. Measurements of corrosion properties revealed that the addition of Mn to Mg-Zn-Ca alloys reduces the corrosion rate. On the other hand, increasing the Zn content in alloys increases the corrosion rate. The extrusion temperature practically does not affect the corrosion rate. Acknowledgement: The authors gratefully acknowledge the financial support of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No K2-2019-008), implemented by a governmental decree dated 16th of March 2013, N 211. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biocompatibility" title="biocompatibility">biocompatibility</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20extrusion" title=" hot extrusion"> hot extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20plastic%20deformation" title=" severe plastic deformation"> severe plastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=properties" title=" properties"> properties</a> </p> <a href="https://publications.waset.org/abstracts/130867/effect-of-hot-extrusion-on-the-mechanical-and-corrosion-properties-of-mg-zn-ca-and-mg-zn-ca-mn-alloys-for-medical-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> The Effect of Increase in Aluminium Content on Fluidity of ZA Alloys Processed by Centrifugal Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20N.%20Jyothi">P. N. Jyothi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shailesh%20Rao"> A. Shailesh Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Jagath"> M. C. Jagath</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Channakeshavalu"> K. Channakeshavalu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uses of ZA alloys as bearing material have been increased due to their superior mechanical properties, wear characteristics and tribological properties. Among ZA alloys, ZA 27 alloy has higher strength, low density with excellent bearing and wear characteristics. From the past research work, it is observed that in continuous casting as Al content increases, the fluidity also increases. In present work, ZA 8, ZA 12 and ZA 27 alloys have been processed through centrifugal casting process at 600 rotational speed of the mould. Uniform full cylinder is casted with ZA 8 alloy. For ZA 12 and ZA 27 alloys where the Al content is higher, cast tubes were not complete and uniform. The reason is Al may be acting as a refiner and reduce the melt flow in the rotating mould. This is mainly due to macro-segregation of Al, which has occurred due to difference in densities of Al and Zn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20casting" title="centrifugal casting">centrifugal casting</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20flow" title=" metal flow"> metal flow</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20engineering" title=" systems engineering"> systems engineering</a> </p> <a href="https://publications.waset.org/abstracts/4057/the-effect-of-increase-in-aluminium-content-on-fluidity-of-za-alloys-processed-by-centrifugal-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4057.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hexiong%20Liu">Hexiong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sintered%20density" title="sintered density">sintered density</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors" title=" interpretable descriptors"> interpretable descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=W%28Mo%29%20alloy" title=" W(Mo) alloy"> W(Mo) alloy</a> </p> <a href="https://publications.waset.org/abstracts/165238/machine-learning-assisted-prediction-of-sintered-density-of-binary-wmo-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Investigation of VN/TiN Multilayer Coatings on AZ91D Mg Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ertas">M. Ertas</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20C.%20Onel"> A. C. Onel</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Ekinci"> G. Ekinci</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Toydemir"> B. Toydemir</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Durdu"> S. Durdu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Usta"> M. Usta</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Colakerol%20Arslan"> L. Colakerol Arslan </a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop AZ91D magnesium alloys with improved properties, we have applied TiN and VN/TiN multilayer coatings using DC magnetron sputter technique. Coating structure, surface morphology, chemical bonding and corrosion resistance of coatings were analyzed by x-ray diffraction (XRD), scanning electron microscope (SEM), x-ray photoelectron spectroscopy (XPS), and tafel extrapolation method, respectively. XPS analysis reveal that VN overlayer reacts with oxygen at the VN/TiN interface and forms more stable TiN layer. Morphological investigations and the corrosion results show that VN/TiN multilayer thin film coatings are quite effective to optimize the corrosion resistance of Mg alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AZ91D%20Mg%20alloys" title="AZ91D Mg alloys">AZ91D Mg alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20corrosion%20resistance" title=" high corrosion resistance"> high corrosion resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal%20nitride%20coatings" title=" transition metal nitride coatings"> transition metal nitride coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetron%20sputter" title=" magnetron sputter"> magnetron sputter</a> </p> <a href="https://publications.waset.org/abstracts/16465/investigation-of-vntin-multilayer-coatings-on-az91d-mg-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Microstructural and Magnetic Properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 Heusler Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mst%20Nazmunnahar">Mst Nazmunnahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20del%20Val"> Juan del Val</a>, <a href="https://publications.waset.org/abstracts/search?q=Alena%20Vimmrova"> Alena Vimmrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanca%20Hernando"> Blanca Hernando</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Gonz%C3%A1lez"> Julian González</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report the microstructural and magnetic properties of Ni50Mn39Sn11 and Ni50Mn36Sn14 ribbon Heusler alloys. Experimental results were obtained by differential scanning calorymetry, X-ray diffraction and vibrating sample magnetometry techniques. The Ni-Mn-Sn system undergoes a martensitic structural transformation in a wide temperature range. For example, for Ni50Mn39Sn11 the start and finish temperatures of the martensitic and austenite phase transformation for ribbon alloy were Ms = 336K , Mf = 328K, As = 335K and Af = 343K whereas no structural transformation is observed for Ni50Mn36Sn14 alloys. Magnetic measurements show the typical ferromagnetic behavior with Curie temperature 207K at low applied field of 50 Oe. The complex behavior exhibited by these Heusler alloys should be ascribed to the strong coupling between magnetism and structure, being their magnetic behavior determined by the distance between Mn atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=as-cast%20ribbon" title="as-cast ribbon">as-cast ribbon</a>, <a href="https://publications.waset.org/abstracts/search?q=Heusler%20alloys" title=" Heusler alloys"> Heusler alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20transformation" title=" structural transformation"> structural transformation</a> </p> <a href="https://publications.waset.org/abstracts/23193/microstructural-and-magnetic-properties-of-ni50mn39sn11-and-ni50mn36sn14-heusler-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23193.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">456</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Magnesium Alloys Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Kub%C3%A1sek">Jiří Kubásek</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Min%C3%A1rik"> Peter Minárik</a>, <a href="https://publications.waset.org/abstracts/search?q=Kl%C3%A1ra%20Hosov%C3%A1"> Klára Hosová</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20%C5%A0a%C5%A1ek"> Stanislav Šašek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Vesel%C3%BD"> Jozef Veselý</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Str%C3%A1sk%C3%A1"> Jitka Stráská</a>, <a href="https://publications.waset.org/abstracts/search?q=Drahom%C3%ADr%20Dvorsk%C3%BD"> Drahomír Dvorský</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalibor%20Vojt%C4%9Bch"> Dalibor Vojtěch</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Jane%C4%8Dek"> Miloš Janeček</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mg-2Y-2Gd-1Ca and Mg-4Y-4Gd-2Ca alloys were processed by extrusion or equal channel angular pressing (ECAP) to analyse the effect of the microstructure on ignition temperature, mechanical properties and corrosion resistance. The alloys are characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The effect of extrusion and ECAP on the microstructure, mechanical properties and ignition temperature was studied. The obtained results indicated a substantial effect of the processing conditions on the average grain size, the recrystallized fraction and texture formation. Both alloys featured a high strength, depending on the composition and processing condition, and a high ignition temperature of ≈1100 °C (Mg-4Y-4Gd-2Ca) and ≈950 °C (Mg-2Y-2Gd-1Ca), which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y₂O₃. The achieved combination of enhanced mechanical properties and the ignition temperature makes these alloys a prominent candidate for aircraft applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title="magnesium alloys">magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20ignition%20temperature" title=" enhanced ignition temperature"> enhanced ignition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a> </p> <a href="https://publications.waset.org/abstracts/157860/magnesium-alloys-containing-y-gd-and-ca-with-enhanced-ignition-temperature-and-mechanical-properties-for-aviation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Characteristic of Oxidation Resistant High-Entropy Alloys for Application in Zero-Emission Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wojciech%20J.%20Nowak">Wojciech J. Nowak</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Maciaszek"> Natalia Maciaszek</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Drajewicz"> Marcin Drajewicz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A constant requirement to reduce greenhouse gas emissions in combination with the desire to increase gas turbine efficiency results in a continuous trend to increase the operating temperature of gas turbines. An increase in operating temperature will result in lower fuel consumption, and a higher combustion temperature will result in lower pollution release. Moreover, there is a strong trend for hydrogen to be used as an alternative and clean fuel. However, using hydrogen or hydrogen-rich fuel results in a higher combustion temperature, as well as an increase in the water vapor content in the exhaust gases. Commonly used Ni-base alloys have their limits. Moreover, the presence of water vapor worsens the oxidation behavior of Ni-based alloys at a high temperature. Therefore, a new brand of materials is demanded to be used in gas turbines operated with hydrogen-rich fuel. High-entropy alloys (HEAs) seem to be very promising materials to replace commonly used Ni-based alloys. HEAs are the group of materials consisting of at least five main equiatomic elements. These alloys can be doped by other elements in amounts less than 5 at. % in total. Thus, in the present study, NiCoCrAlFe-X alloys are studied in terms of oxidation behavior during exposure to dry and wet atmospheres up to 1000 h. NiCoCrAlFe-X alloys are doped with minor alloying elements in amounts ranging from 1-5 at.%. The effect of the chemical composition on oxidation resistance in dry and wet atmospheres will be shown and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20entropy%20alloys" title="high entropy alloys">high entropy alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20fuel" title=" hydrogen fuel"> hydrogen fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20vapor" title=" water vapor"> water vapor</a> </p> <a href="https://publications.waset.org/abstracts/186777/characteristic-of-oxidation-resistant-high-entropy-alloys-for-application-in-zero-emission-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186777.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Sidana">Ajay Sidana</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulbir%20Singh%20Sandhu"> Kulbir Singh Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh%20Sidhu"> Balwinder Singh Sidhu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloys" title="aluminum alloys">aluminum alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title=" magnesium alloys"> magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20stir%20welding" title=" friction stir welding"> friction stir welding</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/17732/study-of-microstructure-and-mechanical-properties-obtained-by-fsw-of-similar-and-dissimilar-non-ferrous-alloys-used-in-aerospace-and-automobile-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Study of Corrosion Behavior of Experimental Alloys with Different Levels of Cr and High Levels of Mo Compared to Aisi 444</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20P.%20R.%20N.%20Barroso">Ana P. R. N. Barroso</a>, <a href="https://publications.waset.org/abstracts/search?q=Maur%C3%ADcio%20N.%20Kleinberg"> Maurício N. Kleinberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Frederico%20R.%20Silva"> Frederico R. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20F.%20Guimar%C3%A3es"> Rodrigo F. Guimarães</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcelo%20M.%20V.%20Parente"> Marcelo M. V. Parente</a>, <a href="https://publications.waset.org/abstracts/search?q=Walney%20S.%20Ara%C3%BAjo"> Walney S. Araújo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fight against accelerated wear of the equipment used in the oil and gas sector is a challenge for minimizing maintenance costs. Corrosion being one of the main agents of equipment deterioration, we seek alternative materials that exhibit improved corrosion resistance at low cost of production. This study aims to evaluate the corrosion behavior of experimental alloys containing 15% and 17% of chromium (Cr) and 5% of molybdenum (Mo) in comparison with an AISI 444 commercial alloy. Microstructural analyzes were performed on samples of the alloys before and after the electrochemical tests. Two samples of each solubilized alloy were also taken for analysis of the corrosion behavior by testing potentiodynamic polarization (PP) and Electrochemical Impedance Spectroscopy (EIS) with immersion time of 24 hours in electrolytic solution with acidic character. The graphics obtained through electrochemical tests of PP and EIS indicated that among the experimental alloys, the alloy with higher chromium content (17%) had a higher corrosion resistance, confirming the beneficial effect of adding chromium. When comparing the experimental alloys with the AISI 444 commercial alloy, it is observed that the AISI 444 commercial alloy showed superior corrosion resistance to that of the experimental alloys for both assays, PP and EIS. The microstructural analyzes performed after the PP and EIS tests confirmed the results previously described. These results suggest that the addition of these levels of molybdenum did not favor the electrochemical behavior of experimental ferritic alloys for the electrolytic medium studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=molybdenum" title=" molybdenum"> molybdenum</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20tests" title=" electrochemical tests"> electrochemical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20alloys" title=" experimental alloys"> experimental alloys</a> </p> <a href="https://publications.waset.org/abstracts/21411/study-of-corrosion-behavior-of-experimental-alloys-with-different-levels-of-cr-and-high-levels-of-mo-compared-to-aisi-444" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> A Comprehensive Study on the Porosity Effect of Ti-20Zr Alloy Produced by Powder Metallurgy as a Biomaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eyyup%20Murat%20Karakurt">Eyyup Murat Karakurt</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Huang"> Yan Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Kaya"> Mehmet Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Demirtas"> Huseyin Demirtas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of the porosity effect of Ti-20Zr alloy produced by powder metallurgy as a biomaterial was investigated experimentally. The Ti based alloys (Ti-20%Zr (at.) were produced under 300 MPa, for 6 h at 1200 °C. Afterward, the microstructure of the Ti-based alloys was analyzed by optical analysis, scanning electron microscopy, energy dispersive spectrometry. Moreover, compression tests were applied to determine the mechanical behaviour of samples. As a result, highly porous Ti-20Zr alloys exhibited an elastic modulus close to human bone. The results later were compared theoretically and experimentally. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=porosity%20effect" title="porosity effect">porosity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Ti%20based%20alloys" title=" Ti based alloys"> Ti based alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20modulus" title=" elastic modulus"> elastic modulus</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20test" title=" compression test"> compression test</a> </p> <a href="https://publications.waset.org/abstracts/131221/a-comprehensive-study-on-the-porosity-effect-of-ti-20zr-alloy-produced-by-powder-metallurgy-as-a-biomaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Ti%20alloys&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10