CINXE.COM
Search results for: interpretable descriptors
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: interpretable descriptors</title> <meta name="description" content="Search results for: interpretable descriptors"> <meta name="keywords" content="interpretable descriptors"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="interpretable descriptors" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="interpretable descriptors"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 185</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: interpretable descriptors</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hexiong%20Liu">Hexiong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sintered%20density" title="sintered density">sintered density</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors" title=" interpretable descriptors"> interpretable descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=W%28Mo%29%20alloy" title=" W(Mo) alloy"> W(Mo) alloy</a> </p> <a href="https://publications.waset.org/abstracts/165238/machine-learning-assisted-prediction-of-sintered-density-of-binary-wmo-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165238.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammet%20Baldan">Muhammet Baldan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emel%20Timu%C3%A7in"> Emel Timuçin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solubility" title="solubility">solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=maccs%20keys" title=" maccs keys"> maccs keys</a> </p> <a href="https://publications.waset.org/abstracts/186736/using-combination-of-sets-of-features-of-molecules-for-aqueous-solubility-prediction-a-random-forest-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> A DFT-Based QSARs Study of Kovats Retention Indices of Adamantane Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Bayat">Z. Bayat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A quantitative structure–property relationship (QSPR) study was performed to develop models those relate the structures of 65 Kovats retention index (RI) of adamantane derivatives. Molecular descriptors derived solely from 3D structures of the molecular compounds. The usefulness of the quantum chemical descriptors, calculated at the level of the DFT theories using 6-311+G** basis set for QSAR study of adamantane derivatives was examined. The use of descriptors calculated only from molecular structure eliminates the need to experimental determination of properties for use in the correlation and allows for the estimation of RI for molecules not yet synthesized. The prediction results are in good agreement with the experimental value. A multi-parametric equation containing maximum Four descriptors at B3LYP/6-31+G** method with good statistical qualities (R2train=0.913, Ftrain=97.67, R2test=0.770, Ftest=3.21, Q2LOO=0.895, R2adj=0.904, Q2LGO=0.844) was obtained by Multiple Linear Regression using stepwise method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=adamantane" title=" adamantane"> adamantane</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=Kovat" title=" Kovat"> Kovat</a> </p> <a href="https://publications.waset.org/abstracts/40141/a-dft-based-qsars-study-of-kovats-retention-indices-of-adamantane-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87">Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87"> Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20analysis" title=" classification analysis"> classification analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis "> regression analysis </a> </p> <a href="https://publications.waset.org/abstracts/45198/chemometric-qsrr-evaluation-of-behavior-of-s-triazine-pesticides-in-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87">Strahinja Z. Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac%20Kuzmanovi%C4%87"> Sanja O. Podunavac Kuzmanović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title="antibacterial">antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=benzimidazole" title=" benzimidazole"> benzimidazole</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a> </p> <a href="https://publications.waset.org/abstracts/26542/quantitative-structure-activity-relationship-analysis-of-some-benzimidazole-derivatives-by-linear-multivariate-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Local Interpretable Model-agnostic Explanations (LIME) Approach to Email Spam Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohini%20Hariharan">Rohini Hariharan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yazhini%20R."> Yazhini R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Blessy%20Maria%20Mathew"> Blessy Maria Mathew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The task of detecting email spam is a very important one in the era of digital technology that needs effective ways of curbing unwanted messages. This paper presents an approach aimed at making email spam categorization algorithms transparent, reliable and more trustworthy by incorporating Local Interpretable Model-agnostic Explanations (LIME). Our technique assists in providing interpretable explanations for specific classifications of emails to help users understand the decision-making process by the model. In this study, we developed a complete pipeline that incorporates LIME into the spam classification framework and allows creating simplified, interpretable models tailored to individual emails. LIME identifies influential terms, pointing out key elements that drive classification results, thus reducing opacity inherent in conventional machine learning models. Additionally, we suggest a visualization scheme for displaying keywords that will improve understanding of categorization decisions by users. We test our method on a diverse email dataset and compare its performance with various baseline models, such as Gaussian Naive Bayes, Multinomial Naive Bayes, Bernoulli Naive Bayes, Support Vector Classifier, K-Nearest Neighbors, Decision Tree, and Logistic Regression. Our testing results show that our model surpasses all other models, achieving an accuracy of 96.59% and a precision of 99.12%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=text%20classification" title="text classification">text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=LIME%20%28local%20interpretable%20model-agnostic%20explanations%29" title=" LIME (local interpretable model-agnostic explanations)"> LIME (local interpretable model-agnostic explanations)</a>, <a href="https://publications.waset.org/abstracts/search?q=stemming" title=" stemming"> stemming</a>, <a href="https://publications.waset.org/abstracts/search?q=tokenization" title=" tokenization"> tokenization</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression." title=" logistic regression."> logistic regression.</a> </p> <a href="https://publications.waset.org/abstracts/184494/local-interpretable-model-agnostic-explanations-lime-approach-to-email-spam-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> A Fully Interpretable Deep Reinforcement Learning-Based Motion Control for Legged Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haodong%20Huang">Haodong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Zida%20Zhao"> Zida Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Shilong%20Sun"> Shilong Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiyao%20Li"> Chiyao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenfu%20Xu"> Wenfu Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The control methods for legged robots based on deep reinforcement learning have seen widespread application; however, the inherent black-box nature of neural networks presents challenges in understanding the decision-making motives of the robots. To address this issue, we propose a fully interpretable deep reinforcement learning training method to elucidate the underlying principles of legged robot motion. We incorporate the dynamics of legged robots into the policy, where observations serve as inputs and actions as outputs of the dynamics model. By embedding the dynamics equations within the multi-layer perceptron (MLP) computation process and making the parameters trainable, we enhance interpretability. Additionally, Bayesian optimization is introduced to train these parameters. We validate the proposed fully interpretable motion control algorithm on a legged robot, opening new research avenues for motion control and learning algorithms for legged robots within the deep learning framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20reinforcement%20learning" title="deep reinforcement learning">deep reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=interpretation" title=" interpretation"> interpretation</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20control" title=" motion control"> motion control</a>, <a href="https://publications.waset.org/abstracts/search?q=legged%20robots" title=" legged robots"> legged robots</a> </p> <a href="https://publications.waset.org/abstracts/189290/a-fully-interpretable-deep-reinforcement-learning-based-motion-control-for-legged-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> QSAR Modeling of Germination Activity of a Series of 5-(4-Substituent-Phenoxy)-3-Methylfuran-2(5H)-One Derivatives with Potential of Strigolactone Mimics toward Striga hermonthica</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kova%C4%8Devi%C4%87">Strahinja Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87"> Sanja Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristina%20Prandi"> Cristina Prandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Piermichele%20Kobauri"> Piermichele Kobauri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is based on molecular modeling of a series of twelve 5-(4-substituent-phenoxy)-3-methylfuran-2(5H)-one derivatives which have potential of strigolactones mimics toward Striga hermonthica. The first step of the analysis included the calculation of molecular descriptors which numerically describe the structures of the analyzed compounds. The descriptors ALOGP (lipophilicity), AClogS (water solubility) and BBB (blood-brain barrier penetration), served as the input variables in multiple linear regression (MLR) modeling of germination activity toward S. hermonthica. Two MLR models were obtained. The first MLR model contains ALOGP and AClogS descriptors, while the second one is based on these two descriptors plus BBB descriptor. Despite the braking Topliss-Costello rule in the second MLR model, it has much better statistical and cross-validation characteristics than the first one. The ALOGP and AClogS descriptors are often very suitable predictors of the biological activity of many compounds. They are very important descriptors of the biological behavior and availability of a compound in any biological system (i.e. the ability to pass through the cell membranes). BBB descriptor defines the ability of a molecule to pass through the blood-brain barrier. Besides the lipophilicity of a compound, this descriptor carries the information of the molecular bulkiness (its value strongly depends on molecular bulkiness). According to the obtained results of MLR modeling, these three descriptors are considered as very good predictors of germination activity of the analyzed compounds toward S. hermonthica seeds. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=germination%20activity" title=" germination activity"> germination activity</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR%20analysis" title=" QSAR analysis"> QSAR analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=strigolactones" title=" strigolactones"> strigolactones</a> </p> <a href="https://publications.waset.org/abstracts/49457/qsar-modeling-of-germination-activity-of-a-series-of-5-4-substituent-phenoxy-3-methylfuran-25h-one-derivatives-with-potential-of-strigolactone-mimics-toward-striga-hermonthica" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Evaluation of Newly Synthesized Steroid Derivatives Using In silico Molecular Descriptors and Chemometric Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milica%20%C5%BD.%20Karad%C5%BEi%C4%87">Milica Ž. Karadžić</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87"> Sanja Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamarija%20I.%20Mandi%C4%87"> Anamarija I. Mandić</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Penov-Ga%C5%A1i"> Katarina Penov-Gaši</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20R.%20Nikoli%C4%87"> Andrea R. Nikolić</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20M.%20Oklje%C5%A1a"> Aleksandar M. Oklješa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considered selection of the in silico molecular descriptors and the models for newly synthesized steroid derivatives description and their characterization using chemometric techniques. Multiple linear regression (MLR) models were established and gave the best molecular descriptors for quantitative structure-retention relationship (QSRR) modeling of the retention of the investigated molecules. MLR models were without multicollinearity among the selected molecular descriptors according to the variance inflation factor (VIF) values. Used molecular descriptors were ranked using generalized pair correlation method (GPCM). In this method, the significant difference between independent variables can be noticed regardless almost equal correlation between dependent variable. Generated MLR models were statistically and cross-validated and the best models were kept. Models were ranked using sum of ranking differences (SRD) method. According to this method, the most consistent QSRR model can be found and similarity or dissimilarity between the models could be noticed. In this study, SRD was performed using average values of experimentally observed data as a golden standard. Chemometric analysis was conducted in order to characterize newly synthesized steroid derivatives for further investigation regarding their potential biological activity and further synthesis. This article is based upon work from COST Action (CM1105), supported by COST (European Cooperation in Science and Technology). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20pair%20correlation%20method" title="generalized pair correlation method">generalized pair correlation method</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=steroids" title=" steroids"> steroids</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20of%20ranking%20differences" title=" sum of ranking differences"> sum of ranking differences</a> </p> <a href="https://publications.waset.org/abstracts/49456/evaluation-of-newly-synthesized-steroid-derivatives-using-in-silico-molecular-descriptors-and-chemometric-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Abdedayem">Fatma Abdedayem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bag%20of%20words%20%28BOW%29" title="bag of words (BOW)">bag of words (BOW)</a>, <a href="https://publications.waset.org/abstracts/search?q=color%20descriptors" title=" color descriptors"> color descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-dictionaries" title=" multi-dictionaries"> multi-dictionaries</a>, <a href="https://publications.waset.org/abstracts/search?q=MDBoW" title=" MDBoW"> MDBoW</a> </p> <a href="https://publications.waset.org/abstracts/14637/bag-of-words-representation-based-on-fusing-two-color-local-descriptors-and-building-multiple-dictionaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">297</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Assisted Video Colorization Using Texture Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andre%20Peres%20Ramos">Andre Peres Ramos</a>, <a href="https://publications.waset.org/abstracts/search?q=Franklin%20Cesar%20Flores"> Franklin Cesar Flores</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorization is the process of add colors to a monochromatic image or video. Usually, the process involves to segment the image in regions of interest and then apply colors to each one, for videos, this process is repeated for each frame, which makes it a tedious and time-consuming job. We propose a new assisted method for video colorization; the user only has to colorize one frame, and then the colors are propagated to following frames. The user can intervene at any time to correct eventual errors in color assignment. The method consists of to extract intensity and texture descriptors from the frames and then perform a feature matching to determine the best color for each segment. To reduce computation time and give a better spatial coherence we narrow the area of search and give weights for each feature to emphasize texture descriptors. To give a more natural result, we use an optimization algorithm to make the color propagation. Experimental results in several image sequences, compared to others existing methods, demonstrates that the proposed method perform a better colorization with less time and user interference. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorization" title="colorization">colorization</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20matching" title=" feature matching"> feature matching</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20descriptors" title=" texture descriptors"> texture descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=video%20segmentation" title=" video segmentation"> video segmentation</a> </p> <a href="https://publications.waset.org/abstracts/97191/assisted-video-colorization-using-texture-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Computational Study of Chromatographic Behavior of a Series of S-Triazine Pesticides Based on Their in Silico Biological and Lipophilicity Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87">Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87"> Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, quantitative structure-retention relationships (QSRR) analysis was applied in order to correlate in silico biological and lipophilicity molecular descriptors with retention values for the set of selected s-triazine herbicides. In silico generated biological and lipophilicity descriptors were discriminated using generalized pair correlation method (GPCM). According to this method, the significant difference between independent variables can be noticed regardless almost equal correlation with dependent variable. Using established multiple linear regression (MLR) models some biological characteristics could be predicted. Established MLR models were evaluated statistically and the most suitable models were selected and ranked using sum of ranking differences (SRD) method. In this method, as reference values, average experimentally obtained values are used. Additionally, using SRD method, similarities among investigated s-triazine herbicides can be noticed. These analysis were conducted in order to characterize selected s-triazine herbicides for future investigations regarding their biodegradability. This study is financially supported by COST action TD1305. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=descriptors" title="descriptors">descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20pair%20correlation%20method" title=" generalized pair correlation method"> generalized pair correlation method</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=sum%20of%20ranking%20differences" title=" sum of ranking differences "> sum of ranking differences </a> </p> <a href="https://publications.waset.org/abstracts/45126/computational-study-of-chromatographic-behavior-of-a-series-of-s-triazine-pesticides-based-on-their-in-silico-biological-and-lipophilicity-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Determining the Octanol-Water Partition Coefficient for Armchair Polyhex BN Nanotubes Using Topological Indices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Esmat%20Mohammadinasab">Esmat Mohammadinasab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to investigate theoretically and establish a predictive model for determination LogP of armchair polyhex BN nanotubes by using simple descriptors. The relationship between the octanol-water partition coefficient (LogP) and quantum chemical descriptors, electric moments, and topological indices of some armchair polyhex BN nanotubes with various lengths and fixed circumference are represented. Based on density functional theory (DFT) electric moments and physico-chemical properties of those nanotubes are calculated. The DFT method performed based on the Becke’s 3-parameter formulation with the Lee-Yang-Parr functional (B3LYP) method and 3-21G standard basis sets. For the first time, the relationship between partition coefficient and different properties of polyhex BN nanotubes is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topological%20indices" title="topological indices">topological indices</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20descriptors" title=" quantum descriptors"> quantum descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20method" title=" DFT method"> DFT method</a>, <a href="https://publications.waset.org/abstracts/search?q=nanotubes" title=" nanotubes"> nanotubes</a> </p> <a href="https://publications.waset.org/abstracts/23476/determining-the-octanol-water-partition-coefficient-for-armchair-polyhex-bn-nanotubes-using-topological-indices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Non-Linear Assessment of Chromatographic Lipophilicity of Selected Steroid Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Milica%20Karad%C5%BEi%C4%87">Milica Karadžić</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87"> Sanja Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kova%C4%8Devi%C4%87"> Strahinja Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Anamarija%20Mandi%C4%87"> Anamarija Mandić</a>, <a href="https://publications.waset.org/abstracts/search?q=Aleksandar%20Oklje%C5%A1a"> Aleksandar Oklješa</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Nikoli%C4%87"> Andrea Nikolić</a>, <a href="https://publications.waset.org/abstracts/search?q=Marija%20Saka%C4%8D"> Marija Sakač</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Penov%20Ga%C5%A1i"> Katarina Penov Gaši</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using chemometric approach, the relationships between the chromatographic lipophilicity and in silico molecular descriptors for twenty-nine selected steroid derivatives were studied. The chromatographic lipophilicity was predicted using artificial neural networks (ANNs) method. The most important in silico molecular descriptors were selected applying stepwise selection (SS) paired with partial least squares (PLS) method. Molecular descriptors with satisfactory variable importance in projection (VIP) values were selected for ANN modeling. The usefulness of generated models was confirmed by detailed statistical validation. High agreement between experimental and predicted values indicated that obtained models have good quality and high predictive ability. Global sensitivity analysis (GSA) confirmed the importance of each molecular descriptor used as an input variable. High-quality networks indicate a strong non-linear relationship between chromatographic lipophilicity and used in silico molecular descriptors. Applying selected molecular descriptors and generated ANNs the good prediction of chromatographic lipophilicity of the studied steroid derivatives can be obtained. This article is based upon work from COST Actions (CM1306 and CA15222), supported by COST (European Cooperation and Science and Technology). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title="artificial neural networks">artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20sensitivity%20analysis" title=" global sensitivity analysis"> global sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=steroids" title=" steroids"> steroids</a> </p> <a href="https://publications.waset.org/abstracts/60203/non-linear-assessment-of-chromatographic-lipophilicity-of-selected-steroid-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Evaluation of Robust Feature Descriptors for Texture Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jia-Hong%20Lee">Jia-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Mei-Yi%20Wu"> Mei-Yi Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsien-Tsung%20Kuo"> Hsien-Tsung Kuo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Texture is an important characteristic in real and synthetic scenes. Texture analysis plays a critical role in inspecting surfaces and provides important techniques in a variety of applications. Although several descriptors have been presented to extract texture features, the development of object recognition is still a difficult task due to the complex aspects of texture. Recently, many robust and scaling-invariant image features such as SIFT, SURF and ORB have been successfully used in image retrieval and object recognition. In this paper, we have tried to compare the performance for texture classification using these feature descriptors with k-means clustering. Different classifiers including K-NN, Naive Bayes, Back Propagation Neural Network , Decision Tree and Kstar were applied in three texture image sets - UIUCTex, KTH-TIPS and Brodatz, respectively. Experimental results reveal SIFTS as the best average accuracy rate holder in UIUCTex, KTH-TIPS and SURF is advantaged in Brodatz texture set. BP neuro network works best in the test set classification among all used classifiers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=texture%20classification" title="texture classification">texture classification</a>, <a href="https://publications.waset.org/abstracts/search?q=texture%20descriptor" title=" texture descriptor"> texture descriptor</a>, <a href="https://publications.waset.org/abstracts/search?q=SIFT" title=" SIFT"> SIFT</a>, <a href="https://publications.waset.org/abstracts/search?q=SURF" title=" SURF"> SURF</a>, <a href="https://publications.waset.org/abstracts/search?q=ORB" title=" ORB"> ORB</a> </p> <a href="https://publications.waset.org/abstracts/11046/evaluation-of-robust-feature-descriptors-for-texture-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Quantitative Structure-Property Relationship Study of Base Dissociation Constants of Some Benzimidazoles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87">Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benzimidazoles are a group of compounds with significant antibacterial, antifungal and anticancer activity. The studied compounds consist of the main benzimidazole structure with different combinations of substituens. This study is based on the two-dimensional and three-dimensional molecular modeling and calculation of molecular descriptors (physicochemical and lipophilicity descriptors) of structurally diverse benzimidazoles. Molecular modeling was carried out by using ChemBio3D Ultra version 14.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The obtained set of molecular descriptors was used in principal component analysis (PCA) of possible similarities and dissimilarities among the studied derivatives. After the molecular modeling, the quantitative structure-property relationship (QSPR) analysis was applied in order to get the mathematical models which can be used in prediction of pKb values of structurally similar benzimidazoles. The obtained models are based on statistically valid multiple linear regression (MLR) equations. The calculated cross-validation parameters indicate the high prediction ability of the established QSPR models. This study is financially supported by COST action CM1306 and the project No. 114-451-347/2015-02, financially supported by the Provincial Secretariat for Science and Technological Development of Vojvodina. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzimidazoles" title="benzimidazoles">benzimidazoles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=QSPR" title=" QSPR"> QSPR</a> </p> <a href="https://publications.waset.org/abstracts/45055/quantitative-structure-property-relationship-study-of-base-dissociation-constants-of-some-benzimidazoles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nata%C5%A1a%20Kalajd%C5%BEija">Nataša Kalajdžija</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kova%C4%8Devi%C4%87"> Strahinja Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Davor%20Lon%C4%8Dar"> Davor Lončar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac%20Kuzmanovi%C4%87"> Sanja Podunavac Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lipophilicity" title="lipophilicity">lipophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=QSRR" title=" QSRR"> QSRR</a>, <a href="https://publications.waset.org/abstracts/search?q=RP%20TLC%20retention" title=" RP TLC retention"> RP TLC retention</a>, <a href="https://publications.waset.org/abstracts/search?q=secoestranes" title=" secoestranes"> secoestranes</a> </p> <a href="https://publications.waset.org/abstracts/2743/application-of-artificial-neural-network-for-prediction-of-retention-times-of-some-secoestrane-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">454</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchika%20Goyal">Ruchika Goyal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashwani%20Kumar"> Ashwani Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Jain"> Sandeep Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anticancer%20potential" title="anticancer potential">anticancer potential</a>, <a href="https://publications.waset.org/abstracts/search?q=curcumin" title=" curcumin"> curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=model" title=" model"> model</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20descriptors" title=" optimal descriptors"> optimal descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a> </p> <a href="https://publications.waset.org/abstracts/54615/prediction-of-anticancer-potential-of-curcumin-nanoparticles-by-means-of-quasi-qsar-analysis-using-monte-carlo-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54615.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">318</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Use of Interpretable Evolved Search Query Classifiers for Sinhala Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasanna%20Haddela">Prasanna Haddela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Document analysis is a well matured yet still active research field, partly as a result of the intricate nature of building computational tools but also due to the inherent problems arising from the variety and complexity of human languages. Breaking down language barriers is vital in enabling access to a number of recent technologies. This paper investigates the application of document classification methods to new Sinhalese datasets. This language is geographically isolated and rich with many of its own unique features. We will examine the interpretability of the classification models with a particular focus on the use of evolved Lucene search queries generated using a Genetic Algorithm (GA) as a method of document classification. We will compare the accuracy and interpretability of these search queries with other popular classifiers. The results are promising and are roughly in line with previous work on English language datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolved%20search%20queries" title="evolved search queries">evolved search queries</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinhala%20document%20classification" title=" Sinhala document classification"> Sinhala document classification</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucene%20Sinhala%20analyzer" title=" Lucene Sinhala analyzer"> Lucene Sinhala analyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=interpretable%20text%20classification" title=" interpretable text classification"> interpretable text classification</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/126324/use-of-interpretable-evolved-search-query-classifiers-for-sinhala-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126324.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Development of DNA Fingerprints in Selected Medicinal Plants of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Verma">V. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazi%20Raja"> Hazi Raja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conventionally, morphological descriptors are routinely used for establishing the identity of varieties. But these morphological descriptors suffer from many drawbacks such as influence of environment on trait expression, epistatic interactions, pleiotrophic effects etc. Furthermore, the paucity of a sufficient number of these descriptors for unequivocal identification of increasing number of reference collection varieties enforces to look for alternatives. Therefore, DNA based finger-print based techniques were selected to define the systematic position of the selected medicinal plants like Plumbago zeylanica, Desmodium gangeticum, Uraria picta. DNA fingerprinting of herbal plants can be useful in authenticating the various claims of medical uses related to the plants, in germplasm characterization and conservation. In plants it has not only helped in identifying species but also in defining a new realm in plant genomics, plant breeding and in conserving the biodiversity. With world paving way for developments in biotechnology, DNA fingerprinting promises a very powerful tool in our future endeavors. Data will be presented on the development of microsatellite markers (SSR) used to fingerprint, characterize, and assess genetic diversity among 12 accessions of both Plumbago zeylanica, 4 accessions of Desmodium gengaticum, 4 accessions of Uraria Picta. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Plumbago%20zeylanica" title="Plumbago zeylanica">Plumbago zeylanica</a>, <a href="https://publications.waset.org/abstracts/search?q=Desmodium%20gangeticum" title=" Desmodium gangeticum"> Desmodium gangeticum</a>, <a href="https://publications.waset.org/abstracts/search?q=Uraria%20picta" title=" Uraria picta"> Uraria picta</a>, <a href="https://publications.waset.org/abstracts/search?q=microsaetllite%20markers" title=" microsaetllite markers"> microsaetllite markers</a> </p> <a href="https://publications.waset.org/abstracts/46572/development-of-dna-fingerprints-in-selected-medicinal-plants-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> QSAR Study and Haptotropic Rearrangement in Estradiol Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abd%20Esselem%20Dems">Mohamed Abd Esselem Dems</a>, <a href="https://publications.waset.org/abstracts/search?q=Souhila%20Laib"> Souhila Laib</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadjia%20Latelli"> Nadjia Latelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadia%20Ouddai"> Nadia Ouddai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we have developed QSAR model for Relative Binding Affinity (RBA) of a large diverse set of estradiol among these derivatives, the organometallic derivatives. By dividing the dataset into a training set of 24 compounds and a test set of 6 compounds. The DFT method was used to calculate quantum chemical descriptors and physicochemical descriptors (MR and MLOGP) were performed using E-Dragon. All the validations indicated that the QSAR model built was robust and satisfactory (R2 = 90.12, Q2LOO = 86.61, RMSE = 0.272, F = 60.6473, Q2ext =86.07). We have therefore apply this model to predict the RBA, for two isomers β and α wherein Mn(CO)3 complex with the aromatic ring of estradiol, and the two isomers show little appreciation for the estrogenic receptor (RBAβ = 1.812 and RBAα = 1.741). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=estradiol" title=" estradiol"> estradiol</a>, <a href="https://publications.waset.org/abstracts/search?q=haptotropic%20rearrangement" title=" haptotropic rearrangement"> haptotropic rearrangement</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20binding%20affinity" title=" relative binding affinity"> relative binding affinity</a> </p> <a href="https://publications.waset.org/abstracts/30778/qsar-study-and-haptotropic-rearrangement-in-estradiol-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.Mendes">D.Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Henriques"> J. Henriques</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Carvalho"> P. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Rocha"> T. Rocha</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Paredes"> S. Paredes</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Cabiddu"> R. Cabiddu</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Trimer"> R. Trimer</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mendes"> R. Mendes</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Borghi-Silva"> A. Borghi-Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kaminsky"> L. Kaminsky</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Ashley"> E. Ashley</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Arena"> R. Arena</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Myers"> J. Myers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiorespiratory%20fitness" title="cardiorespiratory fitness">cardiorespiratory fitness</a>, <a href="https://publications.waset.org/abstracts/search?q=data-driven%20models" title=" data-driven models"> data-driven models</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20extraction" title=" knowledge extraction"> knowledge extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/77099/an-interpretable-data-driven-approach-for-the-stratification-of-the-cardiorespiratory-fitness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Mostar Type Indices and QSPR Analysis of Octane Isomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Roopa%20Sri">B. Roopa Sri</a>, <a href="https://publications.waset.org/abstracts/search?q=Y%20Lakshmi%20Naidu"> Y Lakshmi Naidu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Graph Theory (CGT) is the branch of mathematical chemistry in which molecules are modeled to study their physicochemical properties using molecular descriptors. Amongst these descriptors, topological indices play a vital role in predicting the properties by defining the graph topology of the molecule. Recently, the bond-additive topological index known as the Mostar index has been proposed. In this paper, we compute the Mostar-type indices of octane isomers and use the data obtained to perform QSPR analysis. Furthermore, we show the correlation between the Mostar type indices and the properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20graph%20theory" title="chemical graph theory">chemical graph theory</a>, <a href="https://publications.waset.org/abstracts/search?q=mostar%20type%20indices" title=" mostar type indices"> mostar type indices</a>, <a href="https://publications.waset.org/abstracts/search?q=octane%20isomers" title=" octane isomers"> octane isomers</a>, <a href="https://publications.waset.org/abstracts/search?q=qspr%20analysis" title=" qspr analysis"> qspr analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=topological%20index" title=" topological index"> topological index</a> </p> <a href="https://publications.waset.org/abstracts/153959/mostar-type-indices-and-qspr-analysis-of-octane-isomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87">Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87"> Lidija R. Jevrić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=prions" title=" prions"> prions</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a> </p> <a href="https://publications.waset.org/abstracts/41747/molecular-modeling-of-structurally-diverse-compounds-as-potential-therapeutics-for-transmissible-spongiform-encephalopathy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Resource Framework Descriptors for Interestingness in Data </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20B.%20Abhilash">C. B. Abhilash</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavi%20Mahesh"> Kavi Mahesh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human beings are the most advanced species on earth; it's all because of the ability to communicate and share information via human language. In today's world, a huge amount of data is available on the web in text format. This has also resulted in the generation of big data in structured and unstructured formats. In general, the data is in the textual form, which is highly unstructured. To get insights and actionable content from this data, we need to incorporate the concepts of text mining and natural language processing. In our study, we mainly focus on Interesting data through which interesting facts are generated for the knowledge base. The approach is to derive the analytics from the text via the application of natural language processing. Using semantic web Resource framework descriptors (RDF), we generate the triple from the given data and derive the interesting patterns. The methodology also illustrates data integration using the RDF for reliable, interesting patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RDF" title="RDF">RDF</a>, <a href="https://publications.waset.org/abstracts/search?q=interestingness" title=" interestingness"> interestingness</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20base" title=" knowledge base"> knowledge base</a>, <a href="https://publications.waset.org/abstracts/search?q=semantic%20data" title=" semantic data"> semantic data</a> </p> <a href="https://publications.waset.org/abstracts/130576/resource-framework-descriptors-for-interestingness-in-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Kova%C4%8Devi%C4%87">Strahinja Kovačević</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20Podunavac-Kuzmanovi%C4%87"> Sanja Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Lidija%20Jevri%C4%87"> Lidija Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Milica%20Karad%C5%BEi%C4%87"> Milica Karadžić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-prion%20activity" title="anti-prion activity">anti-prion activity</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20modeling" title=" molecular modeling"> molecular modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a> </p> <a href="https://publications.waset.org/abstracts/60009/quantitative-structure-activity-relationship-analysis-of-binding-affinity-of-a-series-of-anti-prion-compounds-to-human-prion-protein" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Molecular Topology and TLC Retention Behaviour of s-Triazines: QSRR Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87">Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87"> Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantitative structure-retention relationship (QSRR) analysis was used to predict the chromatographic behavior of s-triazine derivatives by using theoretical descriptors computed from the chemical structure. Fundamental basis of the reported investigation is to relate molecular topological descriptors with chromatographic behavior of s-triazine derivatives obtained by reversed-phase (RP) thin layer chromatography (TLC) on silica gel impregnated with paraffin oil and applied ethanol-water (φ = 0.5-0.8; v/v). Retention parameter (RM0) of 14 investigated s-triazine derivatives was used as dependent variable while simple connectivity index different orders were used as independent variables. The best QSRR model for predicting RM0 value was obtained with simple third order connectivity index (3χ) in the second-degree polynomial equation. Numerical values of the correlation coefficient (r=0.915), Fisher's value (F=28.34) and root mean square error (RMSE = 0.36) indicate that model is statistically significant. In order to test the predictive power of the QSRR model leave-one-out cross-validation technique has been applied. The parameters of the internal cross-validation analysis (r2CV=0.79, r2adj=0.81, PRESS=1.89) reflect the high predictive ability of the generated model and it confirms that can be used to predict RM0 value. Multivariate classification technique, hierarchical cluster analysis (HCA), has been applied in order to group molecules according to their molecular connectivity indices. HCA is a descriptive statistical method and it is the most frequently used for important area of data processing such is classification. The HCA performed on simple molecular connectivity indices obtained from the 2D structure of investigated s-triazine compounds resulted in two main clusters in which compounds molecules were grouped according to the number of atoms in the molecule. This is in agreement with the fact that these descriptors were calculated on the basis of the number of atoms in the molecule of the investigated s-triazine derivatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=s-triazines" title="s-triazines">s-triazines</a>, <a href="https://publications.waset.org/abstracts/search?q=QSRR" title=" QSRR"> QSRR</a>, <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title=" chemometrics"> chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=chromatography" title=" chromatography"> chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a> </p> <a href="https://publications.waset.org/abstracts/29063/molecular-topology-and-tlc-retention-behaviour-of-s-triazines-qsrr-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Retrieving Similar Segmented Objects Using Motion Descriptors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konstantinos%20C.%20Kartsakalis">Konstantinos C. Kartsakalis</a>, <a href="https://publications.waset.org/abstracts/search?q=Angeliki%20Skoura"> Angeliki Skoura</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasileios%20Megalooikonomou"> Vasileios Megalooikonomou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20object" title="fuzzy object">fuzzy object</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20image%20segmentation" title=" fuzzy image segmentation"> fuzzy image segmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20descriptors" title=" motion descriptors"> motion descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%20imaging" title=" MRI imaging"> MRI imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=object-based%20image%20retrieval" title=" object-based image retrieval"> object-based image retrieval</a> </p> <a href="https://publications.waset.org/abstracts/22736/retrieving-similar-segmented-objects-using-motion-descriptors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Global Based Histogram for 3D Object Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somar%20Boubou">Somar Boubou</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatsuo%20Narikiyo"> Tatsuo Narikiyo</a>, <a href="https://publications.waset.org/abstracts/search?q=Michihiro%20Kawanishi"> Michihiro Kawanishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we address the problem of 3D object recognition with depth sensors such as Kinect or Structure sensor. Compared with traditional approaches based on local descriptors, which depends on local information around the object key points, we propose a global features based descriptor. Proposed descriptor, which we name as Differential Histogram of Normal Vectors (DHONV), is designed particularly to capture the surface geometric characteristics of the 3D objects represented by depth images. We describe the 3D surface of an object in each frame using a 2D spatial histogram capturing the normalized distribution of differential angles of the surface normal vectors. The object recognition experiments on the benchmark RGB-D object dataset and a self-collected dataset show that our proposed descriptor outperforms two others descriptors based on spin-images and histogram of normal vectors with linear-SVM classifier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vision%20in%20control" title="vision in control">vision in control</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=histogram" title=" histogram"> histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20histogram%20of%20normal%20vectors" title=" differential histogram of normal vectors"> differential histogram of normal vectors</a> </p> <a href="https://publications.waset.org/abstracts/47486/global-based-histogram-for-3d-object-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Pravin%20Kumar">R. Pravin Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Roopa"> L. Roopa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=QMgrid" title="QMgrid">QMgrid</a>, <a href="https://publications.waset.org/abstracts/search?q=QM%2FMM%20simulations" title=" QM/MM simulations"> QM/MM simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=RD-4D-QSAR" title=" RD-4D-QSAR"> RD-4D-QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=transaminase" title=" transaminase"> transaminase</a> </p> <a href="https://publications.waset.org/abstracts/97410/a-7-dimensional-quantitative-structure-activity-relationship-approach-combining-quantum-mechanics-based-grid-and-solvation-models-to-predict-hotspots-and-kinetic-properties-of-mutated-enzymes-an-enzyme-engineering-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=interpretable%20descriptors&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>