CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 575 results for author: <span class="mathjax">Xu, Y</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&query=Xu%2C+Y">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xu, Y"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xu%2C+Y&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xu, Y"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14534">arXiv:2502.14534</a> <span> [<a href="https://arxiv.org/pdf/2502.14534">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Poststroke rehabilitative mechanisms in individualized fatigue level-controlled treadmill training -- a Rat Model Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yuchen Xu</a>, <a href="/search/eess?searchtype=author&query=Peng%2C+Y">Yulong Peng</a>, <a href="/search/eess?searchtype=author&query=Yao%2C+Y">Yuanfa Yao</a>, <a href="/search/eess?searchtype=author&query=Fan%2C+X">Xiaoman Fan</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+M">Minmin Wang</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+F">Feng Gao</a>, <a href="/search/eess?searchtype=author&query=Sawan%2C+M">Mohamad Sawan</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+S">Shaomin Zhang</a>, <a href="/search/eess?searchtype=author&query=Hu%2C+X">Xiaoling Hu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14534v1-abstract-short" style="display: inline;"> Individualized training improved post-stroke motor function rehabilitation efficiency. However, the mechanisms of how individualized training facilitates recovery is not clear. This study explored the cortical and corticomuscular rehabilitative effects in post-stroke motor function recovery during individualized training. Sprague-Dawley rats with intracerebral hemorrhage (ICH) were randomly distri… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14534v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14534v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14534v1-abstract-full" style="display: none;"> Individualized training improved post-stroke motor function rehabilitation efficiency. However, the mechanisms of how individualized training facilitates recovery is not clear. This study explored the cortical and corticomuscular rehabilitative effects in post-stroke motor function recovery during individualized training. Sprague-Dawley rats with intracerebral hemorrhage (ICH) were randomly distributed into two groups: forced training (FOR-T, n=13) and individualized fatigue-controlled training (FAT-C, n=13) to receive training respectively from day 2 to day 14 post-stroke. The FAT-C group exhibited superior motor function recovery and less central fatigue compared to the FOR-T group. EEG PSD slope analysis demonstrated a better inter-hemispheric balance in FAT-C group compare to the FOR-T group. The dCMC analysis indicated that training-induced fatigue led to a short-term down-regulation of descending corticomuscular coherence (dCMC) and an up-regulation of ascending dCMC. In the long term, excessive fatigue hindered the recovery of descending control in the affected hemisphere. The individualized strategy of peripheral fatigue-controlled training achieved better motor function recovery, which could be attributed to the mitigation of central fatigue, optimization of inter-hemispheric balance and enhancement of descending control in the affected hemisphere. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14534v1-abstract-full').style.display = 'none'; document.getElementById('2502.14534v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.14238">arXiv:2502.14238</a> <span> [<a href="https://arxiv.org/pdf/2502.14238">pdf</a>, <a href="https://arxiv.org/format/2502.14238">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> No Minima, No Collisions: Combining Modulation and Control Barrier Function Strategies for Feasible Dynamical Collision Avoidance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xue%2C+Y">Yifan Xue</a>, <a href="/search/eess?searchtype=author&query=Figueroa%2C+N">Nadia Figueroa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.14238v1-abstract-short" style="display: inline;"> As prominent real-time safety-critical reactive control techniques, Control Barrier Function Quadratic Programs (CBF-QPs) work for control affine systems in general but result in local minima in the generated trajectories and consequently cannot ensure convergence to the goals. Contrarily, Modulation of Dynamical Systems (Mod-DSs), including normal, reference, and on-manifold Mod-DS, achieve obsta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14238v1-abstract-full').style.display = 'inline'; document.getElementById('2502.14238v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.14238v1-abstract-full" style="display: none;"> As prominent real-time safety-critical reactive control techniques, Control Barrier Function Quadratic Programs (CBF-QPs) work for control affine systems in general but result in local minima in the generated trajectories and consequently cannot ensure convergence to the goals. Contrarily, Modulation of Dynamical Systems (Mod-DSs), including normal, reference, and on-manifold Mod-DS, achieve obstacle avoidance with few and even no local minima but have trouble optimally minimizing the difference between the constrained and the unconstrained controller outputs, and its applications are limited to fully-actuated systems. We dive into the theoretical foundations of CBF-QP and Mod-DS, proving that despite their distinct origins, normal Mod-DS is a special case of CBF-QP, and reference Mod-DS's solutions are mathematically connected to that of the CBF-QP through one equation. Building on top of the unveiled theoretical connections between CBF-QP and Mod-DS, reference Mod-based CBF-QP and on-manifold Mod-based CBF-QP controllers are proposed to combine the strength of CBF-QP and Mod-DS approaches and realize local-minimum-free reactive obstacle avoidance for control affine systems in general. We validate our methods in both simulated hospital environments and real-world experiments using Ridgeback for fully-actuated systems and Fetch robots for underactuated systems. Mod-based CBF-QPs outperform CBF-QPs as well as the optimally constrained-enforcing Mod-DS approaches we proposed in all experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.14238v1-abstract-full').style.display = 'none'; document.getElementById('2502.14238v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12686">arXiv:2502.12686</a> <span> [<a href="https://arxiv.org/pdf/2502.12686">pdf</a>, <a href="https://arxiv.org/format/2502.12686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> RadSplatter: Extending 3D Gaussian Splatting to Radio Frequencies for Wireless Radiomap Extrapolation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yiheng Wang</a>, <a href="/search/eess?searchtype=author&query=Xue%2C+Y">Ye Xue</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+S">Shutao Zhang</a>, <a href="/search/eess?searchtype=author&query=Chang%2C+T">Tsung-Hui Chang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12686v1-abstract-short" style="display: inline;"> A radiomap represents the spatial distribution of wireless signal strength, critical for applications like network optimization and autonomous driving. However, constructing radiomap relies on measuring radio signal power across the entire system, which is costly in outdoor environments due to large network scales. We present RadSplatter, a framework that extends 3D Gaussian Splatting (3DGS) to ra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12686v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12686v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12686v1-abstract-full" style="display: none;"> A radiomap represents the spatial distribution of wireless signal strength, critical for applications like network optimization and autonomous driving. However, constructing radiomap relies on measuring radio signal power across the entire system, which is costly in outdoor environments due to large network scales. We present RadSplatter, a framework that extends 3D Gaussian Splatting (3DGS) to radio frequencies for efficient and accurate radiomap extrapolation from sparse measurements. RadSplatter models environmental scatterers and radio paths using 3D Gaussians, capturing key factors of radio wave propagation. It employs a relaxed-mean (RM) scheme to reparameterize the positions of 3D Gaussians from noisy and dense 3D point clouds. A camera-free 3DGS-based projection is proposed to map 3D Gaussians onto 2D radio beam patterns. Furthermore, a regularized loss function and recursive fine-tuning using highly structured sparse measurements in real-world settings are applied to ensure robust generalization. Experiments on synthetic and real-world data show state-of-the-art extrapolation accuracy and execution speed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12686v1-abstract-full').style.display = 'none'; document.getElementById('2502.12686v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.12629">arXiv:2502.12629</a> <span> [<a href="https://arxiv.org/pdf/2502.12629">pdf</a>, <a href="https://arxiv.org/format/2502.12629">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Rate Maximization for Downlink Pinching-Antenna Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yanqing Xu</a>, <a href="/search/eess?searchtype=author&query=Ding%2C+Z">Zhiguo Ding</a>, <a href="/search/eess?searchtype=author&query=Karagiannidis%2C+G+K">George K. Karagiannidis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.12629v1-abstract-short" style="display: inline;"> In this letter, we consider a new type of flexible-antenna system, termed pinching-antenna, where multiple low-cost pinching antennas, realized by activating small dielectric particles on a dielectric waveguide, are jointly used to serve a single-antenna user. Our goal is to maximize the downlink transmission rate by optimizing the locations of the pinching antennas. However, these locations affec… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12629v1-abstract-full').style.display = 'inline'; document.getElementById('2502.12629v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.12629v1-abstract-full" style="display: none;"> In this letter, we consider a new type of flexible-antenna system, termed pinching-antenna, where multiple low-cost pinching antennas, realized by activating small dielectric particles on a dielectric waveguide, are jointly used to serve a single-antenna user. Our goal is to maximize the downlink transmission rate by optimizing the locations of the pinching antennas. However, these locations affect both the path losses and the phase shifts of the user's effective channel gain, making the problem challenging to solve. To address this challenge and solve the problem in a low complexity manner, a relaxed optimization problem is developed that minimizes the impact of path loss while ensuring that the received signals at the user are constructive. This approach leads to a two-stage algorithm: in the first stage, the locations of the pinching antennas are optimized to minimize the large-scale path loss; in the second stage, the antenna locations are refined to maximize the received signal strength. Simulation results show that pinching-antenna systems significantly outperform conventional fixed-location antenna systems, and the proposed algorithm achieves nearly the same performance as the highly complex exhaustive search-based benchmark. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.12629v1-abstract-full').style.display = 'none'; document.getElementById('2502.12629v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by IEEE Wireless Communications Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11946">arXiv:2502.11946</a> <span> [<a href="https://arxiv.org/pdf/2502.11946">pdf</a>, <a href="https://arxiv.org/format/2502.11946">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Huang%2C+A">Ailin Huang</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+B">Boyong Wu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+B">Bruce Wang</a>, <a href="/search/eess?searchtype=author&query=Yan%2C+C">Chao Yan</a>, <a href="/search/eess?searchtype=author&query=Hu%2C+C">Chen Hu</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+C">Chengli Feng</a>, <a href="/search/eess?searchtype=author&query=Tian%2C+F">Fei Tian</a>, <a href="/search/eess?searchtype=author&query=Shen%2C+F">Feiyu Shen</a>, <a href="/search/eess?searchtype=author&query=Li%2C+J">Jingbei Li</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+M">Mingrui Chen</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+P">Peng Liu</a>, <a href="/search/eess?searchtype=author&query=Miao%2C+R">Ruihang Miao</a>, <a href="/search/eess?searchtype=author&query=You%2C+W">Wang You</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+X">Xi Chen</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+X">Xuerui Yang</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+Y">Yechang Huang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yuxiang Zhang</a>, <a href="/search/eess?searchtype=author&query=Gong%2C+Z">Zheng Gong</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Z">Zixin Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+H">Hongyu Zhou</a>, <a href="/search/eess?searchtype=author&query=Sun%2C+J">Jianjian Sun</a>, <a href="/search/eess?searchtype=author&query=Li%2C+B">Brian Li</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+C">Chengting Feng</a>, <a href="/search/eess?searchtype=author&query=Wan%2C+C">Changyi Wan</a>, <a href="/search/eess?searchtype=author&query=Hu%2C+H">Hanpeng Hu</a> , et al. (120 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11946v2-abstract-short" style="display: inline;"> Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contribu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11946v2-abstract-full').style.display = 'inline'; document.getElementById('2502.11946v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11946v2-abstract-full" style="display: none;"> Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11946v2-abstract-full').style.display = 'none'; document.getElementById('2502.11946v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.11728">arXiv:2502.11728</a> <span> [<a href="https://arxiv.org/pdf/2502.11728">pdf</a>, <a href="https://arxiv.org/format/2502.11728">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Matrix Low-dimensional Qubit Casting Based Quantum Electromagnetic Transient Network Simulation Program </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Lou%2C+Q">Qi Lou</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yijun Xu</a>, <a href="/search/eess?searchtype=author&query=Gu%2C+W">Wei Gu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.11728v1-abstract-short" style="display: inline;"> In modern power systems, the integration of converter-interfaced generations requires the development of electromagnetic transient network simulation programs (EMTP) that can capture rapid fluctuations. However, as the power system scales, the EMTP's computing complexity increases exponentially, leading to a curse of dimensionality that hinders its practical application. Facing this challenge, qua… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11728v1-abstract-full').style.display = 'inline'; document.getElementById('2502.11728v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.11728v1-abstract-full" style="display: none;"> In modern power systems, the integration of converter-interfaced generations requires the development of electromagnetic transient network simulation programs (EMTP) that can capture rapid fluctuations. However, as the power system scales, the EMTP's computing complexity increases exponentially, leading to a curse of dimensionality that hinders its practical application. Facing this challenge, quantum computing offers a promising approach for achieving exponential acceleration. To realize this in noisy intermediate-scale quantum computers, the variational quantum linear solution (VQLS) was advocated because of its robustness against depolarizing noise. However, it suffers data inflation issues in its preprocessing phase, and no prior research has applied quantum computing to high-frequency switching EMT networks.To address these issues, this paper first designs the matrix low-dimension qubit casting (MLQC) method to address the data inflation problem in the preprocessing of the admittance matrix for VQLS in EMT networks. Besides, we propose a real-only quantum circuit reduction method tailored to the characteristics of the EMT network admittance matrices. Finally, the proposed quantum EMTP algorithm (QEMTP) has been successfully verified for EMT networks containing a large number of high-frequency switching elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.11728v1-abstract-full').style.display = 'none'; document.getElementById('2502.11728v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09631">arXiv:2502.09631</a> <span> [<a href="https://arxiv.org/pdf/2502.09631">pdf</a>, <a href="https://arxiv.org/format/2502.09631">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Volumetric Temporal Texture Synthesis for Smoke Stylization using Neural Cellular Automata </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+D">Dongqing Wang</a>, <a href="/search/eess?searchtype=author&query=Pajouheshgar%2C+E">Ehsan Pajouheshgar</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yitao Xu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+T">Tong Zhang</a>, <a href="/search/eess?searchtype=author&query=S%C3%BCsstrunk%2C+S">Sabine S眉sstrunk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09631v1-abstract-short" style="display: inline;"> Artistic stylization of 3D volumetric smoke data is still a challenge in computer graphics due to the difficulty of ensuring spatiotemporal consistency given a reference style image, and that within reasonable time and computational resources. In this work, we introduce Volumetric Neural Cellular Automata (VNCA), a novel model for efficient volumetric style transfer that synthesizes, in real-time,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09631v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09631v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09631v1-abstract-full" style="display: none;"> Artistic stylization of 3D volumetric smoke data is still a challenge in computer graphics due to the difficulty of ensuring spatiotemporal consistency given a reference style image, and that within reasonable time and computational resources. In this work, we introduce Volumetric Neural Cellular Automata (VNCA), a novel model for efficient volumetric style transfer that synthesizes, in real-time, multi-view consistent stylizing features on the target smoke with temporally coherent transitions between stylized simulation frames. VNCA synthesizes a 3D texture volume with color and density stylization and dynamically aligns this volume with the intricate motion patterns of the smoke simulation under the Eulerian framework. Our approach replaces the explicit fluid advection modeling and the inter-frame smoothing terms with the self-emerging motion of the underlying cellular automaton, thus reducing the training time by over an order of magnitude. Beyond smoke simulations, we demonstrate the versatility of our approach by showcasing its applicability to mesh stylization. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09631v1-abstract-full').style.display = 'none'; document.getElementById('2502.09631v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.09280">arXiv:2502.09280</a> <span> [<a href="https://arxiv.org/pdf/2502.09280">pdf</a>, <a href="https://arxiv.org/format/2502.09280">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TIA.2025.3541007">10.1109/TIA.2025.3541007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adaptive Multi-Objective Bayesian Optimization for Capacity Planning of Hybrid Heat Sources in Electric-Heat Coupling Systems of Cold Regions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yang%2C+R">Ruizhe Yang</a>, <a href="/search/eess?searchtype=author&query=Yi%2C+Z">Zhongkai Yi</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Ying Xu</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+G">Guiyu Chen</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+H">Haojie Yang</a>, <a href="/search/eess?searchtype=author&query=Yi%2C+R">Rong Yi</a>, <a href="/search/eess?searchtype=author&query=Li%2C+T">Tongqing Li</a>, <a href="/search/eess?searchtype=author&query=Li%2C+M+S">Miaozhe ShenJin Li</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+H">Haoxiang Gao</a>, <a href="/search/eess?searchtype=author&query=Duan%2C+H">Hongyu Duan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.09280v1-abstract-short" style="display: inline;"> The traditional heat-load generation pattern of combined heat and power generators has become a problem leading to renewable energy source (RES) power curtailment in cold regions, motivating the proposal of a planning model for alternative heat sources. The model aims to identify non-dominant capacity allocation schemes for heat pumps, thermal energy storage, electric boilers, and combined storage… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09280v1-abstract-full').style.display = 'inline'; document.getElementById('2502.09280v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.09280v1-abstract-full" style="display: none;"> The traditional heat-load generation pattern of combined heat and power generators has become a problem leading to renewable energy source (RES) power curtailment in cold regions, motivating the proposal of a planning model for alternative heat sources. The model aims to identify non-dominant capacity allocation schemes for heat pumps, thermal energy storage, electric boilers, and combined storage heaters to construct a Pareto front, considering both economic and sustainable objectives. The integration of various heat sources from both generation and consumption sides enhances flexibility in utilization. The study introduces a novel optimization algorithm, the adaptive multi-objective Bayesian optimization (AMBO). Compared to other widely used multi-objective optimization algorithms, AMBO eliminates predefined parameters that may introduce subjectivity from planners. Beyond the algorithm, the proposed model incorporates a noise term to account for inevitable simulation deviations, enabling the identification of better-performing planning results that meet the unique requirements of cold regions. What's more, the characteristics of electric-thermal coupling scenarios are captured and reflected in the operation simulation model to make sure the simulation is close to reality. Numerical simulation verifies the superiority of the proposed approach in generating a more diverse and evenly distributed Pareto front in a sample-efficient manner, providing comprehensive and objective planning choices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.09280v1-abstract-full').style.display = 'none'; document.getElementById('2502.09280v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 11 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Transactions on Industry Applications 2025 ( Early Access ) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04991">arXiv:2502.04991</a> <span> [<a href="https://arxiv.org/pdf/2502.04991">pdf</a>, <a href="https://arxiv.org/format/2502.04991">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> C2GM: Cascading Conditional Generation of Multi-scale Maps from Remote Sensing Images Constrained by Geographic Features </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Sun%2C+C">Chenxing Sun</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yongyang Xu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+X">Xuwei Xu</a>, <a href="/search/eess?searchtype=author&query=Fan%2C+X">Xixi Fan</a>, <a href="/search/eess?searchtype=author&query=Bai%2C+J">Jing Bai</a>, <a href="/search/eess?searchtype=author&query=Lu%2C+X">Xiechun Lu</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Z">Zhanlong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04991v1-abstract-short" style="display: inline;"> Multi-scale maps are essential representations of surveying and cartographic results, serving as fundamental components of geographic services. Current image generation networks can quickly produce map tiles from remote-sensing images. However, generative models designed for natural images often focus on texture features, neglecting the unique characteristics of remote-sensing features and the sca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04991v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04991v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04991v1-abstract-full" style="display: none;"> Multi-scale maps are essential representations of surveying and cartographic results, serving as fundamental components of geographic services. Current image generation networks can quickly produce map tiles from remote-sensing images. However, generative models designed for natural images often focus on texture features, neglecting the unique characteristics of remote-sensing features and the scale attributes of tile maps. This limitation in generative models impairs the accurate representation of geographic information, and the quality of tile map generation still needs improvement. Diffusion models have demonstrated remarkable success in various image generation tasks, highlighting their potential to address this challenge. This paper presents C2GM, a novel framework for generating multi-scale tile maps through conditional guided diffusion and multi-scale cascade generation. Specifically, we implement a conditional feature fusion encoder to extract object priors from remote sensing images and cascade reference double branch input, ensuring an accurate representation of complex features. Low-level generated tiles act as constraints for high-level map generation, enhancing visual continuity. Moreover, we incorporate map scale modality information using CLIP to simulate the relationship between map scale and cartographic generalization in tile maps. Extensive experimental evaluations demonstrate that C2GM consistently achieves the state-of-the-art (SOTA) performance on all metrics, facilitating the rapid and effective generation of multi-scale large-format maps for emergency response and remote mapping applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04991v1-abstract-full').style.display = 'none'; document.getElementById('2502.04991v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04827">arXiv:2502.04827</a> <span> [<a href="https://arxiv.org/pdf/2502.04827">pdf</a>, <a href="https://arxiv.org/ps/2502.04827">ps</a>, <a href="https://arxiv.org/format/2502.04827">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Uplink Rate-Splitting Multiple Access for Mobile Edge Computing with Short-Packet Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+J">Jiawei Xu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yumeng Zhang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yunnuo Xu</a>, <a href="/search/eess?searchtype=author&query=Clerckx%2C+B">Bruno Clerckx</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04827v1-abstract-short" style="display: inline;"> In this paper, a Rate-Splitting Multiple Access (RSMA) scheme is proposed to assist a Mobile Edge Computing (MEC) system where local computation tasks from two users are offloaded to the MEC server, facilitated by uplink RSMA for processing. The efficiency of the MEC service is hence primarily influenced by the RSMA-aided task offloading phase and the subsequent task computation phase, where relia… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04827v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04827v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04827v1-abstract-full" style="display: none;"> In this paper, a Rate-Splitting Multiple Access (RSMA) scheme is proposed to assist a Mobile Edge Computing (MEC) system where local computation tasks from two users are offloaded to the MEC server, facilitated by uplink RSMA for processing. The efficiency of the MEC service is hence primarily influenced by the RSMA-aided task offloading phase and the subsequent task computation phase, where reliable and low-latency communication is required. For this practical consideration, short-packet communication in the Finite Blocklength (FBL) regime is introduced. In this context, we propose a novel uplink RSMA-aided MEC framework and derive the overall Successful Computation Probability (SCP) with FBL consideration. To maximize the SCP of our proposed RSMA-aided MEC, we strategically optimize: (1) the task offloading factor which determines the number of tasks to be offloaded and processed by the MEC server; (2) the transmit power allocation between different RSMA streams; and (3) the task-splitting factor which decides how many tasks are allocated to splitting streams, while adhering to FBL constraints. To address the strong coupling between these variables in the SCP expression, we apply the Alternative Optimization method, which formulates tractable subproblems to optimize each variable iteratively. The resultant non-convex subproblems are then tackled by Successive Convex Approximation. Numerical results demonstrate that applying uplink RSMA in the MEC system with FBL constraints can not only improve the SCP performance but also provide lower latency in comparison to conventional transmission scheme such as Non-orthogonal Multiple Access (NOMA). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04827v1-abstract-full').style.display = 'none'; document.getElementById('2502.04827v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2, I.2.7 14J26 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.02385">arXiv:2502.02385</a> <span> [<a href="https://arxiv.org/pdf/2502.02385">pdf</a>, <a href="https://arxiv.org/format/2502.02385">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Achieving Hiding and Smart Anti-Jamming Communication: A Parallel DRL Approach against Moving Reactive Jammer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+Y">Yangyang Li</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yuhua Xu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+W">Wen Li</a>, <a href="/search/eess?searchtype=author&query=Li%2C+G">Guoxin Li</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+Z">Zhibing Feng</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+S">Songyi Liu</a>, <a href="/search/eess?searchtype=author&query=Du%2C+J">Jiatao Du</a>, <a href="/search/eess?searchtype=author&query=Li%2C+X">Xinran Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.02385v1-abstract-short" style="display: inline;"> This paper addresses the challenge of anti-jamming in moving reactive jamming scenarios. The moving reactive jammer initiates high-power tracking jamming upon detecting any transmission activity, and when unable to detect a signal, resorts to indiscriminate jamming. This presents dual imperatives: maintaining hiding to avoid the jammer's detection and simultaneously evading indiscriminate jamming.… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02385v1-abstract-full').style.display = 'inline'; document.getElementById('2502.02385v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.02385v1-abstract-full" style="display: none;"> This paper addresses the challenge of anti-jamming in moving reactive jamming scenarios. The moving reactive jammer initiates high-power tracking jamming upon detecting any transmission activity, and when unable to detect a signal, resorts to indiscriminate jamming. This presents dual imperatives: maintaining hiding to avoid the jammer's detection and simultaneously evading indiscriminate jamming. Spread spectrum techniques effectively reduce transmitting power to elude detection but fall short in countering indiscriminate jamming. Conversely, changing communication frequencies can help evade indiscriminate jamming but makes the transmission vulnerable to tracking jamming without spread spectrum techniques to remain hidden. Current methodologies struggle with the complexity of simultaneously optimizing these two requirements due to the expansive joint action spaces and the dynamics of moving reactive jammers. To address these challenges, we propose a parallelized deep reinforcement learning (DRL) strategy. The approach includes a parallelized network architecture designed to decompose the action space. A parallel exploration-exploitation selection mechanism replaces the $\varepsilon $-greedy mechanism, accelerating convergence. Simulations demonstrate a nearly 90\% increase in normalized throughput. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.02385v1-abstract-full').style.display = 'none'; document.getElementById('2502.02385v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.18109">arXiv:2501.18109</a> <span> [<a href="https://arxiv.org/pdf/2501.18109">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Influence of High-Performance Image-to-Image Translation Networks on Clinical Visual Assessment and Outcome Prediction: Utilizing Ultrasound to MRI Translation in Prostate Cancer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Salmanpour%2C+M+R">Mohammad R. Salmanpour</a>, <a href="/search/eess?searchtype=author&query=Mousavi%2C+A">Amin Mousavi</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yixi Xu</a>, <a href="/search/eess?searchtype=author&query=Weeks%2C+W+B">William B Weeks</a>, <a href="/search/eess?searchtype=author&query=Hacihaliloglu%2C+I">Ilker Hacihaliloglu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.18109v1-abstract-short" style="display: inline;"> Purpose: This study examines the core traits of image-to-image translation (I2I) networks, focusing on their effectiveness and adaptability in everyday clinical settings. Methods: We have analyzed data from 794 patients diagnosed with prostate cancer (PCa), using ten prominent 2D/3D I2I networks to convert ultrasound (US) images into MRI scans. We also introduced a new analysis of Radiomic feature… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18109v1-abstract-full').style.display = 'inline'; document.getElementById('2501.18109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.18109v1-abstract-full" style="display: none;"> Purpose: This study examines the core traits of image-to-image translation (I2I) networks, focusing on their effectiveness and adaptability in everyday clinical settings. Methods: We have analyzed data from 794 patients diagnosed with prostate cancer (PCa), using ten prominent 2D/3D I2I networks to convert ultrasound (US) images into MRI scans. We also introduced a new analysis of Radiomic features (RF) via the Spearman correlation coefficient to explore whether networks with high performance (SSIM>85%) could detect subtle RFs. Our study further examined synthetic images by 7 invited physicians. As a final evaluation study, we have investigated the improvement that are achieved using the synthetic MRI data on two traditional machine learning and one deep learning method. Results: In quantitative assessment, 2D-Pix2Pix network substantially outperformed the other 7 networks, with an average SSIM~0.855. The RF analysis revealed that 76 out of 186 RFs were identified using the 2D-Pix2Pix algorithm alone, although half of the RFs were lost during the translation process. A detailed qualitative review by 7 medical doctors noted a deficiency in low-level feature recognition in I2I tasks. Furthermore, the study found that synthesized image-based classification outperformed US image-based classification with an average accuracy and AUC~0.93. Conclusion: This study showed that while 2D-Pix2Pix outperformed cutting-edge networks in low-level feature discovery and overall error and similarity metrics, it still requires improvement in low-level feature performance, as highlighted by Group 3. Further, the study found using synthetic image-based classification outperformed original US image-based methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.18109v1-abstract-full').style.display = 'none'; document.getElementById('2501.18109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures and 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 14J60 (Primary) 14F05; 14J26 (Secondary) <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> F.2.2 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15485">arXiv:2501.15485</a> <span> [<a href="https://arxiv.org/pdf/2501.15485">pdf</a>, <a href="https://arxiv.org/format/2501.15485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Differentiable Low-computation Global Correlation Loss for Monotonicity Evaluation in Quality Assessment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yipeng Liu</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+Q">Qi Yang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yiling Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15485v1-abstract-short" style="display: inline;"> In this paper, we propose a global monotonicity consistency training strategy for quality assessment, which includes a differentiable, low-computation monotonicity evaluation loss function and a global perception training mechanism. Specifically, unlike conventional ranking loss and linear programming approaches that indirectly implement the Spearman rank-order correlation coefficient (SROCC) func… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15485v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15485v1-abstract-full" style="display: none;"> In this paper, we propose a global monotonicity consistency training strategy for quality assessment, which includes a differentiable, low-computation monotonicity evaluation loss function and a global perception training mechanism. Specifically, unlike conventional ranking loss and linear programming approaches that indirectly implement the Spearman rank-order correlation coefficient (SROCC) function, our method directly converts SROCC into a loss function by making the sorting operation within SROCC differentiable and functional. Furthermore, to mitigate the discrepancies between batch optimization during network training and global evaluation of SROCC, we introduce a memory bank mechanism. This mechanism stores gradient-free predicted results from previous batches and uses them in the current batch's training to prevent abrupt gradient changes. We evaluate the performance of the proposed method on both images and point clouds quality assessment tasks, demonstrating performance gains in both cases. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15485v1-abstract-full').style.display = 'none'; document.getElementById('2501.15485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15206">arXiv:2501.15206</a> <span> [<a href="https://arxiv.org/pdf/2501.15206">pdf</a>, <a href="https://arxiv.org/ps/2501.15206">ps</a>, <a href="https://arxiv.org/format/2501.15206">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Disordered Systems and Neural Networks">cond-mat.dis-nn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Engineering-Oriented Design of Drift-Resilient MTJ Random Number Generator via Hybrid Control Strategies </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Ran Zhang</a>, <a href="/search/eess?searchtype=author&query=Wan%2C+C">Caihua Wan</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yingqian Xu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+X">Xiaohan Li</a>, <a href="/search/eess?searchtype=author&query=Hoffmann%2C+R">Raik Hoffmann</a>, <a href="/search/eess?searchtype=author&query=Hindenberg%2C+M">Meike Hindenberg</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+S">Shiqiang Liu</a>, <a href="/search/eess?searchtype=author&query=Kong%2C+D">Dehao Kong</a>, <a href="/search/eess?searchtype=author&query=Xiong%2C+S">Shilong Xiong</a>, <a href="/search/eess?searchtype=author&query=He%2C+S">Shikun He</a>, <a href="/search/eess?searchtype=author&query=Vardar%2C+A">Alptekin Vardar</a>, <a href="/search/eess?searchtype=author&query=Dai%2C+Q">Qiang Dai</a>, <a href="/search/eess?searchtype=author&query=Gong%2C+J">Junlu Gong</a>, <a href="/search/eess?searchtype=author&query=Sun%2C+Y">Yihui Sun</a>, <a href="/search/eess?searchtype=author&query=Zheng%2C+Z">Zejie Zheng</a>, <a href="/search/eess?searchtype=author&query=K%C3%A4mpfe%2C+T">Thomas K盲mpfe</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+G">Guoqiang Yu</a>, <a href="/search/eess?searchtype=author&query=Han%2C+X">Xiufeng Han</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15206v1-abstract-short" style="display: inline;"> In the quest for secure and reliable random number generation, Magnetic Tunnel Junctions (MTJs) have emerged as a promising technology due to their unique ability to exploit the stochastic nature of magnetization switching. This paper presents an engineering-oriented design of a drift-resilient MTJ-based True Random Number Generator (TRNG) utilizing a hybrid control strategy. We address the critic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15206v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15206v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15206v1-abstract-full" style="display: none;"> In the quest for secure and reliable random number generation, Magnetic Tunnel Junctions (MTJs) have emerged as a promising technology due to their unique ability to exploit the stochastic nature of magnetization switching. This paper presents an engineering-oriented design of a drift-resilient MTJ-based True Random Number Generator (TRNG) utilizing a hybrid control strategy. We address the critical issue of switching probability drift, which can compromise the randomness and bias the output of MTJ-based TRNGs. Our approach combines a self-stabilization strategy, which dynamically adjusts the driving voltage based on real-time feedback, with pulse width modulation to enhance control over the switching probability. Through comprehensive experimental and simulation results, we demonstrate significant improvements in the stability, uniformity, and quality of the random numbers generated. The proposed system offers flexibility and adaptability for diverse applications, making it a reliable solution for high-quality randomness in cryptography, secure communications, and beyond. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15206v1-abstract-full').style.display = 'none'; document.getElementById('2501.15206v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.13387">arXiv:2501.13387</a> <span> [<a href="https://arxiv.org/pdf/2501.13387">pdf</a>, <a href="https://arxiv.org/format/2501.13387">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> From Images to Point Clouds: An Efficient Solution for Cross-media Blind Quality Assessment without Annotated Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yipeng Liu</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+Q">Qi Yang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yujie Zhang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yiling Xu</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+L">Le Yang</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Zhu Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.13387v1-abstract-short" style="display: inline;"> We present a novel quality assessment method which can predict the perceptual quality of point clouds from new scenes without available annotations by leveraging the rich prior knowledge in images, called the Distribution-Weighted Image-Transferred Point Cloud Quality Assessment (DWIT-PCQA). Recognizing the human visual system (HVS) as the decision-maker in quality assessment regardless of media t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13387v1-abstract-full').style.display = 'inline'; document.getElementById('2501.13387v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.13387v1-abstract-full" style="display: none;"> We present a novel quality assessment method which can predict the perceptual quality of point clouds from new scenes without available annotations by leveraging the rich prior knowledge in images, called the Distribution-Weighted Image-Transferred Point Cloud Quality Assessment (DWIT-PCQA). Recognizing the human visual system (HVS) as the decision-maker in quality assessment regardless of media types, we can emulate the evaluation criteria for human perception via neural networks and further transfer the capability of quality prediction from images to point clouds by leveraging the prior knowledge in the images. Specifically, domain adaptation (DA) can be leveraged to bridge the images and point clouds by aligning feature distributions of the two media in the same feature space. However, the different manifestations of distortions in images and point clouds make feature alignment a difficult task. To reduce the alignment difficulty and consider the different distortion distribution during alignment, we have derived formulas to decompose the optimization objective of the conventional DA into two suboptimization functions with distortion as a transition. Specifically, through network implementation, we propose the distortion-guided biased feature alignment which integrates existing/estimated distortion distribution into the adversarial DA framework, emphasizing common distortion patterns during feature alignment. Besides, we propose the quality-aware feature disentanglement to mitigate the destruction of the mapping from features to quality during alignment with biased distortions. Experimental results demonstrate that our proposed method exhibits reliable performance compared to general blind PCQA methods without needing point cloud annotations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.13387v1-abstract-full').style.display = 'none'; document.getElementById('2501.13387v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.12644">arXiv:2501.12644</a> <span> [<a href="https://arxiv.org/pdf/2501.12644">pdf</a>, <a href="https://arxiv.org/format/2501.12644">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Emerging Technologies">cs.ET</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Hardware Architecture">cs.AR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> </div> </div> <p class="title is-5 mathjax"> Current Opinions on Memristor-Accelerated Machine Learning Hardware </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Jiang%2C+M">Mingrui Jiang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yichun Xu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Zefan Li</a>, <a href="/search/eess?searchtype=author&query=Li%2C+C">Can Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.12644v1-abstract-short" style="display: inline;"> The unprecedented advancement of artificial intelligence has placed immense demands on computing hardware, but traditional silicon-based semiconductor technologies are approaching their physical and economic limit, prompting the exploration of novel computing paradigms. Memristor offers a promising solution, enabling in-memory analog computation and massive parallelism, which leads to low latency… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12644v1-abstract-full').style.display = 'inline'; document.getElementById('2501.12644v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.12644v1-abstract-full" style="display: none;"> The unprecedented advancement of artificial intelligence has placed immense demands on computing hardware, but traditional silicon-based semiconductor technologies are approaching their physical and economic limit, prompting the exploration of novel computing paradigms. Memristor offers a promising solution, enabling in-memory analog computation and massive parallelism, which leads to low latency and power consumption. This manuscript reviews the current status of memristor-based machine learning accelerators, highlighting the milestones achieved in developing prototype chips, that not only accelerate neural networks inference but also tackle other machine learning tasks. More importantly, it discusses our opinion on current key challenges that remain in this field, such as device variation, the need for efficient peripheral circuitry, and systematic co-design and optimization. We also share our perspective on potential future directions, some of which address existing challenges while others explore untouched territories. By addressing these challenges through interdisciplinary efforts spanning device engineering, circuit design, and systems architecture, memristor-based accelerators could significantly advance the capabilities of AI hardware, particularly for edge applications where power efficiency is paramount. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.12644v1-abstract-full').style.display = 'none'; document.getElementById('2501.12644v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.11462">arXiv:2501.11462</a> <span> [<a href="https://arxiv.org/pdf/2501.11462">pdf</a>, <a href="https://arxiv.org/format/2501.11462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> On the Adversarial Vulnerabilities of Transfer Learning in Remote Sensing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Bai%2C+T">Tao Bai</a>, <a href="/search/eess?searchtype=author&query=Tian%2C+X">Xingjian Tian</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yonghao Xu</a>, <a href="/search/eess?searchtype=author&query=Wen%2C+B">Bihan Wen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.11462v1-abstract-short" style="display: inline;"> The use of pretrained models from general computer vision tasks is widespread in remote sensing, significantly reducing training costs and improving performance. However, this practice also introduces vulnerabilities to downstream tasks, where publicly available pretrained models can be used as a proxy to compromise downstream models. This paper presents a novel Adversarial Neuron Manipulation met… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2501.11462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.11462v1-abstract-full" style="display: none;"> The use of pretrained models from general computer vision tasks is widespread in remote sensing, significantly reducing training costs and improving performance. However, this practice also introduces vulnerabilities to downstream tasks, where publicly available pretrained models can be used as a proxy to compromise downstream models. This paper presents a novel Adversarial Neuron Manipulation method, which generates transferable perturbations by selectively manipulating single or multiple neurons in pretrained models. Unlike existing attacks, this method eliminates the need for domain-specific information, making it more broadly applicable and efficient. By targeting multiple fragile neurons, the perturbations achieve superior attack performance, revealing critical vulnerabilities in deep learning models. Experiments on diverse models and remote sensing datasets validate the effectiveness of the proposed method. This low-access adversarial neuron manipulation technique highlights a significant security risk in transfer learning models, emphasizing the urgent need for more robust defenses in their design when addressing the safety-critical remote sensing tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.11462v1-abstract-full').style.display = 'none'; document.getElementById('2501.11462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This work has been submitted to the IEEE for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06974">arXiv:2501.06974</a> <span> [<a href="https://arxiv.org/pdf/2501.06974">pdf</a>, <a href="https://arxiv.org/ps/2501.06974">ps</a>, <a href="https://arxiv.org/format/2501.06974">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Downlink OFDM-FAMA in 5G-NR Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Hong%2C+H">Hanjiang Hong</a>, <a href="/search/eess?searchtype=author&query=Wong%2C+K">Kai-Kit Wong</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+H">Hao Xu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yin Xu</a>, <a href="/search/eess?searchtype=author&query=Shin%2C+H">Hyundong Shin</a>, <a href="/search/eess?searchtype=author&query=Murch%2C+R">Ross Murch</a>, <a href="/search/eess?searchtype=author&query=He%2C+D">Dazhi He</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+W">Wenjun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06974v1-abstract-short" style="display: inline;"> Fluid antenna multiple access (FAMA), enabled by the fluid antenna system (FAS), offers a new and straightforward solution to massive connectivity. Previous results on FAMA were primarily based on narrowband channels. This paper studies the adoption of FAMA within the fifth-generation (5G) orthogonal frequency division multiplexing (OFDM) framework, referred to as OFDM-FAMA, and evaluate its perfo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06974v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06974v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06974v1-abstract-full" style="display: none;"> Fluid antenna multiple access (FAMA), enabled by the fluid antenna system (FAS), offers a new and straightforward solution to massive connectivity. Previous results on FAMA were primarily based on narrowband channels. This paper studies the adoption of FAMA within the fifth-generation (5G) orthogonal frequency division multiplexing (OFDM) framework, referred to as OFDM-FAMA, and evaluate its performance in broadband multipath channels. We first design the OFDM-FAMA system, taking into account 5G channel coding and OFDM modulation. Then the system's achievable rate is analyzed, and an algorithm to approximate the FAS configuration at each user is proposed based on the rate. Extensive link-level simulation results reveal that OFDM-FAMA can significantly improve the multiplexing gain over the OFDM system with fixed-position antenna (FPA) users, especially when robust channel coding is applied and the number of radio-frequency (RF) chains at each user is small. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06974v1-abstract-full').style.display = 'none'; document.getElementById('2501.06974v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted, under review</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.06282">arXiv:2501.06282</a> <span> [<a href="https://arxiv.org/pdf/2501.06282">pdf</a>, <a href="https://arxiv.org/format/2501.06282">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> MinMo: A Multimodal Large Language Model for Seamless Voice Interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Chen%2C+Q">Qian Chen</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yafeng Chen</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yanni Chen</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+M">Mengzhe Chen</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yingda Chen</a>, <a href="/search/eess?searchtype=author&query=Deng%2C+C">Chong Deng</a>, <a href="/search/eess?searchtype=author&query=Du%2C+Z">Zhihao Du</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+R">Ruize Gao</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+C">Changfeng Gao</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+Z">Zhifu Gao</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Y">Yabin Li</a>, <a href="/search/eess?searchtype=author&query=Lv%2C+X">Xiang Lv</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+J">Jiaqing Liu</a>, <a href="/search/eess?searchtype=author&query=Luo%2C+H">Haoneng Luo</a>, <a href="/search/eess?searchtype=author&query=Ma%2C+B">Bin Ma</a>, <a href="/search/eess?searchtype=author&query=Ni%2C+C">Chongjia Ni</a>, <a href="/search/eess?searchtype=author&query=Shi%2C+X">Xian Shi</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+J">Jialong Tang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+H">Hui Wang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+H">Hao Wang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+W">Wen Wang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yuxuan Wang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yunlan Xu</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+F">Fan Yu</a>, <a href="/search/eess?searchtype=author&query=Yan%2C+Z">Zhijie Yan</a> , et al. (11 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.06282v1-abstract-short" style="display: inline;"> Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06282v1-abstract-full').style.display = 'inline'; document.getElementById('2501.06282v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.06282v1-abstract-full" style="display: none;"> Recent advancements in large language models (LLMs) and multimodal speech-text models have laid the groundwork for seamless voice interactions, enabling real-time, natural, and human-like conversations. Previous models for voice interactions are categorized as native and aligned. Native models integrate speech and text processing in one framework but struggle with issues like differing sequence lengths and insufficient pre-training. Aligned models maintain text LLM capabilities but are often limited by small datasets and a narrow focus on speech tasks. In this work, we introduce MinMo, a Multimodal Large Language Model with approximately 8B parameters for seamless voice interaction. We address the main limitations of prior aligned multimodal models. We train MinMo through multiple stages of speech-to-text alignment, text-to-speech alignment, speech-to-speech alignment, and duplex interaction alignment, on 1.4 million hours of diverse speech data and a broad range of speech tasks. After the multi-stage training, MinMo achieves state-of-the-art performance across various benchmarks for voice comprehension and generation while maintaining the capabilities of text LLMs, and also facilitates full-duplex conversation, that is, simultaneous two-way communication between the user and the system. Moreover, we propose a novel and simple voice decoder that outperforms prior models in voice generation. The enhanced instruction-following capabilities of MinMo supports controlling speech generation based on user instructions, with various nuances including emotions, dialects, and speaking rates, and mimicking specific voices. For MinMo, the speech-to-text latency is approximately 100ms, full-duplex latency is approximately 600ms in theory and 800ms in practice. The MinMo project web page is https://funaudiollm.github.io/minmo, and the code and models will be released soon. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.06282v1-abstract-full').style.display = 'none'; document.getElementById('2501.06282v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Work in progress. Authors are listed in alphabetical order by family name</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.04727">arXiv:2501.04727</a> <span> [<a href="https://arxiv.org/pdf/2501.04727">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A New Underdetermined Framework for Sparse Estimation of Fault Location for Transmission Lines Using Limited Current Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+G">Guangxiao Zhang</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+G">Gaoxi Xiao</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+X">Xinghua Liu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yan Xu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+P">Peng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.04727v1-abstract-short" style="display: inline;"> This letter proposes an alternative underdetermined framework for fault location that utilizes current measurements along with the branch-bus matrix, providing another option besides the traditional voltage-based methods. To enhance fault location accuracy in the presence of multiple outliers, the robust YALL1 algorithm is used to resist outlier interference and accurately recover the sparse vecto… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04727v1-abstract-full').style.display = 'inline'; document.getElementById('2501.04727v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.04727v1-abstract-full" style="display: none;"> This letter proposes an alternative underdetermined framework for fault location that utilizes current measurements along with the branch-bus matrix, providing another option besides the traditional voltage-based methods. To enhance fault location accuracy in the presence of multiple outliers, the robust YALL1 algorithm is used to resist outlier interference and accurately recover the sparse vector, thereby pinpointing the fault precisely. The results on the IEEE 39-bus test system demonstrate the effectiveness and robustness of the proposed method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.04727v1-abstract-full').style.display = 'none'; document.getElementById('2501.04727v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.02181">arXiv:2501.02181</a> <span> [<a href="https://arxiv.org/pdf/2501.02181">pdf</a>, <a href="https://arxiv.org/format/2501.02181">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> SMDP-Based Dynamic Batching for Improving Responsiveness and Energy Efficiency of Batch Services </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yaodan Xu</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+S">Sheng Zhou</a>, <a href="/search/eess?searchtype=author&query=Niu%2C+Z">Zhisheng Niu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.02181v1-abstract-short" style="display: inline;"> For servers incorporating parallel computing resources, batching is a pivotal technique for providing efficient and economical services at scale. Parallel computing resources exhibit heightened computational and energy efficiency when operating with larger batch sizes. However, in the realm of online services, the adoption of a larger batch size may lead to longer response times. This paper aims t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02181v1-abstract-full').style.display = 'inline'; document.getElementById('2501.02181v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.02181v1-abstract-full" style="display: none;"> For servers incorporating parallel computing resources, batching is a pivotal technique for providing efficient and economical services at scale. Parallel computing resources exhibit heightened computational and energy efficiency when operating with larger batch sizes. However, in the realm of online services, the adoption of a larger batch size may lead to longer response times. This paper aims to provide a dynamic batching scheme that delicately balances latency and efficiency. The system is modeled as a batch service queue with size-dependent service times. Then, the design of dynamic batching is formulated as a semi-Markov decision process (SMDP) problem, with the objective of minimizing the weighted sum of average response time and average power consumption. A method is proposed to derive an approximate optimal SMDP solution, representing the chosen dynamic batching policy. By introducing an abstract cost to reflect the impact of "tail" states, the space complexity and the time complexity of the procedure can decrease by 63.5% and 98%, respectively. Numerical results showcase the superiority of SMDP-based batching policies across various parameter setups. Additionally, the proposed scheme exhibits noteworthy flexibility in balancing power consumption and latency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.02181v1-abstract-full').style.display = 'none'; document.getElementById('2501.02181v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE Transactions on Parallel and Distributed Systems (TPDS)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.18107">arXiv:2412.18107</a> <span> [<a href="https://arxiv.org/pdf/2412.18107">pdf</a>, <a href="https://arxiv.org/format/2412.18107">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> SongGLM: Lyric-to-Melody Generation with 2D Alignment Encoding and Multi-Task Pre-Training </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yu%2C+J">Jiaxing Yu</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+X">Xinda Wu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yunfei Xu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+T">Tieyao Zhang</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+S">Songruoyao Wu</a>, <a href="/search/eess?searchtype=author&query=Ma%2C+L">Le Ma</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+K">Kejun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.18107v1-abstract-short" style="display: inline;"> Lyric-to-melody generation aims to automatically create melodies based on given lyrics, requiring the capture of complex and subtle correlations between them. However, previous works usually suffer from two main challenges: 1) lyric-melody alignment modeling, which is often simplified to one-syllable/word-to-one-note alignment, while others have the problem of low alignment accuracy; 2) lyric-melo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18107v1-abstract-full').style.display = 'inline'; document.getElementById('2412.18107v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.18107v1-abstract-full" style="display: none;"> Lyric-to-melody generation aims to automatically create melodies based on given lyrics, requiring the capture of complex and subtle correlations between them. However, previous works usually suffer from two main challenges: 1) lyric-melody alignment modeling, which is often simplified to one-syllable/word-to-one-note alignment, while others have the problem of low alignment accuracy; 2) lyric-melody harmony modeling, which usually relies heavily on intermediates or strict rules, limiting model's capabilities and generative diversity. In this paper, we propose SongGLM, a lyric-to-melody generation system that leverages 2D alignment encoding and multi-task pre-training based on the General Language Model (GLM) to guarantee the alignment and harmony between lyrics and melodies. Specifically, 1) we introduce a unified symbolic song representation for lyrics and melodies with word-level and phrase-level (2D) alignment encoding to capture the lyric-melody alignment; 2) we design a multi-task pre-training framework with hierarchical blank infilling objectives (n-gram, phrase, and long span), and incorporate lyric-melody relationships into the extraction of harmonized n-grams to ensure the lyric-melody harmony. We also construct a large-scale lyric-melody paired dataset comprising over 200,000 English song pieces for pre-training and fine-tuning. The objective and subjective results indicate that SongGLM can generate melodies from lyrics with significant improvements in both alignment and harmony, outperforming all the previous baseline methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.18107v1-abstract-full').style.display = 'none'; document.getElementById('2412.18107v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Extended version of paper accepted to AAAI 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.13786">arXiv:2412.13786</a> <span> [<a href="https://arxiv.org/pdf/2412.13786">pdf</a>, <a href="https://arxiv.org/format/2412.13786">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> </div> </div> <p class="title is-5 mathjax"> SongEditor: Adapting Zero-Shot Song Generation Language Model as a Multi-Task Editor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yang%2C+C">Chenyu Yang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+S">Shuai Wang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+H">Hangting Chen</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+J">Jianwei Yu</a>, <a href="/search/eess?searchtype=author&query=Tan%2C+W">Wei Tan</a>, <a href="/search/eess?searchtype=author&query=Gu%2C+R">Rongzhi Gu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yaoxun Xu</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+Y">Yizhi Zhou</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+H">Haina Zhu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+H">Haizhou Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.13786v2-abstract-short" style="display: inline;"> The emergence of novel generative modeling paradigms, particularly audio language models, has significantly advanced the field of song generation. Although state-of-the-art models are capable of synthesizing both vocals and accompaniment tracks up to several minutes long concurrently, research about partial adjustments or editing of existing songs is still underexplored, which allows for more flex… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13786v2-abstract-full').style.display = 'inline'; document.getElementById('2412.13786v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.13786v2-abstract-full" style="display: none;"> The emergence of novel generative modeling paradigms, particularly audio language models, has significantly advanced the field of song generation. Although state-of-the-art models are capable of synthesizing both vocals and accompaniment tracks up to several minutes long concurrently, research about partial adjustments or editing of existing songs is still underexplored, which allows for more flexible and effective production. In this paper, we present SongEditor, the first song editing paradigm that introduces the editing capabilities into language-modeling song generation approaches, facilitating both segment-wise and track-wise modifications. SongEditor offers the flexibility to adjust lyrics, vocals, and accompaniments, as well as synthesizing songs from scratch. The core components of SongEditor include a music tokenizer, an autoregressive language model, and a diffusion generator, enabling generating an entire section, masked lyrics, or even separated vocals and background music. Extensive experiments demonstrate that the proposed SongEditor achieves exceptional performance in end-to-end song editing, as evidenced by both objective and subjective metrics. Audio samples are available in https://cypress-yang.github.io/SongEditor_demo/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.13786v2-abstract-full').style.display = 'none'; document.getElementById('2412.13786v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AAAI2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10985">arXiv:2412.10985</a> <span> [<a href="https://arxiv.org/pdf/2412.10985">pdf</a>, <a href="https://arxiv.org/format/2412.10985">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> MorphiNet: A Graph Subdivision Network for Adaptive Bi-ventricle Surface Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Deng%2C+Y">Yu Deng</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yiyang Xu</a>, <a href="/search/eess?searchtype=author&query=Qian%2C+L">Linglong Qian</a>, <a href="/search/eess?searchtype=author&query=Mauger%2C+C">Charlene Mauger</a>, <a href="/search/eess?searchtype=author&query=Nasopoulou%2C+A">Anastasia Nasopoulou</a>, <a href="/search/eess?searchtype=author&query=Williams%2C+S">Steven Williams</a>, <a href="/search/eess?searchtype=author&query=Williams%2C+M">Michelle Williams</a>, <a href="/search/eess?searchtype=author&query=Niederer%2C+S">Steven Niederer</a>, <a href="/search/eess?searchtype=author&query=Newby%2C+D">David Newby</a>, <a href="/search/eess?searchtype=author&query=McCulloch%2C+A">Andrew McCulloch</a>, <a href="/search/eess?searchtype=author&query=Omens%2C+J">Jeff Omens</a>, <a href="/search/eess?searchtype=author&query=Pushprajah%2C+K">Kuberan Pushprajah</a>, <a href="/search/eess?searchtype=author&query=Young%2C+A">Alistair Young</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10985v1-abstract-short" style="display: inline;"> Cardiac Magnetic Resonance (CMR) imaging is widely used for heart modelling and digital twin computational analysis due to its ability to visualize soft tissues and capture dynamic functions. However, the anisotropic nature of CMR images, characterized by large inter-slice distances and misalignments from cardiac motion, poses significant challenges to accurate model reconstruction. These limitati… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10985v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10985v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10985v1-abstract-full" style="display: none;"> Cardiac Magnetic Resonance (CMR) imaging is widely used for heart modelling and digital twin computational analysis due to its ability to visualize soft tissues and capture dynamic functions. However, the anisotropic nature of CMR images, characterized by large inter-slice distances and misalignments from cardiac motion, poses significant challenges to accurate model reconstruction. These limitations result in data loss and measurement inaccuracies, hindering the capture of detailed anatomical structures. This study introduces MorphiNet, a novel network that enhances heart model reconstruction by leveraging high-resolution Computer Tomography (CT) images, unpaired with CMR images, to learn heart anatomy. MorphiNet encodes anatomical structures as gradient fields, transforming template meshes into patient-specific geometries. A multi-layer graph subdivision network refines these geometries while maintaining dense point correspondence. The proposed method achieves high anatomy fidelity, demonstrating approximately 40% higher Dice scores, half the Hausdorff distance, and around 3 mm average surface error compared to state-of-the-art methods. MorphiNet delivers superior results with greater inference efficiency. This approach represents a significant advancement in addressing the challenges of CMR-based heart model reconstruction, potentially improving digital twin computational analyses of cardiac structure and functions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10985v1-abstract-full').style.display = 'none'; document.getElementById('2412.10985v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.08370">arXiv:2412.08370</a> <span> [<a href="https://arxiv.org/pdf/2412.08370">pdf</a>, <a href="https://arxiv.org/format/2412.08370">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Neural and Evolutionary Computing">cs.NE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Noise-Aware Bayesian Optimization Approach for Capacity Planning of the Distributed Energy Resources in an Active Distribution Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yang%2C+R">Ruizhe Yang</a>, <a href="/search/eess?searchtype=author&query=Yi%2C+Z">Zhongkai Yi</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Ying Xu</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+D">Dazhi Yang</a>, <a href="/search/eess?searchtype=author&query=Tu%2C+Z">Zhenghong Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.08370v1-abstract-short" style="display: inline;"> The growing penetration of renewable energy sources (RESs) in active distribution networks (ADNs) leads to complex and uncertain operation scenarios, resulting in significant deviations and risks for the ADN operation. In this study, a collaborative capacity planning of the distributed energy resources in an ADN is proposed to enhance the RES accommodation capability. The variability of RESs, char… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08370v1-abstract-full').style.display = 'inline'; document.getElementById('2412.08370v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.08370v1-abstract-full" style="display: none;"> The growing penetration of renewable energy sources (RESs) in active distribution networks (ADNs) leads to complex and uncertain operation scenarios, resulting in significant deviations and risks for the ADN operation. In this study, a collaborative capacity planning of the distributed energy resources in an ADN is proposed to enhance the RES accommodation capability. The variability of RESs, characteristics of adjustable demand response resources, ADN bi-directional power flow, and security operation limitations are considered in the proposed model. To address the noise term caused by the inevitable deviation between the operation simulation and real-world environments, an improved noise-aware Bayesian optimization algorithm with the probabilistic surrogate model is proposed to overcome the interference from the environmental noise and sample-efficiently optimize the capacity planning model under noisy circumstances. Numerical simulation results verify the superiority of the proposed approach in coping with environmental noise and achieving lower annual cost and higher computation efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.08370v1-abstract-full').style.display = 'none'; document.getElementById('2412.08370v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 9 figures, journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07256">arXiv:2412.07256</a> <span> [<a href="https://arxiv.org/pdf/2412.07256">pdf</a>, <a href="https://arxiv.org/format/2412.07256">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TIP.2024.3515873">10.1109/TIP.2024.3515873 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling Dual-Exposure Quad-Bayer Patterns for Joint Denoising and Deblurring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhao%2C+Y">Yuzhi Zhao</a>, <a href="/search/eess?searchtype=author&query=Po%2C+L">Lai-Man Po</a>, <a href="/search/eess?searchtype=author&query=Ye%2C+X">Xin Ye</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yongzhe Xu</a>, <a href="/search/eess?searchtype=author&query=Yan%2C+Q">Qiong Yan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07256v1-abstract-short" style="display: inline;"> Image degradation caused by noise and blur remains a persistent challenge in imaging systems, stemming from limitations in both hardware and methodology. Single-image solutions face an inherent tradeoff between noise reduction and motion blur. While short exposures can capture clear motion, they suffer from noise amplification. Long exposures reduce noise but introduce blur. Learning-based single-… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07256v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07256v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07256v1-abstract-full" style="display: none;"> Image degradation caused by noise and blur remains a persistent challenge in imaging systems, stemming from limitations in both hardware and methodology. Single-image solutions face an inherent tradeoff between noise reduction and motion blur. While short exposures can capture clear motion, they suffer from noise amplification. Long exposures reduce noise but introduce blur. Learning-based single-image enhancers tend to be over-smooth due to the limited information. Multi-image solutions using burst mode avoid this tradeoff by capturing more spatial-temporal information but often struggle with misalignment from camera/scene motion. To address these limitations, we propose a physical-model-based image restoration approach leveraging a novel dual-exposure Quad-Bayer pattern sensor. By capturing pairs of short and long exposures at the same starting point but with varying durations, this method integrates complementary noise-blur information within a single image. We further introduce a Quad-Bayer synthesis method (B2QB) to simulate sensor data from Bayer patterns to facilitate training. Based on this dual-exposure sensor model, we design a hierarchical convolutional neural network called QRNet to recover high-quality RGB images. The network incorporates input enhancement blocks and multi-level feature extraction to improve restoration quality. Experiments demonstrate superior performance over state-of-the-art deblurring and denoising methods on both synthetic and real-world datasets. The code, model, and datasets are publicly available at https://github.com/zhaoyuzhi/QRNet. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07256v1-abstract-full').style.display = 'none'; document.getElementById('2412.07256v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">accepted by IEEE Transactions on Image Processing (TIP)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.07105">arXiv:2412.07105</a> <span> [<a href="https://arxiv.org/pdf/2412.07105">pdf</a>, <a href="https://arxiv.org/format/2412.07105">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A Powered Prosthetic Hand with Vision System for Enhancing the Anthropopathic Grasp </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yansong Xu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+X">Xiaohui Wang</a>, <a href="/search/eess?searchtype=author&query=Li%2C+J">Junlin Li</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+X">Xiaoqian Zhang</a>, <a href="/search/eess?searchtype=author&query=Li%2C+F">Feng Li</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+Q">Qing Gao</a>, <a href="/search/eess?searchtype=author&query=Fu%2C+C">Chenglong Fu</a>, <a href="/search/eess?searchtype=author&query=Leng%2C+Y">Yuquan Leng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.07105v1-abstract-short" style="display: inline;"> The anthropomorphism of grasping process significantly benefits the experience and grasping efficiency of prosthetic hand wearers. Currently, prosthetic hands controlled by signals such as brain-computer interfaces (BCI) and electromyography (EMG) face difficulties in precisely recognizing the amputees' grasping gestures and executing anthropomorphic grasp processes. Although prosthetic hands equi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07105v1-abstract-full').style.display = 'inline'; document.getElementById('2412.07105v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.07105v1-abstract-full" style="display: none;"> The anthropomorphism of grasping process significantly benefits the experience and grasping efficiency of prosthetic hand wearers. Currently, prosthetic hands controlled by signals such as brain-computer interfaces (BCI) and electromyography (EMG) face difficulties in precisely recognizing the amputees' grasping gestures and executing anthropomorphic grasp processes. Although prosthetic hands equipped with vision systems enables the objects' feature recognition, they lack perception of human grasping intention. Therefore, this paper explores the estimation of grasping gestures solely through visual data to accomplish anthropopathic grasping control and the determination of grasping intention within a multi-object environment. To address this, we propose the Spatial Geometry-based Gesture Mapping (SG-GM) method, which constructs gesture functions based on the geometric features of the human hand grasping processes. It's subsequently implemented on the prosthetic hand. Furthermore, we propose the Motion Trajectory Regression-based Grasping Intent Estimation (MTR-GIE) algorithm. This algorithm predicts pre-grasping object utilizing regression prediction and prior spatial segmentation estimation derived from the prosthetic hand's position and trajectory. The experiments were conducted to grasp 8 common daily objects including cup, fork, etc. The experimental results presented a similarity coefficient $R^{2}$ of grasping process of 0.911, a Root Mean Squared Error ($RMSE$) of 2.47\degree, a success rate of grasping of 95.43$\%$, and an average duration of grasping process of 3.07$\pm$0.41 s. Furthermore, grasping experiments in a multi-object environment were conducted. The average accuracy of intent estimation reached 94.35$\%$. Our methodologies offer a groundbreaking approach to enhance the prosthetic hand's functionality and provides valuable insights for future research. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.07105v1-abstract-full').style.display = 'none'; document.getElementById('2412.07105v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05940">arXiv:2412.05940</a> <span> [<a href="https://arxiv.org/pdf/2412.05940">pdf</a>, <a href="https://arxiv.org/format/2412.05940">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Digital Modeling of Massage Techniques and Reproduction by Robotic Arms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yuan Xu</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+K">Kui Huang</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+W">Weichao Guo</a>, <a href="/search/eess?searchtype=author&query=Du%2C+L">Leyi Du</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05940v1-abstract-short" style="display: inline;"> This paper explores the digital modeling and robotic reproduction of traditional Chinese medicine (TCM) massage techniques. We adopt an adaptive admittance control algorithm to optimize force and position control, ensuring safety and comfort. The paper analyzes key TCM techniques from kinematic and dynamic perspectives, and designs robotic systems to reproduce these massage techniques. The results… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05940v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05940v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05940v1-abstract-full" style="display: none;"> This paper explores the digital modeling and robotic reproduction of traditional Chinese medicine (TCM) massage techniques. We adopt an adaptive admittance control algorithm to optimize force and position control, ensuring safety and comfort. The paper analyzes key TCM techniques from kinematic and dynamic perspectives, and designs robotic systems to reproduce these massage techniques. The results demonstrate that the robot successfully mimics the characteristics of TCM massage, providing a foundation for integrating traditional therapy with modern robotics and expanding assistive therapy applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05940v1-abstract-full').style.display = 'none'; document.getElementById('2412.05940v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05322">arXiv:2412.05322</a> <span> [<a href="https://arxiv.org/pdf/2412.05322">pdf</a>, <a href="https://arxiv.org/format/2412.05322">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> $蟻$-NeRF: Leveraging Attenuation Priors in Neural Radiance Field for 3D Computed Tomography Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhou%2C+L">Li Zhou</a>, <a href="/search/eess?searchtype=author&query=Fang%2C+C">Changsheng Fang</a>, <a href="/search/eess?searchtype=author&query=Morovati%2C+B">Bahareh Morovati</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yongtong Liu</a>, <a href="/search/eess?searchtype=author&query=Han%2C+S">Shuo Han</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yongshun Xu</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+H">Hengyong Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05322v1-abstract-short" style="display: inline;"> This paper introduces $蟻$-NeRF, a self-supervised approach that sets a new standard in novel view synthesis (NVS) and computed tomography (CT) reconstruction by modeling a continuous volumetric radiance field enriched with physics-based attenuation priors. The $蟻$-NeRF represents a three-dimensional (3D) volume through a fully-connected neural network that takes a single continuous four-dimensiona… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05322v1-abstract-full').style.display = 'inline'; document.getElementById('2412.05322v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05322v1-abstract-full" style="display: none;"> This paper introduces $蟻$-NeRF, a self-supervised approach that sets a new standard in novel view synthesis (NVS) and computed tomography (CT) reconstruction by modeling a continuous volumetric radiance field enriched with physics-based attenuation priors. The $蟻$-NeRF represents a three-dimensional (3D) volume through a fully-connected neural network that takes a single continuous four-dimensional (4D) coordinate, spatial location $(x, y, z)$ and an initialized attenuation value ($蟻$), and outputs the attenuation coefficient at that position. By querying these 4D coordinates along X-ray paths, the classic forward projection technique is applied to integrate attenuation data across the 3D space. By matching and refining pre-initialized attenuation values derived from traditional reconstruction algorithms like Feldkamp-Davis-Kress algorithm (FDK) or conjugate gradient least squares (CGLS), the enriched schema delivers superior fidelity in both projection synthesis and image recognition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05322v1-abstract-full').style.display = 'none'; document.getElementById('2412.05322v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The paper was submitted to CVPR 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.04877">arXiv:2412.04877</a> <span> [<a href="https://arxiv.org/pdf/2412.04877">pdf</a>, <a href="https://arxiv.org/format/2412.04877">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Fluid Antenna Index Modulation for MIMO Systems: Robust Transmission and Low-Complexity Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Guo%2C+X">Xinghao Guo</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yin Xu</a>, <a href="/search/eess?searchtype=author&query=He%2C+D">Dazhi He</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+C">Cixiao Zhang</a>, <a href="/search/eess?searchtype=author&query=Hong%2C+H">Hanjiang Hong</a>, <a href="/search/eess?searchtype=author&query=Wong%2C+K">Kai-Kit Wong</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+W">Wenjun Zhang</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+Y">Yiyan Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.04877v2-abstract-short" style="display: inline;"> The fluid antenna (FA) index modulation (IM)-enabled multiple-input multiple-output (MIMO) system, referred to as FA-IM, significantly enhances spectral efficiency (SE) compared to the conventional FA-assisted MIMO system. To improve robustness against the high spatial correlation among multiple activated ports of the fluid antenna, this paper proposes an innovative FA grouping-based IM (FAG-IM) s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04877v2-abstract-full').style.display = 'inline'; document.getElementById('2412.04877v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.04877v2-abstract-full" style="display: none;"> The fluid antenna (FA) index modulation (IM)-enabled multiple-input multiple-output (MIMO) system, referred to as FA-IM, significantly enhances spectral efficiency (SE) compared to the conventional FA-assisted MIMO system. To improve robustness against the high spatial correlation among multiple activated ports of the fluid antenna, this paper proposes an innovative FA grouping-based IM (FAG-IM) system. A block grouping scheme is employed based on the spatial correlation model and the distribution structure of the ports. Then, a closed-form expression for the average bit error probability (ABEP) upper bound of the FAG-IM system is derived. To reduce the complexity of the receiver, the message passing architecture is incorporated into the FAG-IM system. Building on this, an efficient approximate message passing (AMP) detector, named structured AMP (S-AMP) detector, is proposed by exploiting the structural characteristics of the transmitted signals. Simulation results confirm that the proposed FAG-IM system significantly outperforms the existing FA-IM system in the presence of spatial correlation, achieving more robust transmission. Furthermore, it is demonstrated that the proposed low-complexity S-AMP detector not only reduces time complexity to a linear scale but also substantially improves bit error rate (BER) performance compared to the minimum mean square error (MMSE) detector, thereby enhancing the practical feasibility of the FAG-IM system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.04877v2-abstract-full').style.display = 'none'; document.getElementById('2412.04877v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to an IEEE journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03993">arXiv:2412.03993</a> <span> [<a href="https://arxiv.org/pdf/2412.03993">pdf</a>, <a href="https://arxiv.org/format/2412.03993">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> LaserGuider: A Laser Based Physical Backdoor Attack against Deep Neural Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yongjie Xu</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+G">Guangke Chen</a>, <a href="/search/eess?searchtype=author&query=Song%2C+F">Fu Song</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yuqi Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03993v1-abstract-short" style="display: inline;"> Backdoor attacks embed hidden associations between triggers and targets in deep neural networks (DNNs), causing them to predict the target when a trigger is present while maintaining normal behavior otherwise. Physical backdoor attacks, which use physical objects as triggers, are feasible but lack remote control, temporal stealthiness, flexibility, and mobility. To overcome these limitations, in t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03993v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03993v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03993v1-abstract-full" style="display: none;"> Backdoor attacks embed hidden associations between triggers and targets in deep neural networks (DNNs), causing them to predict the target when a trigger is present while maintaining normal behavior otherwise. Physical backdoor attacks, which use physical objects as triggers, are feasible but lack remote control, temporal stealthiness, flexibility, and mobility. To overcome these limitations, in this work, we propose a new type of backdoor triggers utilizing lasers that feature long-distance transmission and instant-imaging properties. Based on the laser-based backdoor triggers, we present a physical backdoor attack, called LaserGuider, which possesses remote control ability and achieves high temporal stealthiness, flexibility, and mobility. We also introduce a systematic approach to optimize laser parameters for improving attack effectiveness. Our evaluation on traffic sign recognition DNNs, critical in autonomous vehicles, demonstrates that LaserGuider with three different laser-based triggers achieves over 90% attack success rate with negligible impact on normal inputs. Additionally, we release LaserMark, the first dataset of real world traffic signs stamped with physical laser spots, to support further research in backdoor attacks and defenses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03993v1-abstract-full').style.display = 'none'; document.getElementById('2412.03993v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In Proceedings of the 23rd International Conference on Applied Cryptography and Network Security (ACNS), Munich, Germany, 23-26 June, 2025</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18307">arXiv:2411.18307</a> <span> [<a href="https://arxiv.org/pdf/2411.18307">pdf</a>, <a href="https://arxiv.org/format/2411.18307">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/SPAWC60668.2024.10694595">10.1109/SPAWC60668.2024.10694595 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spatial separation of closely-spaced users in measured distributed massive MIMO channels </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yingjie Xu</a>, <a href="/search/eess?searchtype=author&query=Sandra%2C+M">Michiel Sandra</a>, <a href="/search/eess?searchtype=author&query=Cai%2C+X">Xuesong Cai</a>, <a href="/search/eess?searchtype=author&query=Willhammar%2C+S">Sara Willhammar</a>, <a href="/search/eess?searchtype=author&query=Tufvesson%2C+F">Fredrik Tufvesson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18307v1-abstract-short" style="display: inline;"> Aiming for the sixth generation (6G) wireless communications, distributed massive multiple-input multiple-output (MIMO) systems hold significant potential for spatial multiplexing. In order to evaluate the ability of a distributed massive MIMO system to spatially separate closely spaced users, this paper presents an indoor channel measurement campaign. The measurements are carried out at a carrier… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18307v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18307v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18307v1-abstract-full" style="display: none;"> Aiming for the sixth generation (6G) wireless communications, distributed massive multiple-input multiple-output (MIMO) systems hold significant potential for spatial multiplexing. In order to evaluate the ability of a distributed massive MIMO system to spatially separate closely spaced users, this paper presents an indoor channel measurement campaign. The measurements are carried out at a carrier frequency of 5.6 GHz with a bandwidth of 400 MHz, employing distributed antenna arrays with a total of 128 elements. Multiple scalar metrics are selected to evaluate spatial separability in line-of-sight, non line-of-sight, and mixed conditions. Firstly, through studying the singular value spread, it is shown that in line-of-sight conditions, better user orthogonality is achieved with a distributed MIMO setup compared to a co-located MIMO array. Furthermore, the dirty-paper coding (DPC) capacity and zero forcing (ZF) precoding sum-rate capacities are investigated across varying numbers of antennas and their topologies. The results show that in all three conditions, the less complex ZF precoder can be applied in distributed massive MIMO systems while still achieving a large fraction of the DPC capacity. Additionally, in line-of-sight conditions, both sum-rate capacities and user fairness benefit from more antennas and a more distributed antenna topology. However, in the given NLoS condition, the improvement in spatial separability through distributed antenna topologies is limited. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18307v1-abstract-full').style.display = 'none'; document.getElementById('2411.18307v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16380">arXiv:2411.16380</a> <span> [<a href="https://arxiv.org/pdf/2411.16380">pdf</a>, <a href="https://arxiv.org/format/2411.16380">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Privacy-Preserving Federated Foundation Model for Generalist Ultrasound Artificial Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Jiang%2C+Y">Yuncheng Jiang</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+C">Chun-Mei Feng</a>, <a href="/search/eess?searchtype=author&query=Ren%2C+J">Jinke Ren</a>, <a href="/search/eess?searchtype=author&query=Wei%2C+J">Jun Wei</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Z">Zixun Zhang</a>, <a href="/search/eess?searchtype=author&query=Hu%2C+Y">Yiwen Hu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yunbi Liu</a>, <a href="/search/eess?searchtype=author&query=Sun%2C+R">Rui Sun</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+X">Xuemei Tang</a>, <a href="/search/eess?searchtype=author&query=Du%2C+J">Juan Du</a>, <a href="/search/eess?searchtype=author&query=Wan%2C+X">Xiang Wan</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yong Xu</a>, <a href="/search/eess?searchtype=author&query=Du%2C+B">Bo Du</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+X">Xin Gao</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+G">Guangyu Wang</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+S">Shaohua Zhou</a>, <a href="/search/eess?searchtype=author&query=Cui%2C+S">Shuguang Cui</a>, <a href="/search/eess?searchtype=author&query=Goh%2C+R+S+M">Rick Siow Mong Goh</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yong Liu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Zhen Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16380v1-abstract-short" style="display: inline;"> Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16380v1-abstract-full').style.display = 'inline'; document.getElementById('2411.16380v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16380v1-abstract-full" style="display: none;"> Ultrasound imaging is widely used in clinical diagnosis due to its non-invasive nature and real-time capabilities. However, conventional ultrasound diagnostics face several limitations, including high dependence on physician expertise and suboptimal image quality, which complicates interpretation and increases the likelihood of diagnostic errors. Artificial intelligence (AI) has emerged as a promising solution to enhance clinical diagnosis, particularly in detecting abnormalities across various biomedical imaging modalities. Nonetheless, current AI models for ultrasound imaging face critical challenges. First, these models often require large volumes of labeled medical data, raising concerns over patient privacy breaches. Second, most existing models are task-specific, which restricts their broader clinical utility. To overcome these challenges, we present UltraFedFM, an innovative privacy-preserving ultrasound foundation model. UltraFedFM is collaboratively pre-trained using federated learning across 16 distributed medical institutions in 9 countries, leveraging a dataset of over 1 million ultrasound images covering 19 organs and 10 ultrasound modalities. This extensive and diverse data, combined with a secure training framework, enables UltraFedFM to exhibit strong generalization and diagnostic capabilities. It achieves an average area under the receiver operating characteristic curve of 0.927 for disease diagnosis and a dice similarity coefficient of 0.878 for lesion segmentation. Notably, UltraFedFM surpasses the diagnostic accuracy of mid-level ultrasonographers and matches the performance of expert-level sonographers in the joint diagnosis of 8 common systemic diseases. These findings indicate that UltraFedFM can significantly enhance clinical diagnostics while safeguarding patient privacy, marking an advancement in AI-driven ultrasound imaging for future clinical applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16380v1-abstract-full').style.display = 'none'; document.getElementById('2411.16380v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.16117">arXiv:2411.16117</a> <span> [<a href="https://arxiv.org/pdf/2411.16117">pdf</a>, <a href="https://arxiv.org/format/2411.16117">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> A Differentially Private Quantum Neural Network for Probabilistic Optimal Power Flow </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Cao%2C+Y">Yuji Cao</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yan Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.16117v2-abstract-short" style="display: inline;"> The stochastic nature of renewable energy and load demand requires efficient and accurate solutions for probabilistic optimal power flow (OPF). Quantum neural networks (QNNs), which combine quantum computing and machine learning, offer computational advantages in approximating OPF by effectively handling high-dimensional data. However, adversaries with access to non-private OPF solutions can poten… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16117v2-abstract-full').style.display = 'inline'; document.getElementById('2411.16117v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.16117v2-abstract-full" style="display: none;"> The stochastic nature of renewable energy and load demand requires efficient and accurate solutions for probabilistic optimal power flow (OPF). Quantum neural networks (QNNs), which combine quantum computing and machine learning, offer computational advantages in approximating OPF by effectively handling high-dimensional data. However, adversaries with access to non-private OPF solutions can potentially infer sensitive load demand patterns, raising significant privacy concerns. To address this issue, we propose a privacy-preserving QNN model for probabilistic OPF approximation. By incorporating Gaussian noise into the training process, the learning algorithm achieves ($\varepsilon, 未$)-differential privacy with theoretical guarantees. Moreover, we develop a strongly entangled quantum state to enhance the nonlinearity expressiveness of the QNN. Experimental results demonstrate that the proposed method successfully prevents privacy leakage without compromising the statistical properties of probabilistic OPF. Moreover, compared to classical private neural networks, the QNN reduces the number of parameters by 90% while achieving significantly higher accuracy and greater stability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.16117v2-abstract-full').style.display = 'none'; document.getElementById('2411.16117v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15703">arXiv:2411.15703</a> <span> [<a href="https://arxiv.org/pdf/2411.15703">pdf</a>, <a href="https://arxiv.org/format/2411.15703">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Analysis of Hierarchical AoII over unreliable channel: A Stochastic Hybrid System Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+H">Han Xu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+J">Jiaqi Li</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+J">Jixiang Zhang</a>, <a href="/search/eess?searchtype=author&query=Song%2C+T">Tiecheng Song</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yinfei Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15703v1-abstract-short" style="display: inline;"> In this work, we generalize the Stochastic Hybrid Systems (SHSs) analysis of traditional AoI to the AoII metric. Hierarchical ageing processes are adopted using the continuous AoII for the first time, where two different hierarchy schemes, i.e., a hybrid of linear ageing processes with different slopes and a hybrid of linear and quadratic ageing processes, are considered. We first modify the main… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15703v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15703v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15703v1-abstract-full" style="display: none;"> In this work, we generalize the Stochastic Hybrid Systems (SHSs) analysis of traditional AoI to the AoII metric. Hierarchical ageing processes are adopted using the continuous AoII for the first time, where two different hierarchy schemes, i.e., a hybrid of linear ageing processes with different slopes and a hybrid of linear and quadratic ageing processes, are considered. We first modify the main result in \cite[Theorem 1]{yates_age_2020b} to provide a systematic way to analyze the continuous hierarchical AoII over unslotted real-time systems. The closed-form expressions of average hierarchical AoII are obtained based on our Theorem \ref{theorem1} in two typical scenarios with different channel conditions, i.e., an M/M/1/1 queue over noisy channel and two M/M/1/1 queues over collision channel. Moreover, we analyze the stability conditions for two scenarios given that the quadratic ageing process may lead to the absence of stationary solutions. Finally, we compare the average age performance between the classic AoI results and our AoII results in the M/M/1/1 queue, and the effects of different channel parameters on AoII are also evaluated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15703v1-abstract-full').style.display = 'none'; document.getElementById('2411.15703v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14172">arXiv:2411.14172</a> <span> [<a href="https://arxiv.org/pdf/2411.14172">pdf</a>, <a href="https://arxiv.org/format/2411.14172">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> TaQ-DiT: Time-aware Quantization for Diffusion Transformers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Liu%2C+X">Xinyan Liu</a>, <a href="/search/eess?searchtype=author&query=Shi%2C+H">Huihong Shi</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Z">Zhongfeng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14172v1-abstract-short" style="display: inline;"> Transformer-based diffusion models, dubbed Diffusion Transformers (DiTs), have achieved state-of-the-art performance in image and video generation tasks. However, their large model size and slow inference speed limit their practical applications, calling for model compression methods such as quantization. Unfortunately, existing DiT quantization methods overlook (1) the impact of reconstruction an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14172v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14172v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14172v1-abstract-full" style="display: none;"> Transformer-based diffusion models, dubbed Diffusion Transformers (DiTs), have achieved state-of-the-art performance in image and video generation tasks. However, their large model size and slow inference speed limit their practical applications, calling for model compression methods such as quantization. Unfortunately, existing DiT quantization methods overlook (1) the impact of reconstruction and (2) the varying quantization sensitivities across different layers, which hinder their achievable performance. To tackle these issues, we propose innovative time-aware quantization for DiTs (TaQ-DiT). Specifically, (1) we observe a non-convergence issue when reconstructing weights and activations separately during quantization and introduce a joint reconstruction method to resolve this problem. (2) We discover that Post-GELU activations are particularly sensitive to quantization due to their significant variability across different denoising steps as well as extreme asymmetries and variations within each step. To address this, we propose time-variance-aware transformations to facilitate more effective quantization. Experimental results show that when quantizing DiTs' weights to 4-bit and activations to 8-bit (W4A8), our method significantly surpasses previous quantization methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14172v1-abstract-full').style.display = 'none'; document.getElementById('2411.14172v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13602">arXiv:2411.13602</a> <span> [<a href="https://arxiv.org/pdf/2411.13602">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Large-scale cross-modality pretrained model enhances cardiovascular state estimation and cardiomyopathy detection from electrocardiograms: An AI system development and multi-center validation study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ding%2C+Z">Zhengyao Ding</a>, <a href="/search/eess?searchtype=author&query=Hu%2C+Y">Yujian Hu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Youyao Xu</a>, <a href="/search/eess?searchtype=author&query=Zhao%2C+C">Chengchen Zhao</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Ziyu Li</a>, <a href="/search/eess?searchtype=author&query=Mao%2C+Y">Yiheng Mao</a>, <a href="/search/eess?searchtype=author&query=Li%2C+H">Haitao Li</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Q">Qian Li</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+J">Jing Wang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yue Chen</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+M">Mengjia Chen</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+L">Longbo Wang</a>, <a href="/search/eess?searchtype=author&query=Chu%2C+X">Xuesen Chu</a>, <a href="/search/eess?searchtype=author&query=Pan%2C+W">Weichao Pan</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Z">Ziyi Liu</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+F">Fei Wu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+H">Hongkun Zhang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+T">Ting Chen</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+Z">Zhengxing Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13602v1-abstract-short" style="display: inline;"> Cardiovascular diseases (CVDs) present significant challenges for early and accurate diagnosis. While cardiac magnetic resonance imaging (CMR) is the gold standard for assessing cardiac function and diagnosing CVDs, its high cost and technical complexity limit accessibility. In contrast, electrocardiography (ECG) offers promise for large-scale early screening. This study introduces CardiacNets, an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13602v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13602v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13602v1-abstract-full" style="display: none;"> Cardiovascular diseases (CVDs) present significant challenges for early and accurate diagnosis. While cardiac magnetic resonance imaging (CMR) is the gold standard for assessing cardiac function and diagnosing CVDs, its high cost and technical complexity limit accessibility. In contrast, electrocardiography (ECG) offers promise for large-scale early screening. This study introduces CardiacNets, an innovative model that enhances ECG analysis by leveraging the diagnostic strengths of CMR through cross-modal contrastive learning and generative pretraining. CardiacNets serves two primary functions: (1) it evaluates detailed cardiac function indicators and screens for potential CVDs, including coronary artery disease, cardiomyopathy, pericarditis, heart failure and pulmonary hypertension, using ECG input; and (2) it enhances interpretability by generating high-quality CMR images from ECG data. We train and validate the proposed CardiacNets on two large-scale public datasets (the UK Biobank with 41,519 individuals and the MIMIC-IV-ECG comprising 501,172 samples) as well as three private datasets (FAHZU with 410 individuals, SAHZU with 464 individuals, and QPH with 338 individuals), and the findings demonstrate that CardiacNets consistently outperforms traditional ECG-only models, substantially improving screening accuracy. Furthermore, the generated CMR images provide valuable diagnostic support for physicians of all experience levels. This proof-of-concept study highlights how ECG can facilitate cross-modal insights into cardiac function assessment, paving the way for enhanced CVD screening and diagnosis at a population level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13602v1-abstract-full').style.display = 'none'; document.getElementById('2411.13602v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12547">arXiv:2411.12547</a> <span> [<a href="https://arxiv.org/pdf/2411.12547">pdf</a>, <a href="https://arxiv.org/format/2411.12547">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> S3TU-Net: Structured Convolution and Superpixel Transformer for Lung Nodule Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wu%2C+Y">Yuke Wu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+X">Xiang Liu</a>, <a href="/search/eess?searchtype=author&query=Shi%2C+Y">Yunyu Shi</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+X">Xinyi Chen</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Z">Zhenglei Wang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">YuQing Xu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+S+H">Shuo Hong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12547v1-abstract-short" style="display: inline;"> The irregular and challenging characteristics of lung adenocarcinoma nodules in computed tomography (CT) images complicate staging diagnosis, making accurate segmentation critical for clinicians to extract detailed lesion information. In this study, we propose a segmentation model, S3TU-Net, which integrates multi-dimensional spatial connectors and a superpixel-based visual transformer. S3TU-Net i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12547v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12547v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12547v1-abstract-full" style="display: none;"> The irregular and challenging characteristics of lung adenocarcinoma nodules in computed tomography (CT) images complicate staging diagnosis, making accurate segmentation critical for clinicians to extract detailed lesion information. In this study, we propose a segmentation model, S3TU-Net, which integrates multi-dimensional spatial connectors and a superpixel-based visual transformer. S3TU-Net is built on a multi-view CNN-Transformer hybrid architecture, incorporating superpixel algorithms, structured weighting, and spatial shifting techniques to achieve superior segmentation performance. The model leverages structured convolution blocks (DWF-Conv/D2BR-Conv) to extract multi-scale local features while mitigating overfitting. To enhance multi-scale feature fusion, we introduce the S2-MLP Link, integrating spatial shifting and attention mechanisms at the skip connections. Additionally, the residual-based superpixel visual transformer (RM-SViT) effectively merges global and local features by employing sparse correlation learning and multi-branch attention to capture long-range dependencies, with residual connections enhancing stability and computational efficiency. Experimental results on the LIDC-IDRI dataset demonstrate that S3TU-Net achieves a DSC, precision, and IoU of 89.04%, 90.73%, and 90.70%, respectively. Compared to recent methods, S3TU-Net improves DSC by 4.52% and sensitivity by 3.16%, with other metrics showing an approximate 2% increase. In addition to comparison and ablation studies, we validated the generalization ability of our model on the EPDB private dataset, achieving a DSC of 86.40%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12547v1-abstract-full').style.display = 'none'; document.getElementById('2411.12547v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11879">arXiv:2411.11879</a> <span> [<a href="https://arxiv.org/pdf/2411.11879">pdf</a>, <a href="https://arxiv.org/ps/2411.11879">ps</a>, <a href="https://arxiv.org/format/2411.11879">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Human-Computer Interaction">cs.HC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.knosys.2024.112668">10.1016/j.knosys.2024.112668 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> CSP-Net: Common Spatial Pattern Empowered Neural Networks for EEG-Based Motor Imagery Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Jiang%2C+X">Xue Jiang</a>, <a href="/search/eess?searchtype=author&query=Meng%2C+L">Lubin Meng</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+X">Xinru Chen</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yifan Xu</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+D">Dongrui Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11879v1-abstract-short" style="display: inline;"> Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain-computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capab… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11879v1-abstract-full').style.display = 'inline'; document.getElementById('2411.11879v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11879v1-abstract-full" style="display: none;"> Electroencephalogram-based motor imagery (MI) classification is an important paradigm of non-invasive brain-computer interfaces. Common spatial pattern (CSP), which exploits different energy distributions on the scalp while performing different MI tasks, is very popular in MI classification. Convolutional neural networks (CNNs) have also achieved great success, due to their powerful learning capabilities. This paper proposes two CSP-empowered neural networks (CSP-Nets), which integrate knowledge-driven CSP filters with data-driven CNNs to enhance the performance in MI classification. CSP-Net-1 directly adds a CSP layer before a CNN to improve the input discriminability. CSP-Net-2 replaces a convolutional layer in CNN with a CSP layer. The CSP layer parameters in both CSP-Nets are initialized with CSP filters designed from the training data. During training, they can either be kept fixed or optimized using gradient descent. Experiments on four public MI datasets demonstrated that the two CSP-Nets consistently improved over their CNN backbones, in both within-subject and cross-subject classifications. They are particularly useful when the number of training samples is very small. Our work demonstrates the advantage of integrating knowledge-driven traditional machine learning with data-driven deep learning in EEG-based brain-computer interfaces. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11879v1-abstract-full').style.display = 'none'; document.getElementById('2411.11879v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Knowledge Based Systems, 305:112668, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08886">arXiv:2411.08886</a> <span> [<a href="https://arxiv.org/pdf/2411.08886">pdf</a>, <a href="https://arxiv.org/format/2411.08886">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Network scaling and scale-driven loss balancing for intelligent poroelastography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/eess?searchtype=author&query=Pourahmadian%2C+F">Fatemeh Pourahmadian</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08886v1-abstract-short" style="display: inline;"> A deep learning framework is developed for multiscale characterization of poroelastic media from full waveform data which is known as poroelastography. Special attention is paid to heterogeneous environments whose multiphase properties may drastically change across several scales. Described in space-frequency, the data takes the form of focal solid displacement and pore pressure fields in various… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08886v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08886v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08886v1-abstract-full" style="display: none;"> A deep learning framework is developed for multiscale characterization of poroelastic media from full waveform data which is known as poroelastography. Special attention is paid to heterogeneous environments whose multiphase properties may drastically change across several scales. Described in space-frequency, the data takes the form of focal solid displacement and pore pressure fields in various neighborhoods furnished either by reconstruction from remote data or direct measurements depending on the application. The objective is to simultaneously recover the six hydromechanical properties germane to Biot equations and their spatial distribution in a robust and efficient manner. Two major challenges impede direct application of existing state-of-the-art techniques for this purpose: (i) the sought-for properties belong to vastly different and potentially uncertain scales, and~(ii) the loss function is multi-objective and multi-scale (both in terms of its individual components and the total loss). To help bridge the gap, we propose the idea of \emph{network scaling} where the neural property maps are constructed by unit shape functions composed into a scaling layer. In this model, the unknown network parameters (weights and biases) remain of O(1) during training. This forms the basis for explicit scaling of the loss components and their derivatives with respect to the network parameters. Thereby, we propose the physics-based \emph{dynamic scaling} approach for adaptive loss balancing. The idea is first presented in a generic form for multi-physics and multi-scale PDE systems, and then applied through a set of numerical experiments to poroelastography. The results are presented along with reconstructions by way of gradient normalization (GradNorm) and Softmax adaptive weights (SoftAdapt) for loss balancing. A comparative analysis of the methods and corresponding results is provided. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08886v1-abstract-full').style.display = 'none'; document.getElementById('2411.08886v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08570">arXiv:2411.08570</a> <span> [<a href="https://arxiv.org/pdf/2411.08570">pdf</a>, <a href="https://arxiv.org/format/2411.08570">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Electromagnetic Modeling and Capacity Analysis of Rydberg Atom-Based MIMO System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yuan%2C+S+S+A">Shuai S. A. Yuan</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+X+Y+I">Xinyi Y. I. Xu</a>, <a href="/search/eess?searchtype=author&query=Yuan%2C+J">Jinpeng Yuan</a>, <a href="/search/eess?searchtype=author&query=Xie%2C+G">Guoda Xie</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+C">Chongwen Huang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+X">Xiaoming Chen</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+Z">Zhixiang Huang</a>, <a href="/search/eess?searchtype=author&query=Sha%2C+W+E+I">Wei E. I. Sha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08570v1-abstract-short" style="display: inline;"> Rydberg atom-based antennas exploit the quantum properties of highly excited Rydberg atoms, providing unique advantages over classical antennas, such as high sensitivity, broad frequency range, and compact size. Despite the increasing interests in their applications in antenna and communication engineering, two key properties, involving the lack of polarization multiplexing and isotropic reception… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08570v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08570v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08570v1-abstract-full" style="display: none;"> Rydberg atom-based antennas exploit the quantum properties of highly excited Rydberg atoms, providing unique advantages over classical antennas, such as high sensitivity, broad frequency range, and compact size. Despite the increasing interests in their applications in antenna and communication engineering, two key properties, involving the lack of polarization multiplexing and isotropic reception without mutual coupling, remain unexplored in the analysis of Rydberg atom-based spatial multiplexing, i.e., multiple-input and multiple-output (MIMO), communications. Generally, the design considerations for any antenna, even for atomic ones, can be extracted to factors such as radiation patterns, efficiency, and polarization, allowing them to be seamlessly integrated into existing system models. In this letter, we extract the antenna properties from relevant quantum characteristics, enabling electromagnetic modeling and capacity analysis of Rydberg MIMO systems in both far-field and near-field scenarios. By employing ray-based method for far-field analysis and dyadic Green's function for near-field calculation, our results indicate that Rydberg atom-based antenna arrays offer specific advantages over classical dipole-type arrays in single-polarization MIMO communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08570v1-abstract-full').style.display = 'none'; document.getElementById('2411.08570v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08509">arXiv:2411.08509</a> <span> [<a href="https://arxiv.org/pdf/2411.08509">pdf</a>, <a href="https://arxiv.org/format/2411.08509">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Sum Rate Maximization for Movable Antenna-Aided Downlink RSMA Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+C">Cixiao Zhang</a>, <a href="/search/eess?searchtype=author&query=Peng%2C+S">Size Peng</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yin Xu</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+Q">Qingqing Wu</a>, <a href="/search/eess?searchtype=author&query=Ou%2C+X">Xiaowu Ou</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+X">Xinghao Guo</a>, <a href="/search/eess?searchtype=author&query=He%2C+D">Dazhi He</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+W">Wenjun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08509v2-abstract-short" style="display: inline;"> Rate splitting multiple access (RSMA) is regarded as a crucial and powerful physical layer (PHY) paradigm for next-generation communication systems. Particularly, users employ successive interference cancellation (SIC) to decode part of the interference while treating the remainder as noise. However, conventional RSMA systems rely on fixed-position antenna arrays, limiting their ability to fully e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08509v2-abstract-full').style.display = 'inline'; document.getElementById('2411.08509v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08509v2-abstract-full" style="display: none;"> Rate splitting multiple access (RSMA) is regarded as a crucial and powerful physical layer (PHY) paradigm for next-generation communication systems. Particularly, users employ successive interference cancellation (SIC) to decode part of the interference while treating the remainder as noise. However, conventional RSMA systems rely on fixed-position antenna arrays, limiting their ability to fully exploit spatial diversity. This constraint reduces beamforming gain and significantly impairs RSMA performance. To address this problem, we propose a movable antenna (MA)-aided RSMA scheme that allows the antennas at the base station (BS) to dynamically adjust their positions. Our objective is to maximize the system sum rate of common and private messages by jointly optimizing the MA positions, beamforming matrix, and common rate allocation. To tackle the formulated non-convex problem, we apply fractional programming (FP) and develop an efficient two-stage, coarse-to-fine-grained searching (CFGS) algorithm to obtain high-quality solutions. Numerical results demonstrate that, with optimized antenna adjustments, the MA-enabled system achieves substantial performance and reliability improvements in RSMA over fixed-position antenna setups. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08509v2-abstract-full').style.display = 'none'; document.getElementById('2411.08509v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.05205">arXiv:2411.05205</a> <span> [<a href="https://arxiv.org/pdf/2411.05205">pdf</a>, <a href="https://arxiv.org/format/2411.05205">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Maximizing User Connectivity in AI-Enabled Multi-UAV Networks: A Distributed Strategy Generalized to Arbitrary User Distributions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+B">Bowei Li</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yang Xu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Ran Zhang</a>, <a href="/search/eess?searchtype=author&query=Jiang"> Jiang</a>, <a href="/search/eess?searchtype=author&query=Xie"> Xie</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+M">Miao Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.05205v1-abstract-short" style="display: inline;"> Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05205v1-abstract-full').style.display = 'inline'; document.getElementById('2411.05205v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.05205v1-abstract-full" style="display: none;"> Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a MUN is deployed in unknown environments. To this end, this paper investigates distributed user connectivity maximization problem in a MUN with generalization to arbitrary UDs. Specifically, the problem is first formulated into a time-coupled combinatorial nonlinear non-convex optimization with arbitrary underlying UDs. To make the optimization tractable, a multi-agent CNN-enhanced deep Q learning (MA-CDQL) algorithm is proposed. The algorithm integrates a ResNet-based CNN to the policy network to analyze the input UD in real time and obtain optimal decisions based on the extracted high-level UD features. To improve the learning efficiency and avoid local optimums, a heatmap algorithm is developed to transform the raw UD to a continuous density map. The map will be part of the true input to the policy network. Simulations are conducted to demonstrate the efficacy of UD heatmaps and the proposed algorithm in maximizing user connectivity as compared to K-means methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.05205v1-abstract-full').style.display = 'none'; document.getElementById('2411.05205v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00726">arXiv:2411.00726</a> <span> [<a href="https://arxiv.org/pdf/2411.00726">pdf</a>, <a href="https://arxiv.org/format/2411.00726">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Cross-Fundus Transformer for Multi-modal Diabetic Retinopathy Grading with Cataract </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xiao%2C+F">Fan Xiao</a>, <a href="/search/eess?searchtype=author&query=Hou%2C+J">Junlin Hou</a>, <a href="/search/eess?searchtype=author&query=Zhao%2C+R">Ruiwei Zhao</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+R">Rui Feng</a>, <a href="/search/eess?searchtype=author&query=Zou%2C+H">Haidong Zou</a>, <a href="/search/eess?searchtype=author&query=Lu%2C+L">Lina Lu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yi Xu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+J">Juzhao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00726v1-abstract-short" style="display: inline;"> Diabetic retinopathy (DR) is a leading cause of blindness worldwide and a common complication of diabetes. As two different imaging tools for DR grading, color fundus photography (CFP) and infrared fundus photography (IFP) are highly-correlated and complementary in clinical applications. To the best of our knowledge, this is the first study that explores a novel multi-modal deep learning framework… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00726v1-abstract-full').style.display = 'inline'; document.getElementById('2411.00726v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00726v1-abstract-full" style="display: none;"> Diabetic retinopathy (DR) is a leading cause of blindness worldwide and a common complication of diabetes. As two different imaging tools for DR grading, color fundus photography (CFP) and infrared fundus photography (IFP) are highly-correlated and complementary in clinical applications. To the best of our knowledge, this is the first study that explores a novel multi-modal deep learning framework to fuse the information from CFP and IFP towards more accurate DR grading. Specifically, we construct a dual-stream architecture Cross-Fundus Transformer (CFT) to fuse the ViT-based features of two fundus image modalities. In particular, a meticulously engineered Cross-Fundus Attention (CFA) module is introduced to capture the correspondence between CFP and IFP images. Moreover, we adopt both the single-modality and multi-modality supervisions to maximize the overall performance for DR grading. Extensive experiments on a clinical dataset consisting of 1,713 pairs of multi-modal fundus images demonstrate the superiority of our proposed method. Our code will be released for public access. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00726v1-abstract-full').style.display = 'none'; document.getElementById('2411.00726v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.15659">arXiv:2410.15659</a> <span> [<a href="https://arxiv.org/pdf/2410.15659">pdf</a>, <a href="https://arxiv.org/format/2410.15659">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Decentralized Hybrid Precoding for Massive MU-MIMO ISAC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+J">Jun Zhu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yin Xu</a>, <a href="/search/eess?searchtype=author&query=He%2C+D">Dazhi He</a>, <a href="/search/eess?searchtype=author&query=Li%2C+H">Haoyang Li</a>, <a href="/search/eess?searchtype=author&query=Guan%2C+Y">YunFeng Guan</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+W">Wenjun Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.15659v1-abstract-short" style="display: inline;"> Integrated sensing and communication (ISAC) is a very promising technology designed to provide both high rate communication capabilities and sensing capabilities. However, in Massive Multi User Multiple-Input Multiple-Output (Massive MU MIMO-ISAC) systems, the dense user access creates a serious multi-user interference (MUI) problem, leading to degradation of communication performance. To alleviat… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15659v1-abstract-full').style.display = 'inline'; document.getElementById('2410.15659v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.15659v1-abstract-full" style="display: none;"> Integrated sensing and communication (ISAC) is a very promising technology designed to provide both high rate communication capabilities and sensing capabilities. However, in Massive Multi User Multiple-Input Multiple-Output (Massive MU MIMO-ISAC) systems, the dense user access creates a serious multi-user interference (MUI) problem, leading to degradation of communication performance. To alleviate this problem, we propose a decentralized baseband processing (DBP) precoding method. We first model the MUI of dense user scenarios with minimizing Cramer-Rao bound (CRB) as an objective function.Hybrid precoding is an attractive ISAC technique, and hybrid precoding using Partially Connected Structures (PCS) can effectively reduce hardware cost and power consumption. We mitigate the MUI between dense users based on ThomlinsonHarashima Precoding (THP). We demonstrate the effectiveness of the proposed method through simulation experiments. Compared with the existing methods, it can effectively improve the communication data rates and energy efficiency in dense user access scenario, and reduce the hardware complexity of Massive MU MIMO-ISAC systems. The experimental results demonstrate the usefulness of our method for improving the MUI problem in ISAC systems for dense user access scenarios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.15659v1-abstract-full').style.display = 'none'; document.getElementById('2410.15659v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14965">arXiv:2410.14965</a> <span> [<a href="https://arxiv.org/pdf/2410.14965">pdf</a>, <a href="https://arxiv.org/format/2410.14965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Non-Invasive to Invasive: Enhancing FFA Synthesis from CFP with a Benchmark Dataset and a Novel Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+H">Hongqiu Wang</a>, <a href="/search/eess?searchtype=author&query=Xing%2C+Z">Zhaohu Xing</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+W">Weitong Wu</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+Y">Yijun Yang</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+Q">Qingqing Tang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+M">Meixia Zhang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yanwu Xu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14965v1-abstract-short" style="display: inline;"> Fundus imaging is a pivotal tool in ophthalmology, and different imaging modalities are characterized by their specific advantages. For example, Fundus Fluorescein Angiography (FFA) uniquely provides detailed insights into retinal vascular dynamics and pathology, surpassing Color Fundus Photographs (CFP) in detecting microvascular abnormalities and perfusion status. However, the conventional invas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14965v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14965v1-abstract-full" style="display: none;"> Fundus imaging is a pivotal tool in ophthalmology, and different imaging modalities are characterized by their specific advantages. For example, Fundus Fluorescein Angiography (FFA) uniquely provides detailed insights into retinal vascular dynamics and pathology, surpassing Color Fundus Photographs (CFP) in detecting microvascular abnormalities and perfusion status. However, the conventional invasive FFA involves discomfort and risks due to fluorescein dye injection, and it is meaningful but challenging to synthesize FFA images from non-invasive CFP. Previous studies primarily focused on FFA synthesis in a single disease category. In this work, we explore FFA synthesis in multiple diseases by devising a Diffusion-guided generative adversarial network, which introduces an adaptive and dynamic diffusion forward process into the discriminator and adds a category-aware representation enhancer. Moreover, to facilitate this research, we collect the first multi-disease CFP and FFA paired dataset, named the Multi-disease Paired Ocular Synthesis (MPOS) dataset, with four different fundus diseases. Experimental results show that our FFA synthesis network can generate better FFA images compared to state-of-the-art methods. Furthermore, we introduce a paired-modal diagnostic network to validate the effectiveness of synthetic FFA images in the diagnosis of multiple fundus diseases, and the results show that our synthesized FFA images with the real CFP images have higher diagnosis accuracy than that of the compared FFA synthesizing methods. Our research bridges the gap between non-invasive imaging and FFA, thereby offering promising prospects to enhance ophthalmic diagnosis and patient care, with a focus on reducing harm to patients through non-invasive procedures. Our dataset and code will be released to support further research in this field (https://github.com/whq-xxh/FFA-Synthesis). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14965v1-abstract-full').style.display = 'none'; document.getElementById('2410.14965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ACMMM 24 MCHM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14214">arXiv:2410.14214</a> <span> [<a href="https://arxiv.org/pdf/2410.14214">pdf</a>, <a href="https://arxiv.org/format/2410.14214">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> MambaSCI: Efficient Mamba-UNet for Quad-Bayer Patterned Video Snapshot Compressive Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Pan%2C+Z">Zhenghao Pan</a>, <a href="/search/eess?searchtype=author&query=Zeng%2C+H">Haijin Zeng</a>, <a href="/search/eess?searchtype=author&query=Cao%2C+J">Jiezhang Cao</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yongyong Chen</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yong Xu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14214v1-abstract-short" style="display: inline;"> Color video snapshot compressive imaging (SCI) employs computational imaging techniques to capture multiple sequential video frames in a single Bayer-patterned measurement. With the increasing popularity of quad-Bayer pattern in mainstream smartphone cameras for capturing high-resolution videos, mobile photography has become more accessible to a wider audience. However, existing color video SCI re… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14214v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14214v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14214v1-abstract-full" style="display: none;"> Color video snapshot compressive imaging (SCI) employs computational imaging techniques to capture multiple sequential video frames in a single Bayer-patterned measurement. With the increasing popularity of quad-Bayer pattern in mainstream smartphone cameras for capturing high-resolution videos, mobile photography has become more accessible to a wider audience. However, existing color video SCI reconstruction algorithms are designed based on the traditional Bayer pattern. When applied to videos captured by quad-Bayer cameras, these algorithms often result in color distortion and ineffective demosaicing, rendering them impractical for primary equipment. To address this challenge, we propose the MambaSCI method, which leverages the Mamba and UNet architectures for efficient reconstruction of quad-Bayer patterned color video SCI. To the best of our knowledge, our work presents the first algorithm for quad-Bayer patterned SCI reconstruction, and also the initial application of the Mamba model to this task. Specifically, we customize Residual-Mamba-Blocks, which residually connect the Spatial-Temporal Mamba (STMamba), Edge-Detail-Reconstruction (EDR) module, and Channel Attention (CA) module. Respectively, STMamba is used to model long-range spatial-temporal dependencies with linear complexity, EDR is for better edge-detail reconstruction, and CA is used to compensate for the missing channel information interaction in Mamba model. Experiments demonstrate that MambaSCI surpasses state-of-the-art methods with lower computational and memory costs. PyTorch style pseudo-code for the core modules is provided in the supplementary materials. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14214v1-abstract-full').style.display = 'none'; document.getElementById('2410.14214v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13223">arXiv:2410.13223</a> <span> [<a href="https://arxiv.org/pdf/2410.13223">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Coordinated Dispatch of Energy Storage Systems in the Active Distribution Network: A Complementary Reinforcement Learning and Optimization Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+B">Bohan Zhang</a>, <a href="/search/eess?searchtype=author&query=Yi%2C+Z">Zhongkai Yi</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Ying Xu</a>, <a href="/search/eess?searchtype=author&query=Tu%2C+Z">Zhenghong Tu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13223v1-abstract-short" style="display: inline;"> The complexity and nonlinearity of active distribution network (ADN), coupled with the fast-changing renewable energy (RE), necessitate advanced real-time and safe dispatch approach. This paper proposes a complementary reinforcement learning (RL) and optimization approach, namely SA2CO, to address the coordinated dispatch of the energy storage systems (ESSs) in the ADN. The proposed approach lever… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13223v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13223v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13223v1-abstract-full" style="display: none;"> The complexity and nonlinearity of active distribution network (ADN), coupled with the fast-changing renewable energy (RE), necessitate advanced real-time and safe dispatch approach. This paper proposes a complementary reinforcement learning (RL) and optimization approach, namely SA2CO, to address the coordinated dispatch of the energy storage systems (ESSs) in the ADN. The proposed approach leverages RL's capability to make fast decision and address the model inaccuracies, while optimization methods ensure the ADN security. Furthermore, a hybrid data-driven and expert-experience auxiliary neural network is formulated as a rapid security assessment component in the SA2CO algorithm, enabling dynamic switching between RL and optimization methodologies. Simulation results demonstrate the proposed method's effectiveness and scalability in achieving real-time, safe, and economical dispatch of multiple ESSs in the ADN, surpassing the performance of the state-of-the-art RL and optimization methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13223v1-abstract-full').style.display = 'none'; document.getElementById('2410.13223v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04017">arXiv:2410.04017</a> <span> [<a href="https://arxiv.org/pdf/2410.04017">pdf</a>, <a href="https://arxiv.org/format/2410.04017">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Adversarial Attacks and Robust Defenses in Speaker Embedding based Zero-Shot Text-to-Speech System </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+Z">Ze Li</a>, <a href="/search/eess?searchtype=author&query=Shi%2C+Y">Yao Shi</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yunfei Xu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+M">Ming Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04017v1-abstract-short" style="display: inline;"> Speaker embedding based zero-shot Text-to-Speech (TTS) systems enable high-quality speech synthesis for unseen speakers using minimal data. However, these systems are vulnerable to adversarial attacks, where an attacker introduces imperceptible perturbations to the original speaker's audio waveform, leading to synthesized speech sounds like another person. This vulnerability poses significant secu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04017v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04017v1-abstract-full" style="display: none;"> Speaker embedding based zero-shot Text-to-Speech (TTS) systems enable high-quality speech synthesis for unseen speakers using minimal data. However, these systems are vulnerable to adversarial attacks, where an attacker introduces imperceptible perturbations to the original speaker's audio waveform, leading to synthesized speech sounds like another person. This vulnerability poses significant security risks, including speaker identity spoofing and unauthorized voice manipulation. This paper investigates two primary defense strategies to address these threats: adversarial training and adversarial purification. Adversarial training enhances the model's robustness by integrating adversarial examples during the training process, thereby improving resistance to such attacks. Adversarial purification, on the other hand, employs diffusion probabilistic models to revert adversarially perturbed audio to its clean form. Experimental results demonstrate that these defense mechanisms can significantly reduce the impact of adversarial perturbations, enhancing the security and reliability of speaker embedding based zero-shot TTS systems in adversarial environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04017v1-abstract-full').style.display = 'none'; document.getElementById('2410.04017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02764">arXiv:2410.02764</a> <span> [<a href="https://arxiv.org/pdf/2410.02764">pdf</a>, <a href="https://arxiv.org/format/2410.02764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Flash-Splat: 3D Reflection Removal with Flash Cues and Gaussian Splats </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xie%2C+M">Mingyang Xie</a>, <a href="/search/eess?searchtype=author&query=Cai%2C+H">Haoming Cai</a>, <a href="/search/eess?searchtype=author&query=Shah%2C+S">Sachin Shah</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yiran Xu</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+B+Y">Brandon Y. Feng</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+J">Jia-Bin Huang</a>, <a href="/search/eess?searchtype=author&query=Metzler%2C+C+A">Christopher A. Metzler</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02764v1-abstract-short" style="display: inline;"> We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02764v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02764v1-abstract-full" style="display: none;"> We introduce a simple yet effective approach for separating transmitted and reflected light. Our key insight is that the powerful novel view synthesis capabilities provided by modern inverse rendering methods (e.g.,~3D Gaussian splatting) allow one to perform flash/no-flash reflection separation using unpaired measurements -- this relaxation dramatically simplifies image acquisition over conventional paired flash/no-flash reflection separation methods. Through extensive real-world experiments, we demonstrate our method, Flash-Splat, accurately reconstructs both transmitted and reflected scenes in 3D. Our method outperforms existing 3D reflection separation methods, which do not leverage illumination control, by a large margin. Our project webpage is at https://flash-splat.github.io/. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02764v1-abstract-full').style.display = 'none'; document.getElementById('2410.02764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xu%2C+Y&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">…</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>