CINXE.COM
Search results for: statistical models
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: statistical models</title> <meta name="description" content="Search results for: statistical models"> <meta name="keywords" content="statistical models"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="statistical models" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="statistical models"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10396</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: statistical models</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10396</span> The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihye%20Jeon">Jihye Jeon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiple%20regression" title="multiple regression">multiple regression</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title=" path analysis"> path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20models" title=" structural equation models"> structural equation models</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20and%20psychological%20phenomenon" title=" social and psychological phenomenon"> social and psychological phenomenon</a> </p> <a href="https://publications.waset.org/abstracts/31464/the-strengths-and-limitations-of-the-statistical-modeling-of-complex-social-phenomenon-focusing-on-sem-path-analysis-or-multiple-regression-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">667</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10395</span> Shock Compressibility of Iron Alloys Calculated in the Framework of Quantum-Statistical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maxim%20A.%20Kadatskiy">Maxim A. Kadatskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20V.%20Khishchenko"> Konstantin V. Khishchenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron alloys are widespread components in various types of structural materials which are exposed to intensive thermal and mechanical loads. Various quantum-statistical cell models with the approximation of self-consistent field can be used for the prediction of the behavior of these materials under extreme conditions. The application of these models is even more valid, the higher the temperature and the density of matter. Results of Hugoniot calculation for iron alloys in the framework of three quantum-statistical (the Thomas–Fermi, the Thomas–Fermi with quantum and exchange corrections and the Hartree–Fock–Slater) models are presented. Results of quantum-statistical calculations are compared with results from other reliable models and available experimental data. It is revealed a good agreement between results of calculation and experimental data for terra pascal pressures. Advantages and disadvantages of this approach are shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alloy" title="alloy">alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=Hugoniot" title=" Hugoniot"> Hugoniot</a>, <a href="https://publications.waset.org/abstracts/search?q=iron" title=" iron"> iron</a>, <a href="https://publications.waset.org/abstracts/search?q=terapascal%20pressure" title=" terapascal pressure"> terapascal pressure</a> </p> <a href="https://publications.waset.org/abstracts/58836/shock-compressibility-of-iron-alloys-calculated-in-the-framework-of-quantum-statistical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10394</span> A Review on Water Models of Surface Water Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaz%20G.%20Hassan">Shahbaz G. Hassan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water quality models are very important to predict the changes in surface water quality for environmental management. The aim of this paper is to give an overview of the water qualities, and to provide directions for selecting models in specific situation. Water quality models include one kind of model based on a mechanistic approach, while other models simulate water quality without considering a mechanism. Mechanistic models can be widely applied and have capabilities for long-time simulation, with highly complexity. Therefore, more spaces are provided to explain the principle and application experience of mechanistic models. Mechanism models have certain assumptions on rivers, lakes and estuaries, which limits the application range of the model, this paper introduces the principles and applications of water quality model based on the above three scenarios. On the other hand, mechanistic models are more easily to compute, and with no limit to the geographical conditions, but they cannot be used with confidence to simulate long term changes. This paper divides the empirical models into two broad categories according to the difference of mathematical algorithm, models based on artificial intelligence and models based on statistical methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title="empirical models">empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical" title=" mathematical"> mathematical</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical" title=" statistical"> statistical</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/60966/a-review-on-water-models-of-surface-water-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">268</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10393</span> Advances in Artificial intelligence Using Speech Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alhawiti">Khaled M. Alhawiti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=speech%20recognition" title="speech recognition">speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20phonetic" title=" acoustic phonetic"> acoustic phonetic</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=hidden%20markov%20models%20%28HMM%29" title=" hidden markov models (HMM)"> hidden markov models (HMM)</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20models%20of%20speech%20recognition" title=" statistical models of speech recognition"> statistical models of speech recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20machine%20performance" title=" human machine performance"> human machine performance</a> </p> <a href="https://publications.waset.org/abstracts/26319/advances-in-artificial-intelligence-using-speech-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10392</span> Statistical Channel Modeling for Multiple-Input-Multiple-Output Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20I.%20Youssef">M. I. Youssef</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Emam"> A. E. Emam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Abd%20Elghany"> M. Abd Elghany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of wireless communication systems is affected mainly by the environment of its associated channel, which is characterized by dynamic and unpredictable behavior. In this paper, different statistical earth-satellite channel models are studied with emphasize on two main models, first is the Rice-Log normal model, due to its representation for the environment including shadowing and multi-path components that affect the propagated signal along its path, and a three-state model that take into account different fading conditions (clear area, moderate shadow and heavy shadowing). The provided models are based on AWGN, Rician, Rayleigh, and log-normal distributions were their Probability Density Functions (PDFs) are presented. The transmission system Bit Error Rate (BER), Peak-Average-Power Ratio (PAPR), and the channel capacity vs. fading models are measured and analyzed. These simulations are implemented using MATLAB tool, and the results had shown the performance of transmission system over different channel models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fading%20channels" title="fading channels">fading channels</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO%20communication" title=" MIMO communication"> MIMO communication</a>, <a href="https://publications.waset.org/abstracts/search?q=RNS%20scheme" title=" RNS scheme"> RNS scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20modeling" title=" statistical modeling"> statistical modeling</a> </p> <a href="https://publications.waset.org/abstracts/91503/statistical-channel-modeling-for-multiple-input-multiple-output-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10391</span> Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Queen%20Suraajini%20Rajendran">Queen Suraajini Rajendran</a>, <a href="https://publications.waset.org/abstracts/search?q=Sai%20Hung%20Cheung"> Sai Hung Cheung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20downscaling" title="statistical downscaling">statistical downscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=global%20climate%20model" title=" global climate model"> global climate model</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title=" climate change"> climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/18056/statistical-classification-downscaling-and-uncertainty-assessment-for-global-climate-model-outputs" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10390</span> Application of Statistical Linearized Models for Investigations of Digital Dynamic Pulse-Frequency Control Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20H.%20Aitchanov">B. H. Aitchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sh.%20K.%20Aitchanova"> Sh. K. Aitchanova</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Baimuratov"> O. A. Baimuratov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is focused on dynamic pulse-frequency modulation (DPFM) control systems. Currently, the control law based on DPFM control signals is widely used in direct digital control subsystems introduced in the automated control systems of technological processes. Statistical analysis of automatic control systems is reduced to its construction of functional relationships between the statistical characteristics of the errors processes and input processes. Structural and dynamic Volterra models of digital pulse-frequency control systems can be used to develop methods for generating the dependencies, differing accuracy, requiring the amount of information about the statistical characteristics of input processes and computing labor intensity of their use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=digital%20dynamic%20pulse-frequency%20control%20systems" title="digital dynamic pulse-frequency control systems">digital dynamic pulse-frequency control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20pulse-frequency%20modulation" title=" dynamic pulse-frequency modulation"> dynamic pulse-frequency modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20object" title=" control object"> control object</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20filter" title=" discrete filter"> discrete filter</a>, <a href="https://publications.waset.org/abstracts/search?q=impulse%20device" title=" impulse device"> impulse device</a>, <a href="https://publications.waset.org/abstracts/search?q=microcontroller" title=" microcontroller"> microcontroller</a> </p> <a href="https://publications.waset.org/abstracts/13825/application-of-statistical-linearized-models-for-investigations-of-digital-dynamic-pulse-frequency-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10389</span> Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Ansariyar">Alireza Ansariyar</a>, <a href="https://publications.waset.org/abstracts/search?q=Safieh%20Laaly"> Safieh Laaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connected%20and%20autonomous%20vehicles" title="connected and autonomous vehicles">connected and autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20model" title=" statistical model"> statistical model</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20effects" title=" environmental effects"> environmental effects</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutants%20and%20fuel%20consumption" title=" pollutants and fuel consumption"> pollutants and fuel consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=VISUM" title=" VISUM"> VISUM</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression%20models" title=" linear regression models"> linear regression models</a> </p> <a href="https://publications.waset.org/abstracts/151118/statistical-analysis-and-impact-forecasting-of-connected-and-autonomous-vehicles-on-the-environment-case-study-in-the-state-of-maryland" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151118.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10388</span> Determining the Number of Single Models in a Combined Forecast</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serkan%20Aras">Serkan Aras</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Gulay"> Emrah Gulay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Combining various forecasting models is an important tool for researchers to attain more accurate forecasts. A great number of papers have shown that selecting single models as dissimilar models, or methods based on different information as possible leads to better forecasting performances. However, there is not a certain rule regarding the number of single models to be used in any combining methods. This study focuses on determining the optimal or near optimal number for single models with the help of statistical tests. An extensive experiment is carried out by utilizing some well-known time series data sets from diverse fields. Furthermore, many rival forecasting methods and some of the commonly used combining methods are employed. The obtained results indicate that some statistically significant performance differences can be found regarding the number of the single models in the combining methods under investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20forecast" title="combined forecast">combined forecast</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=M-competition" title=" M-competition"> M-competition</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20series" title=" time series"> time series</a> </p> <a href="https://publications.waset.org/abstracts/40361/determining-the-number-of-single-models-in-a-combined-forecast" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10387</span> An Adjusted Network Information Criterion for Model Selection in Statistical Neural Network Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Godwin%20Udomboso">Christopher Godwin Udomboso</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Unna%20Chukwu"> Angela Unna Chukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Kwame%20Dontwi"> Isaac Kwame Dontwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In selecting a Statistical Neural Network model, the Network Information Criterion (NIC) has been observed to be sample biased, because it does not account for sample sizes. The selection of a model from a set of fitted candidate models requires objective data-driven criteria. In this paper, we derived and investigated the Adjusted Network Information Criterion (ANIC), based on Kullback’s symmetric divergence, which has been designed to be an asymptotically unbiased estimator of the expected Kullback-Leibler information of a fitted model. The analyses show that on a general note, the ANIC improves model selection in more sample sizes than does the NIC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=statistical%20neural%20network" title="statistical neural network">statistical neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=network%20information%20criterion" title=" network information criterion"> network information criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=adjusted%20network" title=" adjusted network"> adjusted network</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20criterion" title=" information criterion"> information criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20function" title=" transfer function"> transfer function</a> </p> <a href="https://publications.waset.org/abstracts/28771/an-adjusted-network-information-criterion-for-model-selection-in-statistical-neural-network-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10386</span> Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Said%20Benkaciali">Said Benkaciali</a>, <a href="https://publications.waset.org/abstracts/search?q=Mourad%20Haddadi"> Mourad Haddadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdallah%20Khellaf"> Abdallah Khellaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Kacem%20Gairaa"> Kacem Gairaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mawloud%20Guermoui"> Mawloud Guermoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=empirical%20models" title="empirical models">empirical models</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20perceptron%20neural%20network" title=" multilayer perceptron neural network"> multilayer perceptron neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20formulas" title=" statistical formulas"> statistical formulas</a> </p> <a href="https://publications.waset.org/abstracts/60646/modeling-of-daily-global-solar-radiation-using-ann-techniques-a-case-of-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10385</span> Wind Power Forecast Error Simulation Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josip%20Vasilj">Josip Vasilj</a>, <a href="https://publications.waset.org/abstracts/search?q=Petar%20Sarajcev"> Petar Sarajcev</a>, <a href="https://publications.waset.org/abstracts/search?q=Damir%20Jakus"> Damir Jakus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the major difficulties introduced with wind power penetration is the inherent uncertainty in production originating from uncertain wind conditions. This uncertainty impacts many different aspects of power system operation, especially the balancing power requirements. For this reason, in power system development planing, it is necessary to evaluate the potential uncertainty in future wind power generation. For this purpose, simulation models are required, reproducing the performance of wind power forecasts. This paper presents a wind power forecast error simulation models which are based on the stochastic process simulation. Proposed models capture the most important statistical parameters recognized in wind power forecast error time series. Furthermore, two distinct models are presented based on data availability. First model uses wind speed measurements on potential or existing wind power plant locations, while the seconds model uses statistical distribution of wind speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20power" title="wind power">wind power</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20process" title=" stochastic process"> stochastic process</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/17977/wind-power-forecast-error-simulation-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10384</span> Statistical Assessment of Models for Determination of Soil–Water Characteristic Curves of Sand Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Matlan">S. J. Matlan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mukhlisin"> M. Mukhlisin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Taha"> M. R. Taha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Characterization of the engineering behavior of unsaturated soil is dependent on the soil-water characteristic curve (SWCC), a graphical representation of the relationship between water content or degree of saturation and soil suction. A reasonable description of the SWCC is thus important for the accurate prediction of unsaturated soil parameters. The measurement procedures for determining the SWCC, however, are difficult, expensive, and time-consuming. During the past few decades, researchers have laid a major focus on developing empirical equations for predicting the SWCC, with a large number of empirical models suggested. One of the most crucial questions is how precisely existing equations can represent the SWCC. As different models have different ranges of capability, it is essential to evaluate the precision of the SWCC models used for each particular soil type for better SWCC estimation. It is expected that better estimation of SWCC would be achieved via a thorough statistical analysis of its distribution within a particular soil class. With this in view, a statistical analysis was conducted in order to evaluate the reliability of the SWCC prediction models against laboratory measurement. Optimization techniques were used to obtain the best-fit of the model parameters in four forms of SWCC equation, using laboratory data for relatively coarse-textured (i.e., sandy) soil. The four most prominent SWCCs were evaluated and computed for each sample. The result shows that the Brooks and Corey model is the most consistent in describing the SWCC for sand soil type. The Brooks and Corey model prediction also exhibit compatibility with samples ranging from low to high soil water content in which subjected to the samples that evaluated in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil-water%20characteristic%20curve%20%28SWCC%29" title="soil-water characteristic curve (SWCC)">soil-water characteristic curve (SWCC)</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20engineering" title=" geotechnical engineering"> geotechnical engineering</a> </p> <a href="https://publications.waset.org/abstracts/16494/statistical-assessment-of-models-for-determination-of-soil-water-characteristic-curves-of-sand-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10383</span> Implementation of Statistical Parameters to Form an Entropic Mathematical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gurcharan%20Singh%20Buttar">Gurcharan Singh Buttar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been discovered that although these two areas, statistics, and information theory, are independent in their nature, they can be combined to create applications in multidisciplinary mathematics. This is due to the fact that where in the field of statistics, statistical parameters (measures) play an essential role in reference to the population (distribution) under investigation. Information measure is crucial in the study of ambiguity, assortment, and unpredictability present in an array of phenomena. The following communication is a link between the two, and it has been demonstrated that the well-known conventional statistical measures can be used as a measure of information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probability%20distribution" title="probability distribution">probability distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=concavity" title=" concavity"> concavity</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetry" title=" symmetry"> symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20tendency" title=" central tendency"> central tendency</a> </p> <a href="https://publications.waset.org/abstracts/142293/implementation-of-statistical-parameters-to-form-an-entropic-mathematical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142293.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10382</span> Diagonal Vector Autoregressive Models and Their Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usoro%20Anthony%20E.">Usoro Anthony E.</a>, <a href="https://publications.waset.org/abstracts/search?q=Udoh%20Emediong"> Udoh Emediong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VAR%20models" title="VAR models">VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=diagonal%20VAR%20models" title=" diagonal VAR models"> diagonal VAR models</a>, <a href="https://publications.waset.org/abstracts/search?q=variance" title=" variance"> variance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocovariance" title=" autocovariance"> autocovariance</a>, <a href="https://publications.waset.org/abstracts/search?q=autocorrelations" title=" autocorrelations"> autocorrelations</a> </p> <a href="https://publications.waset.org/abstracts/157980/diagonal-vector-autoregressive-models-and-their-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10381</span> Detection of Chaos in General Parametric Model of Infectious Disease</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javad%20Khaligh">Javad Khaligh</a>, <a href="https://publications.waset.org/abstracts/search?q=Aghileh%20Heydari"> Aghileh Heydari</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Akbar%20Heydari"> Ali Akbar Heydari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiological%20models" title="epidemiological models">epidemiological models</a>, <a href="https://publications.waset.org/abstracts/search?q=SEIR%20disease%20model" title=" SEIR disease model"> SEIR disease model</a>, <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title=" bifurcation"> bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=chaotic%20behavior" title=" chaotic behavior"> chaotic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=0-1%20test" title=" 0-1 test"> 0-1 test</a> </p> <a href="https://publications.waset.org/abstracts/30790/detection-of-chaos-in-general-parametric-model-of-infectious-disease" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10380</span> Drying Kinects of Soybean Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20Rithieli%20%20Pereira%20Dos%20Santos">Amanda Rithieli Pereira Dos Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Rute%20%20Quelvia%20De%20Faria"> Rute Quelvia De Faria</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20%20De%20Oliveira%20Cardoso"> Álvaro De Oliveira Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20%20Rodrigo%20Da%20Silva"> Anderson Rodrigo Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89rica%20%20Le%C3%A3o%20Fernandes%20Ara%C3%BAjo"> Érica Leão Fernandes Araújo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the kinetics of drying has great importance for the mathematical modeling, allowing to know about the processes of transference of heat and mass between the products and to adjust dryers managing new technologies for these processes. The present work had the objective of studying the kinetics of drying of soybean seeds and adjusting different statistical models to the experimental data varying cultivar and temperature. Soybean seeds were pre-dried in a natural environment in order to reduce and homogenize the water content to the level of 14% (b.s.). Then, drying was carried out in a forced air circulation oven at controlled temperatures of 38, 43, 48, 53 and 58 ± 1 ° C, using two soybean cultivars, BRS 8780 and Sambaíba, until reaching a hygroscopic equilibrium. The experimental design was completely randomized in factorial 5 x 2 (temperature x cultivar) with 3 replicates. To the experimental data were adjusted eleven statistical models used to explain the drying process of agricultural products. Regression analysis was performed using the least squares Gauss-Newton algorithm to estimate the parameters. The degree of adjustment was evaluated from the analysis of the coefficient of determination (R²), the adjusted coefficient of determination (R² Aj.) And the standard error (S.E). The models that best represent the drying kinetics of soybean seeds are those of Midilli and Logarítmico. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curve%20of%20drying%20seeds" title="curve of drying seeds">curve of drying seeds</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycine%20max%20L." title=" Glycine max L."> Glycine max L.</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20ratio" title=" moisture ratio"> moisture ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20models" title=" statistical models"> statistical models</a> </p> <a href="https://publications.waset.org/abstracts/67860/drying-kinects-of-soybean-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10379</span> Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lidija%20R.%20Jevri%C4%87">Lidija R. Jevrić</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanja%20O.%20Podunavac-Kuzmanovi%C4%87"> Sanja O. Podunavac-Kuzmanović</a>, <a href="https://publications.waset.org/abstracts/search?q=Strahinja%20Z.%20Kova%C4%8Devi%C4%87"> Strahinja Z. Kovačević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemometrics" title="chemometrics">chemometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20analysis" title=" classification analysis"> classification analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20descriptors" title=" molecular descriptors"> molecular descriptors</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticides" title=" pesticides"> pesticides</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis "> regression analysis </a> </p> <a href="https://publications.waset.org/abstracts/45198/chemometric-qsrr-evaluation-of-behavior-of-s-triazine-pesticides-in-liquid-chromatography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10378</span> Lambda-Levelwise Statistical Convergence of a Sequence of Fuzzy Numbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Berna%20Benli">F. Berna Benli</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Keskin"> Özgür Keskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lately, many mathematicians have been studied the statistical convergence of a sequence of fuzzy numbers. We know that Lambda-statistically convergence is a kind of convergence between ordinary convergence and statistical convergence. In this paper, we will introduce the new kind of convergence such as λ-levelwise statistical convergence. Then, we will define the concept of the λ-levelwise statistical cluster and limit points of a sequence of fuzzy numbers. Also, we will discuss the relations between the sets of λ-levelwise statistical cluster points and λ-levelwise statistical limit points of sequences of fuzzy numbers. This work has been extended in this paper, where some relations have been considered such that when lambda-statistical limit inferior and lambda-statistical limit superior for lambda-statistically convergent sequences of fuzzy numbers are equal. Furthermore, lambda-statistical boundedness condition for different sequences of fuzzy numbers has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20number" title="fuzzy number">fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20cluster%20points" title=" λ-levelwise statistical cluster points"> λ-levelwise statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20convergence" title=" λ-levelwise statistical convergence"> λ-levelwise statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-levelwise%20statistical%20limit%20points" title=" λ-levelwise statistical limit points"> λ-levelwise statistical limit points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20cluster%20points" title=" λ-statistical cluster points"> λ-statistical cluster points</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20convergence" title=" λ-statistical convergence"> λ-statistical convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%BB-statistical%20limit%20%20points" title=" λ-statistical limit points"> λ-statistical limit points</a> </p> <a href="https://publications.waset.org/abstracts/20755/lambda-levelwise-statistical-convergence-of-a-sequence-of-fuzzy-numbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20755.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10377</span> Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ozan%20Kahraman">Ozan Kahraman</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Feng"> Hao Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weibull" title="Weibull">Weibull</a>, <a href="https://publications.waset.org/abstracts/search?q=Biphasic" title=" Biphasic"> Biphasic</a>, <a href="https://publications.waset.org/abstracts/search?q=MTS" title=" MTS"> MTS</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20models" title=" kinetic models"> kinetic models</a>, <a href="https://publications.waset.org/abstracts/search?q=E.coli%20O157%3AH7" title=" E.coli O157:H7"> E.coli O157:H7</a> </p> <a href="https://publications.waset.org/abstracts/57326/validation-of-escherichia-coli-o157h7-inactivation-on-apple-carrot-juice-treated-with-manothermosonication-by-kinetic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10376</span> Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hang%20Lo%20Lee">Hang Lo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki%20Il%20Song"> Ki Il Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee%20Hwan%20Ryu"> Hee Hwan Ryu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TBM%20performance%20prediction%20model" title="TBM performance prediction model">TBM performance prediction model</a>, <a href="https://publications.waset.org/abstracts/search?q=classification%20system" title=" classification system"> classification system</a>, <a href="https://publications.waset.org/abstracts/search?q=simple%20regression%20analysis" title=" simple regression analysis"> simple regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20analysis" title=" residual analysis"> residual analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20input%20parameters" title=" optimal input parameters"> optimal input parameters</a> </p> <a href="https://publications.waset.org/abstracts/52738/analysis-on-prediction-models-of-tbm-performance-and-selection-of-optimal-input-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52738.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10375</span> Copula-Based Estimation of Direct and Indirect Effects in Path Analysis Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alam%20Ali">Alam Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar%20Pathak"> Ashok Kumar Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Path analysis is a statistical technique used to evaluate the direct and indirect effects of variables in path models. One or more structural regression equations are used to estimate a series of parameters in path models to find the better fit of data. However, sometimes the assumptions of classical regression models, such as ordinary least squares (OLS), are violated by the nature of the data, resulting in insignificant direct and indirect effects of exogenous variables. This article aims to explore the effectiveness of a copula-based regression approach as an alternative to classical regression, specifically when variables are linked through an elliptical copula. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=path%20analysis" title="path analysis">path analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=copula-based%20regression%20models" title=" copula-based regression models"> copula-based regression models</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20and%20indirect%20effects" title=" direct and indirect effects"> direct and indirect effects</a>, <a href="https://publications.waset.org/abstracts/search?q=k-fold%20cross%20validation%20technique" title=" k-fold cross validation technique"> k-fold cross validation technique</a> </p> <a href="https://publications.waset.org/abstracts/186900/copula-based-estimation-of-direct-and-indirect-effects-in-path-analysis-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186900.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">48</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10374</span> Short Review on Models to Estimate the Risk in the Financial Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiberiu%20Socaciu">Tiberiu Socaciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Tudor%20Colomeischi"> Tudor Colomeischi</a>, <a href="https://publications.waset.org/abstracts/search?q=Eugenia%20Iancu"> Eugenia Iancu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Business failure affects in various proportions shareholders, managers, lenders (banks), suppliers, customers, the financial community, government and society as a whole. In the era in which we have telecommunications networks, exists an interdependence of markets, the effect of a failure of a company is relatively instant. To effectively manage risk exposure is thus require sophisticated support systems, supported by analytical tools to measure, monitor, manage and control operational risks that may arise. As we know, bankruptcy is a phenomenon that managers do not want no matter what stage of life is the company they direct / lead. In the analysis made by us, by the nature of economic models that are reviewed (Altman, Conan-Holder etc.), estimating the risk of bankruptcy of a company corresponds to some extent with its own business cycle tracing of the company. Various models for predicting bankruptcy take into account direct / indirect aspects such as market position, company growth trend, competition structure, characteristics and customer retention, organization and distribution, location etc. From the perspective of our research we will now review the economic models known in theory and practice for estimating the risk of bankruptcy; such models are based on indicators drawn from major accounting firms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anglo-Saxon%20models" title="Anglo-Saxon models">Anglo-Saxon models</a>, <a href="https://publications.waset.org/abstracts/search?q=continental%20models" title=" continental models"> continental models</a>, <a href="https://publications.waset.org/abstracts/search?q=national%20models" title=" national models"> national models</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20models" title=" statistical models"> statistical models</a> </p> <a href="https://publications.waset.org/abstracts/33522/short-review-on-models-to-estimate-the-risk-in-the-financial-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10373</span> Evaluation of Parameters of Subject Models and Their Mutual Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20G.%20Kovalenko">A. G. Kovalenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20N.%20Amirgaliyev"> Y. N. Amirgaliyev</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Kalizhanova"> A. U. Kalizhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20S.%20Balgabayeva"> L. S. Balgabayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Kozbakova"> A. H. Kozbakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20S.%20Aitkulov"> Z. S. Aitkulov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dispersed%20systems" title="dispersed systems">dispersed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=models" title=" models"> models</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20network" title=" hydraulic network"> hydraulic network</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms"> algorithms</a> </p> <a href="https://publications.waset.org/abstracts/8399/evaluation-of-parameters-of-subject-models-and-their-mutual-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8399.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10372</span> Modelling High-Frequency Crude Oil Dynamics Using Affine and Non-Affine Jump-Diffusion Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katja%20Ignatieva">Katja Ignatieva</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20Wong"> Patrick Wong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigated the dynamics of high frequency energy prices, including crude oil and electricity prices. The returns of underlying quantities are modelled using various parametric models such as stochastic framework with jumps and stochastic volatility (SVCJ) as well as non-parametric alternatives, which are purely data driven and do not require specification of the drift or the diffusion coefficient function. Using different statistical criteria, we investigate the performance of considered parametric and nonparametric models in their ability to forecast price series and volatilities. Our models incorporate possible seasonalities in the underlying dynamics and utilise advanced estimation techniques for the dynamics of energy prices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stochastic%20volatility" title="stochastic volatility">stochastic volatility</a>, <a href="https://publications.waset.org/abstracts/search?q=affine%20jump-diffusion%20models" title=" affine jump-diffusion models"> affine jump-diffusion models</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20frequency%20data" title=" high frequency data"> high frequency data</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20specification" title=" model specification"> model specification</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain%20monte%20carlo" title=" markov chain monte carlo"> markov chain monte carlo</a> </p> <a href="https://publications.waset.org/abstracts/159124/modelling-high-frequency-crude-oil-dynamics-using-affine-and-non-affine-jump-diffusion-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159124.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10371</span> Statistical Analysis of California Earthquakes Over the Past Decade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Hossein%20Mousavi">Muhammed Hossein Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a statistical analysis of 1286 earthquakes with a magnitude of 3.5 or greater recorded in California between 2014 and 2024. The study analyzed the temporal and spatial distribution, depth and magnitude patterns, and regional impacts of these earthquakes. Results demonstrate a concentration of earthquakes in high-risk areas like the San Andreas Fault and a significant relationship between earthquake magnitude and depth, with larger events occurring at shallower depths. The 7.1 magnitude earthquake in Ridgecrest on July 6, 2019, serves as a prominent example of the significant damage these events can cause. Utilizing statistical models and regression analysis, this study predicts the probability of future earthquakes. The findings emphasize the crucial role of improved infrastructure and preventive measures in mitigating earthquake damage and underscore their importance for effective crisis management and community preparedness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquake" title="earthquake">earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=California" title=" California"> California</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20analysis" title=" statistical analysis"> statistical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=preparedness" title=" preparedness"> preparedness</a> </p> <a href="https://publications.waset.org/abstracts/198458/statistical-analysis-of-california-earthquakes-over-the-past-decade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/198458.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10370</span> A Framework for Auditing Multilevel Models Using Explainability Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debarati%20Bhaumik">Debarati Bhaumik</a>, <a href="https://publications.waset.org/abstracts/search?q=Diptish%20Dey"> Diptish Dey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit" title="audit">audit</a>, <a href="https://publications.waset.org/abstracts/search?q=multilevel%20model" title=" multilevel model"> multilevel model</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20transparency" title=" model transparency"> model transparency</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20explainability" title=" model explainability"> model explainability</a>, <a href="https://publications.waset.org/abstracts/search?q=discrimination" title=" discrimination"> discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=ethics" title=" ethics"> ethics</a> </p> <a href="https://publications.waset.org/abstracts/150654/a-framework-for-auditing-multilevel-models-using-explainability-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10369</span> The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phanida%20Phukoetphim">Phanida Phukoetphim</a>, <a href="https://publications.waset.org/abstracts/search?q=Asaad%20Y.%20Shamseldin"> Asaad Y. Shamseldin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-model%20combination" title="multi-model combination">multi-model combination</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall-runoff%20modeling" title=" rainfall-runoff modeling"> rainfall-runoff modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20gradient%20boosting" title=" stochastic gradient boosting"> stochastic gradient boosting</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a> </p> <a href="https://publications.waset.org/abstracts/3455/the-use-of-stochastic-gradient-boosting-method-for-multi-model-combination-of-rainfall-runoff-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10368</span> An Application of Sinc Function to Approximate Quadrature Integrals in Generalized Linear Mixed Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Altaf%20H.%20Khan">Altaf H. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20Stenger"> Frank Stenger</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20A.%20Hussein"> Mohammed A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Reaz%20A.%20Chaudhuri"> Reaz A. Chaudhuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameera%20Asif"> Sameera Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper discusses a novel approach to approximate quadrature integrals that arise in the estimation of likelihood parameters for the generalized linear mixed models (GLMM) as well as Bayesian methodology also requires computation of multidimensional integrals with respect to the posterior distributions in which computation are not only tedious and cumbersome rather in some situations impossible to find solutions because of singularities, irregular domains, etc. An attempt has been made in this work to apply Sinc function based quadrature rules to approximate intractable integrals, as there are several advantages of using Sinc based methods, for example: order of convergence is exponential, works very well in the neighborhood of singularities, in general quite stable and provide high accurate and double precisions estimates. The Sinc function based approach seems to be utilized first time in statistical domain to our knowledge, and it's viability and future scopes have been discussed to apply in the estimation of parameters for GLMM models as well as some other statistical areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=generalized%20linear%20mixed%20model" title="generalized linear mixed model">generalized linear mixed model</a>, <a href="https://publications.waset.org/abstracts/search?q=likelihood%20parameters" title=" likelihood parameters"> likelihood parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=qudarature" title=" qudarature"> qudarature</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinc%20function" title=" Sinc function"> Sinc function</a> </p> <a href="https://publications.waset.org/abstracts/39637/an-application-of-sinc-function-to-approximate-quadrature-integrals-in-generalized-linear-mixed-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10367</span> Students' Perception of Using Dental E-Models in an Inquiry-Based Curriculum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanqi%20Yang">Yanqi Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chongshan%20Liao"> Chongshan Liao</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheuk%20Hin%20Ho"> Cheuk Hin Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Susan%20Bridges"> Susan Bridges </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim: To investigate student’s perceptions of using e-models in an inquiry-based curriculum. Approach: 52 second-year dental students completed a pre- and post-test questionnaire relating to their perceptions of e-models and their use in inquiry-based learning. The pre-test occurred prior to any learning with e-models. The follow-up survey was conducted after one year's experience of using e-models. Results: There was no significant difference between the two sets of questionnaires regarding student’s perceptions of the usefulness of e-models and their willingness to use e-models in future inquiry-based learning. Most of the students preferred using both plaster models and e-models in tandem. Conclusion: Students did not change their attitude towards e-models and most of them agreed or were neutral that e-models are useful in inquiry-based learning. Whilst recognizing the utility of 3D models for learning, student's preference for combining these with solid models has implications for the development of haptic sensibility in an operative discipline. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-models" title="e-models">e-models</a>, <a href="https://publications.waset.org/abstracts/search?q=inquiry-based%20curriculum" title=" inquiry-based curriculum"> inquiry-based curriculum</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a> </p> <a href="https://publications.waset.org/abstracts/3739/students-perception-of-using-dental-e-models-in-an-inquiry-based-curriculum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3739.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=346">346</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=347">347</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=statistical%20models&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>