CINXE.COM

Recovery 2.0 - Gradient Energy

<html> <head> <meta name="viewport" content="width=device-width"> <meta name="Potential Gradient Energy" content="Temperature Gradient, Pressure Gradient, Salinity Gradient electrochemical Potential Energy"> <link rel="stylesheet" type="text/css" href="https://www.cooksmill.net/cooksmill.css"> <title>Recovery 2.0 - Gradient Energy</title> </head> <body> <body bgcolor="#FFFFFF" link="#660066" text="#000000" vlink="#660066"> <div class="box"> <center> <a href="https://www.waste.net"> <img border="0" alt="Waste.net" src="https://www.waste.net/gif-bin/logo22.gif" width="200"></a> </center> </div> <a name="top"></a> <div class="box"> <center> <B>Recovery 2.0</B> <br> <B>Gradient Energy</B> <br> <br> <a href="https://www.waste.net/2/"> <img src="https://www.recycling.org/gif-bin/recovery_2.0.gif" alt="recovery2.0" border="0"></a> </center> </div> <a name="gradient"></a> <div class="box"> <center> <font size="6"> <b>Gradient Energy</b> </font> <br> <br> <a href="https://www.waste.net/2/gradient.html#potential">Potential Energy</a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/2/gradient.html#pressure">Pressure Gradient</a> <br> <a href="https://www.waste.net/2/gradient.html#content">Concentration Gradient</a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/2/gradient.html#salt">Salinity Gradient</a> <br> <a href="https://www.waste.net/2/gradient.html#temperature">Temperature Gradient</a> </center> </div> <a name="gradient_001"></a> <div class="box"> <center> <a href="https://www.waste.net/2/#energy_menu"> <img src="https://www.waste.net/2/gradient_energy.gif" alt="Gradient Energy" border="0"></a> </center> </div> <a name="potential"></a> <a name="potental"></a> <div class="box"> <p> <b>Gradient Energy</b> <br> The potential of harnessing an energy differential in the form a Gradient of such things such as <a href="https://www.waste.net/2/gradient.html#temperature">Temperature</a>, <a href="https://www.waste.net/2/gradient.html#pressure">Pressure</a>, or in a <a href="https://www.waste.net/2/gradient.html#content">Concentration Gradient</a> in the density of a substance, holds a vast array of challenges. <br> <br> The <a href="https://www.waste.net/2/cell.html">electrochemical</a> or charge <a href="https://www.waste.net/2/reactivity.html">potential</a> contained in various specific materials provides an opportunity for the exploration of Electromagnetic <a href="https://www.energychange.com/electromagnetic/#gradient">Gradient</a> energy. <br> <br> Short Cycle Regeneration is an approach that uses minimal storage reserves, rather than relying on rapid cycle recharging from compatible <a href="https://www.waste.net/2/#regeneration">symbiotic modules</a> from within the overall process to produce electricity on demand. </p> </div> <a name="hotside_coldside"></a> <div class="box"> <center> <font size="5"> <b>Thermal Gradients</b> </font> <br> <a href="https://www.waste.net/2/sidestream.html#module"> <img src="https://www.waste.net/2/waste_heat.gif" alt="default" border="0"></a> </center> </div> <a name="temperature"></a> <div class="box"> <p> <B>Temperature Gradient</B> <br> Temperature Gradient Energy <a href="https://www.waste.net/2/gradient.html#generators"> <font color="FF0000"><b>Generation</b></font></a> on a Short Cycle Regeneration basis from both traditional Heat Exchange technologies and expanding the developments in novel temperature exploitation present new and existing opportunities. <br> A number of <a href="https://www.waste.net/2/waste_heat.html#heat_ladder">opportunities</a> exist at various points across the process to harness the potential contained within the <a href="https://www.energychange.com/electromagnetic/watts.html#temperature_standards">temperature differential</a> that is inherent at each stage. <br> Not only harnessing the Temperature Gradient between <a href="https://www.waste.net/2/thermal_storage.html#thermal_banks">Hot & Cold</a>, but capturing finer tuned differences between hot & warm, warm & cool and also cool & cold process points. The low hanging fruit allows the opportunity to install mechanisms such as stirling engines to convert the potential energy into kinetic motion or <a href="https://www.waste.net/2/electricity.html">electricity</a>. <br> <br> Broad temperature gradients resulting from a process such as compressed air expansion (extreme cooling) used to condense steam (a high heat source) may yield a large potential of regenerating or a maintained temperature range. <br> From nano or micro to small scale or larger scale electric generation, harvesting even incremental amounts of energy contribute to the overall efficiency of the operation. Tapping into technologies such as Solid State Thermoelectric <a href="https://www.waste.net/2/gradient.html#seebeck">Seebeck effect</a> devices like Thermo Electric Generators (TEG) & Solar Thermo Electric Generators (STEG) may add a measurable percentage to the system output. </p> </div> <a name="generators"></a> <div class="box"> <center> <font size="5"> <b>Thermal Energy Generators</b> </font> <br> <br> <a href="https://www.waste.net/2/gradient.html#seebeck">Seebeck Effect Devices</a> <br> <a href="https://www.waste.net/2/gradient.html#sterling_engines">Stirling Engines</a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/2/gradient.html#teg">TEG Generators</a> <br> <br> <a href="https://www.waste.net/2/waste_heat.html#heat_engine"><B>Heat Engines</B></a> <br> <a href="https://www.waste.net/2/waste_heat.html#orc">Organic Rankine Cycle (ORC)</a> <br> <a href="https://www.waste.net/2/waste_heat.html#pumped_heat">Pumped Heat Energy Storage</a> <br> <a href="https://www.waste.net/2/gradient.html#wells_turbine">Wells Turbine</a> </center> </div> <a name="stirling_engines"></a> <a name="sterling_engines"></a> <div class="box"> <p> <B>Stirling Engines</B> <br> Electricity generation or kinetic motion may be harnessed from a temperature gradient differential with the use of a <a href="https://www.waste.net/action/stirling/">Stirling Engine</a>. The recovery of <a href="https://www.waste.net/2/waste_heat.html">Waste Heat</a> at strategic locations throughout the Recovery 2.0 operation represents a huge untapped potential. Stirling Engines may represent a range from small to industrial scale <a href="https://www.waste.net/2/electricity.html">electricity</a> generation. </p> </div> <a name="teg"></a> <div class="box"> <p> <B>Thermo Electric Generators (TEG)</B> <br> The direct Electricity generation from harvesting a temperature gradient differential with the use of solid state Thermo Electric Generators (TEG). This approach may be ideal for micro or small <a href="https://www.waste.net/2/energy.html#spectrum">scale</a> energy recovery. <br> <br> Innovative design of industrial scale solid state <a href="https://www.waste.net/2/sidestream.html#direct">Direct to Electricity</a> <B>TEG</B> devices and TEG <a href="https://www.waste.net/2/gradient.html#teg_stack">Stacks</a> may allow for the incorporation into the <a href="https://www.waste.net/2/waste_heat.html#heat_exchange">Heat Exchange</a> system of a Recovery 2.0 operation. <br> The ongoing normal operations of a Recovery 2.0 process may provide a virtually perpetual <a href="https://www.waste.net/2/thermal_storage.html#thermal_banks">Hotside/Coldside</a> thermal gradient to drive a passive energy <a href="https://www.waste.net/2/sidestream.html#harvest">harvesting module</a>. <br> <a name="teg_stack"></a> <br> <B>TEG Stacks</B> <br> Creating Thermo Electric Generators (TEGs) that can operate efficiently in a wide range of temperature <a href="https://www.energychange.com/electromagnetic/watts.html#temperature_standards">ranges</a> may present meaningful harvesting opportunities. <br> The possibility of implementing TEG Stacks, in specific industrial applications that process a strong Cold Side Heat sink, may generate an extraordinary quantity of previously untapped power. <br> Stacking TEG Generators in layers in a wide thermal gradient area may amplify the yield output substantially. If traditional single TEGs yield about a 5% efficiency, under the right conditions a TEG Stack may deliver a yield from each TEG in the stack. The accumulation of the output of each TEG in the stack may add up to be equivalent or greater than other traditional heat engines. <br> <a name="teg_pipe"></a> <br> <B>TEG Pipes</B> <br> Transferring thermal working fluids through specially designed Piping allows for the harvesting of any thermal gradients that may exist between the inside diameter surface and the outside surface diameter of the pipe. <br> Thermo Electric Generating Pipes <B>TEG Pipes</B> essentially take advantage of semiconductor materials sandwiched around piping or <a href="https://www.waste.net/2/fluid_pipelines.html">pipelines</a> in order to passively harvest direct to electricity DC current. <br> <a name="teg_rads"></a> <br> <B>Cooling Radiator Heat Exchangers</B> <br> Thermo Electric Generating Heat Exchangers designed as modular cooling radiators <B>TEG Rads</B> may become a standard component in the Modular energy <a href="https://www.waste.net/flow_cell/#harvesting_cube">Harvesting cubes</a>. </p> </div> <a name="seebeck"></a> <div class="box"> <p> <B>Seebeck Effect Devices</B> <br> Nano or micro charge flows may be <a href="https://www.waste.net/2/sidestream.html#harvest">harvested</a> from gradient temperature differentials with the use of simple <a href="https://www.waste.net/2/seebeck.html#sseg">Seebeck Effect</a> Devices that take advantage of the <a href="https://www.waste.net/2/seebeck.html">Seebeck Co-Efficient</a>. <br> <br> Many of todays more sophisticated energy systems are build on the Seebeck principals, we rely on <a href="https://www.waste.net/2/waste_heat.html#heat_engine"><B>Heat Engine</B></a> cycles to power our world. As we enter the energy transition era and begin to explore decarbonized alternatives we may revive some of the older ideas and approaches such as the <a href="https://www.waste.net/2/gradient.html#sterling_engines">Stirling Engine</a>. <br> <br> Once we decide that heat is a viable form of energy and when we wish to scavenge heat and harvest the <a href="https://www.waste.net/2/gradient.html#hotside_coldside">hot side / cold side</a> gradient differential, then many new variations of the Seebeck effect may be developed. <br> <br> Designing a thermal energy <a href="https://www.waste.net/2/sidestream.html#harvest">harvesting</a> system with compatible <a href="https://www.waste.net/2/waste_heat.html#heat_exchanger">heat excangers</a> may take advantage of simple Seebeck devices, thermocouples and thermocouple piles too multiply the yield across a wide range of the <a href="https://www.energychange.com/electromagnetic/watts.html#temperature_standards">thermal spectrum</a>. <br> <br> The realm of solid state direct to electricity <a href="https://www.waste.net/2/gradient.html#teg">Generators</a> holds a particularly interesting and largely untapped potential. </p> </div> <a name="default"></a> <div class="box"> <center> <a href="https://www.waste.net/2/"> <img src="https://www.waste.net/2/default.gif" alt="default" border="0"></a> </center> </div> <a name="content"></a> <div class="box"> <p> <B>Concentration Gradient</B> <br> Concentration or Content Density Gradient - Natural equilibrium balancing force - Osmosis - Diffusion <br> Osmotic Power may create a <a href="https://www.waste.net/2/gradient.html#pressure">Pressure Gradient</a>, Pressure Retarded Osmosis <br> Different forms of Osmosis are commonly encountered in the <a href="https://www.waste.net/disposal.html#desalination">Water Desalination</a> process. <br> The natural equilibrium forces of diffusion of Gases and Liquid solutions may be harnessed either with or without the use of permeable membranes and may be invoked on a forward or reverse basis. </p> </div> <a name="salt"></a> <div class="box"> <p> <B>Salinity Gradient</B> <br> The potential energy contained in salt water by harnessing osmotic pressure from the Salinity Gradient is one method to extract electricity. An alternative approach to extract energy from the salinity gradient is with a reverse electro dialysis device designed to generate electricity. <br> <br> Since the Recovery 2.0 system handles salt in various forms, at different stages of the process, the opportunity to design a flexible approach or novel solution exists. <br> From incoming <a href="https://www.waste.net/2/water.html#brine">waste waster</a> and brine feed stocks the Recovery 2.0 system thermally concentrates brines to whatever saturation level or Salinity Gradient is desired all the way to dry <a href="https://www.waste.net/brine.html#recovery">salts</a> and solids. <br> <br> Some early work has been done to explore the potential of harvesting energy from the Salinity Gradient in <a href="https://www.waste.net/water.html#waste">waste water</a> with the use of Microbial Fuel Cells. </p> </div> <a name="pressure"></a> <div class="box"> <center> <font size="5"> <b>Pressure Energy</b> </font> <br> <br> <a href="https://www.waste.net/2/gradient.html#pressure_gradient">Pressure Gradients</a> <br> <a href="https://www.waste.net/2/gradient.html#pressure_harvest">Harvesting</a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/2/gradient.html#pressure_generation">Generation</a> <br> <a href="https://www.waste.net/2/gradient.html#pressure_storage">Accumulation & Storage</a> <br> <br> <a href="https://www.waste.net/2/gradient.html#pressure_engine">Pressure Engines</a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/2/gradient.html#pressure_exchanger">Pressure Exchanger</a> <br> <a href="https://www.waste.net/2/gradient.html#osculating_pressure">Osculating Pressure Systems</a> </center> </div> <a name="pressure_gradient"></a> <div class="box"> <p> <B>Pressure Gradient</B> <br> Pressure is a unique form of potential energy that may be harnessed in several methods across the Recovery 2.0 system. <br> One of the most common sources of harvested pressure energy is captured from the <a href="https://www.waste.net/2/condense.html#ratio_table"><b>Phase Change</b></a> of working fluids. <br> <br> The gradients of pressure span a wide range from slight vibrations at a low frequency up to and encompassing high intensity waves transferred from mass in <a href="https://www.waste.net/2/motion.html">motion</a>. Acceleration or Motion invokes the impact of particles of mass contained in all gases including air, liquids and solids. <br> <br> There are several sources from which pressure may be <a href="https://www.waste.net/2/gradient.html#pressure_harvest">Harvested</a> and several opportunities to <a href="https://www.waste.net/2/gradient.html#pressure_generation">generate</a> or transfer energy but the most exciting maybe the potential of <a href="https://www.waste.net/2/gradient.html#pressure_storage">Accumulation & Storage</a>. <br> The implementation of <a href="https://www.waste.net/2/gradient.html#pressure_engine">Pressure Engines</a> and <a href="https://www.waste.net/2/gradient.html#pressure_exchanger">Pressure Exchangers</a> may present additional opportunities for capturing pressure energy. <br> <a href="https://www.waste.net/2/gradient.html#osculating_pressure">Osculating Pressure Systems</a> <br> isolating pressure energy, wind, compressed air. </p> </div> <a name="pressure_conversion"></a> <a name="pressure_convertion"></a> <div class="box"> <center> <a href="https://www.waste.net/2/sidestream.html#induction_harvestor"> <img src="https://www.waste.net/2/pressure_energy_conversion.gif" alt="Pressure Conversion" border="0" width="300"></a> </center> </div> <a name="pressure_harvest"></a> <div class="box"> <p> <B>Pressure Energy Harvesting</B> <br> By far the most common method of producing electrical energy is by converting the pressure in a <a href="https://www.waste.net/2/energy.html#fluids">working fluid</a> into rotational motion with the use of a turbo mechanism. <br> A turbine creates <a href="https://www.waste.net/2/motion.html#rotary">rotary motion</a> that spins an electromagnetic generator. The movement of the generators magnet / coil combination induces an electrical current. This type of electricity output is commonly referred to as Electromagnetic <a href="https://www.waste.net/2/sidestream.html#induction_harvestor">Induction</a>. <br> <br> Pressure Energy <a href="https://www.waste.net/2/sidestream.html#vibration_harvestor">Harvesting</a> in all of its various forms such as sound, pressure waves and all types of Kinetic Vibration presents a huge and largely untapped area. </p> </div> <a name="pressure_source_table"></a> <div class="box"> <p> &nbsp; &nbsp; &nbsp; <font size="5"> <b>Common Sources of Pressure</b> &nbsp; &nbsp; &nbsp; </font> <br> <table width="100%" cellpadding="3" border="1" bordercolor="#666666"> <tbody><tr valign="top" bgcolor="#CC0000"> <td align="center" width="10%"> <font face="Arial" color="#FFFFFF" font="" size="4"> <b>Type</b> </font> </td> <td align="center" width="90%"> <font face="Arial" color="#FFFFFF" font="" size="4"> <b>Pressure Source</b> </font> </td> </tr> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> # 1. </font> </td> <td align="left"> <font size="4"> <a href="https://www.waste.net/2/water_pipeline.html#Pumped_energy_storage"><b>Pumped Working Fluids</b></a> <br> Pumped Hydro/Water, Compressed Air </font> </td> </tr> <!-----------------> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> # 2. </font> </td> <td align="left"> <font size="4"> <b>Phase Change</b> <a href="https://www.waste.net/2/condense.html#ratio_table"><b>Expansion Ratio</b></a> </font> </td> </tr> <!-----------------> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> # 3. </font> </td> <td align="left"> <font size="4"> <b>Combustion Gas Expansion</b> </font> </td> </tr> <!-----------------> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> # 4. </font> </td> <td align="left"> <font size="4"> <b>Sensible Heat Expansion of a Gas</b> </font> </td> </tr> <!-----------------> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> - - </font> </td> <td align="left"> <font size="4"> - - - </font> </td> </tr> <!-----------------> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> # 5. </font> </td> <td align="left"> <font size="4"> <a href="https://www.waste.net/2/sidestream.html#vibration_harvestor"><b>Vibrational Wave Pressure</b></a> </font> </td> </tr> <!-----------------> <!-----------------> <tr valign="top"> <td align="left" bgcolor="#FFFFFF"> <font size="4"> - - </font> </td> <td align="left"> <font size="4"> other </font> </td> </tr> <!-----------------> </tbody></table> </p> </div> <a name="pressure_storage"></a> <div class="box"> <p> <B>Pressure Energy Storage</B> <br> Pressure may be stored in a number of ways and one broad classification of a storage method is in the form of pressurized fluids. This applies to both pressurized non-compressible liquids and compressed gasses. <br> <a name="compressed_gases"></a> <br> <B>Compressed Gases</B> <br> Compressed Gases are typically stored in some sort of pressure vessel after being pressurized, commonly via a compressor pump or other pressurization methods. <br> One of the most popular Compressed Gas is simply <a href="https://www.waste.net/2/compressed_air.html">Compressed Air</a> <br> The energy sector has shawn a spotlight on CO2 with interest as a working fluid in projects such as geothermal and <a href="https://www.waste.net/2/thermal_storage.html#pump_heat">Pumped Heat</a> Energy Storage. <br> <a name="pressurized_liquids"></a> <br> <B>Pressurized Liquids</B> <br> Pressurized non-compressible liquids are commonly used to produce hydraulic cylinder power (kinetic motion) or may be used to drive a high <a href="https://www.waste.net/2/motion.html#torque">torque</a> slow speed hydraulic motor. Pressure is also used to create artificial head pressure. <br> Historically water has been stored in <a href="https://www.waste.net/2/hydro.html#hydraulic">Hydro Accumulator Towers</a> which allowed for the manipulation of a controlled artificial head pressure. <br> Energy may be stored in pressurized hydraulic oils and may be connected to an accumulation system that facilitates the stable holding of volumes of storage. <br> <a name="pressure_accumulation"></a> <br> <B>Accumulation & Consolidation</B> <br> The ability to <a href="https://www.waste.net/2/sidestream.html#pressure">Consolidate</a> Pressurized Energy that is accumulated in different volumes over different time intervals is a unique advantage of pressurized fluid storage. <br> <a name="pressure_discharge"></a> <br> <B>Pressure Energy Discharge</B> <br> The distribution of Pressure Energy provides a flexible option that maximizes the time shifting value between the time it is accumulated and the time when it is released. Energy storage in pressurized fluids is a stable, discretionary longer term storage option. <br> <a name="pressure_generation"></a> <br> <B>Pressure Generation & Transfer</B> <br> The Recovery 2.0 system attempts to take advantage of the natural flow of <a href="https://www.waste.net/2/energy.html#fluids">fluids</a> from areas of high pressure to areas of low pressure wherever possible. <br> Attempting to understand the <a href="https://www.waste.net/2/water_pipeline.html#conversion_reaction">relationship</a> of fluid dynamics & thermal dynamics and how to best manipulate <a href="https://www.waste.net/2/waste_heat.html#overview">temperature and pressure</a> within the Recovery 2.0 process presents an ongoing challenge. <br> <a name="pressure_generation"></a> <br> The symbiotic advantage of operating a process such as The Recovery 2.0 system provides opportunities to capitalize on the inter-working synergy. <br> An example this synergy is demonstrated in the <a href="https://www.waste.net/2/hydro.html#phs">Pressurized Hydro Storage</a> module. While charging the Hydro Accumulator Tower the incoming water flow may be used as a liquid piston to compress the volume of trapped air contained in the system. <br> <br> At any discretionary pressure point the compressed air may be defused to an adjoining compressed air storage module. There is an opportunity to <a href="https://www.waste.net/2/gradient.html#air_turbine">harvest energy</a> while the air transfers from the Hydro Accumulator into the compressed air storage module. <br> Maintaining the controlled flexibility to defuse the air flow back and forth between the water and air storage columns may allow for the opportunity to manipulate the pressures as the respective sides charge and discharge. <br> Connecting the compressed air storage modules into the backbone of the <a href="https://www.waste.net/2/compressed_air_pipeline.html">Compressed Air Pipeline</a> will add additional flexibility and capacity. <br> <br> In addition, the Hydro Accumulator Tower may possibly be combine with parts of the Thermal Energy <a href="https://www.waste.net/2/thermal_storage.html#hot_vs_cold">storage banks</a>. <br> <a name="pressure_engine"></a> <br> <B>Pressure Engine</B> <br> Traditional Heat Engines are based on the combination of <a href="https://www.waste.net/2/waste_heat.html#overview">Temperature and Pressure</a> to focus the output of energy and torque. <br> The development of a system that functions as a Pressure Engine is a method of creating a continuos pressure zone. One example of a Pressure Engine is a system that creates a concentrated low pressure zone by evacuating volumes of air from a confined area, this air flow may be used to become the feedstock for the Recovery 2.0 <a href="https://www.waste.net/2/compressed_air.html">air compression</a> pumps and the source for the <a href="https://www.waste.net/2/condense.html#newcomen">Condensing</a> modules. This evacuation air flow may act as a vacuum draw to accelerate the <a href="https://www.waste.net/2/wind.html">wind tunnel</a> system. <br> The creation, manipulation or management of pressure zones provides the opportunity to harness energy with the use of a <a href="https://www.waste.net/2/wind.html#bio_lung">Bio Lung</a> style of system. </p> </div> <a name="pressure_exchanger"></a> <div class="box"> <center> <a hef="https://www.waste.net/2/"> <img src="https://www.waste.net/2/pressure_exchanger.gif" alt="Pressure Exchanger" border="0"></a> </center> </div> <div class="box"> <p> <B>Pressure Exchanger</B> <br> The introduction of a rotary pressure exchange apparatus allows for the transfer of pressure between two separate streams, a low pressure stream and a high pressure fluid flow. <br> The input of a high pressure fluid flow, directed through graduated intake ports, drives the rotation of a series of cylindrical columns. As these columns rotate past the fixed ducted input and output ports the fluids are allowed to fill and exit the individual cylinders creating a unique fluid dynamic flow. <br> The Pressure Transfer Exchange effect is created when the flow acts as a fluid piston within each cylinder as the fluids enter and are expelled. This action is comparable to a compression pump as the high pressure stream acts on the temporarily confined low pressure stream. <br> <br> The net result of this <B>Pressure Exchanger</B> reaction is a conversion of the low pressure fluid stream into a high pressure stream, and conversely the incoming high pressure stream becomes a low pressure flow. <br> </p> </div> <a name="osculating_pressure"></a> <div class="box"> <p> <B>Osculating Pressure Systems</B> <br> Osculating Pressure Systems typically operate on a principle of a repetitive and reversible flow of fluids within a constricted or confined channel. The fluid flows may consist of either liquids or gases that are directed through a harvesting/generating device such as a turbine arrangement. <br> <br> One example of such a harvesting opportunity is contained in a <a href="https://www.waste.net/2/hydro.html#phs">Pressurized Hydro Storage</a> system, where an osculating air flow between the hydro accumulator tower and the compressed air storage may be harnessed with an <a href="https://www.waste.net/2/gradient.html#osculating_pressure">Osculating</a> energy harvesting device such as an <a href="https://www.waste.net/2/gradient.html#air_turbine">Air Turbine</a>. </p> </div> <a name="air_turbine"></a> <div class="box"> <center> <a href="https://www.waste.net/2/wind.html"> <img src="https://www.waste.net/gif-bin/air_turbine.gif" alt="Air Turbine" border="0"></a> </center> </div> <a name="wells_turbine"></a> <div class="box"> <p> <B>Wells Turbine</B> <br> Capturing multi-direction flows of fluids that may be harnessed with the use of devices such as a Wells Turbine to convert pressure flows into electrical energy. The possibility to operate a piston driven or pressure modified <a href="https://www.waste.net/2/gradient.html#sterling_engines">Stirling Engine</a>, or linear induction generator may also exist. We recognize several points throughout the Recovery 2.0 process that may be tapped to harvest pressure flows such as the <a href="https://www.waste.net/2/wind.html">Wind</a> Energy harvesting system, the <a href="https://www.waste.net/2/compressed_air.html">Compressed Air</a> management system and the Air Exhaust Module. </p> </div> <a name="storage"></a> <div class="box"> <center> <a href="https://www.energychange.com/renewable/group.html#energy_storage_group"> <img border="0" alt="Waste.net" src="https://www.waste.net/gif-bin/energy_storage.gif"></a> </center> </div> <a name="path"></a> <div class="box"> <p> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <b>Energy Storage</b> <br> <a name="sidestream"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/battery.html">Battery Banks</a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/thermal_storage.html">Thermal Energy Storage</a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/compressed_air.html">Compressed Air Storage</a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/exothermic.html">Exothermic Element Storage</a> <br> <a name="regeneration"></a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <b>Short Cycle Regeneration</b> <br> <a name="hydro"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/hydro.html">Hydro Energy</a> <br> <a name="wind"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/wind.html">Wind Energy</a> <br> <a name="gravity"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/gravity.html">Gravity Energy</a> <br> <a name="gradient"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/gradient.html">Gradient Energy</a> <br> <a name="energy_sources"></a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <b>Energy Sources</b> <a name="solar"></a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/solar.html">Solar</a> <br> <a name="electricity"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/electricity.html">Electricity</a> <br> <a name="waste_heat"></a> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/waste_heat.html">Waste Heat</a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp - <a href="https://www.waste.net/2/sidestream.html">Optional Sidestreams</a> <br> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; <b>Understanding Energy & Recovery</b> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/#energy_commodity">Energy as a Commodity</a> <br> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; - <a href="https://www.waste.net/2/#recovered_energy">Recovered Energy</a> </p> </div> <a name="extraction"></a> <div class="box"> <center> <a href="https://www.waste.net/2/cell.html"> <img src="https://www.waste.net/2/electrochemical_cells.gif" alt="Electrochemical Cells" border="0" width="125"></a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/2/oxidation_reaction.html"> <img src="https://www.waste.net/2/oxidation_reduction.gif" alt="Oxidation/Reduction & Displacement" border="0" width="125"></a> <br> <a href="https://www.waste.net/2/molten_media.html"> <img src="https://www.waste.net/2/molten_media.gif" alt="Molten Media Extraction" border="0" width="125"></a> </center> </div> <div class="box"> <hr width="50%" color="#cccccc"> </div> <div class="box"> <center> <a href="https://www.waste.net/disposal.html#desalination">Desalination</a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/brine.html">Brine</a> &nbsp; &nbsp; <a href="https://www.waste.net/water.html#pure">Water Purification</a> <br> <a href="https://www.waste.net/4.html#recover">Resource Recovery</a> <br> <br> <a href="https://www.by-productsynergy.com/biorefining.html#pathway">Bio-Refining</a> &nbsp; &nbsp; &nbsp; <a href="https://www.by-productsynergy.com/refining.html">High Temperature Refining</a> <br> <a href="https://www.by-productsynergy.com/hotgas.html">Hot Gas Refining</a> <br> </center> </div> <div class="box"> <br> <center> <a href="https://www.waste.net/questions.html"> <IMG width"300" SRC="https://www.waste.net/gif-bin/questions.gif"></a> <br> Ask Your Recycling Questions </center> </div> <div class="box"> <center> <a href="https://www.waste.net/4.html">The 4 R's</a> &nbsp; &nbsp; &nbsp; <a href="https://www.grn.com/a/view/9910.html">Events</a> &nbsp; &nbsp; <a href="https://www.waste.net/markets.html">Markets</a> <br> <font color="#FFFFFF" size="-3"> Monday, 30-Sep-2024 17:02:06 EDT - 663 </font> <br> <a href="https://www.waste.net/cgi-bin/feedback3.cgi?id=73&from=waste.net&w=chf:waste">WebMaster FeedBack</a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/cgi-bin/91.cgi?at=000001&kw=waste.net&do=results&w=chf:waste">Privacy Policy</a> &nbsp; &nbsp; &nbsp; <a href="https://www.waste.net/">Home</a> </center> </div> <div class="box"> <hr width="50%" color="#cccccc"> </div> <div class="box"> <center> <a href="https://www.cooksmill.com/"> <IMG SRC="https://www.cooksmill.com/gif-bin/390x67-transpBG.gif" width="300"></a> <br> Waste.net is part of the Cooksmill NetSystem <a href="https://www.cooksmill.net/clients.html">network</a> of websites </center> </div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10