CINXE.COM
Chrissen Gemmill | University of Waikato - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Chrissen Gemmill | University of Waikato - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="eFfdta+h50RG/uvx7nhyfU/N2SMd+3p4y5KnY01vPB/Eh/S6ZaDDcl0mFznLKDRxoyN852dgSdAj6wezF+rBzg==" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-77f7b87cb1583fc59aa8f94756ebfe913345937eb932042b4077563bebb5fb4b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-9e8218e1301001388038e3fc3427ed00d079a4760ff7745d1ec1b2d59103170a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-b2b823dd904da60a48fd1bfa1defd840610c2ff414d3f39ed3af46277ab8df3b.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> <meta name="author" content="chrissen gemmill" /> <meta name="description" content="Chrissen Gemmill, University of Waikato: 43 Followers, 21 Following, 34 Research papers. Research interests: Molecular systematics and plant taxonomy, Botany,…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '25f61f9be64f6972bc77c9624a642cb40afd50b7'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":15252,"monthly_visitors":"120 million","monthly_visitor_count":120260779,"monthly_visitor_count_in_millions":120,"user_count":278654144,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1734026552000); window.Aedu.timeDifference = new Date().getTime() - 1734026552000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" rel="stylesheet"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-0fb6fc03c471832908791ad7ddba619b6165b3ccf7ae0f65cf933f34b0b660a7.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-2eebbf16f94e23df09908fc0eb355e7d088296bc7bbbbe96567743814345fdd9.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-086d9084944b0c8a793ea96ac398b4180db6177bb674e9655034fb25e834c8b4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://waikato.academia.edu/ChrissenGemmill" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-7c63369d6bc1d9729936224080f1002d6f378f0ed8d4ed7c2ee00a7b16812651.js" defer="defer"></script><script>Aedu.rankings = { showPaperRankingsLink: false } $viewedUser = Aedu.User.set_viewed( {"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill","photo":"https://0.academia-photos.com/10706701/3217654/4118724/s65_chrissen.gemmill.jpg","has_photo":true,"department":{"id":724583,"name":"School of Science","url":"https://waikato.academia.edu/Departments/School_of_Science/Documents","university":{"id":746,"name":"University of Waikato","url":"https://waikato.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":169322,"name":"Molecular systematics and plant taxonomy","url":"https://www.academia.edu/Documents/in/Molecular_systematics_and_plant_taxonomy"},{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":17823,"name":"Biogeography","url":"https://www.academia.edu/Documents/in/Biogeography"},{"id":7076,"name":"Taxonomy","url":"https://www.academia.edu/Documents/in/Taxonomy"},{"id":7710,"name":"Biology","url":"https://www.academia.edu/Documents/in/Biology"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":17825,"name":"Biodiversity","url":"https://www.academia.edu/Documents/in/Biodiversity"},{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":1700,"name":"Ethnobotany","url":"https://www.academia.edu/Documents/in/Ethnobotany"},{"id":10882,"name":"Evolution","url":"https://www.academia.edu/Documents/in/Evolution"},{"id":158,"name":"Marine Biology","url":"https://www.academia.edu/Documents/in/Marine_Biology"},{"id":7805,"name":"Marine Conservation","url":"https://www.academia.edu/Documents/in/Marine_Conservation"},{"id":5221,"name":"Restoration Ecology","url":"https://www.academia.edu/Documents/in/Restoration_Ecology"},{"id":7997,"name":"Invasive species ecology","url":"https://www.academia.edu/Documents/in/Invasive_species_ecology"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":27756,"name":"DNA Barcoding","url":"https://www.academia.edu/Documents/in/DNA_Barcoding"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = [{"id":3163439,"link":"http://facebook.com/Botany at Waikato, Aotearoa/New Zealand","name":"Facebook","link_domain":null,"icon":"//www.google.com/s2/u/0/favicons?domain="},{"id":3177330,"link":"http://sci.waikato.ac.nz/about-us/people/gemmill","name":"Homepage","link_domain":"sci.waikato.ac.nz","icon":"//www.google.com/s2/u/0/favicons?domain=sci.waikato.ac.nz"},{"id":3177341,"link":"http://scholar.google.co.nz/citations?user=qB2izpQAAAAJ\u0026hl=en\u0026oi=ao","name":"Google Scholar","link_domain":"scholar.google.co.nz","icon":"//www.google.com/s2/u/0/favicons?domain=scholar.google.co.nz"}]</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://waikato.academia.edu/ChrissenGemmill","location":"/ChrissenGemmill","scheme":"https","host":"waikato.academia.edu","port":null,"pathname":"/ChrissenGemmill","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-b97b56ac-96d2-48e5-885c-46dfeb59656d"></div> <div id="ProfileCheckPaperUpdate-react-component-b97b56ac-96d2-48e5-885c-46dfeb59656d"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Chrissen Gemmill" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/10706701/3217654/4118724/s200_chrissen.gemmill.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Chrissen Gemmill</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://waikato.academia.edu/">University of Waikato</a>, <a class="u-tcGrayDarker" href="https://waikato.academia.edu/Departments/School_of_Science/Documents">School of Science</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Chrissen" data-follow-user-id="10706701" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="10706701"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">43</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">21</p></div></a><a><div class="stat-container js-profile-coauthors" data-broccoli-component="user-info.coauthors-count" data-click-track="profile-expand-user-info-coauthors"><p class="label">Co-authors</p><p class="data">4</p></div></a><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address: </b>School of Science <br />University of Waikato <br />http://sci.waikato.ac.nz/about-us/people/gemmill <br />https://www.facebook.com/groups/botanyatwaikato/<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="10706701">View All (19)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="10706701" href="https://www.academia.edu/Documents/in/Molecular_systematics_and_plant_taxonomy"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://waikato.academia.edu/ChrissenGemmill","location":"/ChrissenGemmill","scheme":"https","host":"waikato.academia.edu","port":null,"pathname":"/ChrissenGemmill","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Molecular systematics and plant taxonomy"]}" data-trace="false" data-dom-id="Pill-react-component-cefe3394-4294-4be4-a5e1-d8846a11e703"></div> <div id="Pill-react-component-cefe3394-4294-4be4-a5e1-d8846a11e703"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="10706701" href="https://www.academia.edu/Documents/in/Botany"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Botany"]}" data-trace="false" data-dom-id="Pill-react-component-4f7be388-9eaf-4908-b4b9-992afee47ed0"></div> <div id="Pill-react-component-4f7be388-9eaf-4908-b4b9-992afee47ed0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="10706701" href="https://www.academia.edu/Documents/in/Biogeography"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Biogeography"]}" data-trace="false" data-dom-id="Pill-react-component-58a44a76-88cc-4564-98b2-9fba0a71f585"></div> <div id="Pill-react-component-58a44a76-88cc-4564-98b2-9fba0a71f585"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="10706701" href="https://www.academia.edu/Documents/in/Taxonomy"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Taxonomy"]}" data-trace="false" data-dom-id="Pill-react-component-3c774494-eeb1-49bf-a029-d2f778e3c08a"></div> <div id="Pill-react-component-3c774494-eeb1-49bf-a029-d2f778e3c08a"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="10706701" href="https://www.academia.edu/Documents/in/Biology"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Biology"]}" data-trace="false" data-dom-id="Pill-react-component-322edbaa-7f9f-4552-b069-ed98d3dba565"></div> <div id="Pill-react-component-322edbaa-7f9f-4552-b069-ed98d3dba565"></div> </a></div></div><div class="external-links-container"><ul class="profile-links new-profile js-UserInfo-social"><li class="profile-profiles js-social-profiles-container"><i class="fa fa-spin fa-spinner"></i></li></ul></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Chrissen Gemmill</h3></div><div class="js-work-strip profile--work_container" data-work-id="45945356"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/45945356/Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_"><img alt="Research paper thumbnail of Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/45945356/Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_">Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45945356"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45945356"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45945356; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45945356]").text(description); $(".js-view-count[data-work-id=45945356]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45945356; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45945356']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 45945356, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=45945356]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45945356,"title":"Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae)","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/45945356/Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_","translated_internal_url":"","created_at":"2021-04-07T23:19:42.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380716"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380716/Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1"><img alt="Research paper thumbnail of Stevens et al NZJE Accepted Ms.2 TABLE 1" class="work-thumbnail" src="https://attachments.academia-assets.com/42506152/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380716/Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1">Stevens et al NZJE Accepted Ms.2 TABLE 1</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e4878f815ea5515b6faaee0b46282255" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506152,"asset_id":16380716,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506152/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380716"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380716"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380716; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380716]").text(description); $(".js-view-count[data-work-id=16380716]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380716; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380716']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380716, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e4878f815ea5515b6faaee0b46282255" } } $('.js-work-strip[data-work-id=16380716]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380716,"title":"Stevens et al NZJE Accepted Ms.2 TABLE 1","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380716/Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1","translated_internal_url":"","created_at":"2015-10-01T16:11:31.484-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506152,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506152/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4.pdf","download_url":"https://www.academia.edu/attachments/42506152/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506152/Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf\u0026Expires=1734024194\u0026Signature=HSPs4PQro0Th19evRT8StPDQKnNTlUFymMThRkf98Uch-FgHRtjOECh9Kec~TSZ1q6oLNTVVpVOWP7Zt5QdBBsYG6j-91npVppbUzaPBpsuRxQa8TPpn~HQcKogOsGOJjEiIgH~7QeoRFwMQD4PG2zmdrw4jc4uxEZrLMgrfevGeIQg2M45u9AhgixxJ0uBztapQiDxCmgNBIgVopbCtumZGyMUT~4mZWkfQ7rHK4eVLD6SaOnNIaZjAKGu3bcgw0D0IJGtnKrmp0E4~cGeDtLxVa-jCTL4K4qhRMoKwOjDsOVnPb8zcY3ZNH8wEOawbGFFaNCmlgCk4QEdQDK3JIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506152,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506152/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4.pdf","download_url":"https://www.academia.edu/attachments/42506152/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506152/Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf\u0026Expires=1734024194\u0026Signature=HSPs4PQro0Th19evRT8StPDQKnNTlUFymMThRkf98Uch-FgHRtjOECh9Kec~TSZ1q6oLNTVVpVOWP7Zt5QdBBsYG6j-91npVppbUzaPBpsuRxQa8TPpn~HQcKogOsGOJjEiIgH~7QeoRFwMQD4PG2zmdrw4jc4uxEZrLMgrfevGeIQg2M45u9AhgixxJ0uBztapQiDxCmgNBIgVopbCtumZGyMUT~4mZWkfQ7rHK4eVLD6SaOnNIaZjAKGu3bcgw0D0IJGtnKrmp0E4~cGeDtLxVa-jCTL4K4qhRMoKwOjDsOVnPb8zcY3ZNH8wEOawbGFFaNCmlgCk4QEdQDK3JIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6632530,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/270703000_Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_1/links/54b307b70cf220c63cd27858.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380715"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380715/STEVENS_uncorrected_proof"><img alt="Research paper thumbnail of STEVENS uncorrected proof" class="work-thumbnail" src="https://attachments.academia-assets.com/42506158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380715/STEVENS_uncorrected_proof">STEVENS uncorrected proof</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantco...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantcommunity restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous 'fingerprinting' markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="067b31cbcb2d0cd2692249403dd9c1fe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506158,"asset_id":16380715,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506158/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380715"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380715"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380715; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380715]").text(description); $(".js-view-count[data-work-id=16380715]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380715; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380715']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380715, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "067b31cbcb2d0cd2692249403dd9c1fe" } } $('.js-work-strip[data-work-id=16380715]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380715,"title":"STEVENS uncorrected proof","translated_title":"","metadata":{"grobid_abstract":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantcommunity restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous 'fingerprinting' markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","grobid_abstract_attachment_id":42506158},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380715/STEVENS_uncorrected_proof","translated_internal_url":"","created_at":"2015-10-01T16:11:31.392-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506158/thumbnails/1.jpg","file_name":"STEVENS_uncorrected_proof20160209-28316-iuq19s.pdf","download_url":"https://www.academia.edu/attachments/42506158/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"STEVENS_uncorrected_proof.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506158/STEVENS_uncorrected_proof20160209-28316-iuq19s-libre.pdf?1455055819=\u0026response-content-disposition=attachment%3B+filename%3DSTEVENS_uncorrected_proof.pdf\u0026Expires=1734024194\u0026Signature=JfDrUunuo8OiOs98sLjHvdoy7c3clyyHznlJ7nZHud40oY9i6htT8jtpP5kVaUdqVfjKQNJO7Ad6NA3UaldbDe~8HiPgLfl1J5zMc2VISIkv-xF2dKoHfmJrPsP0AtX-57ADjR1zXAD15V75kAqhK4AwlvSQZS0Bg6QBS2gQR3FjlNsE-b9p0APJgcexmV4LN8gWeGeI-RehuYo6q-D7yRvyDIuIbbqLNn19VIZbqC5OI8Vgl5djlrmOY3c8mbw-VaMAEwgr6cA0jjLKwdIvA4nor~1JX0xMQYcp~XVDBoFtbwONCc0xpkG9t7ZPcPXOoPhgAwUZYpMCymCs46iavw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"STEVENS_uncorrected_proof","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantcommunity restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous 'fingerprinting' markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506158/thumbnails/1.jpg","file_name":"STEVENS_uncorrected_proof20160209-28316-iuq19s.pdf","download_url":"https://www.academia.edu/attachments/42506158/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"STEVENS_uncorrected_proof.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506158/STEVENS_uncorrected_proof20160209-28316-iuq19s-libre.pdf?1455055819=\u0026response-content-disposition=attachment%3B+filename%3DSTEVENS_uncorrected_proof.pdf\u0026Expires=1734024194\u0026Signature=JfDrUunuo8OiOs98sLjHvdoy7c3clyyHznlJ7nZHud40oY9i6htT8jtpP5kVaUdqVfjKQNJO7Ad6NA3UaldbDe~8HiPgLfl1J5zMc2VISIkv-xF2dKoHfmJrPsP0AtX-57ADjR1zXAD15V75kAqhK4AwlvSQZS0Bg6QBS2gQR3FjlNsE-b9p0APJgcexmV4LN8gWeGeI-RehuYo6q-D7yRvyDIuIbbqLNn19VIZbqC5OI8Vgl5djlrmOY3c8mbw-VaMAEwgr6cA0jjLKwdIvA4nor~1JX0xMQYcp~XVDBoFtbwONCc0xpkG9t7ZPcPXOoPhgAwUZYpMCymCs46iavw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6632536,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/273382103_STEVENS_uncorrected_proof/links/54ffd1dc0cf2672e2248bd25.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380714"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380714/Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS"><img alt="Research paper thumbnail of Stevens et al NZJE Accepted Ms.3 TABLE 2 and FIGS" class="work-thumbnail" src="https://attachments.academia-assets.com/42506162/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380714/Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS">Stevens et al NZJE Accepted Ms.3 TABLE 2 and FIGS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f373d5151dd607f94ebc2575e6b30ec9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506162,"asset_id":16380714,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506162/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380714"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380714"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380714; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380714]").text(description); $(".js-view-count[data-work-id=16380714]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380714; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380714']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380714, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f373d5151dd607f94ebc2575e6b30ec9" } } $('.js-work-strip[data-work-id=16380714]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380714,"title":"Stevens et al NZJE Accepted Ms.3 TABLE 2 and FIGS","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380714/Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS","translated_internal_url":"","created_at":"2015-10-01T16:11:31.311-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506162,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506162/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0.pdf","download_url":"https://www.academia.edu/attachments/42506162/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506162/Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf\u0026Expires=1734024194\u0026Signature=e-Qx882gu3PEy8gVRygAMhmIJzZZ0WWKc61XkC9nexYfpryi0FNjDW9pbrStw~NJIcLi~kvEGsRYDTTvDXygTDwJZQfd4VI42K-fhADHAOq-T8M6v29RWOvhhPS~YvtcQ9EOTh0mrdd9NfBQaoRoMQ0C4IIaYzyqRkDasX2M-k2PZ3uuwNXA~PTxvL85ddYp~3uwEu8LHjdr7pu818QccMMHJSbjuhCrEe8vJ-nqszwGTRo9zC~-cehPWFKMRpcCaZB-8AKfA4RbGG4KiHfKmjttwKvOve8sU7ZLjkTsBxcIo-VGk2o2O-XLMdOmXCuJsemGCWQIgd~pgJpALawL5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506162,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506162/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0.pdf","download_url":"https://www.academia.edu/attachments/42506162/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506162/Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf\u0026Expires=1734024194\u0026Signature=e-Qx882gu3PEy8gVRygAMhmIJzZZ0WWKc61XkC9nexYfpryi0FNjDW9pbrStw~NJIcLi~kvEGsRYDTTvDXygTDwJZQfd4VI42K-fhADHAOq-T8M6v29RWOvhhPS~YvtcQ9EOTh0mrdd9NfBQaoRoMQ0C4IIaYzyqRkDasX2M-k2PZ3uuwNXA~PTxvL85ddYp~3uwEu8LHjdr7pu818QccMMHJSbjuhCrEe8vJ-nqszwGTRo9zC~-cehPWFKMRpcCaZB-8AKfA4RbGG4KiHfKmjttwKvOve8sU7ZLjkTsBxcIo-VGk2o2O-XLMdOmXCuJsemGCWQIgd~pgJpALawL5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6632539,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/270703001_Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_2_and_FIGS/links/54b307d00cf2318f0f953e38.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380713"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380713/Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum"><img alt="Research paper thumbnail of Connecting the dots: a population genetic study of the disjunctly distributed species Pittosporum obcordatum" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380713/Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum">Connecting the dots: a population genetic study of the disjunctly distributed species Pittosporum obcordatum</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disj...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380713"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380713"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380713; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380713]").text(description); $(".js-view-count[data-work-id=16380713]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380713; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380713']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380713, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380713]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380713,"title":"Connecting the dots: a population genetic study of the disjunctly distributed species Pittosporum obcordatum","translated_title":"","metadata":{"abstract":"Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis."},"translated_abstract":"Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis.","internal_url":"https://www.academia.edu/16380713/Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum","translated_internal_url":"","created_at":"2015-10-01T16:11:31.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380712"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380712/New_Zealand_flowers_what_do_the_birds_and_the_bees_see"><img alt="Research paper thumbnail of New Zealand flowers: what do the birds and the bees see?" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380712/New_Zealand_flowers_what_do_the_birds_and_the_bees_see">New Zealand flowers: what do the birds and the bees see?</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to kno...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380712"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380712"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380712; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380712]").text(description); $(".js-view-count[data-work-id=16380712]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380712; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380712']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380712, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380712]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380712,"title":"New Zealand flowers: what do the birds and the bees see?","translated_title":"","metadata":{"abstract":"New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar..."},"translated_abstract":"New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar...","internal_url":"https://www.academia.edu/16380712/New_Zealand_flowers_what_do_the_birds_and_the_bees_see","translated_internal_url":"","created_at":"2015-10-01T16:11:31.150-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_Zealand_flowers_what_do_the_birds_and_the_bees_see","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar...","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380711"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380711/ASBS2014abstracts"><img alt="Research paper thumbnail of ASBS2014abstracts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380711/ASBS2014abstracts">ASBS2014abstracts</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380711"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380711"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380711; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380711]").text(description); $(".js-view-count[data-work-id=16380711]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380711; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380711']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380711, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380711]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380711,"title":"ASBS2014abstracts","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380711/ASBS2014abstracts","translated_internal_url":"","created_at":"2015-10-01T16:11:30.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"ASBS2014abstracts","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380710"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380710/Fixing_the_female_job_pipeline"><img alt="Research paper thumbnail of Fixing the female job pipeline" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380710/Fixing_the_female_job_pipeline">Fixing the female job pipeline</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380710"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380710"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380710; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380710]").text(description); $(".js-view-count[data-work-id=16380710]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380710; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380710']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380710, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380710]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380710,"title":"Fixing the female job pipeline","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380710/Fixing_the_female_job_pipeline","translated_internal_url":"","created_at":"2015-10-01T16:11:30.459-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fixing_the_female_job_pipeline","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380709"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380709/Above_the_treeline_a_nature_guide_to_alpine_New_Zealand"><img alt="Research paper thumbnail of Above the treeline: a nature guide to alpine New Zealand" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380709/Above_the_treeline_a_nature_guide_to_alpine_New_Zealand">Above the treeline: a nature guide to alpine New Zealand</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380709"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380709"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380709; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380709]").text(description); $(".js-view-count[data-work-id=16380709]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380709; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380709']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380709, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380709]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380709,"title":"Above the treeline: a nature guide to alpine New Zealand","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380709/Above_the_treeline_a_nature_guide_to_alpine_New_Zealand","translated_internal_url":"","created_at":"2015-10-01T16:11:30.350-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Above_the_treeline_a_nature_guide_to_alpine_New_Zealand","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380708"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380708/Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum"><img alt="Research paper thumbnail of Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum" class="work-thumbnail" src="https://attachments.academia-assets.com/42506154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380708/Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum">Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum</a></div><div class="wp-workCard_item"><span>Antarctic Science</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic, New Zealand and Australia to understand better taxonomic delimitations and resolve relationships between these geographic regions. Bryum argenteum has been recorded as two species, B. argenteum and B. subrotundifolium, in all four regions with the latter now referred to as B. argenteum var. muticum. We found disagreement between taxon delimitations (based on morphology) and molecular markers. All continental Antarctic specimens consistently formed a monophyletic sister group that consisted of both morphologically identified B. argenteum varieties, separate to all non-Antarctic specimens (also consisting of both varieties). We suggest, contrary to previous records, that all continental Antarctic (Victoria Land) populations are referable to B. argenteum var. muticum, while sub-Antarctic, Australian and New Zealand populations included here are B. argenteum var. argenteum. Additionally, since there was less genetic diversity within Victoria Land, Antarctica, than observed between non-Antarctic samples, we suggest that this is, in part, due to a potentially lower rate of DNA substitution and isolation in northern and southern refugia within Victoria Land since the Pleistocene.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40dc249935762814ebcd61a000d6f335" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506154,"asset_id":16380708,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506154/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380708"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380708"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380708; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380708]").text(description); $(".js-view-count[data-work-id=16380708]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380708; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380708']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380708, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40dc249935762814ebcd61a000d6f335" } } $('.js-work-strip[data-work-id=16380708]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380708,"title":"Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum","translated_title":"","metadata":{"grobid_abstract":"We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic, New Zealand and Australia to understand better taxonomic delimitations and resolve relationships between these geographic regions. Bryum argenteum has been recorded as two species, B. argenteum and B. subrotundifolium, in all four regions with the latter now referred to as B. argenteum var. muticum. We found disagreement between taxon delimitations (based on morphology) and molecular markers. All continental Antarctic specimens consistently formed a monophyletic sister group that consisted of both morphologically identified B. argenteum varieties, separate to all non-Antarctic specimens (also consisting of both varieties). We suggest, contrary to previous records, that all continental Antarctic (Victoria Land) populations are referable to B. argenteum var. muticum, while sub-Antarctic, Australian and New Zealand populations included here are B. argenteum var. argenteum. Additionally, since there was less genetic diversity within Victoria Land, Antarctica, than observed between non-Antarctic samples, we suggest that this is, in part, due to a potentially lower rate of DNA substitution and isolation in northern and southern refugia within Victoria Land since the Pleistocene.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Antarctic Science","grobid_abstract_attachment_id":42506154},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380708/Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum","translated_internal_url":"","created_at":"2015-10-01T16:11:30.209-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506154/thumbnails/1.jpg","file_name":"Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c.pdf","download_url":"https://www.academia.edu/attachments/42506154/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_support_for_Pleistocene_persis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506154/Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_support_for_Pleistocene_persis.pdf\u0026Expires=1734024194\u0026Signature=GhJPNgBytUyJyz1o9HWi9bVTKSV652Y9Ac8AtBzaL3O1th-D~87iIZY2ibjiNhxMT3ViL41KXiDRTxh9N~7jymrSXADraASyIwLHJUdj4SyOIur4XxqVETXaCxgOlHGSI9YbHx41UgMhz1~CMd4zKIMQv518JDU56XJY-XdID4wCtOQ2SsX4W0Sj4oQYjy5Z1ksGlHbv7a-cn2e7B~omY19ZMcAhm0sCohgRTnovGa9stTGfaVSki-ZgbEwvEJUdWBs-yE97ImW9rqsktMIJQJETgBJfeqk5Lvkf-WQELgETA1PYiHCi1gt74MFrRbJGItrfitIPkD6n43Qz5a0Wmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic, New Zealand and Australia to understand better taxonomic delimitations and resolve relationships between these geographic regions. Bryum argenteum has been recorded as two species, B. argenteum and B. subrotundifolium, in all four regions with the latter now referred to as B. argenteum var. muticum. We found disagreement between taxon delimitations (based on morphology) and molecular markers. All continental Antarctic specimens consistently formed a monophyletic sister group that consisted of both morphologically identified B. argenteum varieties, separate to all non-Antarctic specimens (also consisting of both varieties). We suggest, contrary to previous records, that all continental Antarctic (Victoria Land) populations are referable to B. argenteum var. muticum, while sub-Antarctic, Australian and New Zealand populations included here are B. argenteum var. argenteum. Additionally, since there was less genetic diversity within Victoria Land, Antarctica, than observed between non-Antarctic samples, we suggest that this is, in part, due to a potentially lower rate of DNA substitution and isolation in northern and southern refugia within Victoria Land since the Pleistocene.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506154/thumbnails/1.jpg","file_name":"Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c.pdf","download_url":"https://www.academia.edu/attachments/42506154/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_support_for_Pleistocene_persis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506154/Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_support_for_Pleistocene_persis.pdf\u0026Expires=1734024194\u0026Signature=GhJPNgBytUyJyz1o9HWi9bVTKSV652Y9Ac8AtBzaL3O1th-D~87iIZY2ibjiNhxMT3ViL41KXiDRTxh9N~7jymrSXADraASyIwLHJUdj4SyOIur4XxqVETXaCxgOlHGSI9YbHx41UgMhz1~CMd4zKIMQv518JDU56XJY-XdID4wCtOQ2SsX4W0Sj4oQYjy5Z1ksGlHbv7a-cn2e7B~omY19ZMcAhm0sCohgRTnovGa9stTGfaVSki-ZgbEwvEJUdWBs-yE97ImW9rqsktMIJQJETgBJfeqk5Lvkf-WQELgETA1PYiHCi1gt74MFrRbJGItrfitIPkD6n43Qz5a0Wmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":424365,"name":"Antarctic Science","url":"https://www.academia.edu/Documents/in/Antarctic_Science"}],"urls":[{"id":6632533,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/231803050_Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum/links/00b7d51b7b54f27369000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16275699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16275699/Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_"><img alt="Research paper thumbnail of Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)" class="work-thumbnail" src="https://attachments.academia-assets.com/38921790/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16275699/Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_">Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://cambridge.academia.edu/AndrewClarke">Andrew Clarke</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://waikato.academia.edu/ChrissenGemmill">Chrissen Gemmill</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="648081018d90f0397de83354d444c0ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":38921790,"asset_id":16275699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/38921790/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16275699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16275699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16275699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16275699]").text(description); $(".js-view-count[data-work-id=16275699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16275699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16275699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16275699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "648081018d90f0397de83354d444c0ce" } } $('.js-work-strip[data-work-id=16275699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16275699,"title":"Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)","translated_title":"","metadata":{"abstract":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","more_info":"New Zealand Journal of Ecology (2015) 39: 190–197."},"translated_abstract":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","internal_url":"https://www.academia.edu/16275699/Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_","translated_internal_url":"","created_at":"2015-09-28T14:16:28.140-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":235115,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6399613,"work_id":16275699,"tagging_user_id":235115,"tagged_user_id":10706701,"co_author_invite_id":null,"email":"g***s@xtra.co.nz","affiliation":"University of Waikato","display_order":0,"name":"Chrissen Gemmill","title":"Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)"}],"downloadable_attachments":[{"id":38921790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38921790/thumbnails/1.jpg","file_name":"New_Zeal_J_Ecol_2015_39_2_190-197.pdf","download_url":"https://www.academia.edu/attachments/38921790/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Are_current_ecological_restoration_pract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38921790/New_Zeal_J_Ecol_2015_39_2_190-197-libre.pdf?1443476177=\u0026response-content-disposition=attachment%3B+filename%3DAre_current_ecological_restoration_pract.pdf\u0026Expires=1733918632\u0026Signature=Xa~Tar2wm-SXWn1m4-oy86G7M34ZncBO1XkH-peONt-gsCendH3IsKt9vKdlkmtTFRlLgus21gI1Lji~103gm~21cQjGYhpD3ioJiaVZ4RFc~wh9tL-4FdKbMp-0UR8N-m12-EFrhbqpmfrB3qT7OBruZFr6k0x9fzUa4KQpP3M56YZOZYU01vhG1GTLqSbmD9EetlMlOqbM0y6F67GL6Yzvey2-iWko6ReEPGVEiNzGz9lgpl0PyF2A2BLY1wYVEYNHmHubVLng272cpUevUaC0ohdg3Q4RvospQiPft2xX5n8zTZ2rnhfv096tl-AJi8fmEup3FUtsIjkyy9WYog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","owner":{"id":235115,"first_name":"Andrew","middle_initials":null,"last_name":"Clarke","page_name":"AndrewClarke","domain_name":"cambridge","created_at":"2010-08-18T15:38:17.155-07:00","display_name":"Andrew Clarke","url":"https://cambridge.academia.edu/AndrewClarke"},"attachments":[{"id":38921790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38921790/thumbnails/1.jpg","file_name":"New_Zeal_J_Ecol_2015_39_2_190-197.pdf","download_url":"https://www.academia.edu/attachments/38921790/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Are_current_ecological_restoration_pract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38921790/New_Zeal_J_Ecol_2015_39_2_190-197-libre.pdf?1443476177=\u0026response-content-disposition=attachment%3B+filename%3DAre_current_ecological_restoration_pract.pdf\u0026Expires=1733918632\u0026Signature=Xa~Tar2wm-SXWn1m4-oy86G7M34ZncBO1XkH-peONt-gsCendH3IsKt9vKdlkmtTFRlLgus21gI1Lji~103gm~21cQjGYhpD3ioJiaVZ4RFc~wh9tL-4FdKbMp-0UR8N-m12-EFrhbqpmfrB3qT7OBruZFr6k0x9fzUa4KQpP3M56YZOZYU01vhG1GTLqSbmD9EetlMlOqbM0y6F67GL6Yzvey2-iWko6ReEPGVEiNzGz9lgpl0PyF2A2BLY1wYVEYNHmHubVLng272cpUevUaC0ohdg3Q4RvospQiPft2xX5n8zTZ2rnhfv096tl-AJi8fmEup3FUtsIjkyy9WYog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":1360,"name":"Plant Ecology","url":"https://www.academia.edu/Documents/in/Plant_Ecology"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":2809,"name":"Conservation","url":"https://www.academia.edu/Documents/in/Conservation"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":4209,"name":"Conservation Genetics","url":"https://www.academia.edu/Documents/in/Conservation_Genetics"},{"id":4480,"name":"Population Genetics","url":"https://www.academia.edu/Documents/in/Population_Genetics"},{"id":5221,"name":"Restoration Ecology","url":"https://www.academia.edu/Documents/in/Restoration_Ecology"},{"id":7653,"name":"Forest Ecology And Management","url":"https://www.academia.edu/Documents/in/Forest_Ecology_And_Management"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10024,"name":"Population genetics (Biology)","url":"https://www.academia.edu/Documents/in/Population_genetics_Biology_"},{"id":11886,"name":"Population ecology","url":"https://www.academia.edu/Documents/in/Population_ecology"},{"id":13501,"name":"Vegetation Ecology","url":"https://www.academia.edu/Documents/in/Vegetation_Ecology"},{"id":14926,"name":"Molecular Markers","url":"https://www.academia.edu/Documents/in/Molecular_Markers"},{"id":17829,"name":"Forest Ecology","url":"https://www.academia.edu/Documents/in/Forest_Ecology"},{"id":18594,"name":"Evolutionary Ecology","url":"https://www.academia.edu/Documents/in/Evolutionary_Ecology"},{"id":23980,"name":"Ecological restoration","url":"https://www.academia.edu/Documents/in/Ecological_restoration"},{"id":46119,"name":"Molecular Ecology","url":"https://www.academia.edu/Documents/in/Molecular_Ecology"},{"id":48494,"name":"Biodiversity Conservation","url":"https://www.academia.edu/Documents/in/Biodiversity_Conservation"},{"id":125637,"name":"Violaceae","url":"https://www.academia.edu/Documents/in/Violaceae"},{"id":154690,"name":"ISSR","url":"https://www.academia.edu/Documents/in/ISSR"},{"id":155134,"name":"AFLP Marker","url":"https://www.academia.edu/Documents/in/AFLP_Marker"}],"urls":[{"id":6062592,"url":"http://newzealandecology.org/nzje/3226"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7115661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7115661/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata"><img alt="Research paper thumbnail of Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata" class="work-thumbnail" src="https://attachments.academia-assets.com/33756636/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7115661/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata">Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0853e9bf737bc4b4ba45d33c4f5df713" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33756636,"asset_id":7115661,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33756636/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7115661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7115661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7115661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7115661]").text(description); $(".js-view-count[data-work-id=7115661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7115661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7115661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7115661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0853e9bf737bc4b4ba45d33c4f5df713" } } $('.js-work-strip[data-work-id=7115661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7115661,"title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata","translated_title":"","metadata":{"ai_abstract":"Didymosphenia geminata (Lyngbye) Schmidt (Gomphonemataceae) is an invasive freshwater diatom known for forming dense blooms that threaten local ecosystems. Microscopic identification methods hinder the monitoring and management of its spread. A TaqMan quantitative polymerase chain reaction (QPCR) assay has been developed for the rapid detection and quantification of D. geminata in environmental samples. The assay demonstrated a linear detection range covering eight orders of magnitude and was validated through field surveys across New Zealand and 13 international locations. The ability to detect and monitor D. geminata populations effectively allows for proactive management strategies to mitigate its ecological impact."},"translated_abstract":null,"internal_url":"https://www.academia.edu/7115661/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata","translated_internal_url":"","created_at":"2014-05-21T08:09:29.956-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555129,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":236714,"email":"c***y@waikato.ac.nz","display_order":0,"name":"Craig Cary","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"},{"id":6555131,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":32234627,"co_author_invite_id":null,"email":"b***s@waikato.ac.nz","display_order":4194304,"name":"Brendan J Hicks","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"},{"id":6555133,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":39413152,"co_author_invite_id":192859,"email":"h***j@waikato.ac.nz","affiliation":"University of Waikato","display_order":6291456,"name":"Brendan Hicks","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"},{"id":6555135,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459588,"email":"a***t@alumni.tu-berlin.de","display_order":7340032,"name":"Andreas Rückert","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"}],"downloadable_attachments":[{"id":33756636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33756636/thumbnails/1.jpg","file_name":"Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin.pdf","download_url":"https://www.academia.edu/attachments/33756636/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Development_and_validation_of_a_quantita.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33756636/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin-libre.pdf?1400684953=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_and_validation_of_a_quantita.pdf\u0026Expires=1734024194\u0026Signature=a-lpRoxygqIVzyI6Ij0Jv1e7bG5MBY~rLHSXYFFhakZl7xB9mginFTHRjbj4uRhGQbeHl1Ee6dA9H2nk9ShCvvVwMuZFbwJx-Xn5REyUqXk53rp-DKqHuTgSXFvhDh0hZs1Mp3XCQKNboTZZcahDPBgY2ICfjPqUV60QljUQpvfwk6arhJM6AqCIBbIAU1n4FdcjwIO71Trt70qhaINuIfr9ysYxI8l-9d8EW4yQ8OjMfkPeUHs2lqjxwZKxCGOdBrBMoeUDvT5LdNkHd~aAzbrZcA6pWlczb9sojWcBqbcO85DM9y7Pf9U5bub9eJlTaYZMjUuf4yAVg4DZMtI4gQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33756636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33756636/thumbnails/1.jpg","file_name":"Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin.pdf","download_url":"https://www.academia.edu/attachments/33756636/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Development_and_validation_of_a_quantita.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33756636/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin-libre.pdf?1400684953=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_and_validation_of_a_quantita.pdf\u0026Expires=1734024194\u0026Signature=a-lpRoxygqIVzyI6Ij0Jv1e7bG5MBY~rLHSXYFFhakZl7xB9mginFTHRjbj4uRhGQbeHl1Ee6dA9H2nk9ShCvvVwMuZFbwJx-Xn5REyUqXk53rp-DKqHuTgSXFvhDh0hZs1Mp3XCQKNboTZZcahDPBgY2ICfjPqUV60QljUQpvfwk6arhJM6AqCIBbIAU1n4FdcjwIO71Trt70qhaINuIfr9ysYxI8l-9d8EW4yQ8OjMfkPeUHs2lqjxwZKxCGOdBrBMoeUDvT5LdNkHd~aAzbrZcA6pWlczb9sojWcBqbcO85DM9y7Pf9U5bub9eJlTaYZMjUuf4yAVg4DZMtI4gQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7997,"name":"Invasive species ecology","url":"https://www.academia.edu/Documents/in/Invasive_species_ecology"},{"id":17575,"name":"Algae","url":"https://www.academia.edu/Documents/in/Algae"},{"id":23491,"name":"Diatoms","url":"https://www.academia.edu/Documents/in/Diatoms"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7095267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7095267/Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data"><img alt="Research paper thumbnail of Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7095267/Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data">Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entire...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entirely limited to the paleotropics. Two independent molecular datasets have been constructed with a representative sample from all nine genera of Pittosporaceae to test phylogenetic relationships suggested by recent morphological studies and to examine current morphological delimitations of genera. DNA sequence data derived from the ITS region of nuclear rDNA and from the trnL-trnF region of the chloroplast genome agree in uniting all species sampled from Pittosporum within a single clade, together with all species sampled from the previously segregated genus Citriobatus. Molecular data also confirm that members of the recently established genus Auranticarpa must be excluded from Pittosporum, and that another segregate genus, Sollya, should be placed within Billardiera. Hymenosporum remains a distinct, single-taxon lineage and Rhytidosporum is also confirmed as distinct. In most respects, our results are in agreement with recent taxonomic revisions based on morphology, and support an Australian origin of Pittosporaceae. Multiple dispersal events of Pittosporum from Australia to the islands of the Pacific and Indian Oceans, including New Zealand, are suggested, as well as island hopping throughout the Pacific.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="feb39770da1a6e0cfc6e7ef750e0c8aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33740341,"asset_id":7095267,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33740341/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7095267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7095267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7095267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7095267]").text(description); $(".js-view-count[data-work-id=7095267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7095267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7095267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7095267, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "feb39770da1a6e0cfc6e7ef750e0c8aa" } } $('.js-work-strip[data-work-id=7095267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7095267,"title":"Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data","translated_title":"","metadata":{"grobid_abstract":"Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entirely limited to the paleotropics. Two independent molecular datasets have been constructed with a representative sample from all nine genera of Pittosporaceae to test phylogenetic relationships suggested by recent morphological studies and to examine current morphological delimitations of genera. DNA sequence data derived from the ITS region of nuclear rDNA and from the trnL-trnF region of the chloroplast genome agree in uniting all species sampled from Pittosporum within a single clade, together with all species sampled from the previously segregated genus Citriobatus. Molecular data also confirm that members of the recently established genus Auranticarpa must be excluded from Pittosporum, and that another segregate genus, Sollya, should be placed within Billardiera. Hymenosporum remains a distinct, single-taxon lineage and Rhytidosporum is also confirmed as distinct. In most respects, our results are in agreement with recent taxonomic revisions based on morphology, and support an Australian origin of Pittosporaceae. Multiple dispersal events of Pittosporum from Australia to the islands of the Pacific and Indian Oceans, including New Zealand, are suggested, as well as island hopping throughout the Pacific.","grobid_abstract_attachment_id":33740341},"translated_abstract":null,"internal_url":"https://www.academia.edu/7095267/Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data","translated_internal_url":"","created_at":"2014-05-19T15:34:01.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555121,"work_id":7095267,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459586,"email":"c***g@uncw.edu","display_order":0,"name":"Gregory Chandler","title":"Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data"},{"id":6555122,"work_id":7095267,"tagging_user_id":10706701,"tagged_user_id":8539141,"co_author_invite_id":null,"email":"g***r@agriculture.gov.au","display_order":4194304,"name":"Gregory Chandler","title":"Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data"}],"downloadable_attachments":[{"id":33740341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Chandler_etal_2007.pdf","download_url":"https://www.academia.edu/attachments/33740341/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_and_morphological_agreement_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740341/Chandler_etal_2007-libre.pdf?1400540126=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_and_morphological_agreement_in.pdf\u0026Expires=1734024194\u0026Signature=Sj5QwGLG~v3NlSPwyi8qrlpaxFQjozwR77Se6~j~AZUipvm4esuZ4zpAV871QMAHLVAfPmx6Srg5XXgJbZN~PLXtM4TYN7mruHKe0HvBqcNY17rD8~002SIXpAUjB51cEjf~bkvZ4yC9kDa1RystlSdxKlif336k0pOVdEGV2eApdbJzwE-3F4GZ98zbJ1HDFRQX-II2c1MbfOD5qSF~Wn6Ve0yxbpnGp1yBHQjUQMLKAj49O90G5Z3LnSn-uosLDTS7dmdsB~6AN0FnZ0~1xhQuACiinpMCBzSF9Xal~d4AVUxdB7ZIArimiMFDkWvCnyeNlWVeDZIJIzDvYBm2wQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entirely limited to the paleotropics. Two independent molecular datasets have been constructed with a representative sample from all nine genera of Pittosporaceae to test phylogenetic relationships suggested by recent morphological studies and to examine current morphological delimitations of genera. DNA sequence data derived from the ITS region of nuclear rDNA and from the trnL-trnF region of the chloroplast genome agree in uniting all species sampled from Pittosporum within a single clade, together with all species sampled from the previously segregated genus Citriobatus. Molecular data also confirm that members of the recently established genus Auranticarpa must be excluded from Pittosporum, and that another segregate genus, Sollya, should be placed within Billardiera. Hymenosporum remains a distinct, single-taxon lineage and Rhytidosporum is also confirmed as distinct. In most respects, our results are in agreement with recent taxonomic revisions based on morphology, and support an Australian origin of Pittosporaceae. Multiple dispersal events of Pittosporum from Australia to the islands of the Pacific and Indian Oceans, including New Zealand, are suggested, as well as island hopping throughout the Pacific.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33740341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Chandler_etal_2007.pdf","download_url":"https://www.academia.edu/attachments/33740341/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_and_morphological_agreement_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740341/Chandler_etal_2007-libre.pdf?1400540126=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_and_morphological_agreement_in.pdf\u0026Expires=1734024194\u0026Signature=Sj5QwGLG~v3NlSPwyi8qrlpaxFQjozwR77Se6~j~AZUipvm4esuZ4zpAV871QMAHLVAfPmx6Srg5XXgJbZN~PLXtM4TYN7mruHKe0HvBqcNY17rD8~002SIXpAUjB51cEjf~bkvZ4yC9kDa1RystlSdxKlif336k0pOVdEGV2eApdbJzwE-3F4GZ98zbJ1HDFRQX-II2c1MbfOD5qSF~Wn6Ve0yxbpnGp1yBHQjUQMLKAj49O90G5Z3LnSn-uosLDTS7dmdsB~6AN0FnZ0~1xhQuACiinpMCBzSF9Xal~d4AVUxdB7ZIArimiMFDkWvCnyeNlWVeDZIJIzDvYBm2wQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":4364,"name":"Molecular Systematics","url":"https://www.academia.edu/Documents/in/Molecular_Systematics"},{"id":13372,"name":"Plant Taxonomy (Taxonomy)","url":"https://www.academia.edu/Documents/in/Plant_Taxonomy_Taxonomy_"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7095229"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7095229/Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation"><img alt="Research paper thumbnail of Evolution of Insular Pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian Radiation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7095229/Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation">Evolution of Insular Pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian Radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We perf...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximumlikelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="148fd43117a45db64346e80ffe1c289c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33740285,"asset_id":7095229,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33740285/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7095229"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7095229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7095229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7095229]").text(description); $(".js-view-count[data-work-id=7095229]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7095229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7095229']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7095229, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "148fd43117a45db64346e80ffe1c289c" } } $('.js-work-strip[data-work-id=7095229]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7095229,"title":"Evolution of Insular Pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian Radiation","translated_title":"","metadata":{"ai_title_tag":"Hawaiian Pittosporum Origin and Evolution from South Pacific","grobid_abstract":"Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximumlikelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.","grobid_abstract_attachment_id":33740285},"translated_abstract":null,"internal_url":"https://www.academia.edu/7095229/Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation","translated_internal_url":"","created_at":"2014-05-19T15:25:57.987-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33740285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Hawaiian_Pitts.pdf","download_url":"https://www.academia.edu/attachments/33740285/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_Insular_Pacific_Pittosporum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740285/Hawaiian_Pitts-libre.pdf?1400540076=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_Insular_Pacific_Pittosporum.pdf\u0026Expires=1734024194\u0026Signature=LorfQvpe1JHcbSQpUqqhcC8xO4vln5FRbM6DwDIU06uk1ZxkTudaUyC4pANUdXrxIkiz5qW9xNYUHaiGGptIeJcQ5BuT1aM3Fz7Rmfazgb-3EfQAslEESrEvgSgvOUazYtSIsgTjdVTTqQ~Mv7UhrzNIYBaYnVPSjymcZVFpfg3zEh5uylv33CFu2BDBX5xXfGJTvw5IRnU9PLeNOknuJoCQSkS7ajUg4xxGgdMlIppYCBYsRu4VxqzX23EMraLXJSufYx5VNY3wjAkC5QUSMI5e1CUTIMBobt9mAcikhmZ-zeebdrcIteZ0L1dHnsIacs7ciIxKRPXMTXaLgcxI4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximumlikelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33740285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Hawaiian_Pitts.pdf","download_url":"https://www.academia.edu/attachments/33740285/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_Insular_Pacific_Pittosporum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740285/Hawaiian_Pitts-libre.pdf?1400540076=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_Insular_Pacific_Pittosporum.pdf\u0026Expires=1734024194\u0026Signature=LorfQvpe1JHcbSQpUqqhcC8xO4vln5FRbM6DwDIU06uk1ZxkTudaUyC4pANUdXrxIkiz5qW9xNYUHaiGGptIeJcQ5BuT1aM3Fz7Rmfazgb-3EfQAslEESrEvgSgvOUazYtSIsgTjdVTTqQ~Mv7UhrzNIYBaYnVPSjymcZVFpfg3zEh5uylv33CFu2BDBX5xXfGJTvw5IRnU9PLeNOknuJoCQSkS7ajUg4xxGgdMlIppYCBYsRu4VxqzX23EMraLXJSufYx5VNY3wjAkC5QUSMI5e1CUTIMBobt9mAcikhmZ-zeebdrcIteZ0L1dHnsIacs7ciIxKRPXMTXaLgcxI4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10882,"name":"Evolution","url":"https://www.academia.edu/Documents/in/Evolution"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104382/Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_t%C4%81whiri_karo_cornel_leaved_pittosporum"><img alt="Research paper thumbnail of Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum" class="work-thumbnail" src="https://attachments.academia-assets.com/33747398/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104382/Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_t%C4%81whiri_karo_cornel_leaved_pittosporum">Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="51c1351c55d4833d33622db30365f6dd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747398,"asset_id":7104382,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747398/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104382]").text(description); $(".js-view-count[data-work-id=7104382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104382, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "51c1351c55d4833d33622db30365f6dd" } } $('.js-work-strip[data-work-id=7104382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104382,"title":"Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum","translated_title":"","metadata":{"ai_abstract":"Pittosporum cornifolium is an endemic shrub epiphyte in New Zealand that exhibits a unique morphology and ecological traits, typically found in lowland and coastal ecosystems. Despite its distinctive features, research on this species is limited, emphasizing the need for further studies on its population structure, pollination, and dispersal mechanisms to support conservation efforts."},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104382/Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_t%C4%81whiri_karo_cornel_leaved_pittosporum","translated_internal_url":"","created_at":"2014-05-20T08:12:12.304-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555139,"work_id":7104382,"tagging_user_id":10706701,"tagged_user_id":6513022,"co_author_invite_id":null,"email":"c***b@xtra.co.nz","affiliation":"University of Waikato","display_order":0,"name":"Bruce Clarkson","title":"Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum"}],"downloadable_attachments":[{"id":33747398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747398/thumbnails/1.jpg","file_name":"Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium.pdf","download_url":"https://www.academia.edu/attachments/33747398/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biological_flora_of_New_Zealand_13_Pitto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747398/Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium-libre.pdf?1400598803=\u0026response-content-disposition=attachment%3B+filename%3DBiological_flora_of_New_Zealand_13_Pitto.pdf\u0026Expires=1734024194\u0026Signature=egoshdVVRMMKKJygLS8ojd55tVbQnP1ExhYSYzh66RXbbJ32artZ1VMN~h1dAh7MCSmM0oizIeIa459JF6DsK7lAjnJ1-GXYmdMrHe8m3pHqiywwEcCKdQbkTxK9EnxjZB1V9kkYX7Z6DmNpm4yMJjNHJTdh3yyTt4JGW-vY4O-C1xue52fajhCPEqyd5XoM3KpVuoan7zGCrs7d78rCzVwjsA6ELssye0~P-16j0lZ7-ZAACfIhdCzY5mjtzDO5TKhbzRmLiPJ4v2st8QBm05rkG-llhy4vLkuhrBbOrHr5ANGM1M1C3A2-Qv7RWHVSAWSQ3SAyYqgD1IZw7k8m7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_tāwhiri_karo_cornel_leaved_pittosporum","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747398/thumbnails/1.jpg","file_name":"Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium.pdf","download_url":"https://www.academia.edu/attachments/33747398/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biological_flora_of_New_Zealand_13_Pitto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747398/Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium-libre.pdf?1400598803=\u0026response-content-disposition=attachment%3B+filename%3DBiological_flora_of_New_Zealand_13_Pitto.pdf\u0026Expires=1734024194\u0026Signature=egoshdVVRMMKKJygLS8ojd55tVbQnP1ExhYSYzh66RXbbJ32artZ1VMN~h1dAh7MCSmM0oizIeIa459JF6DsK7lAjnJ1-GXYmdMrHe8m3pHqiywwEcCKdQbkTxK9EnxjZB1V9kkYX7Z6DmNpm4yMJjNHJTdh3yyTt4JGW-vY4O-C1xue52fajhCPEqyd5XoM3KpVuoan7zGCrs7d78rCzVwjsA6ELssye0~P-16j0lZ7-ZAACfIhdCzY5mjtzDO5TKhbzRmLiPJ4v2st8QBm05rkG-llhy4vLkuhrBbOrHr5ANGM1M1C3A2-Qv7RWHVSAWSQ3SAyYqgD1IZw7k8m7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="6617882"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6617882/Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae"><img alt="Research paper thumbnail of Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae" class="work-thumbnail" src="https://attachments.academia-assets.com/33360191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6617882/Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae">Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://waikato.academia.edu/ChrissenGemmill">Chrissen Gemmill</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://manoa-hawaii.academia.edu/TomRanker">Tom Ranker</a></span></div><div class="wp-workCard_item"><span>American Journal of Botany</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morpholo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morphologically similar species, B. insignis from Kaua'i and Ni'ihau and B. rockii from Moloka'i. To assist the design of conservation management programs for these taxa, isozyme analyses were performed to assess the levels of genetic diversity at the population and species levels, including comparisons within and among seven natural populations and one ex situ collection each of B. insignis and B. rockii. Our sampling (N ϭ 80) represents ϳ41% of all known individuals in the wild. Isozyme analyses revealed levels of genetic variation comparable to those reported for other Hawaiian flowering plant taxa but low levels of genetic variation at the population and species levels when compared to flowering plants in general. Ex situ individuals (N ϭ 61) were genetically representative of natural populations and hence may appropriately serve as stock for population augmentations. The two morphologically similar Brighamia species were highly distinct genetically. The combination of morphological and ecological similarity with allozymic dissimilarity observed in Brighamia is unique among the Hawaiian taxa studied to date.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b812faccb93beb49cb14cb643dc52649" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33360191,"asset_id":6617882,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33360191/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6617882"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6617882"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6617882; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6617882]").text(description); $(".js-view-count[data-work-id=6617882]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6617882; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6617882']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 6617882, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b812faccb93beb49cb14cb643dc52649" } } $('.js-work-strip[data-work-id=6617882]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6617882,"title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae","translated_title":"","metadata":{"grobid_abstract":"The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morphologically similar species, B. insignis from Kaua'i and Ni'ihau and B. rockii from Moloka'i. To assist the design of conservation management programs for these taxa, isozyme analyses were performed to assess the levels of genetic diversity at the population and species levels, including comparisons within and among seven natural populations and one ex situ collection each of B. insignis and B. rockii. Our sampling (N ϭ 80) represents ϳ41% of all known individuals in the wild. Isozyme analyses revealed levels of genetic variation comparable to those reported for other Hawaiian flowering plant taxa but low levels of genetic variation at the population and species levels when compared to flowering plants in general. Ex situ individuals (N ϭ 61) were genetically representative of natural populations and hence may appropriately serve as stock for population augmentations. The two morphologically similar Brighamia species were highly distinct genetically. The combination of morphological and ecological similarity with allozymic dissimilarity observed in Brighamia is unique among the Hawaiian taxa studied to date.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"American Journal of Botany","grobid_abstract_attachment_id":33360191},"translated_abstract":null,"internal_url":"https://www.academia.edu/6617882/Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae","translated_internal_url":"","created_at":"2014-04-01T07:33:33.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555118,"work_id":6617882,"tagging_user_id":10706701,"tagged_user_id":916280,"co_author_invite_id":null,"email":"g***h@wisc.edu","affiliation":"University of Wisconsin-Madison","display_order":0,"name":"Tom Givnish","title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae"},{"id":6555145,"work_id":6617882,"tagging_user_id":10706701,"tagged_user_id":2702859,"co_author_invite_id":null,"email":"t***r@gmail.com","affiliation":"University of Hawaii at Manoa","display_order":6291456,"name":"Tom Ranker","title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae"},{"id":6555148,"work_id":6617882,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459590,"email":"r***r@colorado.edu","display_order":7340032,"name":"Tom Ranker","title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae"}],"downloadable_attachments":[{"id":33360191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33360191/thumbnails/1.jpg","file_name":"528.pdf","download_url":"https://www.academia.edu/attachments/33360191/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conservation_Genetics_of_the_Endangered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33360191/528-libre.pdf?1396362860=\u0026response-content-disposition=attachment%3B+filename%3DConservation_Genetics_of_the_Endangered.pdf\u0026Expires=1734024194\u0026Signature=QflMO6R~ySEWZdDLNmxbTp3~PAe2264WEvgFYaOmGBJo9RgZ87AedYj-8TowLxfTHy2BvXYUhX1MFHraisQkvJP4o-GFVq7kC6D3mtjzWxW7clDuXKj7GW~JUGZxvCxLci~E1jjT1bEdLx4fJ~ADOhRfNjMGKyE4CAl4rFVC4Uwitw8SwnRxL8TP52OKPg7CKAiTh53V0TFauIfgogpy4rwd5CuSQPfJsEO7~afnMymcpXwHgklAX6RraqgcsoxLQBDa4yMkCuQPXQJbaGPr8f8zoatyH7hlFChE9FRmi1QoPxNZ7dEWMxEEhdpc51ZYDUqNGAJ2vzZdPTsq82t4xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morphologically similar species, B. insignis from Kaua'i and Ni'ihau and B. rockii from Moloka'i. To assist the design of conservation management programs for these taxa, isozyme analyses were performed to assess the levels of genetic diversity at the population and species levels, including comparisons within and among seven natural populations and one ex situ collection each of B. insignis and B. rockii. Our sampling (N ϭ 80) represents ϳ41% of all known individuals in the wild. Isozyme analyses revealed levels of genetic variation comparable to those reported for other Hawaiian flowering plant taxa but low levels of genetic variation at the population and species levels when compared to flowering plants in general. Ex situ individuals (N ϭ 61) were genetically representative of natural populations and hence may appropriately serve as stock for population augmentations. The two morphologically similar Brighamia species were highly distinct genetically. The combination of morphological and ecological similarity with allozymic dissimilarity observed in Brighamia is unique among the Hawaiian taxa studied to date.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33360191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33360191/thumbnails/1.jpg","file_name":"528.pdf","download_url":"https://www.academia.edu/attachments/33360191/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conservation_Genetics_of_the_Endangered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33360191/528-libre.pdf?1396362860=\u0026response-content-disposition=attachment%3B+filename%3DConservation_Genetics_of_the_Endangered.pdf\u0026Expires=1734024194\u0026Signature=QflMO6R~ySEWZdDLNmxbTp3~PAe2264WEvgFYaOmGBJo9RgZ87AedYj-8TowLxfTHy2BvXYUhX1MFHraisQkvJP4o-GFVq7kC6D3mtjzWxW7clDuXKj7GW~JUGZxvCxLci~E1jjT1bEdLx4fJ~ADOhRfNjMGKyE4CAl4rFVC4Uwitw8SwnRxL8TP52OKPg7CKAiTh53V0TFauIfgogpy4rwd5CuSQPfJsEO7~afnMymcpXwHgklAX6RraqgcsoxLQBDa4yMkCuQPXQJbaGPr8f8zoatyH7hlFChE9FRmi1QoPxNZ7dEWMxEEhdpc51ZYDUqNGAJ2vzZdPTsq82t4xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":33360192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33360192/thumbnails/1.jpg","file_name":"528.pdf","download_url":"https://www.academia.edu/attachments/33360192/download_file","bulk_download_file_name":"Conservation_Genetics_of_the_Endangered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33360192/528-libre.pdf?1396362826=\u0026response-content-disposition=attachment%3B+filename%3DConservation_Genetics_of_the_Endangered.pdf\u0026Expires=1734024194\u0026Signature=V6837qknL0S8i5KWWdx6Q1kU7~qUbrusfml7BEawBd8ZO~yMr3t4PK1ondqaCLIJxrgAFXnrGjNz3galEAgnduHvT7RjW~yxQVnGL-RUN~26vIudm4uwT2djYI~XovsGlBYnL2qhhKbN9pexaogEKUIw5JBOYHCdGHcWRBNL6IXZAvptx~ZD-P5JOqBd4NCtyLJOj9V1t6tmCnJxk7puArCd016d1~X6wBJjdKRmIXX1sC8dwciBKFZ39aD0a1rQODC5pHptD~61qCwLge3cU6ti3DGBlZf~CmIlLZzmknY51IL0PiRLDXpinpdkOgZGRlQQhaq47vmHF6s6i56yxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[{"id":2691236,"url":"http://www.amjbot.org/cgi/reprint/85/4/528.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104427/Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand"><img alt="Research paper thumbnail of Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand" class="work-thumbnail" src="https://attachments.academia-assets.com/33747441/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104427/Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand">Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic flowering plant in New Zealand. We investigated genetic variation within and among populations of the species over its entire known distribution range to study distinctness of populations, geographical distribution of genetic variation, the level of gene flow among populations and implications of the findings for conservation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab42016ea4b4bd809ed4ea5c3f5f5f36" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747441,"asset_id":7104427,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747441/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104427]").text(description); $(".js-view-count[data-work-id=7104427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104427, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab42016ea4b4bd809ed4ea5c3f5f5f36" } } $('.js-work-strip[data-work-id=7104427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104427,"title":"Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand","translated_title":"","metadata":{"grobid_abstract":"Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic flowering plant in New Zealand. We investigated genetic variation within and among populations of the species over its entire known distribution range to study distinctness of populations, geographical distribution of genetic variation, the level of gene flow among populations and implications of the findings for conservation.","grobid_abstract_attachment_id":33747441},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104427/Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand","translated_internal_url":"","created_at":"2014-05-20T08:19:15.563-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555126,"work_id":7104427,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459587,"email":"a***l@doc.govt.nz","display_order":0,"name":"Avi Holzapfel","title":"Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand"}],"downloadable_attachments":[{"id":33747441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747441/thumbnails/1.jpg","file_name":"dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747441/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_variation_of_the_endangered_holo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747441/dactylanthus-libre.pdf?1400599098=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_variation_of_the_endangered_holo.pdf\u0026Expires=1734024194\u0026Signature=E08A4fmjmbZx1tnhPbULg3qENn-h~3n4i23VpAUJHMfjNF3JS~CQPah-jbKXH-120rR4-01qMFRhYUE0jtNXTJKi88G4jsUOWabFpBDSmdk47BtjyIBu3M-hS8s4ujjl379v3EW0lmCaQ3I14zuldB6wuIPqkv4BwNObRuUa6ayWzWwv29zeTIoN58fq0O34A1bojEH6t4R5~hVlBuWCQN4QaNHzOQqSYRLpm2Md4ZuDH3yTSp566X0TJLIrchhZ0GJJgZHLF-DmDHPXz6dfJf4w45YfsK3p~4qkR~TLZC636jNaiffohMs2190AjE7jF1eV6p8h-DvNrmvk63wcyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic flowering plant in New Zealand. We investigated genetic variation within and among populations of the species over its entire known distribution range to study distinctness of populations, geographical distribution of genetic variation, the level of gene flow among populations and implications of the findings for conservation.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747441/thumbnails/1.jpg","file_name":"dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747441/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_variation_of_the_endangered_holo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747441/dactylanthus-libre.pdf?1400599098=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_variation_of_the_endangered_holo.pdf\u0026Expires=1734024194\u0026Signature=E08A4fmjmbZx1tnhPbULg3qENn-h~3n4i23VpAUJHMfjNF3JS~CQPah-jbKXH-120rR4-01qMFRhYUE0jtNXTJKi88G4jsUOWabFpBDSmdk47BtjyIBu3M-hS8s4ujjl379v3EW0lmCaQ3I14zuldB6wuIPqkv4BwNObRuUa6ayWzWwv29zeTIoN58fq0O34A1bojEH6t4R5~hVlBuWCQN4QaNHzOQqSYRLpm2Md4ZuDH3yTSp566X0TJLIrchhZ0GJJgZHLF-DmDHPXz6dfJf4w45YfsK3p~4qkR~TLZC636jNaiffohMs2190AjE7jF1eV6p8h-DvNrmvk63wcyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":96846,"name":"Parasitic Plants","url":"https://www.academia.edu/Documents/in/Parasitic_Plants"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104451"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104451/Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand"><img alt="Research paper thumbnail of Genetic diversity of Dactylanthus taylorii in New Zealand" class="work-thumbnail" src="https://attachments.academia-assets.com/33747465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104451/Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand">Genetic diversity of Dactylanthus taylorii in New Zealand</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amon...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Neis genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ccc98bbc2b31d240ecdb95b2c3353f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747465,"asset_id":7104451,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747465/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104451"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104451"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104451; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104451]").text(description); $(".js-view-count[data-work-id=7104451]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104451; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104451']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104451, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ccc98bbc2b31d240ecdb95b2c3353f6" } } $('.js-work-strip[data-work-id=7104451]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104451,"title":"Genetic diversity of Dactylanthus taylorii in New Zealand","translated_title":"","metadata":{"grobid_abstract":"Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Neis genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.","grobid_abstract_attachment_id":33747465},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104451/Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand","translated_internal_url":"","created_at":"2014-05-20T08:22:53.938-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33747465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747465/thumbnails/1.jpg","file_name":"genetic_diversity_of_dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747465/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_diversity_of_Dactylanthus_taylor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747465/genetic_diversity_of_dactylanthus-libre.pdf?1400599338=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_diversity_of_Dactylanthus_taylor.pdf\u0026Expires=1734024194\u0026Signature=BHDaXsDtXHw~o89O61IoOa~nVIH3lIDzoIPghzPLGOLK81Cu5sHtknvX3NLg3oHYw~hotJx~~1rYp3vpCxgfrYWUW7epocTnn8HG8nP-MUMAFt4GfAk1IvqZr-1xmpRI9P3WirTQkryohSAipmqdhHLv9z6PCzzUbGomQTGwKIc5nvqN2WB37IAcOPg4V4WVNUwPAgEnZsdu9WgWPEdEb1qAK06uoxtjn1Zmb2g7WbFhrXW~pxEi9KeLsd3jHmWp-N3cStb9MLqtOj79qJnW1sNVIRO1l0GTA313NFaRN8L9tVPSUdHpaGJYIRJRY57JZNl01pvy9bCm~Ud4NnCiPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Neis genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747465/thumbnails/1.jpg","file_name":"genetic_diversity_of_dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747465/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_diversity_of_Dactylanthus_taylor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747465/genetic_diversity_of_dactylanthus-libre.pdf?1400599338=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_diversity_of_Dactylanthus_taylor.pdf\u0026Expires=1734024194\u0026Signature=BHDaXsDtXHw~o89O61IoOa~nVIH3lIDzoIPghzPLGOLK81Cu5sHtknvX3NLg3oHYw~hotJx~~1rYp3vpCxgfrYWUW7epocTnn8HG8nP-MUMAFt4GfAk1IvqZr-1xmpRI9P3WirTQkryohSAipmqdhHLv9z6PCzzUbGomQTGwKIc5nvqN2WB37IAcOPg4V4WVNUwPAgEnZsdu9WgWPEdEb1qAK06uoxtjn1Zmb2g7WbFhrXW~pxEi9KeLsd3jHmWp-N3cStb9MLqtOj79qJnW1sNVIRO1l0GTA313NFaRN8L9tVPSUdHpaGJYIRJRY57JZNl01pvy9bCm~Ud4NnCiPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":96846,"name":"Parasitic Plants","url":"https://www.academia.edu/Documents/in/Parasitic_Plants"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104513/Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands"><img alt="Research paper thumbnail of Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands" class="work-thumbnail" src="https://attachments.academia-assets.com/33747505/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104513/Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands">Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://waikato.academia.edu/ChrissenGemmill">Chrissen Gemmill</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ntbg.academia.edu/DavidLorence">David Lorence</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pritchardia flynnii Lorence & Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pritchardia flynnii Lorence & Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. This new species most closely resembles the Kaua'i endemic species Pritchardia hardyi, from which it differs by its shorter, more slender trunk 0.7-7(11) m tall and 10-20(30) cm DBH, erect to arcuate inflorescences equaling or slightly exceeding the petioles with lanate-tomentose, eventually glabrescent rachillae, and smaller fruits 25-35 ϫ 18-23 mm when dry.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc9212992c9d0b0b700ef2540f3d1bcb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747505,"asset_id":7104513,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747505/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104513]").text(description); $(".js-view-count[data-work-id=7104513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104513, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc9212992c9d0b0b700ef2540f3d1bcb" } } $('.js-work-strip[data-work-id=7104513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104513,"title":"Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands","translated_title":"","metadata":{"grobid_abstract":"Pritchardia flynnii Lorence \u0026 Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. This new species most closely resembles the Kaua'i endemic species Pritchardia hardyi, from which it differs by its shorter, more slender trunk 0.7-7(11) m tall and 10-20(30) cm DBH, erect to arcuate inflorescences equaling or slightly exceeding the petioles with lanate-tomentose, eventually glabrescent rachillae, and smaller fruits 25-35 ϫ 18-23 mm when dry.","grobid_abstract_attachment_id":33747505},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104513/Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands","translated_internal_url":"","created_at":"2014-05-20T08:30:46.803-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555127,"work_id":7104513,"tagging_user_id":10706701,"tagged_user_id":6138643,"co_author_invite_id":null,"email":"l***e@ntbg.org","affiliation":"National Tropical Botanical Garden","display_order":0,"name":"David Lorence","title":"Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands"}],"downloadable_attachments":[{"id":33747505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747505/thumbnails/1.jpg","file_name":"novo-14-02-185.pdf","download_url":"https://www.academia.edu/attachments/33747505/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pritchardia_flynnii_Arecaceae_a_New_Ende.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747505/novo-14-02-185-libre.pdf?1400599790=\u0026response-content-disposition=attachment%3B+filename%3DPritchardia_flynnii_Arecaceae_a_New_Ende.pdf\u0026Expires=1734024195\u0026Signature=Vh5Jv86XWbWbitILSlaBj7haONVc~HM7p8uoetDpKGXS7jmiEwktkVJ2eDaMmB3bOa-KMIB5hXWTddCiNNOkUnNwo1SjmXNrofbDQCOAMDTBGOaGZGLyqdLTEWiNQV5YB1HM~jDo3tVkrI45VOI~hWZ-DvCuitLQuv7M2dmNqRftGwd35Ae8hnoPw9h8mglmqBpaxZBwOczEadGJlqfps6kuLyY3W3PH1KhcDbSHmraqpay~BZdXaBcwY9QFgvmroQWZszqYKsVI8BXtuSsEBZW9S17MeIlP9i4RGizkr6ScCR42WuCYTfWHjQpTJVWlUH5dFwWUw9hbPUhQHD~MaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"Pritchardia flynnii Lorence \u0026 Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. This new species most closely resembles the Kaua'i endemic species Pritchardia hardyi, from which it differs by its shorter, more slender trunk 0.7-7(11) m tall and 10-20(30) cm DBH, erect to arcuate inflorescences equaling or slightly exceeding the petioles with lanate-tomentose, eventually glabrescent rachillae, and smaller fruits 25-35 ϫ 18-23 mm when dry.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747505/thumbnails/1.jpg","file_name":"novo-14-02-185.pdf","download_url":"https://www.academia.edu/attachments/33747505/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pritchardia_flynnii_Arecaceae_a_New_Ende.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747505/novo-14-02-185-libre.pdf?1400599790=\u0026response-content-disposition=attachment%3B+filename%3DPritchardia_flynnii_Arecaceae_a_New_Ende.pdf\u0026Expires=1734024195\u0026Signature=Vh5Jv86XWbWbitILSlaBj7haONVc~HM7p8uoetDpKGXS7jmiEwktkVJ2eDaMmB3bOa-KMIB5hXWTddCiNNOkUnNwo1SjmXNrofbDQCOAMDTBGOaGZGLyqdLTEWiNQV5YB1HM~jDo3tVkrI45VOI~hWZ-DvCuitLQuv7M2dmNqRftGwd35Ae8hnoPw9h8mglmqBpaxZBwOczEadGJlqfps6kuLyY3W3PH1KhcDbSHmraqpay~BZdXaBcwY9QFgvmroQWZszqYKsVI8BXtuSsEBZW9S17MeIlP9i4RGizkr6ScCR42WuCYTfWHjQpTJVWlUH5dFwWUw9hbPUhQHD~MaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":169,"name":"Systematics (Taxonomy)","url":"https://www.academia.edu/Documents/in/Systematics_Taxonomy_"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":13372,"name":"Plant Taxonomy (Taxonomy)","url":"https://www.academia.edu/Documents/in/Plant_Taxonomy_Taxonomy_"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"},{"id":126348,"name":"Palms","url":"https://www.academia.edu/Documents/in/Palms"},{"id":241887,"name":"Hawaiian Plants","url":"https://www.academia.edu/Documents/in/Hawaiian_Plants"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104522"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104522/A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands"><img alt="Research paper thumbnail of A New Narrow, Endemic Species of Pritchardia (Arecaceae) from Kaua'i, Hawaiian Islands" class="work-thumbnail" src="https://attachments.academia-assets.com/33747513/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104522/A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands">A New Narrow, Endemic Species of Pritchardia (Arecaceae) from Kaua'i, Hawaiian Islands</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d61ab5edcabba13ddd4e643b5af9864" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747513,"asset_id":7104522,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747513/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104522"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104522"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104522; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104522]").text(description); $(".js-view-count[data-work-id=7104522]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104522; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104522']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104522, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d61ab5edcabba13ddd4e643b5af9864" } } $('.js-work-strip[data-work-id=7104522]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104522,"title":"A New Narrow, Endemic Species of Pritchardia (Arecaceae) from Kaua'i, Hawaiian Islands","translated_title":"","metadata":{"ai_abstract":"This paper describes a newly identified species of the Pritchardia genus, which is endemic to Kaua'i in the Hawaiian Islands. The study details the unique morphological characteristics of the species, its ecological habitat, and its significance within the Arecaceae family. The findings propose conservation measures due to the species' limited distribution and potential vulnerability to environmental changes."},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104522/A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands","translated_internal_url":"","created_at":"2014-05-20T08:32:28.739-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33747513,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747513/thumbnails/1.jpg","file_name":"Pritchardia_perlmanii.pdf","download_url":"https://www.academia.edu/attachments/33747513/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Narrow_Endemic_Species_of_Pritchar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747513/Pritchardia_perlmanii-libre.pdf?1400599883=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Narrow_Endemic_Species_of_Pritchar.pdf\u0026Expires=1734024195\u0026Signature=Nua75bW0g3Je~NXvUTtZDjJtdKnXjNSZjiUDH-lkr1v4fVHApO2Bn27uYRvJqtT1o1dC1H9yRIc64yAbJrfe4572i~0IohyhiRKjgdm5SxJLj1cq-L64-Pu10WPUlfNBQb3E04vtCka0~1EJql4bjQdSDxmYFPCjo1EViQj2heSdgYPZRLI8RNSxROtDV21ADkfOTP19luxJjeZ-Nq2ScSqUJQoH4c795WYdS9~9a4WZxcMuDiPDv-iFpQ6N016pJ1wwvBd2RRq~a7w9X8v0BTmY0R0R8KHmvazwZt8-fYsg8IeXacL-Te5mekEpaFHC2X3-WixWVQUW-1eUP6eC4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747513,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747513/thumbnails/1.jpg","file_name":"Pritchardia_perlmanii.pdf","download_url":"https://www.academia.edu/attachments/33747513/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Narrow_Endemic_Species_of_Pritchar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747513/Pritchardia_perlmanii-libre.pdf?1400599883=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Narrow_Endemic_Species_of_Pritchar.pdf\u0026Expires=1734024195\u0026Signature=Nua75bW0g3Je~NXvUTtZDjJtdKnXjNSZjiUDH-lkr1v4fVHApO2Bn27uYRvJqtT1o1dC1H9yRIc64yAbJrfe4572i~0IohyhiRKjgdm5SxJLj1cq-L64-Pu10WPUlfNBQb3E04vtCka0~1EJql4bjQdSDxmYFPCjo1EViQj2heSdgYPZRLI8RNSxROtDV21ADkfOTP19luxJjeZ-Nq2ScSqUJQoH4c795WYdS9~9a4WZxcMuDiPDv-iFpQ6N016pJ1wwvBd2RRq~a7w9X8v0BTmY0R0R8KHmvazwZt8-fYsg8IeXacL-Te5mekEpaFHC2X3-WixWVQUW-1eUP6eC4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":169,"name":"Systematics (Taxonomy)","url":"https://www.academia.edu/Documents/in/Systematics_Taxonomy_"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":13372,"name":"Plant Taxonomy (Taxonomy)","url":"https://www.academia.edu/Documents/in/Plant_Taxonomy_Taxonomy_"},{"id":126348,"name":"Palms","url":"https://www.academia.edu/Documents/in/Palms"},{"id":241887,"name":"Hawaiian Plants","url":"https://www.academia.edu/Documents/in/Hawaiian_Plants"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="1307343" id="papers"><div class="js-work-strip profile--work_container" data-work-id="45945356"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/45945356/Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_"><img alt="Research paper thumbnail of Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae)" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/45945356/Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_">Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae)</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="45945356"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="45945356"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 45945356; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=45945356]").text(description); $(".js-view-count[data-work-id=45945356]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 45945356; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='45945356']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 45945356, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=45945356]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":45945356,"title":"Population genetics and reproductive biology of lava-flow colonising species of Hawaiian Sadleria (Blechnaceae)","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/45945356/Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_","translated_internal_url":"","created_at":"2021-04-07T23:19:42.431-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Population_genetics_and_reproductive_biology_of_lava_flow_colonising_species_of_Hawaiian_Sadleria_Blechnaceae_","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380716"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380716/Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1"><img alt="Research paper thumbnail of Stevens et al NZJE Accepted Ms.2 TABLE 1" class="work-thumbnail" src="https://attachments.academia-assets.com/42506152/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380716/Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1">Stevens et al NZJE Accepted Ms.2 TABLE 1</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="e4878f815ea5515b6faaee0b46282255" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506152,"asset_id":16380716,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506152/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380716"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380716"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380716; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380716]").text(description); $(".js-view-count[data-work-id=16380716]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380716; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380716']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380716, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "e4878f815ea5515b6faaee0b46282255" } } $('.js-work-strip[data-work-id=16380716]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380716,"title":"Stevens et al NZJE Accepted Ms.2 TABLE 1","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380716/Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1","translated_internal_url":"","created_at":"2015-10-01T16:11:31.484-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506152,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506152/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4.pdf","download_url":"https://www.academia.edu/attachments/42506152/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506152/Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf\u0026Expires=1734024194\u0026Signature=HSPs4PQro0Th19evRT8StPDQKnNTlUFymMThRkf98Uch-FgHRtjOECh9Kec~TSZ1q6oLNTVVpVOWP7Zt5QdBBsYG6j-91npVppbUzaPBpsuRxQa8TPpn~HQcKogOsGOJjEiIgH~7QeoRFwMQD4PG2zmdrw4jc4uxEZrLMgrfevGeIQg2M45u9AhgixxJ0uBztapQiDxCmgNBIgVopbCtumZGyMUT~4mZWkfQ7rHK4eVLD6SaOnNIaZjAKGu3bcgw0D0IJGtnKrmp0E4~cGeDtLxVa-jCTL4K4qhRMoKwOjDsOVnPb8zcY3ZNH8wEOawbGFFaNCmlgCk4QEdQDK3JIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1","translated_slug":"","page_count":1,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506152,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506152/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4.pdf","download_url":"https://www.academia.edu/attachments/42506152/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506152/Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_120160209-25425-dndgl4-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_2_TABLE_1.pdf\u0026Expires=1734024194\u0026Signature=HSPs4PQro0Th19evRT8StPDQKnNTlUFymMThRkf98Uch-FgHRtjOECh9Kec~TSZ1q6oLNTVVpVOWP7Zt5QdBBsYG6j-91npVppbUzaPBpsuRxQa8TPpn~HQcKogOsGOJjEiIgH~7QeoRFwMQD4PG2zmdrw4jc4uxEZrLMgrfevGeIQg2M45u9AhgixxJ0uBztapQiDxCmgNBIgVopbCtumZGyMUT~4mZWkfQ7rHK4eVLD6SaOnNIaZjAKGu3bcgw0D0IJGtnKrmp0E4~cGeDtLxVa-jCTL4K4qhRMoKwOjDsOVnPb8zcY3ZNH8wEOawbGFFaNCmlgCk4QEdQDK3JIA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6632530,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/270703000_Stevens_et_al_NZJE_Accepted_Ms.2_TABLE_1/links/54b307b70cf220c63cd27858.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380715"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380715/STEVENS_uncorrected_proof"><img alt="Research paper thumbnail of STEVENS uncorrected proof" class="work-thumbnail" src="https://attachments.academia-assets.com/42506158/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380715/STEVENS_uncorrected_proof">STEVENS uncorrected proof</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantco...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantcommunity restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous 'fingerprinting' markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="067b31cbcb2d0cd2692249403dd9c1fe" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506158,"asset_id":16380715,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506158/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380715"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380715"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380715; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380715]").text(description); $(".js-view-count[data-work-id=16380715]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380715; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380715']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380715, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "067b31cbcb2d0cd2692249403dd9c1fe" } } $('.js-work-strip[data-work-id=16380715]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380715,"title":"STEVENS uncorrected proof","translated_title":"","metadata":{"grobid_abstract":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantcommunity restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous 'fingerprinting' markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","grobid_abstract_attachment_id":42506158},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380715/STEVENS_uncorrected_proof","translated_internal_url":"","created_at":"2015-10-01T16:11:31.392-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506158/thumbnails/1.jpg","file_name":"STEVENS_uncorrected_proof20160209-28316-iuq19s.pdf","download_url":"https://www.academia.edu/attachments/42506158/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"STEVENS_uncorrected_proof.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506158/STEVENS_uncorrected_proof20160209-28316-iuq19s-libre.pdf?1455055819=\u0026response-content-disposition=attachment%3B+filename%3DSTEVENS_uncorrected_proof.pdf\u0026Expires=1734024194\u0026Signature=JfDrUunuo8OiOs98sLjHvdoy7c3clyyHznlJ7nZHud40oY9i6htT8jtpP5kVaUdqVfjKQNJO7Ad6NA3UaldbDe~8HiPgLfl1J5zMc2VISIkv-xF2dKoHfmJrPsP0AtX-57ADjR1zXAD15V75kAqhK4AwlvSQZS0Bg6QBS2gQR3FjlNsE-b9p0APJgcexmV4LN8gWeGeI-RehuYo6q-D7yRvyDIuIbbqLNn19VIZbqC5OI8Vgl5djlrmOY3c8mbw-VaMAEwgr6cA0jjLKwdIvA4nor~1JX0xMQYcp~XVDBoFtbwONCc0xpkG9t7ZPcPXOoPhgAwUZYpMCymCs46iavw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"STEVENS_uncorrected_proof","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plantcommunity restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous 'fingerprinting' markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506158,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506158/thumbnails/1.jpg","file_name":"STEVENS_uncorrected_proof20160209-28316-iuq19s.pdf","download_url":"https://www.academia.edu/attachments/42506158/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"STEVENS_uncorrected_proof.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506158/STEVENS_uncorrected_proof20160209-28316-iuq19s-libre.pdf?1455055819=\u0026response-content-disposition=attachment%3B+filename%3DSTEVENS_uncorrected_proof.pdf\u0026Expires=1734024194\u0026Signature=JfDrUunuo8OiOs98sLjHvdoy7c3clyyHznlJ7nZHud40oY9i6htT8jtpP5kVaUdqVfjKQNJO7Ad6NA3UaldbDe~8HiPgLfl1J5zMc2VISIkv-xF2dKoHfmJrPsP0AtX-57ADjR1zXAD15V75kAqhK4AwlvSQZS0Bg6QBS2gQR3FjlNsE-b9p0APJgcexmV4LN8gWeGeI-RehuYo6q-D7yRvyDIuIbbqLNn19VIZbqC5OI8Vgl5djlrmOY3c8mbw-VaMAEwgr6cA0jjLKwdIvA4nor~1JX0xMQYcp~XVDBoFtbwONCc0xpkG9t7ZPcPXOoPhgAwUZYpMCymCs46iavw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6632536,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/273382103_STEVENS_uncorrected_proof/links/54ffd1dc0cf2672e2248bd25.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380714"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380714/Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS"><img alt="Research paper thumbnail of Stevens et al NZJE Accepted Ms.3 TABLE 2 and FIGS" class="work-thumbnail" src="https://attachments.academia-assets.com/42506162/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380714/Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS">Stevens et al NZJE Accepted Ms.3 TABLE 2 and FIGS</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="f373d5151dd607f94ebc2575e6b30ec9" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506162,"asset_id":16380714,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506162/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380714"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380714"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380714; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380714]").text(description); $(".js-view-count[data-work-id=16380714]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380714; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380714']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380714, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "f373d5151dd607f94ebc2575e6b30ec9" } } $('.js-work-strip[data-work-id=16380714]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380714,"title":"Stevens et al NZJE Accepted Ms.3 TABLE 2 and FIGS","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380714/Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS","translated_internal_url":"","created_at":"2015-10-01T16:11:31.311-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506162,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506162/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0.pdf","download_url":"https://www.academia.edu/attachments/42506162/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506162/Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf\u0026Expires=1734024194\u0026Signature=e-Qx882gu3PEy8gVRygAMhmIJzZZ0WWKc61XkC9nexYfpryi0FNjDW9pbrStw~NJIcLi~kvEGsRYDTTvDXygTDwJZQfd4VI42K-fhADHAOq-T8M6v29RWOvhhPS~YvtcQ9EOTh0mrdd9NfBQaoRoMQ0C4IIaYzyqRkDasX2M-k2PZ3uuwNXA~PTxvL85ddYp~3uwEu8LHjdr7pu818QccMMHJSbjuhCrEe8vJ-nqszwGTRo9zC~-cehPWFKMRpcCaZB-8AKfA4RbGG4KiHfKmjttwKvOve8sU7ZLjkTsBxcIo-VGk2o2O-XLMdOmXCuJsemGCWQIgd~pgJpALawL5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2_and_FIGS","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506162,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506162/thumbnails/1.jpg","file_name":"Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0.pdf","download_url":"https://www.academia.edu/attachments/42506162/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Stevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506162/Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_220160209-17299-1mm2gj0-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DStevens_et_al_NZJE_Accepted_Ms_3_TABLE_2.pdf\u0026Expires=1734024194\u0026Signature=e-Qx882gu3PEy8gVRygAMhmIJzZZ0WWKc61XkC9nexYfpryi0FNjDW9pbrStw~NJIcLi~kvEGsRYDTTvDXygTDwJZQfd4VI42K-fhADHAOq-T8M6v29RWOvhhPS~YvtcQ9EOTh0mrdd9NfBQaoRoMQ0C4IIaYzyqRkDasX2M-k2PZ3uuwNXA~PTxvL85ddYp~3uwEu8LHjdr7pu818QccMMHJSbjuhCrEe8vJ-nqszwGTRo9zC~-cehPWFKMRpcCaZB-8AKfA4RbGG4KiHfKmjttwKvOve8sU7ZLjkTsBxcIo-VGk2o2O-XLMdOmXCuJsemGCWQIgd~pgJpALawL5A__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[],"urls":[{"id":6632539,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/270703001_Stevens_et_al_NZJE_Accepted_Ms.3_TABLE_2_and_FIGS/links/54b307d00cf2318f0f953e38.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380713"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380713/Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum"><img alt="Research paper thumbnail of Connecting the dots: a population genetic study of the disjunctly distributed species Pittosporum obcordatum" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380713/Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum">Connecting the dots: a population genetic study of the disjunctly distributed species Pittosporum obcordatum</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disj...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380713"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380713"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380713; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380713]").text(description); $(".js-view-count[data-work-id=16380713]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380713; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380713']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380713, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380713]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380713,"title":"Connecting the dots: a population genetic study of the disjunctly distributed species Pittosporum obcordatum","translated_title":"","metadata":{"abstract":"Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis."},"translated_abstract":"Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis.","internal_url":"https://www.academia.edu/16380713/Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum","translated_internal_url":"","created_at":"2015-10-01T16:11:31.229-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Connecting_the_dots_a_population_genetic_study_of_the_disjunctly_distributed_species_Pittosporum_obcordatum","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"Pittosporum obcordatum Raoul (Pittosporaceae) is a rare New Zealand plant with a widespread, disjunct distribution. Isolated populations of P. obcordatum have been found from Kaitaia in the North Island to Fiordland in the South Island and this species is classified as “nationally vulnerable”. This research project aims to inform assessments of its conservation status by determining if the current disjunct distribution of P. obcordatum is natural or if it is a consequence of habitat loss. In order to achieve this goal, tissue samples have been collected from eight populations throughout the North and South Islands of New Zealand. Genetic analyses of these samples using Inter-simple sequence repeat (ISSR) markers are employed to study patterns of genetic variation in P. obcordatum. In this poster, I will present our preliminary results. In the near future, we will also use ISSR data to reassess the taxonomic status of var. kaitaianensis.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380712"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380712/New_Zealand_flowers_what_do_the_birds_and_the_bees_see"><img alt="Research paper thumbnail of New Zealand flowers: what do the birds and the bees see?" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380712/New_Zealand_flowers_what_do_the_birds_and_the_bees_see">New Zealand flowers: what do the birds and the bees see?</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to kno...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380712"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380712"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380712; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380712]").text(description); $(".js-view-count[data-work-id=16380712]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380712; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380712']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380712, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380712]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380712,"title":"New Zealand flowers: what do the birds and the bees see?","translated_title":"","metadata":{"abstract":"New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar..."},"translated_abstract":"New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar...","internal_url":"https://www.academia.edu/16380712/New_Zealand_flowers_what_do_the_birds_and_the_bees_see","translated_internal_url":"","created_at":"2015-10-01T16:11:31.150-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"New_Zealand_flowers_what_do_the_birds_and_the_bees_see","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":"New Zealand flowers are often characterised as drab with simple colour patterns. We wanted to know if this is also the case in colour palettes more characteristic of pollinators. Although humans have trichromatic colour vision, our colour palette is different from the vision of many pollinators. Hymenoptera have a trichromatic uv-blue-green colour palette, whereas birds and some Lepidoptera can see uv, blue, green, and red. We combined ultraviolet photographs with the blue and green channels of normal colour photographs to make false colour pictures that show colour contrasts corresponding to pollinators’ vision. In general, flowers frequently visited by birds (Metrosideros excelsa, Knightia excelsa, Rhabdothamnus solandri) and by insects (Lobelia angulata, Veronica spp., Hoheria spp.) mostly reflect strongly in uv. However, hidden contrast patterns as seen in some European and American flowers (Raphanus, Mimulus, Ulex) were not seen in New Zealand natives. Flowers from the subantar...","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380711"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380711/ASBS2014abstracts"><img alt="Research paper thumbnail of ASBS2014abstracts" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380711/ASBS2014abstracts">ASBS2014abstracts</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380711"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380711"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380711; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380711]").text(description); $(".js-view-count[data-work-id=16380711]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380711; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380711']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380711, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380711]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380711,"title":"ASBS2014abstracts","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380711/ASBS2014abstracts","translated_internal_url":"","created_at":"2015-10-01T16:11:30.567-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"ASBS2014abstracts","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380710"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380710/Fixing_the_female_job_pipeline"><img alt="Research paper thumbnail of Fixing the female job pipeline" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380710/Fixing_the_female_job_pipeline">Fixing the female job pipeline</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380710"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380710"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380710; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380710]").text(description); $(".js-view-count[data-work-id=16380710]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380710; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380710']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380710, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380710]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380710,"title":"Fixing the female job pipeline","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380710/Fixing_the_female_job_pipeline","translated_internal_url":"","created_at":"2015-10-01T16:11:30.459-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Fixing_the_female_job_pipeline","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380709"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380709/Above_the_treeline_a_nature_guide_to_alpine_New_Zealand"><img alt="Research paper thumbnail of Above the treeline: a nature guide to alpine New Zealand" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380709/Above_the_treeline_a_nature_guide_to_alpine_New_Zealand">Above the treeline: a nature guide to alpine New Zealand</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380709"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380709"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380709; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380709]").text(description); $(".js-view-count[data-work-id=16380709]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380709; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380709']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380709, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=16380709]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380709,"title":"Above the treeline: a nature guide to alpine New Zealand","translated_title":"","metadata":{},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380709/Above_the_treeline_a_nature_guide_to_alpine_New_Zealand","translated_internal_url":"","created_at":"2015-10-01T16:11:30.350-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[],"slug":"Above_the_treeline_a_nature_guide_to_alpine_New_Zealand","translated_slug":"","page_count":null,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":5541,"name":"Plant Biology","url":"https://www.academia.edu/Documents/in/Plant_Biology"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16380708"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16380708/Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum"><img alt="Research paper thumbnail of Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum" class="work-thumbnail" src="https://attachments.academia-assets.com/42506154/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16380708/Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum">Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum</a></div><div class="wp-workCard_item"><span>Antarctic Science</span><span>, 2010</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic, New Zealand and Australia to understand better taxonomic delimitations and resolve relationships between these geographic regions. Bryum argenteum has been recorded as two species, B. argenteum and B. subrotundifolium, in all four regions with the latter now referred to as B. argenteum var. muticum. We found disagreement between taxon delimitations (based on morphology) and molecular markers. All continental Antarctic specimens consistently formed a monophyletic sister group that consisted of both morphologically identified B. argenteum varieties, separate to all non-Antarctic specimens (also consisting of both varieties). We suggest, contrary to previous records, that all continental Antarctic (Victoria Land) populations are referable to B. argenteum var. muticum, while sub-Antarctic, Australian and New Zealand populations included here are B. argenteum var. argenteum. Additionally, since there was less genetic diversity within Victoria Land, Antarctica, than observed between non-Antarctic samples, we suggest that this is, in part, due to a potentially lower rate of DNA substitution and isolation in northern and southern refugia within Victoria Land since the Pleistocene.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="40dc249935762814ebcd61a000d6f335" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":42506154,"asset_id":16380708,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/42506154/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16380708"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16380708"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16380708; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16380708]").text(description); $(".js-view-count[data-work-id=16380708]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16380708; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16380708']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16380708, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "40dc249935762814ebcd61a000d6f335" } } $('.js-work-strip[data-work-id=16380708]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16380708,"title":"Molecular support for Pleistocene persistence of the continental Antarctic moss Bryum argenteum","translated_title":"","metadata":{"grobid_abstract":"We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic, New Zealand and Australia to understand better taxonomic delimitations and resolve relationships between these geographic regions. Bryum argenteum has been recorded as two species, B. argenteum and B. subrotundifolium, in all four regions with the latter now referred to as B. argenteum var. muticum. We found disagreement between taxon delimitations (based on morphology) and molecular markers. All continental Antarctic specimens consistently formed a monophyletic sister group that consisted of both morphologically identified B. argenteum varieties, separate to all non-Antarctic specimens (also consisting of both varieties). We suggest, contrary to previous records, that all continental Antarctic (Victoria Land) populations are referable to B. argenteum var. muticum, while sub-Antarctic, Australian and New Zealand populations included here are B. argenteum var. argenteum. Additionally, since there was less genetic diversity within Victoria Land, Antarctica, than observed between non-Antarctic samples, we suggest that this is, in part, due to a potentially lower rate of DNA substitution and isolation in northern and southern refugia within Victoria Land since the Pleistocene.","publication_date":{"day":null,"month":null,"year":2010,"errors":{}},"publication_name":"Antarctic Science","grobid_abstract_attachment_id":42506154},"translated_abstract":null,"internal_url":"https://www.academia.edu/16380708/Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum","translated_internal_url":"","created_at":"2015-10-01T16:11:30.209-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":42506154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506154/thumbnails/1.jpg","file_name":"Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c.pdf","download_url":"https://www.academia.edu/attachments/42506154/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_support_for_Pleistocene_persis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506154/Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_support_for_Pleistocene_persis.pdf\u0026Expires=1734024194\u0026Signature=GhJPNgBytUyJyz1o9HWi9bVTKSV652Y9Ac8AtBzaL3O1th-D~87iIZY2ibjiNhxMT3ViL41KXiDRTxh9N~7jymrSXADraASyIwLHJUdj4SyOIur4XxqVETXaCxgOlHGSI9YbHx41UgMhz1~CMd4zKIMQv518JDU56XJY-XdID4wCtOQ2SsX4W0Sj4oQYjy5Z1ksGlHbv7a-cn2e7B~omY19ZMcAhm0sCohgRTnovGa9stTGfaVSki-ZgbEwvEJUdWBs-yE97ImW9rqsktMIJQJETgBJfeqk5Lvkf-WQELgETA1PYiHCi1gt74MFrRbJGItrfitIPkD6n43Qz5a0Wmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":"We examined sequence variation of ITS and phy2 for Bryum argenteum from Antarctica, sub-Antarctic, New Zealand and Australia to understand better taxonomic delimitations and resolve relationships between these geographic regions. Bryum argenteum has been recorded as two species, B. argenteum and B. subrotundifolium, in all four regions with the latter now referred to as B. argenteum var. muticum. We found disagreement between taxon delimitations (based on morphology) and molecular markers. All continental Antarctic specimens consistently formed a monophyletic sister group that consisted of both morphologically identified B. argenteum varieties, separate to all non-Antarctic specimens (also consisting of both varieties). We suggest, contrary to previous records, that all continental Antarctic (Victoria Land) populations are referable to B. argenteum var. muticum, while sub-Antarctic, Australian and New Zealand populations included here are B. argenteum var. argenteum. Additionally, since there was less genetic diversity within Victoria Land, Antarctica, than observed between non-Antarctic samples, we suggest that this is, in part, due to a potentially lower rate of DNA substitution and isolation in northern and southern refugia within Victoria Land since the Pleistocene.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":42506154,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/42506154/thumbnails/1.jpg","file_name":"Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c.pdf","download_url":"https://www.academia.edu/attachments/42506154/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_support_for_Pleistocene_persis.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/42506154/Molecular_support_for_Pleistocene_persis20160209-16187-1r3o40c-libre.pdf?1455055817=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_support_for_Pleistocene_persis.pdf\u0026Expires=1734024194\u0026Signature=GhJPNgBytUyJyz1o9HWi9bVTKSV652Y9Ac8AtBzaL3O1th-D~87iIZY2ibjiNhxMT3ViL41KXiDRTxh9N~7jymrSXADraASyIwLHJUdj4SyOIur4XxqVETXaCxgOlHGSI9YbHx41UgMhz1~CMd4zKIMQv518JDU56XJY-XdID4wCtOQ2SsX4W0Sj4oQYjy5Z1ksGlHbv7a-cn2e7B~omY19ZMcAhm0sCohgRTnovGa9stTGfaVSki-ZgbEwvEJUdWBs-yE97ImW9rqsktMIJQJETgBJfeqk5Lvkf-WQELgETA1PYiHCi1gt74MFrRbJGItrfitIPkD6n43Qz5a0Wmg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":400,"name":"Earth Sciences","url":"https://www.academia.edu/Documents/in/Earth_Sciences"},{"id":47884,"name":"Biological Sciences","url":"https://www.academia.edu/Documents/in/Biological_Sciences"},{"id":58054,"name":"Environmental Sciences","url":"https://www.academia.edu/Documents/in/Environmental_Sciences"},{"id":424365,"name":"Antarctic Science","url":"https://www.academia.edu/Documents/in/Antarctic_Science"}],"urls":[{"id":6632533,"url":"https://www.researchgate.net/profile/Chrissen_Gemmill/publication/231803050_Molecular_support_for_Pleistocene_persistence_of_the_continental_Antarctic_moss_Bryum_argenteum/links/00b7d51b7b54f27369000000.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="16275699"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/16275699/Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_"><img alt="Research paper thumbnail of Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)" class="work-thumbnail" src="https://attachments.academia-assets.com/38921790/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/16275699/Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_">Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://cambridge.academia.edu/AndrewClarke">Andrew Clarke</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://waikato.academia.edu/ChrissenGemmill">Chrissen Gemmill</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-c...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="648081018d90f0397de83354d444c0ce" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":38921790,"asset_id":16275699,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/38921790/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="16275699"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="16275699"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 16275699; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=16275699]").text(description); $(".js-view-count[data-work-id=16275699]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 16275699; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='16275699']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 16275699, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "648081018d90f0397de83354d444c0ce" } } $('.js-work-strip[data-work-id=16275699]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":16275699,"title":"Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)","translated_title":"","metadata":{"abstract":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","more_info":"New Zealand Journal of Ecology (2015) 39: 190–197."},"translated_abstract":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","internal_url":"https://www.academia.edu/16275699/Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_","translated_internal_url":"","created_at":"2015-09-28T14:16:28.140-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":235115,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6399613,"work_id":16275699,"tagging_user_id":235115,"tagged_user_id":10706701,"co_author_invite_id":null,"email":"g***s@xtra.co.nz","affiliation":"University of Waikato","display_order":0,"name":"Chrissen Gemmill","title":"Are current ecological restoration practices capturing natural levels of genetic diversity? A New Zealand case study using AFLP and ISSR data from mahoe (Melicytus ramiflorus)"}],"downloadable_attachments":[{"id":38921790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38921790/thumbnails/1.jpg","file_name":"New_Zeal_J_Ecol_2015_39_2_190-197.pdf","download_url":"https://www.academia.edu/attachments/38921790/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Are_current_ecological_restoration_pract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38921790/New_Zeal_J_Ecol_2015_39_2_190-197-libre.pdf?1443476177=\u0026response-content-disposition=attachment%3B+filename%3DAre_current_ecological_restoration_pract.pdf\u0026Expires=1733918632\u0026Signature=Xa~Tar2wm-SXWn1m4-oy86G7M34ZncBO1XkH-peONt-gsCendH3IsKt9vKdlkmtTFRlLgus21gI1Lji~103gm~21cQjGYhpD3ioJiaVZ4RFc~wh9tL-4FdKbMp-0UR8N-m12-EFrhbqpmfrB3qT7OBruZFr6k0x9fzUa4KQpP3M56YZOZYU01vhG1GTLqSbmD9EetlMlOqbM0y6F67GL6Yzvey2-iWko6ReEPGVEiNzGz9lgpl0PyF2A2BLY1wYVEYNHmHubVLng272cpUevUaC0ohdg3Q4RvospQiPft2xX5n8zTZ2rnhfv096tl-AJi8fmEup3FUtsIjkyy9WYog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Are_current_ecological_restoration_practices_capturing_natural_levels_of_genetic_diversity_A_New_Zealand_case_study_using_AFLP_and_ISSR_data_from_mahoe_Melicytus_ramiflorus_","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":"Sourcing plant species of local provenance (eco-sourcing) has become standard practice in plant-community restoration projects. Along with established ecological restoration practices, knowledge of genetic variation in existing and restored forest fragments is important for ensuring the maintenance of natural levels of genetic variation and connectivity (gene flow) among populations. The application of restoration genetics often employs anonymous ‘fingerprinting’ markers in combination with limited sample sizes due to financial constraints. Here, we used two such marker systems, AFLPs (amplified fragment length polymorphism) and ISSRs (inter-simple sequence repeats), to estimate population-level genetic variation of a frequently used species in restoration projects in New Zealand, mahoe (Melicytus ramiflorus, Violaceae). We examined two rural and two urban forest fragments, as potential local source populations, to determine whether the māhoe population at the recently (re)constructed ecosystem at Waiwhakareke Natural Heritage Park, Hamilton, New Zealand, reflects the genetic variation observed in these four potential source populations. Both marker systems produced similar results and indicated that, even with small population sizes, levels of genetic variation at the heritage park were comparable with in situ populations. However, the AFLPs did provide finer resolution of the population genetic structure than ISSRs. ISSRs, which are less expensive and technically less demanding to generate than AFLPs, may be sufficient for restoration projects where only a broad level of genotypic resolution is required. We recommend the use of AFLPs when species with a high conservation status are being used, due to the greater resolution of this technique.","owner":{"id":235115,"first_name":"Andrew","middle_initials":null,"last_name":"Clarke","page_name":"AndrewClarke","domain_name":"cambridge","created_at":"2010-08-18T15:38:17.155-07:00","display_name":"Andrew Clarke","url":"https://cambridge.academia.edu/AndrewClarke"},"attachments":[{"id":38921790,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/38921790/thumbnails/1.jpg","file_name":"New_Zeal_J_Ecol_2015_39_2_190-197.pdf","download_url":"https://www.academia.edu/attachments/38921790/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Are_current_ecological_restoration_pract.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/38921790/New_Zeal_J_Ecol_2015_39_2_190-197-libre.pdf?1443476177=\u0026response-content-disposition=attachment%3B+filename%3DAre_current_ecological_restoration_pract.pdf\u0026Expires=1733918632\u0026Signature=Xa~Tar2wm-SXWn1m4-oy86G7M34ZncBO1XkH-peONt-gsCendH3IsKt9vKdlkmtTFRlLgus21gI1Lji~103gm~21cQjGYhpD3ioJiaVZ4RFc~wh9tL-4FdKbMp-0UR8N-m12-EFrhbqpmfrB3qT7OBruZFr6k0x9fzUa4KQpP3M56YZOZYU01vhG1GTLqSbmD9EetlMlOqbM0y6F67GL6Yzvey2-iWko6ReEPGVEiNzGz9lgpl0PyF2A2BLY1wYVEYNHmHubVLng272cpUevUaC0ohdg3Q4RvospQiPft2xX5n8zTZ2rnhfv096tl-AJi8fmEup3FUtsIjkyy9WYog__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":1360,"name":"Plant Ecology","url":"https://www.academia.edu/Documents/in/Plant_Ecology"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":2809,"name":"Conservation","url":"https://www.academia.edu/Documents/in/Conservation"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":4209,"name":"Conservation Genetics","url":"https://www.academia.edu/Documents/in/Conservation_Genetics"},{"id":4480,"name":"Population Genetics","url":"https://www.academia.edu/Documents/in/Population_Genetics"},{"id":5221,"name":"Restoration Ecology","url":"https://www.academia.edu/Documents/in/Restoration_Ecology"},{"id":7653,"name":"Forest Ecology And Management","url":"https://www.academia.edu/Documents/in/Forest_Ecology_And_Management"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10024,"name":"Population genetics (Biology)","url":"https://www.academia.edu/Documents/in/Population_genetics_Biology_"},{"id":11886,"name":"Population ecology","url":"https://www.academia.edu/Documents/in/Population_ecology"},{"id":13501,"name":"Vegetation Ecology","url":"https://www.academia.edu/Documents/in/Vegetation_Ecology"},{"id":14926,"name":"Molecular Markers","url":"https://www.academia.edu/Documents/in/Molecular_Markers"},{"id":17829,"name":"Forest Ecology","url":"https://www.academia.edu/Documents/in/Forest_Ecology"},{"id":18594,"name":"Evolutionary Ecology","url":"https://www.academia.edu/Documents/in/Evolutionary_Ecology"},{"id":23980,"name":"Ecological restoration","url":"https://www.academia.edu/Documents/in/Ecological_restoration"},{"id":46119,"name":"Molecular Ecology","url":"https://www.academia.edu/Documents/in/Molecular_Ecology"},{"id":48494,"name":"Biodiversity Conservation","url":"https://www.academia.edu/Documents/in/Biodiversity_Conservation"},{"id":125637,"name":"Violaceae","url":"https://www.academia.edu/Documents/in/Violaceae"},{"id":154690,"name":"ISSR","url":"https://www.academia.edu/Documents/in/ISSR"},{"id":155134,"name":"AFLP Marker","url":"https://www.academia.edu/Documents/in/AFLP_Marker"}],"urls":[{"id":6062592,"url":"http://newzealandecology.org/nzje/3226"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7115661"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7115661/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata"><img alt="Research paper thumbnail of Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata" class="work-thumbnail" src="https://attachments.academia-assets.com/33756636/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7115661/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata">Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="0853e9bf737bc4b4ba45d33c4f5df713" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33756636,"asset_id":7115661,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33756636/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7115661"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7115661"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7115661; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7115661]").text(description); $(".js-view-count[data-work-id=7115661]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7115661; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7115661']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7115661, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "0853e9bf737bc4b4ba45d33c4f5df713" } } $('.js-work-strip[data-work-id=7115661]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7115661,"title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata","translated_title":"","metadata":{"ai_abstract":"Didymosphenia geminata (Lyngbye) Schmidt (Gomphonemataceae) is an invasive freshwater diatom known for forming dense blooms that threaten local ecosystems. Microscopic identification methods hinder the monitoring and management of its spread. A TaqMan quantitative polymerase chain reaction (QPCR) assay has been developed for the rapid detection and quantification of D. geminata in environmental samples. The assay demonstrated a linear detection range covering eight orders of magnitude and was validated through field surveys across New Zealand and 13 international locations. The ability to detect and monitor D. geminata populations effectively allows for proactive management strategies to mitigate its ecological impact."},"translated_abstract":null,"internal_url":"https://www.academia.edu/7115661/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata","translated_internal_url":"","created_at":"2014-05-21T08:09:29.956-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555129,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":236714,"email":"c***y@waikato.ac.nz","display_order":0,"name":"Craig Cary","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"},{"id":6555131,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":32234627,"co_author_invite_id":null,"email":"b***s@waikato.ac.nz","display_order":4194304,"name":"Brendan J Hicks","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"},{"id":6555133,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":39413152,"co_author_invite_id":192859,"email":"h***j@waikato.ac.nz","affiliation":"University of Waikato","display_order":6291456,"name":"Brendan Hicks","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"},{"id":6555135,"work_id":7115661,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459588,"email":"a***t@alumni.tu-berlin.de","display_order":7340032,"name":"Andreas Rückert","title":"Development and validation of a quantitative PCR assay for the early detection and monitoring of the invasive diatom Didymosphenia geminata"}],"downloadable_attachments":[{"id":33756636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33756636/thumbnails/1.jpg","file_name":"Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin.pdf","download_url":"https://www.academia.edu/attachments/33756636/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Development_and_validation_of_a_quantita.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33756636/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin-libre.pdf?1400684953=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_and_validation_of_a_quantita.pdf\u0026Expires=1734024194\u0026Signature=a-lpRoxygqIVzyI6Ij0Jv1e7bG5MBY~rLHSXYFFhakZl7xB9mginFTHRjbj4uRhGQbeHl1Ee6dA9H2nk9ShCvvVwMuZFbwJx-Xn5REyUqXk53rp-DKqHuTgSXFvhDh0hZs1Mp3XCQKNboTZZcahDPBgY2ICfjPqUV60QljUQpvfwk6arhJM6AqCIBbIAU1n4FdcjwIO71Trt70qhaINuIfr9ysYxI8l-9d8EW4yQ8OjMfkPeUHs2lqjxwZKxCGOdBrBMoeUDvT5LdNkHd~aAzbrZcA6pWlczb9sojWcBqbcO85DM9y7Pf9U5bub9eJlTaYZMjUuf4yAVg4DZMtI4gQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_geminata","translated_slug":"","page_count":8,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33756636,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33756636/thumbnails/1.jpg","file_name":"Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin.pdf","download_url":"https://www.academia.edu/attachments/33756636/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Development_and_validation_of_a_quantita.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33756636/Development_and_validation_of_a_quantitative_PCR_assay_for_the_early_detection_and_monitoring_of_the_invasive_diatom_Didymosphenia_gemin-libre.pdf?1400684953=\u0026response-content-disposition=attachment%3B+filename%3DDevelopment_and_validation_of_a_quantita.pdf\u0026Expires=1734024194\u0026Signature=a-lpRoxygqIVzyI6Ij0Jv1e7bG5MBY~rLHSXYFFhakZl7xB9mginFTHRjbj4uRhGQbeHl1Ee6dA9H2nk9ShCvvVwMuZFbwJx-Xn5REyUqXk53rp-DKqHuTgSXFvhDh0hZs1Mp3XCQKNboTZZcahDPBgY2ICfjPqUV60QljUQpvfwk6arhJM6AqCIBbIAU1n4FdcjwIO71Trt70qhaINuIfr9ysYxI8l-9d8EW4yQ8OjMfkPeUHs2lqjxwZKxCGOdBrBMoeUDvT5LdNkHd~aAzbrZcA6pWlczb9sojWcBqbcO85DM9y7Pf9U5bub9eJlTaYZMjUuf4yAVg4DZMtI4gQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":7997,"name":"Invasive species ecology","url":"https://www.academia.edu/Documents/in/Invasive_species_ecology"},{"id":17575,"name":"Algae","url":"https://www.academia.edu/Documents/in/Algae"},{"id":23491,"name":"Diatoms","url":"https://www.academia.edu/Documents/in/Diatoms"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7095267"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7095267/Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data"><img alt="Research paper thumbnail of Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7095267/Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data">Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entire...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entirely limited to the paleotropics. Two independent molecular datasets have been constructed with a representative sample from all nine genera of Pittosporaceae to test phylogenetic relationships suggested by recent morphological studies and to examine current morphological delimitations of genera. DNA sequence data derived from the ITS region of nuclear rDNA and from the trnL-trnF region of the chloroplast genome agree in uniting all species sampled from Pittosporum within a single clade, together with all species sampled from the previously segregated genus Citriobatus. Molecular data also confirm that members of the recently established genus Auranticarpa must be excluded from Pittosporum, and that another segregate genus, Sollya, should be placed within Billardiera. Hymenosporum remains a distinct, single-taxon lineage and Rhytidosporum is also confirmed as distinct. In most respects, our results are in agreement with recent taxonomic revisions based on morphology, and support an Australian origin of Pittosporaceae. Multiple dispersal events of Pittosporum from Australia to the islands of the Pacific and Indian Oceans, including New Zealand, are suggested, as well as island hopping throughout the Pacific.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="feb39770da1a6e0cfc6e7ef750e0c8aa" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33740341,"asset_id":7095267,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33740341/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7095267"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7095267"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7095267; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7095267]").text(description); $(".js-view-count[data-work-id=7095267]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7095267; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7095267']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7095267, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "feb39770da1a6e0cfc6e7ef750e0c8aa" } } $('.js-work-strip[data-work-id=7095267]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7095267,"title":"Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data","translated_title":"","metadata":{"grobid_abstract":"Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entirely limited to the paleotropics. Two independent molecular datasets have been constructed with a representative sample from all nine genera of Pittosporaceae to test phylogenetic relationships suggested by recent morphological studies and to examine current morphological delimitations of genera. DNA sequence data derived from the ITS region of nuclear rDNA and from the trnL-trnF region of the chloroplast genome agree in uniting all species sampled from Pittosporum within a single clade, together with all species sampled from the previously segregated genus Citriobatus. Molecular data also confirm that members of the recently established genus Auranticarpa must be excluded from Pittosporum, and that another segregate genus, Sollya, should be placed within Billardiera. Hymenosporum remains a distinct, single-taxon lineage and Rhytidosporum is also confirmed as distinct. In most respects, our results are in agreement with recent taxonomic revisions based on morphology, and support an Australian origin of Pittosporaceae. Multiple dispersal events of Pittosporum from Australia to the islands of the Pacific and Indian Oceans, including New Zealand, are suggested, as well as island hopping throughout the Pacific.","grobid_abstract_attachment_id":33740341},"translated_abstract":null,"internal_url":"https://www.academia.edu/7095267/Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data","translated_internal_url":"","created_at":"2014-05-19T15:34:01.524-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555121,"work_id":7095267,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459586,"email":"c***g@uncw.edu","display_order":0,"name":"Gregory Chandler","title":"Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data"},{"id":6555122,"work_id":7095267,"tagging_user_id":10706701,"tagged_user_id":8539141,"co_author_invite_id":null,"email":"g***r@agriculture.gov.au","display_order":4194304,"name":"Gregory Chandler","title":"Molecular and morphological agreement in Pittosporaceae: phylogenetic analysis with nuclear ITS and plastid trnL–trnF sequence data"}],"downloadable_attachments":[{"id":33740341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Chandler_etal_2007.pdf","download_url":"https://www.academia.edu/attachments/33740341/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_and_morphological_agreement_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740341/Chandler_etal_2007-libre.pdf?1400540126=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_and_morphological_agreement_in.pdf\u0026Expires=1734024194\u0026Signature=Sj5QwGLG~v3NlSPwyi8qrlpaxFQjozwR77Se6~j~AZUipvm4esuZ4zpAV871QMAHLVAfPmx6Srg5XXgJbZN~PLXtM4TYN7mruHKe0HvBqcNY17rD8~002SIXpAUjB51cEjf~bkvZ4yC9kDa1RystlSdxKlif336k0pOVdEGV2eApdbJzwE-3F4GZ98zbJ1HDFRQX-II2c1MbfOD5qSF~Wn6Ve0yxbpnGp1yBHQjUQMLKAj49O90G5Z3LnSn-uosLDTS7dmdsB~6AN0FnZ0~1xhQuACiinpMCBzSF9Xal~d4AVUxdB7ZIArimiMFDkWvCnyeNlWVeDZIJIzDvYBm2wQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Molecular_and_morphological_agreement_in_Pittosporaceae_phylogenetic_analysis_with_nuclear_ITS_and_plastid_trnL_trnF_sequence_data","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Pittosporaceae are a small family of flowering plants largely restricted to Australia, and entirely limited to the paleotropics. Two independent molecular datasets have been constructed with a representative sample from all nine genera of Pittosporaceae to test phylogenetic relationships suggested by recent morphological studies and to examine current morphological delimitations of genera. DNA sequence data derived from the ITS region of nuclear rDNA and from the trnL-trnF region of the chloroplast genome agree in uniting all species sampled from Pittosporum within a single clade, together with all species sampled from the previously segregated genus Citriobatus. Molecular data also confirm that members of the recently established genus Auranticarpa must be excluded from Pittosporum, and that another segregate genus, Sollya, should be placed within Billardiera. Hymenosporum remains a distinct, single-taxon lineage and Rhytidosporum is also confirmed as distinct. In most respects, our results are in agreement with recent taxonomic revisions based on morphology, and support an Australian origin of Pittosporaceae. Multiple dispersal events of Pittosporum from Australia to the islands of the Pacific and Indian Oceans, including New Zealand, are suggested, as well as island hopping throughout the Pacific.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33740341,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Chandler_etal_2007.pdf","download_url":"https://www.academia.edu/attachments/33740341/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Molecular_and_morphological_agreement_in.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740341/Chandler_etal_2007-libre.pdf?1400540126=\u0026response-content-disposition=attachment%3B+filename%3DMolecular_and_morphological_agreement_in.pdf\u0026Expires=1734024194\u0026Signature=Sj5QwGLG~v3NlSPwyi8qrlpaxFQjozwR77Se6~j~AZUipvm4esuZ4zpAV871QMAHLVAfPmx6Srg5XXgJbZN~PLXtM4TYN7mruHKe0HvBqcNY17rD8~002SIXpAUjB51cEjf~bkvZ4yC9kDa1RystlSdxKlif336k0pOVdEGV2eApdbJzwE-3F4GZ98zbJ1HDFRQX-II2c1MbfOD5qSF~Wn6Ve0yxbpnGp1yBHQjUQMLKAj49O90G5Z3LnSn-uosLDTS7dmdsB~6AN0FnZ0~1xhQuACiinpMCBzSF9Xal~d4AVUxdB7ZIArimiMFDkWvCnyeNlWVeDZIJIzDvYBm2wQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":4364,"name":"Molecular Systematics","url":"https://www.academia.edu/Documents/in/Molecular_Systematics"},{"id":13372,"name":"Plant Taxonomy (Taxonomy)","url":"https://www.academia.edu/Documents/in/Plant_Taxonomy_Taxonomy_"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7095229"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7095229/Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation"><img alt="Research paper thumbnail of Evolution of Insular Pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian Radiation" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7095229/Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation">Evolution of Insular Pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian Radiation</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We perf...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximumlikelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="148fd43117a45db64346e80ffe1c289c" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33740285,"asset_id":7095229,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33740285/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7095229"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7095229"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7095229; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7095229]").text(description); $(".js-view-count[data-work-id=7095229]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7095229; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7095229']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7095229, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "148fd43117a45db64346e80ffe1c289c" } } $('.js-work-strip[data-work-id=7095229]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7095229,"title":"Evolution of Insular Pacific Pittosporum (Pittosporaceae): Origin of the Hawaiian Radiation","translated_title":"","metadata":{"ai_title_tag":"Hawaiian Pittosporum Origin and Evolution from South Pacific","grobid_abstract":"Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximumlikelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.","grobid_abstract_attachment_id":33740285},"translated_abstract":null,"internal_url":"https://www.academia.edu/7095229/Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation","translated_internal_url":"","created_at":"2014-05-19T15:25:57.987-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33740285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Hawaiian_Pitts.pdf","download_url":"https://www.academia.edu/attachments/33740285/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_Insular_Pacific_Pittosporum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740285/Hawaiian_Pitts-libre.pdf?1400540076=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_Insular_Pacific_Pittosporum.pdf\u0026Expires=1734024194\u0026Signature=LorfQvpe1JHcbSQpUqqhcC8xO4vln5FRbM6DwDIU06uk1ZxkTudaUyC4pANUdXrxIkiz5qW9xNYUHaiGGptIeJcQ5BuT1aM3Fz7Rmfazgb-3EfQAslEESrEvgSgvOUazYtSIsgTjdVTTqQ~Mv7UhrzNIYBaYnVPSjymcZVFpfg3zEh5uylv33CFu2BDBX5xXfGJTvw5IRnU9PLeNOknuJoCQSkS7ajUg4xxGgdMlIppYCBYsRu4VxqzX23EMraLXJSufYx5VNY3wjAkC5QUSMI5e1CUTIMBobt9mAcikhmZ-zeebdrcIteZ0L1dHnsIacs7ciIxKRPXMTXaLgcxI4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Evolution_of_Insular_Pacific_Pittosporum_Pittosporaceae_Origin_of_the_Hawaiian_Radiation","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"Pittosporum species using internal transcribed spacer sequences of nuclear ribosomal DNA. We performed both maximum-parsimony and maximumlikelihood analyses, which produced congruent results. Sequence divergence was 0.0% between Hawaiian members of Pittosporum. These taxa formed a strongly supported clade, suggesting a single colonization event followed by phyletic radiation. Sister to the Hawaiian clade were two South Pacific species, P. yunckeri from Tonga and P. rhytidocarpum from Fiji. This result presents convincing evidence for a South Pacific origin of Hawaiian Pittosporum. Our results also identify a monophyletic group comprising three species representing the Fijian Province and East Polynesia, two introductions onto New Caledonia, and at least one (but possibly two) introduction(s) onto New Zealand. Whether the New Zealand taxa form a monophyletic group is unclear from these data. Previous morphologically based hypotheses, however, suggest the presence of four different lineages occupying New Zealand. The nonmonophyly of the New Caledonian species was not surprising based on the extent of their morphological diversity. Although this latter result is not strongly supported, these species are morphologically complex and are currently the subject of taxonomic revision and molecular systematic analyses.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33740285,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://a.academia-assets.com/images/blank-paper.jpg","file_name":"Hawaiian_Pitts.pdf","download_url":"https://www.academia.edu/attachments/33740285/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Evolution_of_Insular_Pacific_Pittosporum.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33740285/Hawaiian_Pitts-libre.pdf?1400540076=\u0026response-content-disposition=attachment%3B+filename%3DEvolution_of_Insular_Pacific_Pittosporum.pdf\u0026Expires=1734024194\u0026Signature=LorfQvpe1JHcbSQpUqqhcC8xO4vln5FRbM6DwDIU06uk1ZxkTudaUyC4pANUdXrxIkiz5qW9xNYUHaiGGptIeJcQ5BuT1aM3Fz7Rmfazgb-3EfQAslEESrEvgSgvOUazYtSIsgTjdVTTqQ~Mv7UhrzNIYBaYnVPSjymcZVFpfg3zEh5uylv33CFu2BDBX5xXfGJTvw5IRnU9PLeNOknuJoCQSkS7ajUg4xxGgdMlIppYCBYsRu4VxqzX23EMraLXJSufYx5VNY3wjAkC5QUSMI5e1CUTIMBobt9mAcikhmZ-zeebdrcIteZ0L1dHnsIacs7ciIxKRPXMTXaLgcxI4g__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":2513,"name":"Molecular Biology","url":"https://www.academia.edu/Documents/in/Molecular_Biology"},{"id":9846,"name":"Ecology","url":"https://www.academia.edu/Documents/in/Ecology"},{"id":10882,"name":"Evolution","url":"https://www.academia.edu/Documents/in/Evolution"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104382"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104382/Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_t%C4%81whiri_karo_cornel_leaved_pittosporum"><img alt="Research paper thumbnail of Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum" class="work-thumbnail" src="https://attachments.academia-assets.com/33747398/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104382/Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_t%C4%81whiri_karo_cornel_leaved_pittosporum">Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="51c1351c55d4833d33622db30365f6dd" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747398,"asset_id":7104382,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747398/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104382"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104382"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104382; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104382]").text(description); $(".js-view-count[data-work-id=7104382]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104382; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104382']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104382, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "51c1351c55d4833d33622db30365f6dd" } } $('.js-work-strip[data-work-id=7104382]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104382,"title":"Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum","translated_title":"","metadata":{"ai_abstract":"Pittosporum cornifolium is an endemic shrub epiphyte in New Zealand that exhibits a unique morphology and ecological traits, typically found in lowland and coastal ecosystems. Despite its distinctive features, research on this species is limited, emphasizing the need for further studies on its population structure, pollination, and dispersal mechanisms to support conservation efforts."},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104382/Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_t%C4%81whiri_karo_cornel_leaved_pittosporum","translated_internal_url":"","created_at":"2014-05-20T08:12:12.304-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555139,"work_id":7104382,"tagging_user_id":10706701,"tagged_user_id":6513022,"co_author_invite_id":null,"email":"c***b@xtra.co.nz","affiliation":"University of Waikato","display_order":0,"name":"Bruce Clarkson","title":"Biological flora of New Zealand 13. Pittosporum cornifolium, tāwhiri karo, cornel-leaved pittosporum"}],"downloadable_attachments":[{"id":33747398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747398/thumbnails/1.jpg","file_name":"Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium.pdf","download_url":"https://www.academia.edu/attachments/33747398/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biological_flora_of_New_Zealand_13_Pitto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747398/Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium-libre.pdf?1400598803=\u0026response-content-disposition=attachment%3B+filename%3DBiological_flora_of_New_Zealand_13_Pitto.pdf\u0026Expires=1734024194\u0026Signature=egoshdVVRMMKKJygLS8ojd55tVbQnP1ExhYSYzh66RXbbJ32artZ1VMN~h1dAh7MCSmM0oizIeIa459JF6DsK7lAjnJ1-GXYmdMrHe8m3pHqiywwEcCKdQbkTxK9EnxjZB1V9kkYX7Z6DmNpm4yMJjNHJTdh3yyTt4JGW-vY4O-C1xue52fajhCPEqyd5XoM3KpVuoan7zGCrs7d78rCzVwjsA6ELssye0~P-16j0lZ7-ZAACfIhdCzY5mjtzDO5TKhbzRmLiPJ4v2st8QBm05rkG-llhy4vLkuhrBbOrHr5ANGM1M1C3A2-Qv7RWHVSAWSQ3SAyYqgD1IZw7k8m7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Biological_flora_of_New_Zealand_13_Pittosporum_cornifolium_tāwhiri_karo_cornel_leaved_pittosporum","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747398,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747398/thumbnails/1.jpg","file_name":"Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium.pdf","download_url":"https://www.academia.edu/attachments/33747398/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Biological_flora_of_New_Zealand_13_Pitto.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747398/Biological_flora_of_New_Zealand_13._Pittosporum_cornifolium-libre.pdf?1400598803=\u0026response-content-disposition=attachment%3B+filename%3DBiological_flora_of_New_Zealand_13_Pitto.pdf\u0026Expires=1734024194\u0026Signature=egoshdVVRMMKKJygLS8ojd55tVbQnP1ExhYSYzh66RXbbJ32artZ1VMN~h1dAh7MCSmM0oizIeIa459JF6DsK7lAjnJ1-GXYmdMrHe8m3pHqiywwEcCKdQbkTxK9EnxjZB1V9kkYX7Z6DmNpm4yMJjNHJTdh3yyTt4JGW-vY4O-C1xue52fajhCPEqyd5XoM3KpVuoan7zGCrs7d78rCzVwjsA6ELssye0~P-16j0lZ7-ZAACfIhdCzY5mjtzDO5TKhbzRmLiPJ4v2st8QBm05rkG-llhy4vLkuhrBbOrHr5ANGM1M1C3A2-Qv7RWHVSAWSQ3SAyYqgD1IZw7k8m7Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="6617882"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/6617882/Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae"><img alt="Research paper thumbnail of Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae" class="work-thumbnail" src="https://attachments.academia-assets.com/33360191/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/6617882/Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae">Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://waikato.academia.edu/ChrissenGemmill">Chrissen Gemmill</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://manoa-hawaii.academia.edu/TomRanker">Tom Ranker</a></span></div><div class="wp-workCard_item"><span>American Journal of Botany</span><span>, 1998</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morpholo...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morphologically similar species, B. insignis from Kaua'i and Ni'ihau and B. rockii from Moloka'i. To assist the design of conservation management programs for these taxa, isozyme analyses were performed to assess the levels of genetic diversity at the population and species levels, including comparisons within and among seven natural populations and one ex situ collection each of B. insignis and B. rockii. Our sampling (N ϭ 80) represents ϳ41% of all known individuals in the wild. Isozyme analyses revealed levels of genetic variation comparable to those reported for other Hawaiian flowering plant taxa but low levels of genetic variation at the population and species levels when compared to flowering plants in general. Ex situ individuals (N ϭ 61) were genetically representative of natural populations and hence may appropriately serve as stock for population augmentations. The two morphologically similar Brighamia species were highly distinct genetically. The combination of morphological and ecological similarity with allozymic dissimilarity observed in Brighamia is unique among the Hawaiian taxa studied to date.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="b812faccb93beb49cb14cb643dc52649" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33360191,"asset_id":6617882,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33360191/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="6617882"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="6617882"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 6617882; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=6617882]").text(description); $(".js-view-count[data-work-id=6617882]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 6617882; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='6617882']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 6617882, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "b812faccb93beb49cb14cb643dc52649" } } $('.js-work-strip[data-work-id=6617882]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":6617882,"title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae","translated_title":"","metadata":{"grobid_abstract":"The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morphologically similar species, B. insignis from Kaua'i and Ni'ihau and B. rockii from Moloka'i. To assist the design of conservation management programs for these taxa, isozyme analyses were performed to assess the levels of genetic diversity at the population and species levels, including comparisons within and among seven natural populations and one ex situ collection each of B. insignis and B. rockii. Our sampling (N ϭ 80) represents ϳ41% of all known individuals in the wild. Isozyme analyses revealed levels of genetic variation comparable to those reported for other Hawaiian flowering plant taxa but low levels of genetic variation at the population and species levels when compared to flowering plants in general. Ex situ individuals (N ϭ 61) were genetically representative of natural populations and hence may appropriately serve as stock for population augmentations. The two morphologically similar Brighamia species were highly distinct genetically. The combination of morphological and ecological similarity with allozymic dissimilarity observed in Brighamia is unique among the Hawaiian taxa studied to date.","publication_date":{"day":null,"month":null,"year":1998,"errors":{}},"publication_name":"American Journal of Botany","grobid_abstract_attachment_id":33360191},"translated_abstract":null,"internal_url":"https://www.academia.edu/6617882/Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae","translated_internal_url":"","created_at":"2014-04-01T07:33:33.241-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555118,"work_id":6617882,"tagging_user_id":10706701,"tagged_user_id":916280,"co_author_invite_id":null,"email":"g***h@wisc.edu","affiliation":"University of Wisconsin-Madison","display_order":0,"name":"Tom Givnish","title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae"},{"id":6555145,"work_id":6617882,"tagging_user_id":10706701,"tagged_user_id":2702859,"co_author_invite_id":null,"email":"t***r@gmail.com","affiliation":"University of Hawaii at Manoa","display_order":6291456,"name":"Tom Ranker","title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae"},{"id":6555148,"work_id":6617882,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459590,"email":"r***r@colorado.edu","display_order":7340032,"name":"Tom Ranker","title":"Conservation Genetics of the Endangered Endemic Hawaiian Genus Brighamia (Campanulaceae"}],"downloadable_attachments":[{"id":33360191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33360191/thumbnails/1.jpg","file_name":"528.pdf","download_url":"https://www.academia.edu/attachments/33360191/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conservation_Genetics_of_the_Endangered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33360191/528-libre.pdf?1396362860=\u0026response-content-disposition=attachment%3B+filename%3DConservation_Genetics_of_the_Endangered.pdf\u0026Expires=1734024194\u0026Signature=QflMO6R~ySEWZdDLNmxbTp3~PAe2264WEvgFYaOmGBJo9RgZ87AedYj-8TowLxfTHy2BvXYUhX1MFHraisQkvJP4o-GFVq7kC6D3mtjzWxW7clDuXKj7GW~JUGZxvCxLci~E1jjT1bEdLx4fJ~ADOhRfNjMGKyE4CAl4rFVC4Uwitw8SwnRxL8TP52OKPg7CKAiTh53V0TFauIfgogpy4rwd5CuSQPfJsEO7~afnMymcpXwHgklAX6RraqgcsoxLQBDa4yMkCuQPXQJbaGPr8f8zoatyH7hlFChE9FRmi1QoPxNZ7dEWMxEEhdpc51ZYDUqNGAJ2vzZdPTsq82t4xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Conservation_Genetics_of_the_Endangered_Endemic_Hawaiian_Genus_Brighamia_Campanulaceae","translated_slug":"","page_count":12,"language":"en","content_type":"Work","summary":"The endemic Hawaiian genus Brighamia (Campanulaceae) comprises two federally endangered, morphologically similar species, B. insignis from Kaua'i and Ni'ihau and B. rockii from Moloka'i. To assist the design of conservation management programs for these taxa, isozyme analyses were performed to assess the levels of genetic diversity at the population and species levels, including comparisons within and among seven natural populations and one ex situ collection each of B. insignis and B. rockii. Our sampling (N ϭ 80) represents ϳ41% of all known individuals in the wild. Isozyme analyses revealed levels of genetic variation comparable to those reported for other Hawaiian flowering plant taxa but low levels of genetic variation at the population and species levels when compared to flowering plants in general. Ex situ individuals (N ϭ 61) were genetically representative of natural populations and hence may appropriately serve as stock for population augmentations. The two morphologically similar Brighamia species were highly distinct genetically. The combination of morphological and ecological similarity with allozymic dissimilarity observed in Brighamia is unique among the Hawaiian taxa studied to date.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33360191,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33360191/thumbnails/1.jpg","file_name":"528.pdf","download_url":"https://www.academia.edu/attachments/33360191/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Conservation_Genetics_of_the_Endangered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33360191/528-libre.pdf?1396362860=\u0026response-content-disposition=attachment%3B+filename%3DConservation_Genetics_of_the_Endangered.pdf\u0026Expires=1734024194\u0026Signature=QflMO6R~ySEWZdDLNmxbTp3~PAe2264WEvgFYaOmGBJo9RgZ87AedYj-8TowLxfTHy2BvXYUhX1MFHraisQkvJP4o-GFVq7kC6D3mtjzWxW7clDuXKj7GW~JUGZxvCxLci~E1jjT1bEdLx4fJ~ADOhRfNjMGKyE4CAl4rFVC4Uwitw8SwnRxL8TP52OKPg7CKAiTh53V0TFauIfgogpy4rwd5CuSQPfJsEO7~afnMymcpXwHgklAX6RraqgcsoxLQBDa4yMkCuQPXQJbaGPr8f8zoatyH7hlFChE9FRmi1QoPxNZ7dEWMxEEhdpc51ZYDUqNGAJ2vzZdPTsq82t4xg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":33360192,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33360192/thumbnails/1.jpg","file_name":"528.pdf","download_url":"https://www.academia.edu/attachments/33360192/download_file","bulk_download_file_name":"Conservation_Genetics_of_the_Endangered.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33360192/528-libre.pdf?1396362826=\u0026response-content-disposition=attachment%3B+filename%3DConservation_Genetics_of_the_Endangered.pdf\u0026Expires=1734024194\u0026Signature=V6837qknL0S8i5KWWdx6Q1kU7~qUbrusfml7BEawBd8ZO~yMr3t4PK1ondqaCLIJxrgAFXnrGjNz3galEAgnduHvT7RjW~yxQVnGL-RUN~26vIudm4uwT2djYI~XovsGlBYnL2qhhKbN9pexaogEKUIw5JBOYHCdGHcWRBNL6IXZAvptx~ZD-P5JOqBd4NCtyLJOj9V1t6tmCnJxk7puArCd016d1~X6wBJjdKRmIXX1sC8dwciBKFZ39aD0a1rQODC5pHptD~61qCwLge3cU6ti3DGBlZf~CmIlLZzmknY51IL0PiRLDXpinpdkOgZGRlQQhaq47vmHF6s6i56yxw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":155,"name":"Evolutionary Biology","url":"https://www.academia.edu/Documents/in/Evolutionary_Biology"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[{"id":2691236,"url":"http://www.amjbot.org/cgi/reprint/85/4/528.pdf"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104427"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104427/Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand"><img alt="Research paper thumbnail of Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand" class="work-thumbnail" src="https://attachments.academia-assets.com/33747441/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104427/Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand">Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic flowering plant in New Zealand. We investigated genetic variation within and among populations of the species over its entire known distribution range to study distinctness of populations, geographical distribution of genetic variation, the level of gene flow among populations and implications of the findings for conservation.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="ab42016ea4b4bd809ed4ea5c3f5f5f36" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747441,"asset_id":7104427,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747441/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104427"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104427"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104427; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104427]").text(description); $(".js-view-count[data-work-id=7104427]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104427; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104427']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104427, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "ab42016ea4b4bd809ed4ea5c3f5f5f36" } } $('.js-work-strip[data-work-id=7104427]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104427,"title":"Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand","translated_title":"","metadata":{"grobid_abstract":"Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic flowering plant in New Zealand. We investigated genetic variation within and among populations of the species over its entire known distribution range to study distinctness of populations, geographical distribution of genetic variation, the level of gene flow among populations and implications of the findings for conservation.","grobid_abstract_attachment_id":33747441},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104427/Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand","translated_internal_url":"","created_at":"2014-05-20T08:19:15.563-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555126,"work_id":7104427,"tagging_user_id":10706701,"tagged_user_id":null,"co_author_invite_id":1459587,"email":"a***l@doc.govt.nz","display_order":0,"name":"Avi Holzapfel","title":"Genetic variation of the endangered holoparasite Dactylanthus taylorii (Balanophoraceae) in New Zealand"}],"downloadable_attachments":[{"id":33747441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747441/thumbnails/1.jpg","file_name":"dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747441/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_variation_of_the_endangered_holo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747441/dactylanthus-libre.pdf?1400599098=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_variation_of_the_endangered_holo.pdf\u0026Expires=1734024194\u0026Signature=E08A4fmjmbZx1tnhPbULg3qENn-h~3n4i23VpAUJHMfjNF3JS~CQPah-jbKXH-120rR4-01qMFRhYUE0jtNXTJKi88G4jsUOWabFpBDSmdk47BtjyIBu3M-hS8s4ujjl379v3EW0lmCaQ3I14zuldB6wuIPqkv4BwNObRuUa6ayWzWwv29zeTIoN58fq0O34A1bojEH6t4R5~hVlBuWCQN4QaNHzOQqSYRLpm2Md4ZuDH3yTSp566X0TJLIrchhZ0GJJgZHLF-DmDHPXz6dfJf4w45YfsK3p~4qkR~TLZC636jNaiffohMs2190AjE7jF1eV6p8h-DvNrmvk63wcyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genetic_variation_of_the_endangered_holoparasite_Dactylanthus_taylorii_Balanophoraceae_in_New_Zealand","translated_slug":"","page_count":14,"language":"en","content_type":"Work","summary":"Aim Dactylanthus taylorii Hook. f. (Balanophoraceae) is an endemic, endangered rootholoparasitic flowering plant in New Zealand. We investigated genetic variation within and among populations of the species over its entire known distribution range to study distinctness of populations, geographical distribution of genetic variation, the level of gene flow among populations and implications of the findings for conservation.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747441,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747441/thumbnails/1.jpg","file_name":"dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747441/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_variation_of_the_endangered_holo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747441/dactylanthus-libre.pdf?1400599098=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_variation_of_the_endangered_holo.pdf\u0026Expires=1734024194\u0026Signature=E08A4fmjmbZx1tnhPbULg3qENn-h~3n4i23VpAUJHMfjNF3JS~CQPah-jbKXH-120rR4-01qMFRhYUE0jtNXTJKi88G4jsUOWabFpBDSmdk47BtjyIBu3M-hS8s4ujjl379v3EW0lmCaQ3I14zuldB6wuIPqkv4BwNObRuUa6ayWzWwv29zeTIoN58fq0O34A1bojEH6t4R5~hVlBuWCQN4QaNHzOQqSYRLpm2Md4ZuDH3yTSp566X0TJLIrchhZ0GJJgZHLF-DmDHPXz6dfJf4w45YfsK3p~4qkR~TLZC636jNaiffohMs2190AjE7jF1eV6p8h-DvNrmvk63wcyw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":96846,"name":"Parasitic Plants","url":"https://www.academia.edu/Documents/in/Parasitic_Plants"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104451"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104451/Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand"><img alt="Research paper thumbnail of Genetic diversity of Dactylanthus taylorii in New Zealand" class="work-thumbnail" src="https://attachments.academia-assets.com/33747465/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104451/Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand">Genetic diversity of Dactylanthus taylorii in New Zealand</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amon...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Neis genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="3ccc98bbc2b31d240ecdb95b2c3353f6" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747465,"asset_id":7104451,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747465/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104451"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104451"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104451; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104451]").text(description); $(".js-view-count[data-work-id=7104451]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104451; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104451']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104451, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "3ccc98bbc2b31d240ecdb95b2c3353f6" } } $('.js-work-strip[data-work-id=7104451]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104451,"title":"Genetic diversity of Dactylanthus taylorii in New Zealand","translated_title":"","metadata":{"grobid_abstract":"Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Neis genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.","grobid_abstract_attachment_id":33747465},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104451/Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand","translated_internal_url":"","created_at":"2014-05-20T08:22:53.938-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33747465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747465/thumbnails/1.jpg","file_name":"genetic_diversity_of_dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747465/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_diversity_of_Dactylanthus_taylor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747465/genetic_diversity_of_dactylanthus-libre.pdf?1400599338=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_diversity_of_Dactylanthus_taylor.pdf\u0026Expires=1734024194\u0026Signature=BHDaXsDtXHw~o89O61IoOa~nVIH3lIDzoIPghzPLGOLK81Cu5sHtknvX3NLg3oHYw~hotJx~~1rYp3vpCxgfrYWUW7epocTnn8HG8nP-MUMAFt4GfAk1IvqZr-1xmpRI9P3WirTQkryohSAipmqdhHLv9z6PCzzUbGomQTGwKIc5nvqN2WB37IAcOPg4V4WVNUwPAgEnZsdu9WgWPEdEb1qAK06uoxtjn1Zmb2g7WbFhrXW~pxEi9KeLsd3jHmWp-N3cStb9MLqtOj79qJnW1sNVIRO1l0GTA313NFaRN8L9tVPSUdHpaGJYIRJRY57JZNl01pvy9bCm~Ud4NnCiPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Genetic_diversity_of_Dactylanthus_taylorii_in_New_Zealand","translated_slug":"","page_count":18,"language":"en","content_type":"Work","summary":"Randomly amplified polymorphic DNA (RAPD) markers were used to investigate genetic variation amongst 17 populations (146 individuals) of the endangered parasitic plant Dactylanthus taylorii. The objective was to provide a means of identifying a set of populations that are representative of the full range of genetic diversity within the species, towards which conservation resources might be targeted. RAPDs produced clear, reproducible bands, and 84 polymorphic marker bands were identified. Analysis of the RAPD data, based on Neis genetic distance, produced a dendrogram that grouped all individuals (bar one) into their expected populations. A similar analysis at the population level showed the grouping of populations was, to a significant extent, determined by geographical distribution. Two major clusters were evident, one containing populations close to and east of Lake Taupo, and the second consisting mainly of populations west of Lake Taupo. Little Barrier Island, the most isolated population, occupied a discrete branch within the second cluster. Further geographical ordering was evident within the major clusters, with neighbouring populations being grouped together. The populations at Little Barrier Island, Pirongia, Mamaku, and Waitaanga Forest were identified as being the most genetically distinct at the national level, and it is recommended that these are targeted for management. Overall, genetic groupings did not reflect conservancy boundaries. For this reason it is also recommended that conservancy management decisions regarding the allocation of resources to populations, or withdrawal thereof, should take into account the genetic status of those populations at the national level.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747465,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747465/thumbnails/1.jpg","file_name":"genetic_diversity_of_dactylanthus.pdf","download_url":"https://www.academia.edu/attachments/33747465/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Genetic_diversity_of_Dactylanthus_taylor.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747465/genetic_diversity_of_dactylanthus-libre.pdf?1400599338=\u0026response-content-disposition=attachment%3B+filename%3DGenetic_diversity_of_Dactylanthus_taylor.pdf\u0026Expires=1734024194\u0026Signature=BHDaXsDtXHw~o89O61IoOa~nVIH3lIDzoIPghzPLGOLK81Cu5sHtknvX3NLg3oHYw~hotJx~~1rYp3vpCxgfrYWUW7epocTnn8HG8nP-MUMAFt4GfAk1IvqZr-1xmpRI9P3WirTQkryohSAipmqdhHLv9z6PCzzUbGomQTGwKIc5nvqN2WB37IAcOPg4V4WVNUwPAgEnZsdu9WgWPEdEb1qAK06uoxtjn1Zmb2g7WbFhrXW~pxEi9KeLsd3jHmWp-N3cStb9MLqtOj79qJnW1sNVIRO1l0GTA313NFaRN8L9tVPSUdHpaGJYIRJRY57JZNl01pvy9bCm~Ud4NnCiPg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":4208,"name":"Molecular Ecology (Ecology)","url":"https://www.academia.edu/Documents/in/Molecular_Ecology_Ecology_"},{"id":96846,"name":"Parasitic Plants","url":"https://www.academia.edu/Documents/in/Parasitic_Plants"},{"id":116108,"name":"New Zealand","url":"https://www.academia.edu/Documents/in/New_Zealand"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104513/Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands"><img alt="Research paper thumbnail of Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands" class="work-thumbnail" src="https://attachments.academia-assets.com/33747505/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104513/Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands">Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands</a></div><div class="wp-workCard_item wp-workCard--coauthors"><span>by </span><span><a class="" data-click-track="profile-work-strip-authors" href="https://waikato.academia.edu/ChrissenGemmill">Chrissen Gemmill</a> and <a class="" data-click-track="profile-work-strip-authors" href="https://ntbg.academia.edu/DavidLorence">David Lorence</a></span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Pritchardia flynnii Lorence & Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. T...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Pritchardia flynnii Lorence & Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. This new species most closely resembles the Kaua'i endemic species Pritchardia hardyi, from which it differs by its shorter, more slender trunk 0.7-7(11) m tall and 10-20(30) cm DBH, erect to arcuate inflorescences equaling or slightly exceeding the petioles with lanate-tomentose, eventually glabrescent rachillae, and smaller fruits 25-35 ϫ 18-23 mm when dry.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="bc9212992c9d0b0b700ef2540f3d1bcb" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747505,"asset_id":7104513,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747505/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104513]").text(description); $(".js-view-count[data-work-id=7104513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104513, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "bc9212992c9d0b0b700ef2540f3d1bcb" } } $('.js-work-strip[data-work-id=7104513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104513,"title":"Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands","translated_title":"","metadata":{"grobid_abstract":"Pritchardia flynnii Lorence \u0026 Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. This new species most closely resembles the Kaua'i endemic species Pritchardia hardyi, from which it differs by its shorter, more slender trunk 0.7-7(11) m tall and 10-20(30) cm DBH, erect to arcuate inflorescences equaling or slightly exceeding the petioles with lanate-tomentose, eventually glabrescent rachillae, and smaller fruits 25-35 ϫ 18-23 mm when dry.","grobid_abstract_attachment_id":33747505},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104513/Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands","translated_internal_url":"","created_at":"2014-05-20T08:30:46.803-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[{"id":6555127,"work_id":7104513,"tagging_user_id":10706701,"tagged_user_id":6138643,"co_author_invite_id":null,"email":"l***e@ntbg.org","affiliation":"National Tropical Botanical Garden","display_order":0,"name":"David Lorence","title":"Pritchardia flynnii (Arecaceae), a New Endemic Species from Kaua‘i, Hawaiian Islands"}],"downloadable_attachments":[{"id":33747505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747505/thumbnails/1.jpg","file_name":"novo-14-02-185.pdf","download_url":"https://www.academia.edu/attachments/33747505/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pritchardia_flynnii_Arecaceae_a_New_Ende.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747505/novo-14-02-185-libre.pdf?1400599790=\u0026response-content-disposition=attachment%3B+filename%3DPritchardia_flynnii_Arecaceae_a_New_Ende.pdf\u0026Expires=1734024195\u0026Signature=Vh5Jv86XWbWbitILSlaBj7haONVc~HM7p8uoetDpKGXS7jmiEwktkVJ2eDaMmB3bOa-KMIB5hXWTddCiNNOkUnNwo1SjmXNrofbDQCOAMDTBGOaGZGLyqdLTEWiNQV5YB1HM~jDo3tVkrI45VOI~hWZ-DvCuitLQuv7M2dmNqRftGwd35Ae8hnoPw9h8mglmqBpaxZBwOczEadGJlqfps6kuLyY3W3PH1KhcDbSHmraqpay~BZdXaBcwY9QFgvmroQWZszqYKsVI8BXtuSsEBZW9S17MeIlP9i4RGizkr6ScCR42WuCYTfWHjQpTJVWlUH5dFwWUw9hbPUhQHD~MaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"Pritchardia_flynnii_Arecaceae_a_New_Endemic_Species_from_Kaua_i_Hawaiian_Islands","translated_slug":"","page_count":5,"language":"en","content_type":"Work","summary":"Pritchardia flynnii Lorence \u0026 Gemmill is described and illustrated from Kaua'i, Hawai'i, U.S.A. This new species most closely resembles the Kaua'i endemic species Pritchardia hardyi, from which it differs by its shorter, more slender trunk 0.7-7(11) m tall and 10-20(30) cm DBH, erect to arcuate inflorescences equaling or slightly exceeding the petioles with lanate-tomentose, eventually glabrescent rachillae, and smaller fruits 25-35 ϫ 18-23 mm when dry.","owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747505,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747505/thumbnails/1.jpg","file_name":"novo-14-02-185.pdf","download_url":"https://www.academia.edu/attachments/33747505/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"Pritchardia_flynnii_Arecaceae_a_New_Ende.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747505/novo-14-02-185-libre.pdf?1400599790=\u0026response-content-disposition=attachment%3B+filename%3DPritchardia_flynnii_Arecaceae_a_New_Ende.pdf\u0026Expires=1734024195\u0026Signature=Vh5Jv86XWbWbitILSlaBj7haONVc~HM7p8uoetDpKGXS7jmiEwktkVJ2eDaMmB3bOa-KMIB5hXWTddCiNNOkUnNwo1SjmXNrofbDQCOAMDTBGOaGZGLyqdLTEWiNQV5YB1HM~jDo3tVkrI45VOI~hWZ-DvCuitLQuv7M2dmNqRftGwd35Ae8hnoPw9h8mglmqBpaxZBwOczEadGJlqfps6kuLyY3W3PH1KhcDbSHmraqpay~BZdXaBcwY9QFgvmroQWZszqYKsVI8BXtuSsEBZW9S17MeIlP9i4RGizkr6ScCR42WuCYTfWHjQpTJVWlUH5dFwWUw9hbPUhQHD~MaA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":169,"name":"Systematics (Taxonomy)","url":"https://www.academia.edu/Documents/in/Systematics_Taxonomy_"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":13372,"name":"Plant Taxonomy (Taxonomy)","url":"https://www.academia.edu/Documents/in/Plant_Taxonomy_Taxonomy_"},{"id":23245,"name":"Island Biogeography","url":"https://www.academia.edu/Documents/in/Island_Biogeography"},{"id":126348,"name":"Palms","url":"https://www.academia.edu/Documents/in/Palms"},{"id":241887,"name":"Hawaiian Plants","url":"https://www.academia.edu/Documents/in/Hawaiian_Plants"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="7104522"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/7104522/A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands"><img alt="Research paper thumbnail of A New Narrow, Endemic Species of Pritchardia (Arecaceae) from Kaua'i, Hawaiian Islands" class="work-thumbnail" src="https://attachments.academia-assets.com/33747513/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/7104522/A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands">A New Narrow, Endemic Species of Pritchardia (Arecaceae) from Kaua'i, Hawaiian Islands</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="8d61ab5edcabba13ddd4e643b5af9864" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":33747513,"asset_id":7104522,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/33747513/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="7104522"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span><span id="work-strip-rankings-button-container"></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="7104522"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 7104522; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=7104522]").text(description); $(".js-view-count[data-work-id=7104522]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 7104522; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='7104522']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span><span><script>$(function() { new Works.PaperRankView({ workId: 7104522, container: "", }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "8d61ab5edcabba13ddd4e643b5af9864" } } $('.js-work-strip[data-work-id=7104522]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":7104522,"title":"A New Narrow, Endemic Species of Pritchardia (Arecaceae) from Kaua'i, Hawaiian Islands","translated_title":"","metadata":{"ai_abstract":"This paper describes a newly identified species of the Pritchardia genus, which is endemic to Kaua'i in the Hawaiian Islands. The study details the unique morphological characteristics of the species, its ecological habitat, and its significance within the Arecaceae family. The findings propose conservation measures due to the species' limited distribution and potential vulnerability to environmental changes."},"translated_abstract":null,"internal_url":"https://www.academia.edu/7104522/A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands","translated_internal_url":"","created_at":"2014-05-20T08:32:28.739-07:00","preview_url":null,"current_user_can_edit":null,"current_user_is_owner":null,"owner_id":10706701,"coauthors_can_edit":true,"document_type":"paper","co_author_tags":[],"downloadable_attachments":[{"id":33747513,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747513/thumbnails/1.jpg","file_name":"Pritchardia_perlmanii.pdf","download_url":"https://www.academia.edu/attachments/33747513/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Narrow_Endemic_Species_of_Pritchar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747513/Pritchardia_perlmanii-libre.pdf?1400599883=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Narrow_Endemic_Species_of_Pritchar.pdf\u0026Expires=1734024195\u0026Signature=Nua75bW0g3Je~NXvUTtZDjJtdKnXjNSZjiUDH-lkr1v4fVHApO2Bn27uYRvJqtT1o1dC1H9yRIc64yAbJrfe4572i~0IohyhiRKjgdm5SxJLj1cq-L64-Pu10WPUlfNBQb3E04vtCka0~1EJql4bjQdSDxmYFPCjo1EViQj2heSdgYPZRLI8RNSxROtDV21ADkfOTP19luxJjeZ-Nq2ScSqUJQoH4c795WYdS9~9a4WZxcMuDiPDv-iFpQ6N016pJ1wwvBd2RRq~a7w9X8v0BTmY0R0R8KHmvazwZt8-fYsg8IeXacL-Te5mekEpaFHC2X3-WixWVQUW-1eUP6eC4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"slug":"A_New_Narrow_Endemic_Species_of_Pritchardia_Arecaceae_from_Kauai_Hawaiian_Islands","translated_slug":"","page_count":6,"language":"en","content_type":"Work","summary":null,"owner":{"id":10706701,"first_name":"Chrissen","middle_initials":null,"last_name":"Gemmill","page_name":"ChrissenGemmill","domain_name":"waikato","created_at":"2014-04-01T07:32:43.745-07:00","display_name":"Chrissen Gemmill","url":"https://waikato.academia.edu/ChrissenGemmill"},"attachments":[{"id":33747513,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/33747513/thumbnails/1.jpg","file_name":"Pritchardia_perlmanii.pdf","download_url":"https://www.academia.edu/attachments/33747513/download_file?st=MTczNDAyNjU1Miw4LjIyMi4yMDguMTQ2&","bulk_download_file_name":"A_New_Narrow_Endemic_Species_of_Pritchar.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/33747513/Pritchardia_perlmanii-libre.pdf?1400599883=\u0026response-content-disposition=attachment%3B+filename%3DA_New_Narrow_Endemic_Species_of_Pritchar.pdf\u0026Expires=1734024195\u0026Signature=Nua75bW0g3Je~NXvUTtZDjJtdKnXjNSZjiUDH-lkr1v4fVHApO2Bn27uYRvJqtT1o1dC1H9yRIc64yAbJrfe4572i~0IohyhiRKjgdm5SxJLj1cq-L64-Pu10WPUlfNBQb3E04vtCka0~1EJql4bjQdSDxmYFPCjo1EViQj2heSdgYPZRLI8RNSxROtDV21ADkfOTP19luxJjeZ-Nq2ScSqUJQoH4c795WYdS9~9a4WZxcMuDiPDv-iFpQ6N016pJ1wwvBd2RRq~a7w9X8v0BTmY0R0R8KHmvazwZt8-fYsg8IeXacL-Te5mekEpaFHC2X3-WixWVQUW-1eUP6eC4w__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}],"research_interests":[{"id":148,"name":"Botany","url":"https://www.academia.edu/Documents/in/Botany"},{"id":169,"name":"Systematics (Taxonomy)","url":"https://www.academia.edu/Documents/in/Systematics_Taxonomy_"},{"id":2467,"name":"Conservation Biology","url":"https://www.academia.edu/Documents/in/Conservation_Biology"},{"id":13372,"name":"Plant Taxonomy (Taxonomy)","url":"https://www.academia.edu/Documents/in/Plant_Taxonomy_Taxonomy_"},{"id":126348,"name":"Palms","url":"https://www.academia.edu/Documents/in/Palms"},{"id":241887,"name":"Hawaiian Plants","url":"https://www.academia.edu/Documents/in/Hawaiian_Plants"},{"id":519936,"name":"Endemic Plants","url":"https://www.academia.edu/Documents/in/Endemic_Plants"}],"urls":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-f77ea15d77ce96025a6048a514272ad8becbad23c641fc2b3bd6e24ca6ff1932.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "8e3f9f58afe32457c484aab7a6e4a85b3d38e0ee5bfd72575742365c53f20658", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="FLt2NPtQzuWdMrSFDV0AiF/Vs8AdrYyKL3ZytTPpu42oa187MVHq04bqSE0oDUaEszsWBGc2vyLHD9JlaWxGXA==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://waikato.academia.edu/ChrissenGemmill" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="ir+SEdXQy+upGidtm7izYUmJUAYQpEWq/HWCSpSQU6Y2b7seH9Hv3bLC26W+6PVtpWf1wmo/dgIUDCKazhWudw==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>